
THE HOMOLOGY OF DIFFEOMORPHISM GROUPS

A.P.M. KUPERS

Abstract. In this talk I’ll give an overview of a successful approach to the homology of diffeomor-

phism groups: the complimentary techniques of homological stability and scanning. We will give an
overview of known results and outline the techniques in the case of 0-dimensional manifolds.
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1. Why do we care about the homology of diffeomorphism groups?

If G is a group, then one of the first steps to understanding G is computing its abelianization.
If G is a topological group, you might instead start with computing the abelianization of its group
of components. These abelian groups are isomorphic to H1(BG), the first homology group of the
classifying space of G.

The first homology group is just the first in a list of invariants associated to G: the higher homology
groups of BG. This talk is an introduction to modern methods for understanding the homology of
diffeomorphism groups of manifolds, i.e. computing H∗(BDiff(M)). We will discuss these methods and
their applications later, but first explain why you should care about the homology of diffeomorphism
groups.

Convention 1.1. Unless mentioned otherwise, all our groups are topological groups with their natural
topologies. For example, Diff has the C∞-topology, Homeo has the compact-open topology.

(i) Homology is computable. The first reason is a pragmatic one. The techniques developed for
understanding the homology of diffeomorphism groups actually make it possible to do computa-
tions. This makes a starting point for further work. For example, Botvinnik, Ebert & Randal-
Williams used our knowledge of H∗(BDiff(#gS

n × Sn, D2n)) to understand spaces of positive
scalar curvature metrics [BERW14] and Weiss used it to understand rational Pontryagin classes
in H∗(BTop(2n);Q) [Wei15].

Example 1.2. As a concrete example, knowing that homology is non-zero allows one to disprove
the existence of lifts or section. For example, if Diff(D2\k points, ∂D2) is the topological group
of diffeomorphisms of the k-fold punctured two-dimensional disk fixing the boundary. There is a
homomorphism p : Diff(D2\k points, ∂D2) → Sk where the latter is the symmetric group, and
our explicit knowledge of H∗(BDiff(D2\k points, ∂D2)) and H∗(BSk) implies that there is no
map s : Sk → Diff(D2\k points, ∂D2) such that p◦ s = id if k is big enough; the homology of Sk

is simply too big in comparison to that of Diff(D2\k points, ∂D2) for the identity map to factor
over H∗(BDiff(D2\k points, ∂D2)) [CLM76].
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2 A.P.M. KUPERS

(ii) Homology contains group-theoretic and homotopy-theoretic information. Homology may seem a
rather abstract invariant of groups at first, but our opening example shows that it is related to
many concrete questions about groups. H1 is the abelianization and H2 contains information
about central extensions. For example, Galatius & Randal-Williams used our knowledge of
H1(BDiff(#g(S

n × Sn), D2n)) [GRW14b] to compute the abelianization of the mapping class
group of #g(S

n × Sn), i.e. π0Diff(#g(S
n × Sn)) [GRW14a].

On the other hand, homology contains homotopy-theoretic information. We know that the
homotopy groups of Diff(Dn, ∂Dn) are finitely-generated in a range because Igusa [Igu88] was
able to relate them in a range to Waldhausen’s A(∗) [Wal85], which has shown to have finitely-
generated homology by a twisted homological stability argument of Dwyer [Dwy80] and hence
finitely-generated homotopy groups. In fact, Farrell-Hsiang computed them rationally in Igusa’s
range [FH78].

(iii) Characteristic classes for manifold bundles. The most direct application is not of the homology
of diffeomorphism groups, but of their cohomology. The idea is that BDiff(M) classifies smooth
manifold bundles with fibers M , just like BO(n) classifies n-dimensional vector bundles. That
is, there is so-called universal manifold bundle over BDiff(M) and pulling back this universal
bundle gives a bijection:

{homotopy classes of maps X → BDiff(M)}
OO

��
{isomorphism classes of smooth manifold bundles over X with fiber M}

If A is abelian group, an A-valued characteristic class c is a natural assignment of a cohomology
class c(E) in H∗(X;A) to each manifold bundle E with fiber M over X. Naturality here means
that given a map f : X → X ′, we have that c(f∗E) = f∗c(E). Naturality implies all of these
characteristic classes come from BDiff in the sense that pulling back along the classifying map
gives a bijection

{A-valued characteristic classes of manifold bundles with fiber M}
OO

��
{H∗(BDiff(M);A)}

Computing H∗(BSO(n)) is how we were able to show that all rational characteristic for
oriented vector bundles are given by the Euler class and Pontryagin classes. For manifold bundles
of even dimension the so-called stable rational classes have a nice geometric interpretation, being
some type of fiberwise signatures. This is not the case for odd dimensions or finite field coefficients.

2. The stability/scanning partnership

The method to compute homology of diffeomorphism groups has two steps and will not be able to
compute all the homology of all diffeomorphism groups. Instead, one fixes a class of manifolds and a
stabilization construction sending M to t(M) (often by adding a new part N to your manifold) such
that it induces a map (often by extending diffeomorphisms by the identity on N)

t : Diff(M)→ Diff(t(M))

One then only expects to get information in a range, which increases as your manifold is in the image
of more applications of t.

In this generality, we will have to be vague, but hopefully still inspiring. The first step is proving
homological stability : proving that t∗ : H∗(BDiff(tk(M))) → H∗(BDiff(tk+1(M))) is an isomorphism
in a range. The idea is that many copies of N become available, so that even there is no global inverse
to the stabilization map, there are locally many choices for an inverses and working in homology allows
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you to “glue” these. The idea is that one will prove that when allowing interpolations, the space of
“inverses” is highly-connected.

The second aspect is computing the limit colimk→∞H∗(BDiff(tk(M))). In practice this is often
done by a technique called scanning. The idea is that in the limit the spaces involved become more
“flexible” and homotopy-theoretic techniques apply. In particular, in favorable circumstances taking
the limit is the same as inverting t, so that you are allowed to zoom in as long as things lost when
zooming in are in the image of t.

Example 2.1. A homotopical example is BSO(n) of this two-fold approach. The groups SO(n) do
not just satisfy homological stability, but even homotopical stability: there is a fibration SO(n) →
SO(n+ 1)→ Sn, and the long exact sequence of homotopy groups shows that SO(n)→ SO(n+ 1) is
at least (n − 2)-connected. Thus one can obtain information about BSO(n) by studying BSO. But
this space is approachable by Bott periodicity: Ω∞BSO ' Z×BSO, so that we only need to compute
only eight homotopy groups of BSO to know all of them.

As an illustrative example I will tell you what is known in dimension 0, before sketching a proof
making precise the vague statements made in the previous paragraph. All compact zero-dimensional
manifolds are diffeomorphic to a finite number of points: M ∼= tk∗ The diffeomorphisms of such a
manifold are isomorphic to the symmetric group Sk. Taking the disjoint union with an additional
point gives a map tk∗ → tk+1∗ which induces a homomorphism t : Sk → Sk+1. Nakaoke proved that
this map induces an isomorphism in a range [Nak60].

Theorem 2.2. The map

t∗ : H∗(BSk)→ H∗(BSk+1)

is an isomorphism for ∗ < k
2 and a surjection for ∗ ≤ k

2 .

In fact the map t∗ is always injective, proven by a transfer argument. We will not prove this since
it is not a general feature of homological stability results. The theorem implies that the homology
of H∗(BSk) is independent of k for ∗ small. In particular, the stable homology colimk→∞Hi(BSk)
is isomorphic to Hi(BSk) for k large enough. We call these groups the stable homology groups. The
stable homology is computable in homotopy-theoretic terms, as was done by Barratt, Quillen, Priddy
and Segal [Seg73].

Theorem 2.3. We have an isomorphism

colimk→∞H∗(BSk) ∼= H∗(Ω
∞
0 S
∞)

where Ω∞0 S
∞ is a component of colimn→∞ΩnSn and Ω is the based loop space.

There is in fact a geometric interpretation for this isomorphism, which we will see later. The right
hand side of this theorem may seem abstract, but it is actually computable using iterated Eilenberg-
Steenrod spectral sequences. Rationally the stable homology is zero, but this is unsurprising: each Sk

is a finite group and hence has no rational homology (in positive degree). However, there is a lot of
homology with finite field coefficients [CLM76]:

Theorem 2.4 (Cohen-May-Lauda). We have that H∗(Ω
∞
0 S
∞;F2) is the free graded commutative

algebra on QIx with I ranging over admissible sequences, Qi an Araki-Kudo-Dyer-Lashof operation
and x ∈ H0. There is a similar answer for Fp-coefficients, which additionally involves the mod p
Bockstein.

Remark that BSk classifies manifold bundles with fibers consisting of sets of k points, that is, k-fold
covering spaces. Thus we have found a large collection of characteristic classes for covers. They have
no known geometric interpretation.
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3. Not just some, but all examples

There are many more examples: see table on the last page. The story is roughly that even-
dimensional manifolds of dimension not 4 are understood pretty well. We have stability for many
odd-dimensional cases but no idea for the stable homology, and the stable homology in dimension 4
but no idea for stability.

Example 3.1. Let’s go through one of the classical examples, oriented surfaces, so the reader has an
idea how to read the table. In this case we consider Diff(#g(S

1 × S1), D2), the diffeomorphisms of a
genus g surface fixing a disk. This is isomorphic to Diff(#g(S

1 × S1)\int(D2), ∂D2), the diffeomor-
phisms of a genus g surface with one boundary component that fix the boundary. Take a torus with
two disks removed. We can glue this to #g(S

1 × S1)\int(D2) along the boundary, thus increasing the
genus by 1. This induces a map t on diffeomorphism groups by extending a diffeomorphism by the
identity on the torus. The table then contains the Harer-Ivanov-Boldsen theorem [Wah11] that

t∗ : H∗(BDiff(#g(S
1 × S1)\int(D2), ∂D2))→ H∗(Diff(#g+1(S1 × S1)\int(D2), ∂D2))

is an isomorphism for in a range increasing to infinity as g →∞ (in fact, the range is ∗ < 2
3g, which is

nearly known to be optimal) and the Madsen-Weiss theorem [GMTW10] that the stable homology is
that of an component of Ω∞−1MTSO(2). Here MTSO(2) is the Thom spectrum of −γ over BSO(2),
where γ is the universal bundle. Homology of Thom spectra is easy to understand if you’re into that
type of thing.

4. 0-dimensional manifolds

We will now prove homological stability and stable homology for symmetric groups.

Remark 4.1. Exactly the same proof works for Diff(tkM) of a connected M . The range will be the
same, the stable homology will be H∗(Ω

∞
0 Σ∞BDiff+).

4.1. A model for BSk. We start by describing a model for BSk, which is really one is a weak
homotopy type determined by being connected and satisfying ΩBSk ' Sk. There are many choices of
models for this weak homotopy type, and we opt for a geometric one. The important property of BG
is the existence of a universal bundle over it, as described when we were talking about characteristic
classes. It is easy to recognize universal bundles: principal G-bundles over a space B is universal if
the total space E is contractible. This determines B up to weak equivalence and gives an concrete
method to describe B if G is finite: if one finds a contractible space E with properly discontinuous
free G-action, then E/G is a model for BG.

We will find such a space E for G = Sk. In the process we will also find useful finite-dimensional
approximations to BG. To construct E we need something on which Sk clearly acts properly discontin-
uously and freely: one such example is the space Emb([k],RN ) of embeddings of the set [k] := {1, . . . , k}
into RN .

Lemma 4.2. We have that Emb([k],RN ) is (N/2− 2)-connected.

Proof. This is a consequence of the qualitative Whitney embedding theorem, but we will give an
elementary proof. To prove that Emb([k],RN ) is (N − 1)-connected, we need to extend any map
Si → Emb([k],RN ) to a map Di+1 → Emb([k],RN ) for any i ≤ N − 1. A map Si → Emb([k],RN ) is
the same as a smooth map Si × [k] → RN that is injective when restricted to each x ∈ Si. We can
always extend this to a smooth map Di+1 × [k] → RN , but we want to be injective for all y ∈ Di+1.
One easy way to arrange this is when the map itself is injective. But a generic map Di+1 × [k]→ RN
has transverse self-intersections of dimensions2(i+ 1)−N , which is empty if i < N/2− 1. �

There are maps Emb([k],RN )→ Emb([k],RN+1) by including RN into RN+1. The previous lemma
implies that

Emb([k],R∞) := colimN→∞Emb([k],RN )

is contractible and the map Emb([k],RN ) → Emb([k],R∞) is highly-connected. This means that
Emb([k],R∞)/Sk is a model for BSk and Emb([k],RN )/Sk is an approximation to it. The conclusion
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is that BSk should intuitively be thought as a space of k unlabeled distinct particles in a high-
dimensional Euclidean space.

4.2. Homological stability. For homological stability it will useful to write RN as (0,∞) × RN−1.
We can easily write the stabilization map t : BSk → BSk+1 in this model. This map needs to add
one new particle, which is done by adding it near the origin, making place for it by shifting the first
coordinates of all the other particles:

t(~x) = (~x+ ~e1) ∪ new particle at
1

2
~e1

Recall our vague inspirations words for homological stability. The stabilization map t adds a new
particle, and it would be easy to prove stability if this map had an inverse, which one imagines looks
like removing a particle. Of course such a map doesn’t exist, as there isn’t a canonical choice for
which of the (k + 1) particles to remove. In this case we do what topologists always do: make a
space of choices. A first approximation would be the space X0, consisting of a point ~x ∈ BSk+1 =
Emb([k + 1], (0,∞)× R∞)/Sk and a path γ0 from the origin to one of the elements of ~x avoiding all
other elements of ~x. This space is close to what we want: X0 ' BSk by dragging the point to the
origin along γ and under this homotopy equivalence the map X0 → BSk+1 which forgets the path is
homotopic to t. However, the problem is that for a given ~x ∈ BSk+1 we have essentially constructed
k + 1 inverses to the stabilization map. We want to show that these are the same on homology, and
thus build more spaces allowing interpolations between them.

Definition 4.3. The augmented semisimpicial space X• has Xp equal to ~x ∈ BSk+1 together with
an ordered collection of (p + 1) paths from the origin to points in ~x, which are disjoint except at the
origin. There are maps di : Xp → Xp−1 for 0 ≤ i ≤ p which forget the ith path, and there is a map
ε : X0 → BSk+1 which forgets the remaining paths.

By the same argument as before Xp ' BSk−p and each of the di’s is homotopic to t.
Let ∆p be the subspace of [0, 1]p+1 consisting of ti’s whose sum is 1. There are inclusions di :

∆p−1 → ∆p given by making the ith coordinate 0. Out of X• we can built a space

||X•|| =

⊔
k≥0

Xp ×∆p

 /∼

where ∼ is generated by (dix, t) ' (x, dit). Think of ||X•|| as the space of ~x ∈ BSk+1 together with
weighted collections of paths from the origin to points in ~x. The weights sum to 1 and if the weight is
0 you forget that path.

Our goal is to show that ||X•|| is a good approximation to BSk. Let’s consider the map ε : ||X•|| →
BSk+1. The fiber over ~x consists of all linear combinations of paths from the origin to ~x.

Lemma 4.4. The fibers of ε are (k − 1)-connected.

Proof. Let’s for the moment forget about the paths and just remember the points in ~x that these
points connect to. The result is that from a map Si → ε−1(~x) we get a map from Si to the space of
linear combinations of ordered subsets of ~x. More precisely, there is a semisimplicial space Inj•(~x) with
Injp(k) ordered (p + 1)-element subsets of ~x ∼= {0, . . . , k} and di forgetting the i the element of your

subset. We get a map Si → ||Inj•(~x)||. It is well known that ||Inj•(~x)|| is (k − 1)-connected [RW13],
which is plausible since forgetting about the ordering would lead to a simplicial complex homeomorphic
to a simplex. This semisimplicial space being highly connected means that we can extend our choices
of elements to Di+1 if i ≤ k − 1.

What about the paths? A map Si → ε−1(~x) is a map out of a compact space. This means that
the paths in its image are contained in (0,∞) × RN for some N . Thus by going into an additional
dimension allows us to endow our choices of subsets for ~x for each point in Di+1 with disjoint paths
connecting them to the origin. This is formalized by the so-called lifting argument for connectivity of
complexes [HW10, GRW14b, Kup13]. �
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So we have a map ε : ||X•|| → BSk+1 with highly-connected fibers. But it is in fact a Serre fibration:
if we have a map Di × [0, 1]→ BSk+1, i.e. the points in Sk+1 move around, by the isotopy extension
theorem there exist a Di × [0, 1]-indexed family compactly-supported isotopies of the ambient space
starting at the identity inducing this. Now apply these isotopies to the paths to get a lift to ||X•||.
Thus the map ||X•|| → BSk+1 is in fact (k − 1)-connected and ||X•|| looks like BSk+1 in a range, in
particular has the same homology.

To get information about the homology of ||X•|| we filter it by

||X•||≤j =

 ⊔
j≤k≥0

Xp ×∆p

 /∼

so that the associated gradeds are suspension of Xp’s. The result is a spectral sequence with E1-page
given by

E1
p,q = Hq(BSk−p)

and converging to Hp+q(BSk+1) in a range. The d1-differential is given by the alternating sum of
the face maps. But we saw that all of them are homotopic to t, so they are alternatively t and 0.
Furthermore, the edge map from E1

0,q = Hq(BSk)→ Hq(BSk+1) is also given by t∗.
The proof now goes by induction over k and clearly the stabilization map is an isomorphism on

H0. So suppose have proven the result for all k′ ≤ k and we want to prove it for k + 1. Applying
the inductive hypothesis when passing to the E2-page results in the p = 0 column surviving, but the
other columns being 0 in a triangular range. This means that the edge map, i.e the stabilization map
Hq(BSk)→ Hq(BSk+1) is an isomorphism in a range, since nothing else can contribute to E∞.

4.3. Scanning. How does one obtain the stable homology? For that we use the approximating spaces
Emb([p],RN )/Sp. We will construct a map

RN × Emb([p],RN )/Sp → SN = R∞ ∪ {∞}

and show it extends to a map SN∧(Emb([p],RN )/Sp)+ → SN , hence map Emb([p],RN )/Sp → ΩNSN .
These maps are compatible for different N and taking N to infinity gives the desired scanning map
BSk → Ω∞S∞ := colimN→∞ΩNSN [McD75] [Seg73]. Note that since BSk is connected, it hits a
single component of the right hand side. Since all components of the right hand side, indexed by Z,
are homotopy equivalent, without loss of generality we can take it to be the zero component.

The idea is for (y, ~x) take a tiny microscope centered around y and record what you see. Tiny here
means that the diameter of the disk you see in your microscope is smaller than the distance between
the particles in ~x, so you see at most 1 point. Thus the assignment (y, ~x) 7→ s̃(y, ~x) ∈ RN ∪ {∞} is
given by recording either the position of the particle in your vision (rescaled to be RN ) or nothing, in
which you send it to ∞. It is easy to see that the size of the microscope can be chosen continuously
in ~x, so we get a continuous map. Also note that if you go sufficiently far from the origin, you will
always see the empty configuration in your microscope, which means we can extend our map to a map
SN ∧ (Emb([p],RN )/Sp)+ → SN .

We claim that this map induces an isomorphism on stable homology, that is, we get an isomorphism

s∗ : colimk→∞H∗(BSk)→ H∗(Ω
∞
0 S
∞)

The argument for this is a combination of the group completion theorem and a delooping argument.
The former says [MS76].

Theorem 4.5 (McDuff-Segal). If M is a homotopy commutative topological monoid, then

H∗(M)[π−10 ] ∼= H∗(ΩBM)

In our case MN =
⊔
p Emb([p],RN )/Sp. This is a homotopy commutative topological monoid by

juxtaposition: RN ∼= RN−1 × (0, 1) and we can put two configurations in RN−1 × (0, 1) next to each
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other in RN−1 × (0, 2) and rescale the last coordinate. There is an isomorphism for i > 0:

Hi

(⊔
p

Emb([p],RN )/Sp

)
[π−10 ] ∼= colimk→∞Hi(BSk)

Thus we want to compute the homology of ΩBMN , because in a range it coincides with that of
ΩBM∞. But it turns out that BMN is modeled by the space of particles in RN that go and disappear
at infinity in one direction. This is path-connected and again a topological monoid by juxtaposition
in one of the remaining directions.

Theorem 4.6. If M is a path-connected topological monoid, then

M ' ΩBM

Applying this theorem (N − 1) times, we see then ΩBMN is homotopy equivalent to ΩNBNMN .
We have that BNMN is modeled by particles in RN that can go to infinity in all N directions. Putting
one particle at y ∈ RN gives a map RN → BNMN , which extends to a map SN → BNMN by sending
the new point to the empty configuration. This map is a weak equivalence; just zoom in until you see
at most one point. We conclude that in the range i ≤ N/2− 2 we have

colimk→∞Hi(BSk) = Hi(Ω
NSN )

and it remains to check that the isomorphism is induced by the scanning map described above. By
homological stability the result doesn’t depend on N in that range, so that we can take N to ∞.
However, one can also draw a different conclusion.

Theorem 4.7 (Weaker version of Freudenthal suspension). If N ≥ 1, the map ΩNSN → ΩN+1SN+1

is (N/2− 2)-connected.

Proof. An H-space map that is a homology equivalence is a weak equivalence and a similar result
holds in a range. �
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