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Abstract

We study three-manifolds that are constructed as mapping tori of surfaces with

pseudo-Anosov monodromy. Such three-manifolds are endowed with natural sin-

gular Sol structures coming from the stable and unstable foliations of the pseudo-

Anosov homeomorphism. We use Danciger’s half-pipe geometry [6] to extend results

of Heusener, Porti, and Suarez [13] and Hodgson [15] to construct singular hyperbolic

structures when the monodromy has orientable invariant foliations and its induced

action on cohomology does not have 1 as an eigenvalue. We also discuss a combina-

torial method for deforming the Sol structure to a singular hyperbolic structure using

the veering triangulation construction of Agol [1] when the surface is a punctured

torus.
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Preface

As a result of Perelman’s Geometrization Theorem, every 3-manifold decomposes into

pieces so that each piece admits one of eight model geometries. Most 3-manifolds ad-

mit hyperbolic structures, and outstanding questions in the field mostly center around

these manifolds. Having an effective method for describing the hyperbolic structure

would help with understanding topology and geometry in dimension three. The recent

resolution of the Virtual Fibering Conjecture also means that every closed, irreducible,

atoroidal 3-manifold can be constructed, up to a finite cover, from a homeomorphism

of a surface by taking the mapping torus for the homeomorphism [2]. Moreover,

Thurston [29] showed that if the homeomorphism is pseudo-Anosov, then the re-

sulting 3-manifold Mφ is hyperbolic. Thus, mapping tori with pseudo-Anosov mon-

odromy play an important role in studying hyperbolic 3-manifolds. Pseudo-Anosov

homeomorphisms are ubiquitous in low dimensional topology, so understanding this

construction has potential impacts in other areas of the field.

However, Thurston’s proof is non-constructive, so understanding the hyperbolic

structure on the mapping torus requires other tools. There is a more natural geometry,

Sol geometry, on the manifold coming from the pseudo-Anosov flow on the surface.

Some work has been done to find a connection between the two geometries by Hodgson

[15] and Heusener, Porti, and Suárez [13] in the punctured torus case. Yet, not much

is known in the more general case of pseudo-Anosov homeomorphisms of hyperbolic

surfaces. The question of understanding hyperbolic geometry from the pseudo-Anosov
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homeomorphism motivates the research in this dissertation.

Another way to understand hyperbolic 3-manifolds when they have non-empty

boundary is to construct them as a set of hyperbolic ideal tetrahedra that have been

glued together along faces. Epstein and Penner [8] have shown that hyperbolic 3-

manifolds admit a “nice” decomposition into ideal (hyperbolic) polyhedra, but the

existence of an ideal triangulation is unknown. Agol [1] recently constructed a canon-

ical triangulation of mapping tori of pseudo-Anosovs using an invariant train track.

Initially, there was hope that the resulting veering triangulation could be realized

geometrically, but a counter-example was recently found by Issa [19]. Nonetheless,

the construction may still have applications to hyperbolic geometry. In this disserta-

tion, we study some of the properties of veering triangulations and prove some partial

results on nearly collapsed ideal triangulations.
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Chapter 1

Introduction

1.1 Sol structures on mapping tori

Suppose S is a surface with negative Euler characteristic and φ : S → S is a pseudo-

Anosov homeomorphism. The stable and unstable foliations of φ determine a singular

Euclidean structure on S, with the leaves of the foliations acting as the coordinate

directions. The invariant foliations of φ are expanded and contracted by the dilatation

factor, λ, and its inverse λ−1 (see Chapter 3 for more on pseudo-Anosov maps). Let

Mφ be the mapping torus of S,

Mφ = S × [0, 1]/(x, 0) ∼ (φ(x), 1)

We can imagine a geometry on Mφ so that in the fiber S × 0, we have the singular

Euclidean structure on S, described above. On a fiber S × t, we can expand and

contract the foliations so that at t = 1, we have expanded by λ and contracted by

λ−1.

Sol geometry, one of the eight Thurston geometries and discussed in further detail

in Section 2.4, also has this geometric structure. Thinking of Sol in coordinates

1



2 CHAPTER 1. INTRODUCTION

(x, y, z), at a plane z = c, the geometry on the plane is similar to that of Euclidean

geometry. As we translate in the z direction, the y direction is expanded and the

x direction is contracted. Thus, Mφ admits a natural singular Sol structure, with

singular set Σ given by the orbits of the singular points of the Euclidean structure on

S. The Sol structure on Mφ is closely related to the pseudo-Anosov map, and so it

can be easily understood in terms of properties of φ and its invariant foliations. The

motivation for this dissertation is to understand the hyperbolic metric from the more

easily understood singular Sol structure.

1.2 Connections to hyperbolic structures

The hyperbolization theorem of Thurston [29] for pseudo-Anosov mapping tori states

that Mφ admits a complete hyperbolic structure. Moreover, by Mostow-Prasad Rigid-

ity, this hyperbolic structure is unique. However, if we allow incomplete structure on

Mφ, it is possible to find a family of hyperbolic structures with cone singularities, and

when the cone angles are small, the family is parametrized by the cone angles [16].

In other words, we can deform the hyperbolic structures by varying the cone angles.

In Chapter 4 we investigate the connection between the hyperbolic structure on

Mφ and the singular Sol structure coming from the invariant foliations of φ. In the

case where S is a punctured torus, Hodgson [15] and Heusener, Porti, and Suárez [13]

find singular hyperbolic structures that collapse to a 2-dimensional or 1-dimensional.

By rescaling this collapse, they are able to recover the Sol structure on Mφ. We

generalize these results in Chapter 4 to show the following.

Theorem 4.5 . Let φ : S → S be a pseudo-Anosov homeomorphism whose stable

and unstable foliations, F s and Fu, are orientable and φ∗ does not have 1 as an

eigenvalue. Then, there exists a family of singular hyperbolic structures on Mφ,

smooth on the complement of Σ, that degenerate to a transversely hyperbolic foliation.
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The degeneration can be rescaled so that the path of rescaled structures limit to the

singular Sol structure on Mφ, as projective structures.

Sol geometry contains transverse embedded hyperbolic planes. These hyperbolic

planes can be seen as the upper half-plane model of H
2 in Sol or as the “lower half-

plane model” (i.e. the upper half-plane model flipped upside-down). In Section 4.1,

we exploit that geometry to project the Sol structure on Mφ to one of the hyperbolic

planes, which gives a transversely hyperbolic foliation of Mφ and a representation of

π1(Mφ) into the group of isometries of H
2. A transversely hyperbolic foliation can

be viewed as a collapse of the 3-dimensional hyperbolic structure to a 2-dimensional

one.

We then show in Section 4.2 that the space of representations (modulo conjuga-

tion) is smooth at this representation when φ has orientable invariant foliations and

φ∗ does not have 1 as an eigenvalue, allowing us to deform the representation. A key

ingredient is the use of half-pipe (HP) geometry from Danciger [6] and discussed in

Section 2.6, as an intermediate. We use the above information to find a HP repre-

sentation which limits to the Sol representation, and apply the Ehresmann-Thurston

principle to show that the representations correspond to geometric structures in a

neighborhood of Sol structure. This allows us to find a family of singular hyperbolic

structures that collapse, and by rescaling the degeneration, we can recover the sin-

gular Sol structure. These three-dimensional geometries can all be viewed in terms

of projective structures (Section 2.3 for hyperbolic geometry, Section 2.4 for Sol ge-

ometry, and Section 2.6 for HP), and the deformation occurs as a smooth family of

projective structures that transition from hyperbolic to HP/Sol.

The structures obtained in this matter have cone angles roughly equal to the cone

angles of the singular Euclidean metric on S. Up to first order, a weighted sum of

the change in the cones angles is negative, as shown in Section 4.4. Since the singular

Euclidean metric has cone angles at least 4π, this means that we can choose all of
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the cone angles to be decreasing. The results in Chapter 4 are about infinitesimal

deformations, so further work would be required to show that the cone angles can

be decreased to 2π, yielding a smooth hyperbolic structure. A result of this manner

would allow us to understand the hyperbolic structure on pseudo-Anosov mapping

tori from the topological properties of the map.

1.3 Veering triangulations

Given a pseudo-Anosov mapping class φ : S → S, Agol [1] describes a way of tri-

angulating the mapping torus Mφ using triangulations on the surface S dual to the

maximal splitting sequence of an invariant train track τ . At each stage of the splitting

sequence, the branches with maximal weight are split, and the dual of these splits

correspond to diagonal exchanges on quadrilaterals, giving rise to flattened tetrahe-

dra. A natural taut angle structure is given by assigning π angles to the diagonals of

the flattened tetrahedra and dihedral angles of 0 to the other edges. An important

property of this triangulation is that it is veering [1, Proposition 4.2], which can be

viewed as a condition on how vertices of tetrahedra move in the singular Euclidean

structure on S or as a purely combinatorial condition involving labeling edges [18].

Hodgson, Rubinstein, Segerman, and Tillman [18], and Futer and Guéritaud [10]

prove the existence of angle structures on these flattened tetrahedra where all of the

angles are strictly between 0 and π. Realizing the topological triangulation as a

geometric one where ideal tetrahedra are glued together along faces involves finding

shape parameters for the tetrahedra that satisfy the edge consistency equations. In

Chapter 5, we study veering triangulations and their properties, finding real solutions

to the edge consistency equations in Section 5.3.

Theorem 5.8 . The assignment of shape parameters to tetrahedra using the pro-

jection to R ⊂ ∂H
2 using the weights of the dual branch as the R-lengths of the
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edges gives a solution to the edge consistency equations where the π angles are at the

topmost tetrahedra in each fan.

The real solutions to the edge consistency equations correspond to degenerate

tetrahedra that have been collapsed onto a 2-dimensional hyperbolic plane, and the

theorem also gives combinatorial control of the angle structure in the collapse. Dan-

ciger [6] proved Theorem 5.8 in the punctured torus case, and the methods in Section

5.3 generalize the result to all veering triangulations where the fiber can be any hy-

perbolic surface. From here, the desired outcome would be to deform the flattened

tetrahedra to non-degenerate, positive volume tetrahedra, so that we have a legiti-

mate 3-dimensional hyperbolic structure (possibly singular) on Mφ. We reprove these

deformation results for the punctured torus case by using the combinatorics of the

triangulation.

Theorem 5.13 . Let S be a punctured torus and φ : S → S pseudo-Anosov. Then

there exists a triangulation of Nφ = Mφ \ Σ and degenerate (real) solutions to the

edge consistency equations that can be deformed to a solution with non-degenerate,

positive volume tetrahedra.

Theorem 5.13 is a new proof of the same result by Danciger [6] using the combina-

torics of the veering triangulation. It involves translating inequalities about the space

of deformations of the tetrahedra into directed edges on a related triangulation of the

cusp tori. An induction argument can then be used to find directed cycles on the tori,

which imply that the inequalities can only be satisfied by equality. Results of Choi

[4] then imply that the solution in Theorem 5.8 can be deformed. The general case of

a hyperbolic surface using the combinatorial techniques appears to be much harder,

but an application to the minimal dilatation 4-strand braid can be seen in Section

5.7. As with Theorem 4.5, these results are infinitesimal, meaning we can deform the

triangulation for some ε amount. Deforming all the way to the complete structure
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would require additional analysis of the space of solutions to the edge consistency

equations.



Chapter 2

Geometric Structures

2.1 (X,G) structures

Let X be a manifold and G be a group acting on X. We will study geometric

structures on a manifold M through the framework of (X,G)-structures described by

Ehresmann [7] and Thurston [27]. We think of X as the model space (such as E
n or

H
n) and G the group of isometries of X. The necessary definitions will be restated

here, and further treatment of the material can be found in Thurston [27].

Definition 2.1. A (X,G) structure on a manifold M is a collection of charts {ψα :

Uα → X}, where the {Uα} are an open cover of M , such that the transition maps

ψαψ
−1
β are restrictions of elements gαβ ∈ G.

Examples of (X,G) structures include (H3, Isom(H3))-structures or hyperbolic

structures using any of the models for hyperbolic structures discussed in Section 2.3,

(Sol, Isom(Sol))-structures using any of the models for Sol discussed in Section 2.4,

or (HP, Isom(HP))-structures using any of the models for HP geometry discussed in

Section 2.6. When it is clear that G = Isom(X), we will sometimes omit the structure

group and call it an X-structure.

7



8 CHAPTER 2. GEOMETRIC STRUCTURES

We assume in general that G is analytic so that any element of G is determined

by its restriction to any open subset of X. Let M be any (X,G)-manifold. Fix a

coordinate chart ψ0 : U0 → X, and let {U0, U1, U2, . . . } be an open cover of M with

respective maps ψi → X. Then there are transition maps γij so that γij ◦ ψi = ψj

where each γij is the restriction of an element gij ∈ G on ψi(Ui ∩Uj). In other words,

γij is determined by a locally constant map on Ui ∩ Uj.

Let α be a path in M beginning in U0. We can find an analytic continuation of ψ0

along α as follows: for any component of α∩Ui, the analytic continuation of ψ0 along

α is of the form γi ◦ψi for some γi which is the restriction of an element gi ∈ G. Since

ψ0 can be analytically continued along every path in M , there is a global analytic

continuation of ψ0 defined on the universal cover of M into X. This map, denoted

D : M̃ → X is called the developing map.

D is unique up to composition with elements of G. For any covering transforma-

tion Tα of M̃ , there exists an element gα ∈ G such that D ◦ Tα = gα ◦D. It is easily

checked that this map ρ : α 7→ gα is a homomorphism, which is called the holonomy

of M .

Definition 2.2. M is complete as a (X,G)-manifold if D : M̃ → X is a covering

map.

In the case where M is a complete (X,G)-manifold and X is simply connected,

then the developing map D is a diffeomorphism. Identifying M̃ ∼= X and Γ =

ρ(π1(M)), we can see that M = X/Γ.

2.2 Infinitesimal deformations

A smooth family of (X,G)-structures on a manifold M can be described by a family

of developing maps Dt : M̃ → X and corresponding holonomy representations ρt :

π1(M) → G.
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Definition 2.3. Two families of (X,G)-structures Dt and Ft such that D0 = F0 are

equivalent if there exist a smooth family gt of elements in G and a smooth family

of diffeomorphisms φt defined on all but a small neighborhood of ∂M such that

Dt = gt ◦ Ft ◦ φ̃t where φ̃t is the lift of φt, g0 = 1, and φ̃0 is the identity.

We can think of Dt and Ft as deformations of the same structure, D0. Such a

deformation Dt is trivial if D0 is equivalent to the family of structures Ft = D0. In

this case, the holonomy representations also differ by conjugation by a smooth family

gt, i.e. ρt = gtρ0g
−1
t .

We will study deformations of geometric structures through their representations.

A key fact about deformations and their representations is below (see Goldman [11]

for a proof of Theorem 2.6).

Definition 2.4. The representation variety R(π1(M), G) is the space of representa-

tions ρ : π1(M) → G with the compact-open topology, up to conjugation.

Definition 2.5. The deformation variety D(M, (X,G)) is the space of (X,G)- struc-

tures on M with the C∞ topology on the developing maps, up to the equivalence

defined above.

Theorem 2.6 (Thurston). The map hol : D(M, (X,G)) → R(π1(M), G) taking an

(X,G) structure to its holonomy representation is a local homeomorphism.

Hence, instead of analyzing the developing maps, we can study deformations of

geometric structures by analyzing R(π1(M), G). Suppose we have a smooth family

of representations ρt : π1(M) → G. We discuss how to study the infinitesimal change

in ρt at ρ0, as in Hodgson [15]. The derivative of the homomorphism condition

ρt(ab) = ρt(a)ρt(b) yields

ρ′t(ab) = ρ′t(a)ρt(b) + ρt(a)ρ
′
t(b).
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In order to normalize the derivative, we multiply on the right by ρt(ab)
−1, to

translate back to the identity element.

ρ′t(ab) = ρ′t(a)ρt(a)
−1 + ρt(a)ρ

′
t(b)ρt(b)

−1ρt(a)
−1.

The second term, ρt(a)ρ
′
t(b)ρt(b)

−1ρt(a)
−1 is defined to be Adρt(a)(ρ

′
t(b)ρt(b)

−1).

Let the Lie algebra of G be denoted by g. Then a cocycle c : π1(M) → g is the

map c(γ) = ρ′(γ)ρ0(γ)
−1, where ρ′ is the derivative evaluated at t = 0. The map c

satisfies the cocycle condition

c(ab) = c(a) + Adρ0(a)c(b). (2.1)

The group of all maps satisfying the cocycle condition in Equation 2.1 is denoted

Z1(π1(M), gAdρ0
). Differentiating the triviality condition for representations ρt =

gtρ0g
−1
t yields the coboundary condition

c(γ) = u− Adρ0(γ)u (2.2)

for some u ∈ g. Cocycles satisfying Equation 2.2 are denoted B1(π1(M), gAdρ0
). We

have the following theorem about deformations of representations.

Theorem 2.7. If R(π1(M), G) is smooth at ρ0, then the cohomology group,

H1(π1(M), gAdρ0
) = Z1(π1(M), gAdρ0

)/B1(π1(M), gAdρ0
),

describes the tangent space to R(π1(M), G) at ρ0.

Hence, at an infinitesimal level, we can study the space of cocycles to determine

deformations of a representation ρ0.
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2.3 Hyperbolic geometry

In this section, we will provide a brief overview of hyperbolic geometry as relevant to

the rest of this dissertation. A more thorough treatment can be found in Thurston [27]

or the expanded version edited by Levy [20]. The models we will use for 3-dimensional

hyperbolic space are the upper half-space model, hyperboloid model, and projective

model.

The upper half-space model for hyperbolic space is obtained by taking the half-

space

H
3 = {(x1, x2, x3) ∈ R

3 : x3 > 0},

with the metric

ds2 =
dx2

1 + dx2
2 + dx2

3

x2
3

.

The boundary of H
3 is the one-point compactification of the plane x3 = 0 along with

the point at infinity (∞). The infinite geodesics in this model are half-circles meeting

the boundary at right angles. By identifying points on the boundary (x1, x2, 0) with

z = x1 + x2i, we can describe it as ∂H
3 = CP 1. The isometry group in this model is

Isom(H3) ∼= PSL(2,C), the group of mobius transformations acting on the boundary,

CP 1. An element




a b

c c



 ∈ PSL(2,C)

represents the map z 7→ az+b
cz+d

acting on CP 1.

The hyperboloid model is described as a subspace of R
3,1. Topologically, R

3,1 is the

space R
4, but it is endowed with the Lorentzian metric ds2 = −dx2

1 +dx2
2 +dx2

3 +dx2
4.

Then, the induced metric on

H
3 = {~x = (x1, x2, x3, x4) ∈ R

3,1 : ||~x|| = −1}/{±I}
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is isometric to the hyperbolic metric. The isometry group of H
3 in the hyperboloid

model is the identity component SO+(3, 1) of SO(3, 1). Notice that each point in the

hyperboloid model (which really are two points in R
3,1 identified under the quotient

by ±I) intersects exactly 1 line through the origin in R
3,1. Hence, we can also identify

the hyperboloid with a subset of RP 3, given by

H
3 = {~x = [x1, x2, x3, x4] ∈ RP 3 : ||~x|| < 0}.

There is a method for taking an isometry of H
3 from the upper half-space model

(i.e. an element A ∈ PSL(2,C)) to the corresponding isometry in the hyperboloid

model. First, a point (x1, x2, x3, x4) from the hyperboloid model is identified with the

matrix

P (x1, x2, x3, x4) =





x1 + x2 x3 + ix4

x3 − ix4 x1 − x2



 .

Then, A acts on the point (x1, x2, x3, x4) by

AP (x1, x2, x3, x4)A
∗,

where A∗ denotes the Hermitian transpose of A. Notice that this operation preserves

detP = x2
1−x2

2−x2
3−x2

4, so it sends points of the hyperboloid in R
3,1 to points of the

hyperboloid. The corresponding isometry in the hyperboloid model is the element

A′ ∈ SO(3, 1) so that

AP (x1, x2, x3, x4)A
∗ = P (A′(x1, x2, x3, x4)).

Notice that there are multiple copies of H
3 lying inside R

4. For each s > 0, we
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can take a different hyperboloid

H
3
s = {~x = (x1, x2, x3, x4) : −x2

1 + x2
2 + x2

3 + s2x2
4 = −1}/{±I},

and the subgroup Gs of GL(4,R) preserving the form

−x2
1 + x2

2 + x2
3 + s2x2

4,

to obtain a space isometric to H
3. The isometry is given by the rescaling map

rs =

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 s−1

















.

Geometrically, we can think of the family of hyperboloids, H
3
s, as flattening out

to H
2 × R in R

4. Taking the limit as s → 0 yields half-pipe geometry, discussed in

Section 2.6.

2.4 Sol geometry

One of the eight Thurston geometries in three dimensions, Sol geometry has a natural

link to pseudo-Anosov diffeomorphisms on surfaces. Topogically, Sol is R
3, endowed

with the metric ds2 = e2zdx2 + e−2zdy2 + dz2 at the point (x, y, z). The isometries of

Sol are described by maps of the form,

(x, y, z) 7→ (e−cx+ a, ecx+ b, z + c).
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Figure 2.1: Translation in the z-direction contracts the x-direction and expands the
y-direction in a slice of Sol.

In other words, translation in the z-direction contracts the x-direction by a factor

of e−z and expands the y-direction by a factor of ez. On a fixed slice z = z0, the

isometries are given by translations.

Sol can also be embedded in RP 3 by

(x, y, z) 7→

















cosh z

sinh z

ezx

e−zy

















.

The isometry group of Sol in RP 3 is the subgroup of PGL(4) consisting of elements

of the form
















cosh z′ sinh z′ 0 0

sinh z′ cosh z′ 0 0

x′ez′ x′ez′ 1 0

y′e−z′ −y′e−z′ 0 1

















,

where θ, x′, y′, z′ ∈ R. A further treatment of Sol geometry can be found in Bonahon

[3].
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Note that by restricting Sol to certain two dimensional cross sections, we obtain

hyperbolic planes inside Sol. For example, restricting to the yz-plane and z > 0 gives

the upper half-plane model for H
2, and restricting to the xz-plane with z < 0 is an

inverted copy of the upper half-plane model. These hyperbolic planes within Sol will

play an important role in Chapter 4. The idea will be to collapse the Sol structure

onto a hyperbolic plane by projecting onto one of the leaves of Fu. We will then think

of this hyperbolic plane as living within H
3, and we will regenerate the 3-dimensional

hyperbolic structure from this collapsed structure.

2.5 Rescaling degenerations

In dimension three, Mostow-Prasad rigidity states that any fixed hyperbolic manifold

has a unique complete hyperbolic structure, up to isometry. However, if we allow

incomplete hyperbolic structures, then Thurston [27] showed that there is a deforma-

tion space of nearby (incomplete) hyperbolic structures. If the deformation is carried

out far enough, the hyperbolic structure may degenerate, and the 3-manifold can

collapse to a 2-dimensional or 1-dimensional manifold.

An analogous and simplified situation in 2-dimensional geometry can be observed

for doubles of hyperbolic triangles. If we double the ideal hyperbolic triangle, we

obtain a three-punctured sphere with cone angles of 0 at the three punctures. As the

area of the triangles shrink, the sum of the cone angles approaches 2π. In the limit as

the area approaches 0, the triangles degenerate to a point. If we rescale the triangles

as they shrink, we obtain the double of a Euclidean triangle (Figure 2.2).

We can also see that we can continue to increase the cones angles, and we ob-

tain the double of a spherical triangle. We can continue to deform the cone angles

until the cone angle about each doubled vertex is 2π, giving the smooth sphere.
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Figure 2.2: The double of a hyperbolic triangle collapses to a point as the sum of the
cone angles at the vertices increases from 0 to 2π. Rescaling the collapse yields the
double of a Euclidean triangle.

Thus, Euclidean geometry serves as the intermediate between hyperbolic and spher-

ical geometry. Analogously, half-pipe geometry is the transition geometry between

hyperbolic and AdS geometry in dimension three [6].

In the case thatM is a punctured torus bundle, Hodgson [15] studied regenerations

of singular hyperbolic metrics by taking a projection of the Sol structure onto one of its

hyperbolic plane. Heusener, Porti, and Suárez [13] further showed that an appropriate

rescaling of the degeneration yields the Sol metric on Mφ by using a more explicit

construction. The reverse process of obtaining singular hyperbolic structures that

degenerate so that a rescaling of the path of degenerating structures yields another

geometric structure is called regeneration. We will be interested in regeneration of

singular hyperbolic structures from the singular Sol metric on Mφ.

2.6 Half-pipe geometry

In his thesis, Danciger [6] studies degenerations of singular hyperbolic structures using

the projective models. An appropriate rescaling of the degeneration yields half-pipe

(HP) geometry, a transition geometry between hyperbolic geometry and anti-de Sitter

(AdS) geometry.
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Three-dimensional HP geometry, HPn, topologically is R
n. In terms of represen-

tations, it can be described as a rescaling of the collapse of the structure group from

SO(3, 1) to SO(2, 1). Begin with a representation ρ1 of π1(M) into SO(3, 1), and

describe the collapse the manifold in the x4 coordinate by a family of representations

ρt, so that we end with an representation ρ0 into SO(2, 1) ⊂ SO(3, 1) of matrices of

the form




A ∈ SO(2, 1) 0

0 1



 .

Conjugate the path of representations ρt degenerating in this matter by

rt =

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
t

















,

and take the limit as t→ 0. This will yield a representation ρHP whose image lies in

the set of matrices of O(3, 1) of the form





A ∈ SO(2, 1) 0

v 1



 (2.3)

where v is (the transpose of) a vector in R
3. The vector v can be interpretted as an

infinitesimal deformation of A into SO(3, 1).

Another way to interpret the collapse is by using rt. The map rt takes the standard

copy of H
3 inside R

3,1 to the isometric copy H
3
t . As we take the limit t→ 0, we obtain

HP3 as

HP3 = lim
t→0

H
3
t = {(x1, x2, x3, x4) : −x2

1 + x2
2 + x2

3 = −1}.

A concrete description of v can be found by generalizing the isomorphism SO(3, 1) ∼=
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PSL(2,C). Let κs be a non-zero element such that κ2
0 = −s2, and define an algebra

Bs = R + Rκs generated over R by 1 and κs. Furthermore, define a conjugation by

a+ bκs 7→ a+ bκs = a− bκs.

Then let A∗ be the conjugate transpose of A.

We can define a map Ps = H
3
s ⊂ R

3,1 → Herm(2,Bs) by

Ps(x1, x2, x3, x4) =





x1 + x2 x3 + κsx4

x3 − κsx4 x1 − x2





where Herm(2,Bs) is the set of 2 × 2 matrices with entries in Bs such that A = A∗.

Then define the map PSL(2,Bs) → Gs by A 7→ A′ where A′ is the matrix that satisfies

APs(x1, x2, x3, x4)A
∗ = P (A′(x1, x2, x3, x4)).

When s = 1, this is the usual isometry from PSL(2,C) to SO(3, 1). Danciger proves

the following:

Theorem 2.8 (Danciger [6], Propositions 25, 28). For s > 0, the map PSL(2,Bs) →
Gs is an isomorphism. When s = 0, the map PSL(2,B0) → G0 is an isomorphism

onto the group of HP matrices.

Moreover, in the case s = 0, we obtain a geometric interpretation for the vector v

in Equation 2.3. If we have a matrix in PSL(2,Bs), we can write it as A+Bκ0, where

A is symmetric and B is skew-symmetric. Similarly, we can write P0(x1, x2, x3, x4) =
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X + Y κ0 where

X =





x1 + x2 x3

x3 x1 − x2





Y =





0 x4

−x4 0



 .

Then (A+Bκ0)(X + Y κ0)(A+Bκ0)
∗ = AXAT + (BXAT −AXBT +AY AT )κ0. In

the map PSL(2,B0) → G0, the symmetric part AXAT gives the first three rows of

the HP matrix, and the skew-symmetric part (BXAT − AXBT + AY AT ) gives the

bottom row of the HP matrix.

Furthermore, we can compute that

det(A+Bσ) = detA+ trBA−1κ0.

Hence, if A+Bκ0 ∈ PSL(2,B0), then A ∈ PSL(2,R) and trBA−1 = 0, so that B is in

sl(2,R)A. Hence, in (x1, x2, x3, x4) coordinates, the symmetric part is the usual map

PSL(2,R) → SO(2, 1), and the bottom row comes from the skew-symmetric part.

The vector v in the HP matrix of Equation 2.3 is a tangent vector to the SO(2, 1)

representation of the collapsed structure.

The key result about HP structures is that we can recover hyperbolic structures

from them.

Theorem 2.9 (Danciger [6], Theorem 5). Let (M,Σ) be a closed HP 3 manifold

with infinitesimal cone singularity of infinitesimal angle −ω along Σ and suppose that

R(π1(M \ Σ), SL(2,R)) is smooth at ρ0, where ρ0 is the SO(2, 1) part of the repre-

sentation. Then, there exist singular geometric structures on (M,Σ) parametrized by

t ∈ (−δ, δ) which are:
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1. hyperbolic cone structures with cone angle 2π − ωt for t > 0,

2. AdS structures with a tachyon mass −ωt for t < 0.

Thus, if we can find an HP structure for Mφ, then we can deform it to nearby

hyperbolic and AdS structures.



Chapter 3

Pseudo-Anosovs and surfaces

3.1 Pseudo-Anosov homeomorphisms

Let S be a surface with negative Euler characteristic and genus g.

Definition 3.1. The mapping class group of S, denoted Mod(S), is

Mod(S) = Homeo+(S)/Homeo0(S),

where Homeo+(S) is the set of orientation-preserving self-homeomorphisms of S, and

Homeo0(S) is the identity component.

Definition 3.2. A mapping class f ∈ Mod(S) is pseudo-Anosov if there exists a rep-

resentative homeomorphism φ : S → S with transverse (singular) measured foliations

(Fu, µu) and (F s, µs) on S and a number λ > 1 such that

φ · (Fu, µu) = (Fu, λµu)

φ · (F s, µs) = (F s, λ−1µs).

The measured foliations (Fu, µu) and (F s, µs) are called the unstable foliation and

21
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stable foliation, and λ is called the dilatation factor of f .

In an abuse of notation, whenever convenient, the distinction between a pseudo-

Anosov mapping class f and a representative homeomorphism φ will be ignored, and

both will be referred to as φ. By the Nielsen-Thurston classification [28], a mapping

class f ∈ Mod(S) is finite order, reducible (meaning that it fixes a finite set of

isotopy classes of simple closed curves), or pseudo-Anosov. In other words, another

characterization is that a mapping class φ is pseudo-Anosov if and only if no power of

φ fixes a simple closed curve, up to isotopy. A geometric interpretation of the stable

and unstable foliations is that if we take a simple closed curve γ, then φn(γ) limits

to Fu while φ−n(γ) limits to F s.

The invariant foliations, Fu and F s, have a finite number of singularities. Oth-

erwise, the invariant foliations would define a Euclidean metric on S, which is not

possible under the assumption that S has negative Euler characteristic. We will

denote the singularities by σ = {s1, s2, . . . , sn}. The homeomorphism φ is a diffeo-

morphism away from σ, and it is not smooth at the singularities. The measure, µu,

is a measure on arcs transverse to Fu, and it is invariant under isotopies that fix or

translate the endpoints along leaves of Fu.

We can encode an invariant lamination in a combinatorial object called a train

track. A train track is a trivalent, C1 graph on S, whose vertices are called switches

and edges are called branches. A measured train track (τ,mτ ) is an assignment of

numbers to the the branches so that the three branches that are coincident at a switch

satisfy a switch condition. The branches can be thought of in the following way: in

a neighborhood away from a singularity of Fu/s, we have leaves of Fu/s which are

parallel. Collapsing the parallel leaves onto a single leaf, we obtain an edge, which

corresponds to a branch. The measure on the edge is the measure of an arc transverse

to the leaves which were collapsed onto the branch, as in Figure 3.1. Notice that the

choice of collapsing the leaves of the foliation onto these three branches have created a
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a

b

c

a
b

c

Figure 3.1: Left: A foliation with transverse measure. Right: The train track resulting
from collapsing the indicated leaves.

switch, and the switch condition a = b+c comes from the additivity of the transverse

measure.

3.2 Pseudo-Anosov mapping tori

We can also form a 3-manifold from φ by taking the mapping torus Mφ = S ×
[0, 1]/(x, 0) ∼ (φ(x), 1). Mφ is a surface bundle over S1. Thurston [29] showed that

Mφ is hyperbolic if and only if φ is pseudo-Anosov. In the case where S has punctures,

we can fill in a puncture by adding a point. If the foliation cannot be extended

smoothly to the point, then the filled in puncture becomes a new singularity of the

foliations. Thus, for the remainder of this disseration, we will only consider S to be a

closed surface with genus g > 1 for notational simplicity, but the results will extend

to the more general case of punctured surfaces with negative Euler characteristic.

The invariant foliations along with their transverse measures define a singular

Euclidean metric on S. This is analogous to how R
2 is foliated by the lines x =

constant and y = constant. Moreover, since the pseudo-Anosov scales the foliations

by λ and λ−1, the pseudo-Anosov dynamics on the foliations acts in the same way as

a Sol isometry translating by log λ in the z-direction. More specifically, we can define

a pseudo-Anosov flow so that at time t, the foliations Fu and F s are scaled by et and
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e−t. The mapping torus Mφ can be thought of as the set of points

{(x, t) : x ∈ S, t ∈ [0, log λ]}

with the relation (x, 0) ∼ (φ(x), log λ). The pseudo-Anosov flow on the surface fiber

acts as a Sol isometry on the manifold, so we can put a singular Sol structure on Mφ,

where the singularities Σ are fibers of the singularities σ.

3.3 Intersection symplectic form

For a closed surface S, there is a symplectic action of Mod(S) on the first homology,

H1(S) = H1(S,Z). Much of the discussion in this section follows Farb and Margalit

[9].

Let {x1, x2, . . . , xg, y1, y2, . . . , yg} be a basis for R
2g. Let ω be the 2-form defined

by

ω =

g
∑

i=1

dxi ∧ dyi.

The form ω is an alternating, nondegenerate bilinear form on R
2g. Given two vectors

~v = (v1, v2, . . . , vg, w1, w2, . . . , wg) and ~v′ = (v′1, v
′
2, . . . , v

′
g, w

′
1, w

′
2, . . . , w

′
g), we can

compute

ω(~v,~v′) =

g
∑

i=1

viw
′
i − v′iwi.

A vector space isomorphic to R
2g with such a form ω is a symplectic vector space.

The symplectic group Sp(2g,R) is the subset of 2g×2g real matrices, M(2g,R), that

preserve ω,

Sp(2g,R) = {A ∈M(2g,R) : A∗ω = ω}.

The 2-form ω has the following properties:
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Figure 3.2: A symplectic basis for H1(S,R) with the algebraic intersection form.

1. ω(~v,~v′) = −ω(~v′, ~v) (skew-symmetric),

2. ω(~v,~v) = 0 (totally isotropic),

3. if ω(~v,~v′) = 0 for all ~v′ ∈ R
2g, then ~v = 0 (non-degenerate).

For homology classes a, b ∈ H1(S), the algebraic intersection number defines a

map i : H1(S)⊗H1(S) → Z. The map can be extended linearly to H1(S,R) to obtain

a map

î : H1(S,R) ⊗H1(S,R) → R.

It can be shown that î is a symplectic form on H1(S,R), acting on its dual

H1(S,R). In particular, using the basis α1, α2, . . . , αg, β1, β2, . . . , βg as in Figure 3.2,

the form î is the standard symplectic form, ω.

Consider a mapping class φ ∈ Mod(S). Notice that φ∗ preserves the algebraic

intersection number i(·, ·), and moreover, it takes integral homology classes to integral

homology classes. Hence,

φ∗ ∈ Sp(2g,Z) = Sp(2g,R) ∩ GL(2g,Z).

The symplectic nature of Mod(S) will be exploited in Chapter 4, as Fu/s can be

thought of as eigenvectors for φ∗.



Chapter 4

Regenerating hyperbolic structures

4.1 Representations from the invariant foliations

Let φ : S → S be a pseudo-Anosov homeomorphism with orientable invariant fo-

liations F s,Fu with singular set σ = {s0, s1, . . . , sn} and transverse measures µs

and µu. The orientability assumption gives us some control over the eigenvalues of

φ∗ : H1(S) → H1(S).

Lemma 4.1 (McMullen [22], Theorem 5.3). Let φ be a pseudo-Anosov homeomor-

phism with dilatation factor λ. Suppose also that φ has orientable unstable and stable

foliations, Fu and F s. Then λ and λ−1 are simple eigenvalues of φ∗.

Proof. Let ω ∈ H1(S) be any cohomology class dual to a simple closed curve γ. Since

φ is pseudo-Anosov, φn(γ) limits to the unstable foliation. In particular,

(φn)∗ω

λn
→ cFu

for some c 6= 0. Since the classes ω dual to simple closed curves span H1(S), λ is an

eigenvalue of φ∗. It also follows that λ must be a simple eigenvalue by considering

the Jordan canonical form.

26
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Note that in addition to λ and λ−1 being simple eigenvalues, we also have that

the corresponding eigenvectors come from the measures Fu and F s. In particular, if

we take γ1, γ2, . . . , γ2g to be a basis for H1(S), then the eigenvector ~eλ is given by

~eλ =

















µu(γ1)

µu(γ2)
...

µu(γ2g

















,

whereas the eigenvector corresponding to λ−1 is given by

~eλ−1 =

















µs(γ1)

µs(γ2)
...

µs(γ2g)

















.

Let δ1, δ2, . . . , δn be the generators of π1(S \ σ) coming from the punctures. We

can think of the product δ1δ2 · · · δn as the boundary ∂D of a disk D with all of the

punctures in the interior of D.

Choose generators α1, α2, . . . , αg and β1, β2, . . . , βg of π1(S) such that for each i,

(a representative of) αi and βi do not intersect ∂D for i = 1, . . . , g. The algebraic

intersection number on oriented curves is a symplectic form on H1(S), and we also

choose αi and βi so that they are a standard symplectic basis for this form. We will

also refer to these curves as γi = αi, γg+i = βi, γ2g+j = δj. When convenient, we will

use αi, βi, and δj to refer to their respective homology classes.

On the dual generators α∗
i , β

∗
i , δ

∗
j of H1(S\σ), we have that φ∗ has a block diagonal

action: the first block corresponding to the action on the closed surface S, and the

second block a permutation of the generators δ∗1, . . . , δ
∗
n coming from the punctures.
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Strictly speaking, this matrix is a square matrix with dimensions one greater than the

dimension of H1(S \ σ). There is one redundancy in the generators by the relation
∑n

j=1 δj = 0 in homology. However, using the additional generator from the punctures

makes the lower right block for φ∗ easier to understand. When discussing H1(S \ σ)

(or φ∗) in this section, it will mean H1(S \ σ) with this additional generator (resp.

the action on H1(S \ σ) with the additional generator).

Using the generators for π(S), we can describe Γ = π1(N = Mφ \ Σ) by the

following presentation.

Γ =

〈

{αi}, {βi}, {δj}, τ

∣

∣

∣

∣

∣

∣

ταiτ
−1 = φ(αi), τβiτ

−1 = φ(βi),

τδjτ
−1 = wjδkj

w−1
j ,Πg

i=1[αi, βi] = Πn
j=1δj

〉

,

where wj are words in the αis and βis.

We start with a metabelian representation ρ0 : Γ → PSL(2,R) with

ρ0(γi) =





1 ai = µu(γi)

0 1



 ,

where ai is the signed length of γi in Fu. Note that ai = 0 for 2g < i ≤ n. We also

set

ρ0(τ) =





√
λ 0

0
√
λ
−1



 ,

where τ is the generator in the S1 direction of Mφ, and λ is the pseudo-Anosov

dilatation factor of φ. There is a singular Sol structure onMφ coming from the pseudo-

Anosov action on Fu and F s, where Fu and F s provide a singular flat (Euclidean)

structure on the fibers of Mφ. We can think of the metabelian representation as a

projection of the singular Sol structure onto a leaf of F s, which lies inside of Sol as a
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hyperbolic plane. Such a projection yields a transversely hyperbolic foliation – locally,

Mφ can be viewed as an open subset of H
2 ×R, and the pseudometric is given by the

metric on the H
2 factor and ignoring the second factor.

4.2 Smoothness of the representation variety

The goal is to deform ρ0 to a representation into PSL(2,C), and to realize the represen-

tation as the holonomy representation of a (H3,PSL(2,C))-structure on N . We con-

sider ρ0 ∈ R(π1(N),PSL(2,R)) as a point in the representation variety of representa-

tions modulo conjugation. We associate to the tangent space of R(π1(N),PSL(2,R))

at ρ0 with the cohomology group H1(π1(N), sl(2,R)Adρ0
). We wish to find a twisted

cocycle c ∈ H1(π1(N), sl(2,R)Adρ0
). As in Heusener-Porti-Suárez [14], c is determined

by its values on γ1, . . . , γ2g+n, and τ , which we denote by

c(γi) =





yi xi

zi −yi





and, up to conjugation,

c(τ) =





y0 0

0 −y0



 .

We first begin by computing the dimension of the space of such cocyles. A stan-

dard Poincare duality argument [24, 14, 17] gives that the map

H1(π1(N), sl(2,R)Adρ
) → H1(π1(∂N), sl(2,R)Adρ

)

has half-dimensional image. Another standard argument then shows that for a torus

T , dimH1(π1(T ), sl(2,R)Adρ
) = 2 as long as ρ(π1(T )) contains a hyperbolic element

[24]. Combined, we get the following result.
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Lemma 4.2. dimH1(π1(N), sl(2,R)Adρ
) ≥ m for any ρ near ρ0, where m is the

number of components of the boundary of N .

Proof. For each (torus) boundary component of N , we have that ρ0(m) = I and ρ0(l)

is a hyperbolic element by construction. Then all nearby ρ also contain hyperbolic

elements. The previous remarks show that

dimH1(π1(∂N), sl(2,R)Adρ
) = 2m

for any ρ near ρ0, and therefore

dimH1(π1(N), sl(2,R)Adρ
) ≥ m.

Hence the representation variety R(π1(N),PSL(2,R)) is smooth at ρ0 as long as

dimH1(Γ, sl(2,R)Adρ0
) = m, and given an element c ∈ H1(Γ, sl(2,R)Adρ0

), we can

deform ρ0 in the direction of c.

Theorem 4.3. Let φ be pseudo-Anosov with stable and unstable foliations which are

orientable. Suppose also that φ∗ : H1(S) → H1(S) does not have 1 as an eigen-

value. Then dimH1(Γ, sl(2,R)Adρ0
) = m where m is the number of components of the

boundary of N .

Proof. From the relations c(φ(αi)) − c(ταiτ
−1) = 0, c(φ(βi)) − c(τβiτ

−1) = 0, and

c(wjδkj
w−1

j )− c(τδjτ
−1) = 0, we find a 3(2g + n)× 3(2g + n) + 1 matrix R such that

R~v = 0,
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where

~v =





















































x1

...

x2g+n

y0

y1

...

y2g+n

z1

...

z2g+n





















































is a vector describing c. Each relation can be represented by three rows in R. For

example, we can calculate

c(ταiτ
−1) = c(τ) + Adρ0

(τ) · c(αi) − Adρ0
(ταiτ

−1) · c(τ)

=





y0 0

0 −y0



 +





yi λxi

λ−1zi −yi



 −





y0 −2λaiy0

0 −y0



 ,

and, expressing φ(αi) as a product γi1γi2 · · · γim , we can find

c(φ(αi)) = c(γi1γi2 · · · γim)

= c(γi1) + Adρ0
(γi1) · c(γi2) + · · · + Adρ0

(γi1γi2 · · · γim−1
) · c(γim)

=





yi1 xi1

zi1 −yi1



 +





yi2 + ai1zi2 xi2 − 2ai1yi2 − a2
i1
zi2

zi2 −yi2 − ai1zi2





+ · · · +





yim +
∑m−1

l=1 ailzim xim − 2
∑m−1

l=1 ailyim − (
∑m−1

l=1 ail)
2zim

zim −yim − ∑m−1
l=1 ailzim



 .
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Then, we can rewrite the relation c(φ(αi)) − c(ταiτ
−1) = 0 as











1 0 0

0 1 0

0 0 1





















xi1

yi1

zi1











+











1 −2ai1 −a2
i1

0 1 ai1

0 0 1





















xi2

yi2

zi2











+ · · · +











1 −2
∑m−1

l=1 ail −(
∑m−1

l=1 ail)
2

0 1
∑m−1

l=1 ail

0 0 1





















xim

yim

zim











−











λ 0 0

0 1 0

0 0 λ−1





















xi

yi

zi











− 2λai











y0

0

0











= 0

As in Heusener-Port-Suárez [14], we can let each row of R represent one relation

of the above form, so that c can be described by a vector ~v such that R~v = 0. Then

R decomposes into blocks

R =

























































φ̄∗ − λI











−2λa1

...

−2λa2g+n











K





















C





















0











0
...

0











φ̄∗ − I





















D





















0











0
...

0











0





















φ̄∗ − λ−1I

























































.

Here, φ̄∗ : H1(S \ σ) → H1(S \ σ) is the (2g + n) × (2g + n) matrix describing the
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cohomology action induced by φ, and can be written as a block matrix





[φ∗] 0

0 [P ]





where P = (pij) is a permutation matrix denoting the permutation of the singularities

in σ. In particular, if τδjτ
−1 = wjδkj

w−1
j , then pjkj

= 1. By the previous lemmas, φ∗−
λI and φ∗−λ−1I have 1 dimensional kernel. Furthermore, since 1 is not an eigenvalue

of φ∗, φ̄∗ − I has kernel whose dimension is equal to the number of disjoint cycles

of the permutation of the punctures. But a cycle in the permutation corresponds to

a single boundary component of N . Hence, the kernel of R has dimension at most

2 +m+ 1, where the additional 1 comes from the (2g + n) + 1–th column of R and

m = # of components of Σ = # of components of ∂N.

Now consider the upper left portion of the matrix

U =







































φ̄∗ − λI











−2λa1

...

−2λa2g+n











K





















0











0
...

0











φ̄∗ − I







































.

Since the αi and βi for 1 ≤ i ≤ g do not intersect Πn
j=1δj = ∂D, we have that Kij = 0

for 2g < j ≤ 2g + n. Because any vector ~y in the kernel of φ̄∗ − I comes from the

permutation block P (in other words, the ith coordinates yi zero for 1 ≤ i ≤ 2g),
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then we have that K~y = 0. Hence, if null(U) > 2 +m, then we must be able to solve

(φ̄∗ − λI)

















x1

x2

...

x2g+n

















=











2λa1

...

2λa2g+n











.

Since λ is a simple eigenvalue of φ∗ and (a1, . . . , a2g) is a corresponding eigenvector

for λ, the equation has no solutions.

Hence null(R) = 2 +m. However, the solution arising from the kernel of φ̄∗ − λI

is the eigenvector

~v =















































a1

...

a2g+n

0
...

0

0
...

0















































which is a coboundary, as it is just a multiple of the representation ρ0. So we have

that dimH1(Γ, sl(2,R)Adρ0
) ≤ m+ 1. Finally, there is one further redundancy since

Πg
i=1[αi, βi] = Πn

j=1δj.

From the φ̄∗−I block, we can see that y2g+1, . . . , y2g+n can be freely chosen as long as

y2g+j = y2g+kj
whenever τδjτ

−1 = wjδkj
w−1

j . Hence, the upper-left (and lower-right)



4.3. SINGULAR HYPERBOLIC STRUCTURES 35

entry of c(Πn
j=1δj) can be freely chosen to be any quantity

y2g+1 + y2g+2 + . . . y2g+n. (4.1)

The relation Πg
i=1[αi, βi] = Πn

j=1δj forces the sum in Equation 4.1 to be a fixed quantity

coming from the upper-left entry of Πg
i=1[αi, βi], which has no dependence on y2g+j,

for 1 ≤ j ≤ n.

Therefore dimH1(Γ, sl(2,R)Adρ0
) ≤ m.

Since dimH1(Γ, sl(2,R)Adρ0
) = m, the representation variety is smooth at the

representation ρ0.

4.3 Singular hyperbolic structures

From the proof of Theorem 4.3, we also can find a tangent vector at ρ0 (i.e. cocycle)

corresponding to F s. λ−1 is a simple eigenvalue of φ̄∗ with its eigenvector coming from

µs(γ1), . . . , µs(γ2g+n), which we will denote b1, . . . , b2g+n. By assumption, φ∗ does not

have 1 as an eigenvalue, so we can solve

(φ∗ − I)











y1

...

y2g











= −D2g×2g











b1
...

b2g











, (4.2)

where D2g×2g is the restriction of D to the upper left 2g × 2g entries.

Finally, since λ is a simple eigenvalue of φ̄∗, we can also solve

(φ̄∗ − λI)











x1

...

x2g+n











− 2λ











a1

...

a2g+n











y0 = −K











y1

...

y2g+n











− C











b1
...

b2g+n











. (4.3)
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Now we will use the above cocycle, which we will call c0.

c0(γi) =





yi xi

bi −yi





c0(τ) =





y0 0

0 −y0





We conjugate the representation ρ0 and its tangent vector c0 · ρ0 by

r1(s) =





s 0

0 1
s



 .

Converting this information into an HP representation gives the representation ρHP

ρHP (γi) =

















1 0 0 0

0 1 0 0

0 0 1 0

− bi

s2 + s2xi − bi

s2 − s2xi 2yi 1

































1 +
a2

i s4

2
−a2

i s4

2
ais

2 0

a2

i s4

2
1 − a2

i s4

2
ais

2 0

ais
2 −ais

2 1 0

0 0 0 1

















=

















1 +
a2

i s4

2
−1

2
a2

i s
4 ais

2 0

a2

i s4

2
1 − a2

i s4

2
ais

2 0

ais
2 −ais

2 1 0

− bi

s2 + s2(xi + 2aiy − a2
i bi) − bi

s2 − s2(xi + 2aiy − a2
i bi) −2aibi + 2yi 1

















ρHP (τ) =

















1
2
(λ+ λ−1) 1

2
(λ− λ−1) 0 0

1
2
(λ− λ−1) 1

2
(λ+ λ−1) 0 0

0 0 1 0

0 0 y0 1

















.
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Conjugating by

r2(s) =

















1 0 0 0

0 1 0 0

0 0 0 −s2

0 0 s−2 0

















and taking s→ 0 gives the Sol representation

ρSol(γi) =

















1 0 0 0

0 1 0 0

b b 1 0

a −a 0 1

















ρSol(τ) =

















1
2
(λ+ λ−1) 1

2
(λ− λ−1) 0 0

1
2
(λ− λ−1) 1

2
(λ+ λ−1) 0 0

0 0 1 0

0 0 0 1

















.

Thus, there is a family of HP representations that limit to the Sol representation in

PGL(4,R), up to rescaling the path of HP structures by r2(s). In order to realize

the representation as geometric structures, we will need the Ehresmann-Thurston

principle [27].

Theorem 4.4 (Ehresmann-Thurston Principle). Let X be a manifold upon which a

Lie group G acts transitively. Let M have a (X,G)-structure with holonomy repre-

sentation ρ : π1(M) → G. For ρ′ sufficiently near ρ in the space of representations

Hom(π1(M), G), there exists a nearby (X,G)- structure on M with holonomy repre-

sentation ρ′.

Theorem 4.5. Let φ : S → S be a pseudo-Anosov homeomorphism whose stable and
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unstable foliations, F s and Fu, are orientable and φ∗ does not have 1 as an eigen-

value. Then, there exists a family of singular hyperbolic structures on Mφ, smooth

on the complement of Σ, that degenerate to a transversely hyperbolic foliation. The

degeneration can be rescaled so that the path of rescaled structures limit to the singular

Sol structure on Mφ, as projective structures.

Proof. Notice that all of the structure groups for HP, H
3, and Sol can be written

as subgroups of PGL(4,R), giving them (RP 3,PGL(4,R))-structures. Since the Sol

representation, as a representation into PGL(4,R) comes from an actual Sol struc-

ture on N , then by Theorem 4.4, the HP representations correspond to robust HP

structures in a neighborhood of the Sol representation.

Work of Danciger [6] then says that in a neighborhood of each HP structure, we

have a family of H
3 (and AdS) structures ρt,s that degenerate to a transversely hy-

perbolic foliation, with the transversely hyperbolic foliation obtained by conjugating

ρ0 by r1(s). Rescaling the degeneration by some rt,s yields the HP structure. Fix

an s = s0, and a family of hyperbolic structures given by their holonomy represen-

tations ρt,s0
. Conjugating ρt,s0

by r1(ss
−1
0 ) yields a family ρt,s whose rescaled limit

is ρHP , with the rescaling maps rt,s also obtained by conjugating rt,s0
by r1(ss

−1
0 ).

Since r1(s) ∈ PSL(2,R), conjugation does not change the underlying geometric struc-

ture on Mφ, and each of the ρt,s limit to equivalent transversely hyperbolic foliations.

Composing the rescalings rt,s, r1(s), and r2(s), we can find a path of singular hyper-

bolic structures that collapse to the structure given by ρ0 so that a rescaling of the

degeneration by the composition gives the Sol structure.

Note that the cocycle c0 has the property that

c0(γi) =





yi xi

bi −yi



 ,
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where bi = µs(γi). In particular, the deformation of ρ0 contains the information of

F s. More specifically, if c0 were of the form

c0(γi) =





0 0

bi 0



 ,

then c0 would deform the trivial representation to the lower triangular representation

ρ′ =





1 0

bi 1



 .

While c0 does not quite have this form, we can see that in some sense, the deformation

from the upper triangular representation ρ0, which is a projection onto Fu, is in the

direction of F s.

4.4 The behavior of the singularities

We can see from the method of regenerating hyperbolic structures that the singular

hyperbolic structure is related to the natural singular Sol geometry on Mφ. In par-

ticular, the HP representations that limit to the Sol representation come from the

H
2 representation of projecting onto F s along with a tangent vector c0 containing

the information of transverse direction. In order to further understand the singular

hyperbolic structures, it will be helpful to understand the behavior of the singularities

Σ.

We can think of N = Mφ \ Σ as a manifold with torus boundary components.

Let m be a meridian curve encircling one of the boundary components, and l an

longitudinal curve. In Danciger [6], it is shown that if the HP representation can be
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conjugated so that

ρHP (m) =

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 ω 1

















,

ρHP (l) =

















cosh d sinh d 0 0

sinh d cosh d 0 0

0 0 ±1 0

0 0 µ ±1

















,

then the nearby hyperbolic structures that degenerate to the HP structure (after

rescaling) have a cone singularity about that particular component of Σ. In particular,

take the family of representations into SO(3,1) such that

ρt(m) =

















1 0 0 0

0 1 0 0

0 0 cosωt − sinωt

0 0 sinωt cosωt

















,

ρt(l) =

















cosh d sinh d 0 0

sinh d cosh d 0 0

0 0 ± cosµt − sinµt

0 0 sinµt ± cosµt

















.



4.4. THE BEHAVIOR OF THE SINGULARITIES 41

Then, conjugating by
















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 t−1

















and taking the limit as t → 0 yields ρHP (m) and ρHP (l). Thus, ω, which Danciger

calls the infinitesimal cone angle, describes the infinitesimal change in the cone angle

about that component of the singularity.

In the case that Σ has multiple components, as in our case, we can modify the

computation. We begin by finding the HP matrix for the same situation except

conjugated by some isometry in Isom(H3). Conjugate ρt(m) and ρt(l) by

















1 + a2

2
−a2

2
a 0

a2

2
1 − a2

2
a 0

a −a 1 0

0 0 0 1

















,

which is the matrix in SO(3, 1) corresponding to the parabolic isometry





1 a

0 1



 ∈ PSL(2,C).

If we then conjugate by
















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 t−1
















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and take the limit as t→ 0, we get the HP matrix

ρHP (m) =

















1 0 0 0

0 1 0 0

0 0 1 0

−ωRe a ωRe a ω 1

















, (4.4)

ρHP (l) =

















∓a2 + (1 + a2) cosh d ±a2 − a2 cosh d+ sinh d a(±1 − cosh d− sinh d) 0

∓a2 + a2 cosh d+ sinh d ±a2 + (1 − a2) cosh d a(±1 − cosh d− sinh d) 0

a(cosh d− sinh d∓ 1) a(sinh d± 1 − cosh d) ±1 0

−aµ aµ µ ±1

















.

(4.5)

Hence, the ω entry still gives the infinitesimal cone angle, and the left two entries in

the bottom row of ρHP (m) describe the amount that the axis of the cone singularity

has been translated (parabolically). We can see that ρHP (δj) has the form of ρHP (m),

and ρHP (τ) has the form of ρHP (l), so we have cone-type singularities along Σ.

A computation of the commutator ρHP ([αi, βi]) yields a matrix of the form in

Equation 4.4:
















1 0 0 0

0 1 0 0

0 0 1 0

−s2f s2f g 1

















,

where f and g are in terms of ai, ag+i, bi, bg+i.

Therefore, the product of the commutators ρHP (Πg
i=1[αi, βi]) also has this form.
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In the case where γ2g+j = δj, we also have that

ρHP (δj) = ρHP (γ2g+j) =

















1 0 0 0

0 1 0 0

0 0 1 0

s2x2g+j −s2x2g+j 2y2g+j 1

















.

Note that y2g+j = y2g+j′ if δj and δj′ belong in the same cycle of the permutation

(i.e. they are meridians for the same component of Σ). In other words, we have

cone-type singularities that develop in the singular hyperbolic structure, and for each

component of Σ, there is freedom in choosing the infinitesimal cone angle about that

component. Moreover, the commutator/puncture relation

Πg
i=1[αi, βi] = Πn

j=1δj

says that the sum of the infinitesimal cone angles about each component, weighted by

the number of punctures in the permutation for that component, must equal the total

infinitesimal cone angle for the loop Πg
i=1[αi, βi] that encircles all of the punctures.

Outside of the disk D containing the punctures, the deformation, up to first order,

appears like a deformation of a single cone singularity. In other words, instead of

considering each puncture separately, the first order behavior is as if we remove the

fibers over the disk D to obtain a 3-manifold N ′ with only one boundary component,

with a cone singularity about ∂N ′. The location of the axis for this singularity is

determined by some function of the infinitesimal cone angles about each component

of Σ along with the relative locations of the axes for those components.

Proposition 4.6. The infinitesimal cone angle ωtot of N ′ is non-zero.

Proof. A straight-forward computation shows that the 4, 3 entry in the commutator
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ρHP ([αi, βi]) is given by 2(aibg+i − ag+ibi). Hence, the 4, 3 entry in the product

ρHP (Πg
i=1[αi, βi])

is the algebraic intersection pairing î(~eλ, ~eλ−1).

Suppose eµ is an eigenvector of φ∗ with eigenvalue µ 6= λ. Then

î(~eµ, ~eλ−1) = î(φ∗~eµ, φ
∗~eλ−1) = µλ−1î(~eµ, ~eλ−1).

Since µ 6= λ, this means that î(~eµ, ~eλ−1) = 0.

If ~eµ,p is a generalized eigenvector such that (φ∗ − µI)p~eµ,p = 0, then we induct

on p. Notice that φ∗~eµ,p = µ~eµ,p + c~eµ,p−1, where (φ∗ − µI)p−1~eµ,p−1 = 0. Hence, if

î(~eµ,p−1, ~eλ−1) = 0, then it must be that î(~eµ,p, ~eλ−1) = 0 as well since

î(~eµ,p, ~eλ−1) = î(φ∗~eµ,p, φ
∗~eλ−1) = µλ−1î(~eµ,p, ~eλ−1).

The generalized eigenvectors of φ∗ span R
2g and λ is a simple eigenvalue, so that

means that if î(~eλ, ~eλ−1) = 0, then î(~u,~eλ−1) = 0 for all ~u ∈ R
2g, contradicting the

non-degenerate condition for symplectic forms.

4.5 Genus 2 example

We will compute the representations and parameters to find the deformation in a

genus two example. Begin with the curves α1, α2, β1, β2, which form the symplectic

basis for H1(S). We begin with left Dehn twists Tβ1
, Tβ2

, Tγ along β1, β2, and γ,

followed by right Dehn twists T−1
α1
, T−1

α2
along α1 and α2. Since the disjoint sets

of curves {α1, α2} and {β1, β2, γ} fill, the resulting homeomorphism φ : S → S is

pseudo-Anosov.
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Figure 4.1: The curves α1, α2, β1, β2 which form the symplectic basis for H1(S), and
γ.

Figure 4.2: A train track for Fu.

The stable and unstable foliations are orientable with two singular points of cone

angle 4π, one in each of the two components of S \ {α1, α2, β1, β2, γ}. A train track

for the Fu is shown in Figure 4.2, and we can verify that the foliations are orientable

with two singularities s1 and s2.

The induced action on cohomology, with the generators α1, α2, β1, β2, is

φ∗ =

















3 1 2 1

1 3 1 2

1 0 1 0

0 1 0 1

















.

The matrix is Perron-Frobenius, with largest eigenvalue λ1 = 5+
√

21
2

. The other
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eigenvalue λ2 > 1 is given by λ2 = 3+
√

5
2

. The eigenvectors of φ∗ for λ1 and λ−1
1 are

~eλ1
=

















3+
√

21
2

3+
√

21
2

1

1

















~eλ−1

1

=

















√
21−3
2

√
21−3
2

−1

−1

















.

We have a choice for ~eλ−1

1

as it is only unique up to scale. We make the choice that

is consistent with the orientation of the embedding of Sol into R
4. In particular,

in the standard embedding, the x-coordinate is contracted and the y-coordinate is

expanded. Our choice for ~eλ1
and ~eλ−1

1

has the same orientation in the singular flat

metric on S.

Thus, we obtain the parameters

a1 = a2 =
3 +

√
21

2

a3 = a4 = 1

b1 = b2 =

√
21 − 3

2

b3 = b4 = −1.

Fix a basepoint and choose representatives for α1, α2, β1, β2 in π1(S), which we

will also call α1, α2, β1, β2 (see Figure 4.3). We can then compute the action of φ on

π1(S):
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Figure 4.3: Generators for π1(S).

φ(α1) = α1β1β2α2α
2
1β1

φ(α2) = α1β1β2α
2
2β2α2

φ(β1) = α1β1

φ(β2) = β2α2.

In addition, taking generators δ1 and δ2 for loops around the singularities s1 and

s2, we have the following action of φ on π1(S \ σ):

φ(δ1) = β1β2δ1β
−1
2 β−1

1

φ(δ2) = δ2,

with a5 = a6 = b5 = b6 = 0.
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Thus, we have that

D =





























23+5
√

21
2

7+
√

21
2

19+5
√

21
2

5+
√

21
2

0 0

0 16 + 3
√

21 3+
√

21
2

9 + 2
√

21 0 0

0 0 3+
√

21
2

0 0 0

0 1 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 0





























C = −





























271+59
√

21
2

35+7
√

21
2

311+67
√

21
2

23+5
√

21
2

0 0

0 167 + 36
√

21 15+3
√

21
2

101 + 22
√

21 0 0

0 0 15+3
√

21
2

0 0 0

0 1 0 0 0 0

0 0 0 0 4 0

0 0 0 0 0 0





























,

and K = −2D.

From this, we calculate from Equation 4.2 that

















y1

y2

y3

y4

















= −(φ∗ − I)−1D4×4

















b1

b2

b3

b4

















=

















3+
√

21
2

3−
√

21
2

−3+
√

21
6

−3+
√

21
6

















,

and y5 and y6 are free. The span of φ∗ − λ1I is generated by the first three columns,

so we can take x4 = 0 (taking x4 6= 0 would change the solution by a co-boundary).
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We then compute the other xi and y0 from Equation 4.3, yielding

x1 = −27 + 5
√

21

3

x2 =
15 +

√
21

3

x3 = 0

x4 = 0

x5 =
2 − 2

√
21

3
y5

x6 = 0

y0 =

√
21

6
.

The 4,3 entry in the commutator ρHP ([αi, βi]) is computed to be 2(aib2+i−a2+ibi).

Hence, the total infintesimal cone angle ωtot is equal to −4
√

21. (Because of the choice

for generators of π1, the curve around the punctures is actually [β−1
1 , α1][α2, β2], but

gives the same answer for ωtot.) The infinitesimal cone angles about the two boundary

components should add up to ωtot = −4
√

21. Hence, the infinitesimal cone angles can

be chosen so that the cone angles about both singularities are decreasing towards 2π.

By scaling the bi by a positive scalar, it is also possible to change ωtot to any negative

number.



Chapter 5

Ideal Triangulations

5.1 Hyperbolic ideal tetrahedra

One way to describe a hyperbolic 3-manifold with cusps is to realize it as a set of ideal

hyperbolic tetrahedra glued together along faces. Using the upper half-space model

for H
3, we can, up to isometry, place three of the four ideal vertices of a tetrahedron

at 0, ∞, and 1. The fourth vertex will then be somewhere on the boundary plane,

and its complex coordinate, z, indicates the isometry class of the terahedron. This

complex number, z, is the (complex) shape parameter of the tetrahedron. The shape

parameter also represents the complex dihedral angle along the edge from 0 to ∞.

For an arbitrary ideal tetrahedron with vertices at a, b, c, d in the complex plane,

the shape parameter can be calculated as the cross ratio z = (a, b; c, d) = (a−c)(b−d)
(b−c)(a−d)

,

which corresponds to the complex dihedral angle along the edge between a and b [27].

In the case where z is strictly real, the tetrahedron has been flatted onto a hyperbolic

plane, and we say that the tetrahedron is degenerate.

If we glue tetrahedra together along faces, then we can find an algebraic condition

for the triangulation by looking at all of the tetrahedra which share the same edge.

Picking an edge e, number tetrahedra as T1, T2, . . . , Tk as we go counter-clockwise

50
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Figure 5.1: Ideal tetrahedron in the upper half-space model with vertices at 0, 1, ∞,
and z

around the e, and assign complex shape parameters z1, z2, . . . , zk, respectively. We

can realize T1 as a hyperbolic ideal tetrahedron with vertices at 0,∞, 1, and z1. Then,

we take T2 to be a tetrahedron with complex shape parameter z2, with vertices at

0,∞, z1, z1z2, so that the 0,∞, z1 faces of T1 and T2 are identified. We can continue to

develop tetrahedra in this manner, and the condition that the final face of Tk matches

the first face of T1 is that z1z2 · · · zk = 1. In addition, in order for the total angle

around each edge to be equal to 2π, we must have that Im z1+Im z2+· · ·+Im zk = 2π .

For each edge in the triangulation, we obtain one of these edge consistency equations.

The solution space to the set of all edge consistency equations forms the deformation

variety of hyperbolic structures realized by the triangulation.

Agol [1] describes a way of triangulating the mapping torus Mφ using triangula-

tions on the surface S dual to the maximal splitting sequence of an invariant train

track. Let τ be a train track for F s. Any two train tracks for F s are equivalent up

to a sequence of splitting and folding moves [23], which are shown in Figure 5.2.

A key observation by Agol is that any two train tracks for F s have a common

maximal splitting. A maximal splitting is a splitting along branches with the largest

weight. This, unlike the more classical Penner result, gives a canonical sequence of
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Figure 5.2: A splitting of a branch on a train track. The reverse operation is called
a fold.

splittings.

Theorem 5.1 (Agol [1], Corollary 3.4). Let τ and τ ′ be two train tracks for F s. Then

τ and τ ′ have a common maximal splitting. That is, if τ = τ0, τ1, τ2, τ3, . . . is the

sequence of train tracks obtained from maximal splittings on τ , and τ ′ = τ ′0, τ
′
1, τ

′
3, . . .

is the sequence of train tracks obtained from maximal splittings of τ ′, then there exists

m,n so that τm = τn, up to isotopy.

Applying Theorem 5.1 to τ and φ(τ) then yields eventual periodicity of a maximal

splitting sequence.

Theorem 5.2 (Agol [1], Theorem 3.5). Let τ = τ0, τ1, τ2, τ3, . . . be the sequence of

maximal splittings for train tracks for F s. Then, there exists m,n so that τm+n =

λ−1φ(τm).

Since the switches of the train track are trivalent, the dual graph to a train track

on S is a triangulation of S. Each splitting move on the train track corresponds

to a Whitehead move on the triangulation, which can be interpreted as gluing a

tetrahedron onto the triangulation (see Figure 5.3). In this way, a triangulation for

the manifold is built up in layers, and the periodicity means that eventually, the top

layer can be glued onto the bottom layer by the homeomorphism φ. Notice that

the vertices are in bijective correspondence with the complementary regions of τ .

Each complementary region of a train track represents a singularity of the invariant
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Figure 5.3: A Whitehead move is dual to a splitting of a train track, and a Whitehead
move determines a tetrahedron.

foliations. In other words, each vertex of the triangulation is a singularity of the

foliation, so the resulting ideal triangulation is a triangulation of Nφ = Mφ \Σ, where

Σ is the locus of singular fibers (the fibers over the singularities σ). Additionally, the

construction endows a natural taut angle structure on the triangulation where the

diagonals in Figure 5.3 have angle π, and the sides of the quadrilateral have angle 0.

An important property of the triangulation of Nφ is that it is veering. Given

an edge e in a triangulation coming from Agol’s construction, we can consider the

triangles which have e as an edge.

Definition 5.3. An edge e in a triangulation is left-veering if in the layering from the

Agol triangulation, the vertices opposite e are moving to the left as we go up from

triangle to triangle. An edge is right-veering if they move to the right.

Definition 5.4. A triangulation is veering if every edge in the triangulation is either

left-veering or right-veering.

Theorem 5.5 (Agol [1]). A taut ideal triangulation of a fibered manifold coming

from Whitehead moves is associated to a periodic splitting sequence if and only if it

is veering.

This theorem suggests that the combinatorics of a veering triangulation contains
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the information about the train tracks in the periodic splitting sequence. From the

periodic splitting sequence, it is a simple matter to obtain the foliations F s/u along

with their respective transverse measures µs/u. Furthermore, since the maximal split-

ting sequence is canonical, the ideal triangulation for Nφ from this construction is also

canonical. Even if we start with two unique train tracks for F s, because they have a

common maximal splitting, the maximal splitting sequences for each train track will

eventually stabilize to the same periodic sequence of train tracks.

5.2 Angle structures

Hodgson, Rubinstein, Segerman, and Tillman [18], and Futer and Guéritaud [10]

prove the existence of angle structures on these veering triangulations where all of

the angles are strictly between 0 and π. We prove some additional results on angle

structures and the existence of corresponding geometric solutions to Thurston’s gluing

equations.

As in Futer and Guéritaud [10], we will assign the shape parameters zi to the diago-

nals of the taut ideal tetrahedra, where the i indicates the tetrahedron corresponding

to the ith splitting in the maximal splitting sequence. The coloring convention of

Hodgson, Rubinstein, Segerman, and Tillman [18] and Futer and Guéritaud [10] of

right veering edges being red and left veering edges being blue will be used as shown

in Figure 5.4.

Every edge e in the Agol taut ideal triangulation has two tetrahedra with shape

parameters which are of the zi type along e. If e is a right veering edge, then all

shape parameters along the edge e for all other tetrahedra are of the xj type, so the

Thurston edge consistency equations have the form

zi0xj0xj2 · · ·xjm
zi1xkn

xkn−1
· · · xk0

= 1.



5.2. ANGLE STRUCTURES 55

Figure 5.4: Flattened tetrahedron with diagonals having shape parameter zi, the red
edges being right veering with shape parameter xi, and the blue edges being left
veering with shape parameter yi.

In terms of the layering coming from the maximal splitting sequence, here, zi0

corresponds to the shape parameter of the bottom-most tetrahedron T0 touching e,

i.e. the tetrahedron in which e is the top diagonal created after splitting along a

maximal branch. Then, using the terminology of Futer and Guéritaud, there are two

fans on each side of e. Hodgson, Rubinstein, Segerman, and Tillman show that each

fan is non-empty [18, Lemma 2.3]. On one side, we have a sequence of tetrahedron

contributing shape parameters of xj0 , xj1 , . . . , xjm
from the bottom to the top, and

on the other side xk0
, xk1

, . . . , xkn
, starting from the tetrahedron directly above T0.

Eventually, e will be split, leaving another tetrahedron who bottom diagonal is e and

contributing a shape parameter of zi1 . A similar thing holds for left veering edges,

with x’s replaced by y’s.

Proposition 5.6. There exists no (real) solution to the Thurston edge consistency

equations for veering triangulations with zi < 0 for all i.

Proof. Notice that if zi < 0, then

|yi| =

∣

∣

∣

∣

1

1 − zi

∣

∣

∣

∣

< 1
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Figure 5.5: Edge consistency equation around a right veering edge has two fans of x’s
sandwiched between two z’s.

and also

|ziyi| =

∣

∣

∣

∣

zi

1 − zi

∣

∣

∣

∣

< 1.

By the previous observation, if we multiply together the gluing consistency equations

for all of the left veering edges, then we will obtain a product consisting of all of the

yi (twice) and some of the zi, with each zi having multiplicity at most two. In other

words, we must satisfy the equation

∏

i∈I

y2
i

∏

j∈J⊂I

z
lj
j = 1

where I = 0, . . . , n indexes the tetrahedra in the Agol triangulation and lj ∈ {1, 2}.
The left-hand side has absolute value less than 1 when zi < 0 for all i ∈ I, so the

edge consistency equations cannot be satisfied.

A solution with zi < 0 for all i corresponds to a π angle on all of the diagonals of

the flattened tetrahedra from Agol’s construction – in other words, the natural taut

angle structure. Hence, Proposition 5.6 shows that there is no real solution to the

edge consistency equations with angles prescribed by the natural taut angle structure

coming from the diagonal exchange moves on the surface.
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We now demonstrate another canonical taut angle structure. The notions of

“above” and “below” the zi angles are well-defined by the layering induced by the

maximal splitting sequence.

Proposition 5.7. There exist angle structures on veering triangulations such that

the π angles are precisely the top angles in each fan (in other words, the two angles

directly “above” the angles which are π in the angle structure induced from the taut

ideal triangulation; e.g. in Figure 5.5, the angles xjm
and xkn

) or precisely the two

bottom angles in each fan (e.g. xj0 and xk0
in Figure 5.5), with all other angles equal

to 0.

Proof. Around each edge e of the triangulation, picking the two angles which are

at the top of each of the two fans to have angle π gives a total angle of 2π around

the edge. So it remains to check that such a choice is well-defined and each ideal

tetrahedron has exactly one of its shape angles equal to π, with the others 0.

First we check that if a tetrahedron T is the topmost in a fan along an edge e,

then T is also the topmost in the fan along the edge f opposite e in T . We label

the other edges of the quadrilateral determining the tetrahedron T by a and b, with

the top diagonal labeled as c. Without loss of generality, assume e and f are right

veering (red), and a and b are left veering (blue). Then, c is a right veering edge as in

Figure 5.6. Since T is the topmost tetrahedron in the fan at edge e, then in the next

tetrahedron up, e is involved in a diagonal exchange for some quadrilateral containing

edges a and c. We label the other edges of this quadrilateral d and g as in Figure 5.6.

Now consider the edge c. On the right-hand side of c is a fan containing the

tetrahedron determined by the quadrilateral acgd. Since both fans must be non-

empty, then before c is replaced by a diagonal exchange, there must be a tetrahedron

T ′ layered on top of the left-hand side of c. Furthermore, the tetrahedron will have

triangle bcf as a face. Hence, it must be that either b or f is the diagonal of T ′. But
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Figure 5.6: The tetrahedron T given by afbe with T ′ layered above bcf and T̄ above
ace. Veering forces specific diagonal exchanges.

c and f are right veering (red) and b is left veering (blue), so it must be that f is the

lower diagonal of T ′. In other words, T is the topmost tetrahedron is the fan about

f .

From the argument above, it also follows that T ′ is above T in the fan about the

edge b, so the dihedral angle for T about b is 0. Similarly, the tetrahedron determined

by acgd lies above T in the fan about a, so the only dihedral angle for T that is π is

xi.

Conversely, if the tetrahedron T determined by the quadrilateral afbe is not the

topmost tetrahedron in the fan about a, there exists another tetrahedron T̄ above

T in the fan about the edge a. Without loss of generality, assume a is left veering

(blue). Then in T̄ , the diagonal that is exchanged is e, so that c is right veering (red).

We can then repeat the previous argument to see that there is a tetrahedron T ′ above

T in the fan about b, and we also see that T is the topmost tetrahedron in the fans

about e and f , forcing the xi dihedral angle to be π.

Hence, the choice of the topmost angles in the fan to be π gives a well-defined

taut angle structure on the veering triangulation. The argument that choosing the

bottommost angles in each fan to be π gives a taut angle structure follows similarly.
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Figure 5.7: Measured train track and corresponding transverse measure after a fold.

5.3 Real solutions to edge consistency equations

We now demonstrate a method for finding real solutions to the edge consistency

equations whose dihedral angles correspond to one of the two canonical angle structure

solutions given in the previous section. The real solution described in the current

section has dihedral angles equal to π for the topmost angles in a fan.

Suppose we are given a veering layered taut ideal triangulation. By Agol [1,

Proposition 4.2], by choosing an immersed triangulated surface, we can recover the

maximal splitting sequence of train tracks. From the splitting sequence, it is a fairly

simple procedure to determine the invariant projective measure µ on the track τ for

the pseudo-Anosov element φ. For simplicity, we work with the folding sequence

instead of the splitting sequence. Given a measured train track and a fold, the

measure on the folded edge can be written as a sum of the measures of the branches

involved in the fold as in Figure 5.7. Given a periodic folding sequence, we can find

the measures of each branch after one period as a linear combination of the measures

of the branches in the original track.

By Agol [1, Theorem 3.5], the measure µ′ on τ after one period in the folding

sequence is λ(φ)φ(τ) where λ(φ) > 1 is the pseudo-Anosov dilatation factor of φ.

Hence, the transition matrix of the folding sequence is Perron-Frobenius, and the

largest eigenvalue is λ(φ) with the corresponding eigenvector giving the invariant

projective measure µ.
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Figure 5.8: Obtaining a flattened tetrahedron using the measure from the dual train
track.

Consequently, given the Agol triangulation for the mapping torus Mφ of a pseudo-

Anosov mapping class φ, we can assume that we have the dual maximal splitting

sequence along with the measures on the train tracks at each stage. With this in-

formation, we demonstrate how to determine real solutions to the edge consistency

equations. To obtain a solution to the edge consistency equations, we will use the

measured train track.

Consider a maximal large branch q as in Figure 5.8. When the branch q is split,

a tetrahedron is formed via diagonal exchange. Each edge in the tetrahedron is dual

to a weighted branch of the measured train track, and we can assign lengths to each

of the edges by taking the length to equal the measure of dual branch. The switch

conditions q = r + t = s+ u, r + (q − r − u) = s), and t = (q − r − u) + u determine

a projection of the tetrahedron onto R, up to translation. Hence, this determines an

ideal hyperbolic tetrahedron collapsed onto H
2. We can find the corresponding (real)
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shape parameter zi of the tetrahedron by sending the bottom vertex to 0, the top

vertex to q, and the left vertex to 1 on ∂H
2 and taking the cross ratio

zi = (q, 0; t, u) =
(q − t)(0 − u)

(0 − t)(q − u)
=
u(q − t)

t(q − u)
=
ur

ts
.

Notice that if t > u – i.e. we have a left split – then 0 < zi < 1 so that xi < 0. In

other words, xi has an angle of π. On the other hand, if t < u, i.e. we have a right

split, then zi > 1 so that yi < 0 and yi has an angle of π. Also, the bottom diagonal

is always the longest edge, as it is dual to a maximally weighted branch.

The above procedure determines real-valued shape parameters for all tetrahedra

in the Agol triangulation of Mφ. We show that the prescribed shape parameters

satisfy the edge consistency equations.

Theorem 5.8. The assignment of shape parameters to tetrahedra using the projection

to R ⊂ ∂H
2 using the weights of the dual branch as the R-lengths of the edges gives

a solution to the edge consistency equations where the π angles are at the topmost

tetrahedra in each fan.

Proof. Consider a fan of an edge e. Without loss of generality, we assume e is right

veering. A triangle in the veering triangulation corresponds to a switch, and looking

at the R projection of the triangle, the longest edge in the projection is the half-branch

that is large (see Figure 5.9). Thus, if we look at the sequence of triangles (which are

veering to the right) incident to e, as long as the longest edge of the projected triangle

is not e, then the edge incident to the right endpoint of e is the longest edge, so will

be part of a diagonal exchange, and the triangles will continue to be layered on tp of

it, veering to the right as in Figure 5.10. When the largest edge in the triangle is e,

then branch dual to e will split, and e will be replaced by another edge in a diagonal

exchange.

If we label the projection of one endpoint of e as 0 with the other endpoint being
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Figure 5.9: The R projection can be seen as the projection onto a horizontal line.
The bottom edge has the largest length and corresponds to the large half-branch.

(a) (b)

(c)

Figure 5.10: Triangles are layered along e, veering to the right as long as the vertex
opposite e lies to the left of the left endpoint of e.
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q, where q is the weight of the branch dual to e, then the projections of the vertices

opposite e in one fan of e satisfy

a0 < a1 < a2 < · · · < am−1 < 0 < am < q

where the ordering of the indices respects the ordering of the layering of the triangles.

Likewise, the vertices opposite e in the other fan satisfy

0 < bn < q < bn−1 < bn−2 < · · · < b2 < b1 < b0.

From this projection, we can see that the holonomy around the edge is 1 so that

the gluing consistency equation at e is satisfied. The shape parameter associated

to the dihedral angle at e for the flattened tetrahedron determined by 0, q, a0 and

a1 takes the segment between 0 and a0 to the segment between 0 and a1. Then

the shape parameter for the tetrahedron determined by 0, q, a1, a2 takes the segment

from 0 to a1 to the segment from 0 to a2, and so on, until the shape parameter for

the tetrahedron determined by the vertices 0, q, am−1, am takes am−1 to am. Then

the shape parameter for the top tetrahedron determined by 0, q, am, bn takes am to

bn. The sequence of shape parameters in the lower fan in Figure 5.11 then takes bn

to bn−1, bn−1 to bn−2, and on to b0. Then the shape parameter for the tetrahedron

determined by 0, q, a0, b0 then takes b0 back to a0.

Algebraically, this can be verified by computing the shape parameters from the

cross ratios. The shape parameter about the edge e for the bottom tetrahedron is

(q, 0; b0, a0) =
a0(q − b0)

b0(q − a0)
.
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Figure 5.11: The projection onto R at e, with the projections of the vertices opposite
e denoted by ai and bj.

Along the fan above e in Figure 5.11, the respective shape parameters about e are

(q, 0; ai, ai+1) =
ai+1(q − ai)

ai(q − ai+1)
.

For the top tetrahedron, the shape parameter, when given a consistent orientation

with the above, is given by

(q, 0; am, bn) =
bn(q − am)

am(q − bn)

while the shape parameters along the fan below e in Figure 5.11 are

(q, 0; bi, bi−1) =
bi−1(q − bi)

bi(q − bi−1)
.

Then, the product of all of the shape parameters is

a0(q − b0)

b0(q − a0)

a1(q − a0)

a0(q − a1)

a2(q − a1)

a1(q − a2)
· · · am(q − am−1)

am−1(q − am)

bn(q − am)

am(q − bn)

bn−1(q − bn)

bn(q − bn−1)

bn−2(q − bn−1)

bn−1(q − bn−2)
· · · b0(q − b1)

b1(q − b0)
= 1.
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The above computations of the shape parameters also shows that the only two

angles which are π (i.e. the shape parameters are strictly negative) are from the

topmost tetrahedron in each fan, since the given cross ratios are negative only when

ai < 0 and ai+1 > 0 or when bi < q and bi+1 > q.

5.4 Deformation of tetrahedra

We would like to deform the real solution for the edge consistency equations to obtain

a solution where the tetrahedra have positive volume (i.e. the imaginary parts of the

shape parameters are strictly positive). In other words, given shape parameters

x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn

and edge consistency equations

g1(z1, z2, . . . , zn) = 1

g2(z1, z2, . . . , zn) = 1

...

gn(z1, z2, . . . , zn) = 1,

we want a path of parameters {zi(t)} such that

g1(z1(t), z2(t), . . . , zn(t)) = 1

g2(z1(t), z2(t), . . . , zn(t)) = 1

...

gn(z1(t), z2(t), . . . , zn(t)) = 1,
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such that for t > 0, Im(zi(t)) > 0.

To simplify the analysis, we will consider d log gi as in Choi [4] and Danciger [6].

For indices i such that xi < 0 in the real solution, define ξi = d log xi and ci = zi so

that

d log xi = ξi

d log yi = −ciξi

d log zi = −(1 − ci)ξi.

For indices i such that yi < 0, define ξi = d log yi and ci = 1
zi

so that

d log xi = −ciξi

d log yi = ξi

d log zi = −(1 − ci)ξi.

Notice that by our choice of ci, 0 < ci < 1. We can now write our system of edge

consistency equations as

Aξ = 0 (5.1)

where ξ = (ξ1, ξ2, . . . , ξn)T and A is a n × n matrix. The kernel of A, then, is the

Zariski tangent space to the variety defined by the gluing equations gi. To compute

the dimension of this kernel, we will consider AT .

Because the i-th tetrahedron contributes two xi’s, two yi’s, and two zi’s to the

edge consistency equations, the i-th column of A contains two 1 entries, two −ci
entires, and two −(1 − ci) entries, or sums of the 1, −ci and −(1 − ci) where each

type of coefficient appears in exactly twice as summands (possibly in different sums).
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Hence, if we let r = (r1, r2, . . . , rn)T be a vector, then the jth coordinate of AT r is

ra + rb − cj(rd + re) − (1 − cj)(rk + rl)

where a, b, d, e, k, l are not necessarily distinct. The kernel of AT can then be re-

written as the solution to n+ 1 equations of the form

(ra + rb) − (rk + rl) = cj[(rd + re) − (rk + rl)].

By definition of ξi, ra and rb correspond to the edges of the j-th tetrahedron that have

angle π (i.e. negative shape parameter). Hence, if we have that (ra+rb)−(rk+rl) 6= 0,

and hence, (rd + re) − (rk + rl) 6= 0, then we must have either

rd + re > ra + rb > rk + rl

or

rk + rl > ra + rb > rd + re (5.2)

since 0 < cj < 1. Otherwise, ra + rb = rd + re = rk + rl.

Applying a result of Choi [4, Theorem 3.7(ii)], for each cusp in the veering trian-

gulation, there is a non-trivial vector in the kernel of AT . We reproduce a version of

the argument applicable to our situation here.

Proposition 5.9. Let c be a cusp of the veering triangulation and ei1 , . . . , eik ideal

edges of the triangulation with c as an endpoint (with multiplicity). Then the vector

v = ei1 + · · · + eik

is in the kernel of AT , where ei is the standard unit basis vector (0, . . . , 0, 1, 0, . . . , 0)

that is 1 in the ith coordinate and 0 in all other coordinates.
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Proof. We have a triangulation of the cusp c induced from the tetrahedralization of

the mapping torus by cutting off a neighborhood of the ideal vertex to obtain triangles

“at infinity”. The ith coordinate v(i) of the vector v is d log of the product of all of

the xi, yi, and zi that appear in the cusp c. But the xi, yi, and zi appear together as a

triple for each vertex of the tetrahedron Ti that lies on the cusp c. Since xiyizi ≡ −1,

then d log(xiyizi) = 0. v(i) is a sum of some number of d log(xiyizi), so v(i) = 0.

Assuming we can show that ra + rb = rd + re = rk + rl, from the argument in Choi

[4, Theorem 3.7(iii)], then the kernel of AT consists of only those relations coming

from the cusps. The argument is reproduced below.

Proposition 5.10. Suppose that AT r = 0 and for each tetrahedron in the ideal

triangulation

ra + rb = rd + re = rk + rl,

where {ra, rb}, {rd, re}, {rk, rl} are weights assigned to pairs of opposite edges of the

tetrahedron. Then r is a linear combination of the vectors in the kernel of AT from

Proposition 5.9.

Proof. For a cusp cj, let vj be the vector from Proposition 5.9. We wish to find a

q =
∑

cj a cusp

qjvj

such that q = r. We write q as

q =
∑

i

(qai
+ qbi

)ei,

where qai
and qbi

are the two ends of the edge ei. Then, the equations that the qj and

ri must satisfy are

qai
+ qbi

= ri.
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Figure 5.12: Traversing along adjacent faces of tetrahedra to go between two triangles
sharing a common vertex a.

If we consider three vertices a, b, c of a face on a tetrahedron with edges eab, eac, ebc,

then we have the three equations

qa + qb = riab

qa + qc = riac

qb + qc = ribc
.

This has solutions

qa =
riab

− ribc
+ riac

2

qb =
riab

− riac
+ ribc

2

qc =
riac

− riab
+ ribc

2
.

It remains to show that the qj are well-defined. Suppose two faces of two tetra-

hedra share a vertex a. Then we can go from one to another through a sequence of

faces so that two consecutive faces are faces of the same tetrahedron, as in Figure

5.12. So it suffices to show that the definition of qa along two triangular faces of a

single tetrahedron agree.

Let (a, b, c) be the vertices of one and (a, b, c′) be the vertices of the other. Then,



70 CHAPTER 5. IDEAL TRIANGULATIONS

we must show that
riab

− ribc
+ riac

2
=
riab

− ribc′
+ riac′

2
.

By assumption, we have that

riac
+ ribc′

= riac′
+ ribc

,

so qa is well-defined.

Thus, in order to show that the variety of solutions to the edge consistency equa-

tions is smooth, we must show that the relation ra + rb = rd + re = rk + rl holds.

Then, given a vector v in the kernel of A, we can find a family of shape parameters

zi(t) that satisfy the edge consistency equations where the infitesimal change in the

zi(t) at t = 0 is given by v.

5.5 The punctured torus case

We consider the special case when S = S1,1 is the punctured torus. The hyperbolic

structures for the mapping tori coming from pseudo-Anosov elements on S1,1 are

understood by the work of Guéritaud [12]. As an example of the method outlined

above, we will deform the real solution to the gluing equations given by Theorem 5.8

to find positively oriented ideal tetrahedra triangulating the mapping torus Mφ.

First, observe that up to the action of the mapping group, there is a unique train

track on the flat torus (in the square picture of the torus, let the puncture be located

in the corners – which are identified). Since the train track contains two switches and

one large branch, the corresponding veering triangulation of S1,1 has two triangles.

Splitting the large branch corresponds to a Dehn twist, and the veering triangulation

from Agol’s construction yields the monodromy triangulation studied by Guéritaud

[12]. Note that opposite edges of the quadrilateral are identified, so the inequalities
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Figure 5.13: Train track on the square punctured torus.

in Equation 5.2 are replaced with

2rd > 2ra > rk + rl

or

rk + rl > 2ra > 2rd. (5.3)

Here, ra corresponds to the two opposite edges (which are identified) that are assigned

dihedral angle π by Theorem 5.8, rd is the other pair of opposite edges, and rk and rl

are the diagonals of the tetrahedron whose edges are assigned shape parameters zi.

If 2ra > rk + rl, without loss of generality (by re-labeling rk and rl, if necessary),

we have that ra > rk. Similarly, rk + rl > 2ra implies rk > ra.

In order to prove the smoothness of the deformation variety, we first discuss the

structure of the cusp, as described in Gueritaud [12]. The relevant parts are noted

below.

By looking at the link of a vertex, we obtain a triangulation of the cusp – each

ideal vertex of an ideal tetrahedron contributes a Euclidean triangle to the link of

the vertex. These triangles glue together to give a triangualtion of the torus at the

cusp. In particular, each tetrahedron contributes four triangles to the cusp, and (in an

abuse of notation) the vertices of the triangles can be labeled xj, yj, zj in accordance

to the labels given to the edges of the tetrahedron. The labels xj, yj, zj of the vertices
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Figure 5.14: Four triangles from the same tetrahedron in the link of cusp.

of the triangles are angles, whereas they are C-valued for edges of the tetrahedron.

As the pair of edges labeled xj and the pair of edges labeled yj in the tetrahedron

are glued together, the four triangles from each tetrahedron are glued together along

their vertices as in Figure 5.14.

Sets of four triangles strung together as in Figure 5.14 are stacked on top of each

other to form the triangulation of the torus at the cusp. Note that the xj labeled

vertices come from right veering edges, and the yj labeled vertices come from the left

veering edges.

Proposition 5.11. The vector on the cusp from Proposition 5.9 is a basis for the

kernel of AT .

Proof. The idea of the proof is to draw arrows on the edges of the triangulation of

the torus at the cusp. For example, if rd ≥ ra, then we draw an arrow on the edge

from the vertex xj (or yj) to the vertex yj (or xj) where xj (or yj) corresponds to the

edge of rd and yj (or xj) corresponds to the edge of rl. We make an initial choice of

the inequalities on one of the tetrahedra, and show that this forces an orientation of

the edges of all other tetrahedra, and the arrows form a cycle so that all coefficients

must be equal (this corresponds to the vector vc from Proposition 5.9).

We first consider a hinge tetrahedron Ti1 where the xi1 are at the bottom of the

fans of a right veering edge and the yi1 are at the top of the fans of a left veering

edge, as in Figure 5.15. In other words, the angle that is π in Ti1 from Theorem 5.8

is yi1 . In Equations 5.3, ra corresponds to the edges with shape parameter yi1 , rd
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Figure 5.15: A hinge tetrahedron (in gray) where the xi1 are at the bottom of their
respective fans and the yi1 are at the top of their fans.

corresponds to the edges with shape parameter xi1 , and rk and rl correspond to the

two opposite edges of Ti1 with shape parameter zi1 . We will refer to the coefficients by

the corresponding shape parameters of the vertices in the monodromy triangulation

(i.e. the edges in the tetrahedron), so that ra = ryi1
, rd = rxi1

, rk = rzi1,1
, rl = rzi1,2

,

etc.

Case HN1: 2rxi1
≤ 2ryi1

≤ rzi1,1
+ rzi1,2

In this case, we have that rxi1
≤ ryi1

, so

that we can draw an arrow from yi1 to xi1 along all edges connecting vertices with

those labels. Moreover, since

2ryi1
≤ rzi1,1

+ rzi1,2
,

we must have either ryi1
≤ rzi1,1

or ryi1
≤ rzi1,2

, which takes us to Case HN1a (Figure

5.16) or Case HN1b (Figure 5.17).

In Case HN1a, we see that the choice of arrows on the hinge tetrahedron also

places arrows on some of the edges in the adjacent tetrahedron Ti2 . In particular,

we have that ryi2
≥ rxi2

, as in Figure 5.16(b). Also, the angle that is π in Ti2 is yi2 .

Hence, we must have either ryi2
≤ rzi2,1

or ryi2
≤ rzi2,2

. But from the arrows in Figure

5.16(b), we see that ryi2
≥ rzi2,α

for α = 1 or α = 2, so we must have ryi2
≥ rzi2,β

where β = 1 if α = 2 and β = 2 if α = 1.
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(a)

(b)

(c)

Figure 5.16: Case HN1a
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(a)

(b)

(c)

Figure 5.17: Case HN1b

Case HN1b (Figure 5.17) follows similarly, with the choice of arrows on Ti1 induc-

ing some of the arrows on Ti3 . Here, the angle that is π is xi3 .

Case HN2: rzi1,1
+ rzi1,2

≤ 2ryi1
≤ 2rxi1

Case HN2a (Figure 5.18) and Case HN2b (Figure 5.19) follow similar arguments

as in Case HN1a and Case HN1b.

We now consider a non-hinge Ti2 that occurs in a fan of a right veering edge to

another non-hinge Ti4 . Notice that the angles that are π in Ti2 and Ti4 are yi2 and

yi4 , respectively.

Case NN1: 2rxi2
≤ 2ryi2

≤ rzi2,1
+ rzi2,2
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(a)

(b)

(c)

Figure 5.18: Case HN2a
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(a)

(b)

(c)

Figure 5.19: Case HN1b

Figure 5.20: A non-hinge tetrahedron in a fan of xi’s neighboring a non-hinge tetra-
hedron.
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(a)

(b)

(c)

Figure 5.21: Case NN1a

We consider the subcase NN1a when the arrows are as in Figure 5.21.

Case NN2: rzi2,1
+ rzi2,2

≤ 2ryi2
≤ 2rxi2

Again, we only consider the subcase NN2a where the arrows are as in Figure 5.22.

Finally, we may have a non-hinge Ti2 in a fan of a right veering edge adjacent to

a hinge tetrahedron Ti4 .

Case NH1: 2rxi2
≤ 2ryi2

≤ rzi2,1
+ rzi2,2

We consider the subcase NH1a when the arrows are as in Figure 5.24.

Case NH2: rzi2,1
+ rzi2,2

≤ 2ryi2
≤ 2rxi2

Again, we only consider the subcase NH2a where the arrows are as in Figure 5.25.
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(a)

(b)

(c)

Figure 5.22: Case NN2a

Figure 5.23: A non-hinge tetrahedron in a fan of xi’s neighboring a hinge tetrahedron.
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(a)

(b)

(c)

Figure 5.24: Case NH1a

(a)

(b)

(c)

Figure 5.25: Case NH2a
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We now proceed to show that the only element in the kernel of AT is the vector

with all entries equal. First, start at any hinge where the x angles are at the bottom

of x fans and the y angles are at the top of y fans, as in Figure 5.15. Suppose that

we have the situation in Case HN1a. Then, in Ti2 , we have edges oriented as in Case

NN1a. We can then propogate the arrows upwards along tetrahedra until we reach

another hinge tetrahedron as in Case NH1a. Now, we have an orientation on a non-

hinge that is in a fan with yi’s. Notice that this picture is a horizontal reflection of

the orientation of the hinge tetrahedron in Case HN2a.

Case HN2a proceeds similarly, with the orientation on the non-hinge giving the

Case NN2a, so we can proceed to propogate the arrows upwards along tetrahedra until

we come to another hinge, giving Case NH2a, which is then a horizontal reflection of

case HN1a.

Hence, both Case HN1a and Case HN2a lead to a propogation of the arrows

upwards, with vertical cycles, one along the vertices corresponding to right veering

edges, and the other along left veering edges.

Case HN1b leads to an orientation on the non-hinge which is a vertical reflection of

the orientation on the non-hinge in Case NN1a, and Case HN2b gives an orientation

on the non-hinge (up to vertical reflection) as in the Case NN2a. In this case, the

arrows propogate downwards along tetrahedra, again forming vertical cycles.

Hence, regardless of the choice, if r is in the kernel of AT , we must have that

rxi
= rxj

and ryi
= ryj

for all i 6= j. Since we know from Proposition 5.9 that the

vector rc = (1, 1, 1, . . . , 1) is in the kernel of AT . Let rx be the vector with ith entry

equal to 1 if gi consists of a product of x’s and two z’s and 0 otherwise, and let

ry = rc − rx be the vector with ith entry equal to 1 if gi consists of a products of y’s

and two z’s. If any linear combination of rx and ry besides a multiple of rc is in the

kernel of AT , by subtracting an appropriate multiple of rc and scaling, we would have

rx (and ry) in the kernel of AT .
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We claim that neither rx nor ry are in the kernel of AT . Take any tetrahedron Tj

where yj has angle π. Then, by construction, the jth row of AT has negative entry

in the ith column when xj or zj is in the ith gluing equation. In particular, the jth

entry of AT rx is −2cj + δ where δ is non-positive and is −(1 − cj) if zj appears in

one of the gluing equations with all x’s and −2(1 − cj) if both zjs appears in gluing

equations with x’s. Hence, AT rx 6= 0. Similarly, AT ry 6= 0, so rc generates the entire

kernel of AT .

Finally, notice that we have considered inequalities of the type 2rd ≥ 2ra ≥ rk +rl

and 2rd ≤ 2ra ≤ rk+rl instead of the strict inequalities of Equations 5.3. This reduces

the number of base cases, but this means that a particular edge of the monodromy

triangulation may have arrows in both directions in the case of equality. However, if at

any stage in the induction, we have equality (i.e. an edge has arrows pointing in both

directions), then the equalities propogate backwards all the way to the initial hinge,

leaving a choice of either rzi
≥ rxi

(or ryi
) or rzi

≤ rxi
(or ryi

) in the forwardmost

tetrahedron. A choice of either inequality then continues the induction, giving the

same result.

The previous Proposition establishes smoothness of the tetrahedral variety, using

the combinatorics of the cusp. Thus, to show that we can deform the tetrahedra

from the real solutions to complex ones, we need only find a vector v in the kernel

of A. If v contains all positive entries, then we can deform the shape paremeters of

the tetrahedra so that the infinitesimal change in the shape parameters is iv. The

imaginary parts of all of the tetrahedra will be positive, and all of the tetrahedra are

positively oriented.

Proposition 5.12 (Danciger [6], Proposition 53). The kernel of A is spanned by a

vector with strictly positive entries.

For the triangulated case, this method gives an alternate, combinatorial proof to
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the result of Danciger [6].

Theorem 5.13 (Danciger [6]). Let S be a punctured torus and φ : S → S pseudo-

Anosov. Then there exists a triangulation of Nφ = Mφ \ Σ and degenerate (real)

solutions to the edge consistency equations that can be deformed to a solution with

non-degenerate, positive volume tetrahedra.

5.6 The general case

Although Theorem 5.8 applies to the general case where S is any hyperbolic surface,

the argument for the smoothness of the deformation variety for the veering triangu-

lation becomes much more complicated. The inequality in 5.2 can still be used to

generate arrows on the triangulation of the cusps, but more cases need to be consid-

ered. For example, the inequality

rk + rl > ra + rb

means that one of the following hold:

rk > ra, rk > rb

rl > ra, rl > rb

rk > ra, rl > ra

rk > rb, rl > rb.

Using these cases, we can attempt to generate directed cycles on the 1-skeleton of

the triangulation. However, the number of cases makes it difficult to generalize the

argument.

In fact, the volume maximization method to find the complete hyperbolic structure
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on the veering triangulation for Nφ fails in the general case [19]. However, it is

possible that the veering triangulation can be realized geometrically with additional

assumptions on φ, similar to those used in Theorem 4.5.

5.7 Example: 4-strand braid

We demonstrate the methods established in this chapter on the 4-strand pseudo-

Anosov braid with minimal dilatation, φ = σ3σ2σ
−1
1 as shown by Ko, Los, and Song

[26]. The dilatation factor is

λφ =
1 +

√
3

2
−

4
√

3√
2

= 2.29663 . . . ,

where λφ satisfies

λ4
φ − 2λ3

φ − 2λφ + 1 = 0.

The computation of the maximal splitting sequence for this braid is done by Agol [1].

Figure 5.26 shows a train track for the invariant foliation. The 4-braid is viewed as a

map on the 5-punctured sphere. In the figure, the four punctures from the strands of

the braid are shown, with the fifth puncture being the boundary of a disk containing

the figure.

The weights on the train track branches can be retrieved from the maximal split-

ting sequence or by applying φ to the train track in Figure 5.26. In terms of λφ, the

weights for the branches are as follows.
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Figure 5.26: A train track for the invariant foliation of σ3σ2σ
−1
1 .

a = −5

3
λ−3

φ + 3λ−2
φ + λ−1

φ +
7

3
= 3.19994 . . .

b = −4

3
λ−3

φ + 2λ−2
φ + λ−1

φ +
8

3
= 3.3712 . . .

c =
1

3
λ−3

φ − λ−2
φ +

1

3
= 0.17126 . . .

d = −2

3
λ−3

φ + λ−2
φ + λ−1

φ +
1

3
= 0.90331 . . .

e = −λ−3
φ + 2λ−2

φ + 2 = 2.29663 . . .

f = −2

3
λ−3

φ + λ−2
φ + λ−1

φ +
4

3
= 1.90331 . . .

g = −2

3
λ−3

φ + λ−2
φ +

4

3
= 1.46789 . . .

h = −1

3
λ−3

φ + λ−1
φ +

5

3
= 2.07457 . . .

i =
1

3
λ−3

φ − λ−2
φ + λ−1

φ +
1

3
= 0.60668 . . .

j = −1

3
λ−3

φ + λ−2
φ − λ−1

φ +
5

3
= 1.39332 . . .

k = −1

3
λ−3

φ + λ−2
φ − λ−1

φ +
2

3
= 0.39332 . . .

l = 1.

Numbering the tetrahedra T1, T2, T3, T4, T5, T6 in the order of their dual train track
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splits, we have that the edge consistency equations are

z1x2x5z6 = 1 (5.4)

x2z3z4x5 = 1 (5.5)

y1z1y2y3y4y5y6z6 = 1 (5.6)

y1y2y3z3y4z4y5y6 = 1 (5.7)

x1z2x3x4z5x6 = 1 (5.8)

x1z2x3x4z5x6 = 1. (5.9)

The three trivial relations coming from the cusps are

(Equation 5.4) × (Equation 5.5) × (Equation 5.6) × (Equation 5.7)

× (Equation 5.9) × (Equation 5.9),

(Equation 5.5) × (Equation 5.6) × (Equation 5.8),

(Equation 5.4) × (Equation 5.7) × (Equation 5.8).

The shape parameters zi are computed from the cross ratios

z1 = (a, g; b, 0) = 0.041276 . . .

z2 = (e, g; a, 0) =
1

3

z3 = (a− d− g, d; e, 0) = 1.14832 . . .

z4 = (f, g;h, 0) = 0.21771 . . .

z5 = (b− c− g, g; f, 0) =
1

3

z6 = (a− d− g, g; b− c− g, 0) = 6.0568 . . . .

It is easily checked that these shape parameters satisfy the edge consistency equations
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5.4–5.9. For this example, the method outline in Section 5.6 works to show smoothness

of the deformation variety for the veering triangulation. In fact, numbering the edges

1–6 by the order in which they appear in the edge consistency equations of 5.4–5.9,

we can see that Equation 5.2 for T1 becomes one of either

r1 + r3 > r5 + r6 > r3 + r4

r3 + r4 > r5 + r6 > r1 + r3.

Without loss of generality, assume that r1 +r3 > r5 +r6 > r3 +r4. Then, the equation

from T2 is forced to be

r5 + r6 > r1 + r2 > r3 + r4

since r5 + r6 > r3 + r4. We can then proceed to T3 to find that

r5 + r6 > r3 + r4 > r2 + r4.

Now, Equation 5.2 on T4 states that either

r3 + r4 > r5 + r6 > r2 + r4

or

r2 + r4 > r5 + r6 > r3 + r4.

But we already have that r5 + r6 > r3 + r4 and r5 + r6 > r2 + r4, so neither can be

satisfied by strict inequality. Hence, we have that r5 +r6 = r1 +r2 = r3 +r4 = r2 +r4.

Then, r1+r3 = r5+r6 is also forced by T6. By Proposition 5.10, then the deformation

variety is smooth. To find a deformation of the real solutions to positively oriented

tetrhedra, we must find a vector ξ satisfying Equation 5.1 with strictly positive entries

[6, Theorem 8].
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The matrix A has the form

A =





























−(1 − c1) 1 0 0 1 −(1 − c6)

0 1 −(1 − c3) −(1 − c4) 1 0

−c1 − (1 − c1) −c2 1 −c4 −c5 1 − (1 − c6)

−c1 −c2 1 − (1 − c3) −c4 − (1 − c4) −c5 1

1 −(1 − c2) −c3 1 −(1 − c5) −c6
1 −(1 − c2) −c3 1 −(1 − c5) −c6





























,

where

c1 = z1

c2 = z2

c3 =
1

z3

c4 = z4

c5 = z5

c6 =
1

z3

.

The kernel has dimension dim kerA = 3 and is spanned by

v1 =





























−5.38748 . . .

−4.33021 . . .

−6.49531 . . .

0

0

1




























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v2 =





























0.504107 . . .

−0.5167 . . .

0.72495 . . .

0

1

0





























v3 =





























4.64148 . . .

4.4499 . . .

6.48111 . . .

1

0

0





























.

The vector v = v1 + v2 + 2v3 has all positive entries, so we can find a deformation of

the real shape parameters (zj) in the direction of iv, so that the tetrahedra become

positively oriented with positive volume.
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