MATH 185-04: Complex Analysis
 Final Review
 May 5, 2014

- Stereographic projection
- formula:

$$
\begin{array}{ll}
x=X /(1-Z) & X=2 x /\left(|z|^{2}+1\right) \\
y=Y /(1-Z) & Y=2 y /\left(|z|^{2}+1\right) \\
& Z=\left(|z|^{2}-1\right) /\left(|z|^{2}+1\right) .
\end{array}
$$

- circles go to circles and lines
- branch cuts, Euler identity $e^{i \theta}=\cos \theta+i \sin \theta$
- sequences in \mathbb{C}, continuity
$-s_{n}+t_{n} \rightarrow s+t, s_{n} t_{n} \rightarrow s t, s_{n} / t_{n} \rightarrow s / t$, same statement for limits of functions
- z_{n} converges iff $\operatorname{Re} z_{n}$ and $\operatorname{Im} z_{n}$ converge
- open/closed subsets, domains, star-shaped domains, boundary, compactness
- A continuous real-valued function on a compact set attains its maximum.
- complex differentiation

$$
f^{\prime}\left(z_{0}\right)=\frac{d f}{d z}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} .
$$

- analyticity
- chain rule, product rule, quotient rule
- Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

- If $f(z)$ analytic on domain D and $f^{\prime}\left(z_{0}\right) \neq 0$, then there is a small disk $z_{0} \in U \subseteq D$ such that $f(z)$ is 1-1 on $U, V=f(U)$ is open, and f^{-1} is analytic and satisfies $\left(f^{-1}\right)^{\prime}(f(z))=1 / f^{\prime}(z)$.
- harmonic functions and harmonic conjugate

$$
\begin{aligned}
v(x, y) & =\int_{y_{0}}^{y} \frac{\partial u}{\partial x}(x, t) d t-\int_{x_{0}}^{x} \frac{\partial u}{\partial y}\left(s, y_{0}\right) d s+C \\
v(B) & =\int_{A}^{B}-\frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y
\end{aligned}
$$

- conformal mapping, Fractional linear transformation:

$$
w=f(z)=\frac{z-z_{0}}{z-z_{2}} \frac{z_{1}-z_{2}}{z_{1}-z_{0}} .
$$

- dilation (rotation), translation, inversion
- circles in \mathbb{C}^{*} to circles
- Green's theorem and consequences

$$
\int_{\partial D} P d x+Q d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y
$$

- exact and close differentials
- independence of path (= exact differential)

$$
\frac{-y d x+x d y}{x^{2}+y^{2}}
$$

- mean value property, maximum principle

$$
u\left(z_{0}\right)=\int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) \frac{d \theta}{2 \pi}
$$

- $u(z)$ real harmonic, $u(z) \leq M$ on D. If $u\left(z_{0}\right)=M$ for $z_{0} \in D$, then $u(z)=M$.
- h bounded complex harmonic, $|h(z)| \leq M$ on D. if $\left|h\left(z_{0}\right)\right|=M$, then $h(z)$ constant
- if $|h(z)| \leq M$ on ∂D, then $|h(z)| \leq M$ on D
- complex line integral
- ML estimate
- primitive functions, fundamental theorem of calculus
- Cauchy's theorem
- Cauchy integral formula

$$
f^{(m)}(z)=\frac{m!}{2 \pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{m+1}} d w
$$

- Liouville's theorem
$-\oint_{|z|=2} \frac{\sin 2 z}{z^{2}\left(z-\frac{\pi}{2}\right)\left(z^{2}+2 \pi\right)} d z$
- power series
- uniform convergence of analytic functions
- singular points and radius of convergence

$$
R=\frac{1}{\limsup \sqrt[k]{\left|a_{k}\right|}}=\lim \frac{\left|a_{k}\right|}{\left|a_{k+1}\right|}
$$

- coefficients

$$
a_{k}=\frac{1}{2 \pi i} \oint_{\left|\zeta-z_{0}\right|=r} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} d \zeta
$$

- sums and products of power series
- orders of zeros
- uniqueness principle and permanence
* if $f(z)=g(z)$ on a set with a non isolated point, then $f(z)=$ $g(z)$ on D
* Suppose $F(z, w)$ is independently analytic in z and w. If E is a set with a non isolated point and $F(z, w)=0$ for all points of E, then $F(z, w)=0$ on D.
- Laurent decomposition and Laurent series
- examples using geometric series
- formula for coefficients

$$
a_{n}=\frac{1}{2 \pi i} \oint_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

- classification of isolated singularities
* removable singularities, $a_{k}=0$ for $k<0, f(z)$ bounded near z_{0}
* pole of order $N, a_{k}=0$ for $k<-N,|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$
* essential singularities, for every $w_{0} \in \mathbb{C}$, there is a sequence $z_{n} \rightarrow z_{0}$ such that $f\left(z_{n}\right) \rightarrow w_{0}$ (Casorati-Weierstrauss)
- meromorphic functions and principal part of $f(z)$, partial fractions decomposition
- residue theorem, rules for calculating residues
- applications to various real integrals using semicircular contours
- integrals of trigonometric functions using $z=e^{i \theta}, \cos z=\frac{z+1 / z}{2}$, $\sin z=\frac{z-1 / z}{2 i}$
- keyhole contours for functions with branch cuts
- fractional residue theorem
- Jordan's lemma $\int_{\Gamma_{R}}\left|e^{i z}\right||d z|<\pi$
- argument principle, logarithmic integral version and argument version
- Rouche's theorem
- open mapping and inverse function theorems
- prime number theorem
- definitions of gamma and zeta functions, general idea of extending a function using functional equations
- Chebyshev Θ function
- Laplace transforms

