
Notes on the prime number theorem

Kenji Kozai

May 2, 2014

1 Statement

We begin with a definition.

Definition 1.1. We say that f(x) and g(x) are asymptotic as x → ∞,

written f ∼ g, if limx→∞
f(x)
g(x) = 1.

The prime number theorem tells us about the asymptotic behavior of the
number of primes that are less than a given number. Let π(x) be the number
of primes numbers p such that p ≤ x. For example, π(2) = 1, π(3) = 2,
π(4) = 2, etc. The statement that we will try to prove is as follows.

Theorem 1.2 (Prime Number Theorem, p. 382). The asymptotic behavior

of π(x) as x → ∞ is given by

π(x) ∼
x

log x
.

This was originally observed as early as the 1700s by Gauss and others.
The first proof was given in 1896 by Hadamard and de la Vallée Poussin.
We will give an overview of simplified proof. Most of the material comes
from various sections of Gamelin – mostly XIV.1, XIV.3 and XIV.5.

2 The Gamma Function

The gamma function Γ(z) is a meromorphic function that extends the fac-
torial n! to arbitrary complex values. For Re z > 0, we can find the gamma
function by the integral:

Γ(z) =

∫ ∞

0
e−ttz−1dt, Re z > 0.
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To see the relation with the factorial, we integrate by parts:

Γ(z + 1) =

∫ ∞

0
e−ttzdt

= −tze−t|∞0 + z

∫ ∞

0
e−ttz−1dt

= zΓ(z).

This holds whenever Re z > 0. We also notice that Γ(1) =
∫ ∞

0 e−tdt = 1.
By induction, then Γ(2) = 1, Γ(3) = 2, Γ(4) = 6, . . . , Γ(n + 1) = n!. This
holds for all non-negative integers n.

Remember that the integral definition for Γ(z) only works for Re z > 0.
However, using the relation Γ(z + 1) = zΓ(z), we can extend it for negative
values of z by defining it to be the function that agrees with the integral
definition for Re z > 0, and also satisfies Γ(z + 1) = zΓ(z) for all z. In
particular, if we apply this relation m times, we find that

Γ(z + m) = (z + m − 1) · · · (z + 1)zΓ(z).

We can rewrite this as

Γ(z) =
Γ(z + m)

(z + m − 1) · · · (z + 1)z
.

The function Γ(z + m) is defined for Re z > −m, so we define Γ(z) for
Re z > −m by using the above equation. By doing this for larger and larger
value of m, we can progressively define it for more of the complex plane,
and in the limit, we get a function defined on all of C.

From this definition, we can see that Γ(z) is meromorphic with simple
poles at z = 0,−1,−2,−3, . . . .

3 The Zeta Function

Before we give a proof of the theorem, we will need to study the zeta function,
which is covered in XIV.3. The zeta function is defined to be

ζ(s) =
∞

∑

n=1

1

ns
, Re s > 1.

Here, s = σ+ it is a complex number. Notice that if σ = Re s > 1, the series
on the right in fact does converge absolutely, as

∣

∣

∣

∣

1

ns

∣

∣

∣

∣

=
1

nσ
,
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with the series
∑ 1

nσ converging by the p-test when σ > 1. As σ → 1, we
obtain the harmonic series

∑ 1
n , which diverges.

The zeta function satisfies a product formula.

Theorem 3.1 ((3.1) on p. 371). If Re s > 1, then

1

ζ(s)
=

∏

p

(

1 −
1

ps

)

,

where the product is taken over all prime numbers p.

Proof. The proof uses the geometric series formula

1

1 − p−s
= 1 + p−s + p−2s + p−3s + . . . .

Now, if p1, p2, . . . , pm are m different primes, if we multiply the geometric
series for each of these primes together, we obtain

1

(1 − p−s
1 ) · · · (1 − p−s

m )
=

∞
∑

k1,...,km=0

(pk1

1 · · · pkm

m )−s.

Every integer n ≥ 1 can be written uniquely as a product of primes, so
each number 1

n−s such that n is a product of the primes p1, . . . , pm appears
exactly once. In the limit, when we take all primes, we get all terms 1

n−s .
Hence,

∏

p

1

1 − p−s
=

∞
∑

n=1

1

ns
= ζ(s).

Taking the reciprocal then yields the formula in the theorem.

It turns out that ζ(s) can be extended to be a meromorphic function on
C, with only a simple pole at s = 1 with residue 1. More details can be
found in XIV.3. This extension satisfies the equation

ζ(s) = 2sπs−1 sin
πs

2
Γ(1 − s)ζ(1 − s).

In particular, the right hand side is defined for Re s < 0, so this tells us ζ(s)
for all values of s except for the critical strip 0 ≤ Re s ≤ 1. An integral
formula described in XIV.3 is used to define ζ(s) in this strip.

The product formula for ζ(s) shows that ζ(s) has no zeros in the right
half-plane Re s > 1. The equation above then implies that the only zeros
of ζ(s) in the left half-plane Re s < 0 are the zeros of sin πs

2 , which are
s = −2,−4,−6, . . . . The famous Riemann hypothesis is the conjecture that
all other zeros of ζ(s) lie on the line Re s = 1

2 .
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4 Chebyshev theta function

Instead of comparing the asymptotic behavior of π(x) with x
log x directly, we

will consider the Chebyshev theta function,

Θ(x) =
∑

p≤x

log p.

We will compare the theta function with the statement from the prime
number theorem.

Lemma 4.1 (p. 384). π(x) ∼ x
log x if and only if Θ(x) ∼ x.

Proof. Notice that log p ≤ log x, and there are π(x) summands for Θ(x).

Hence, Θ(x) ≤ π(x) log x, as long as x ≥ 1. Dividing by x gives us Θ(x)
x ≤

π(x) log x
x .

Let ε > 0. Then,

Θ(x) =
∑

p≤x

log p

≥
∑

x1−ε<p≤x

log p

≥
∑

x1−ε<p≤x

log x1−ε

= (1 − ε)(log x)(π(x) − π(x1−ε))

≥ (1 − ε)(log x)(π(x) − x1−ε).

We can rearrange this to

Θ(x)

1 − ε
≥ (log x)(π(x) − x1−ε)

Θ(x)

1 − ε
+

x log x

xε
≥ (log x)π(x).

Then, dividing by x and combining with our first inequality, we can see that

Θ(x)

x
≤ π(x)

log x

x
≤

1

1 − ε

Θ(x)

x
+

log x

xε
.

Since limx→∞
log x
xε = 0, we see that π(x)

x/ log x → 1 if and only if Θ(x)
x → 1.

So in order to prove the prime number theorem, it suffices to show Θ(x) ∼
x.
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5 The Laplace transform

We will begin with a lemma.

Lemma 5.1. If f(x) is an increasing function of x such that

lim
R→∞

∫ R

1

(

f(x)

x
− 1

)

dx

x

exists, then f(x) ∼ x.

Before proving the lemma, we note that Θ(x) is an increasing function
in x, so if we can prove that the limit above exists for Θ(x), then we would
prove the prime number theorem.

Proof. We will prove this by the contrapositive. Since f(x) is increasing,
the only way that f(x) ∼ x fails is if there exists an ε > 0 such that
f(x) > (1 + ε)x for sufficiently large values of x, or f(x) < (1 − ε)x for
sufficiently large values of x.

Let us assume the first case, that f(x) > (1 + ε)x for large values of x.
Suppose that this is true for x ≥ x0. Then

∫ (1+ε)x0

x0

(

f(x)

x
− 1

)

dx

x
≥

∫ (1+ε)x0

x0

(

f(x0)

x
− 1

)

dx

x

≥

∫ (1+ε)x0

x0

(

(1 + ε)x0

x
− 1

)

dx

x

=

∫ 1+ε

1

(

(1 + ε)

t
− 1

)

dt

t
.

The last line is by using the change of coordinates x = x0t. In particular,
the integral in the last line is independent of x0 and is some non-zero c > 0.

We can repeat this for infinitely many disjoint intervals, so

lim
R→∞

∫ R

1

(

f(x)

x
− 1

)

dx

x

diverges to ∞, so it cannot exist. Similarly, we can show that if f(x) <

(1 − ε)x for sufficiently large x, then the integral diverges to −∞.
Therefore f(x) ∼ x.

In order to prove that the limit exists for Θ(x), we will need to introduce
one more tool: the Laplace transform.
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Definition 5.2. Let h(s) be a continuous or piecewise function on the pos-
itive real axis s ≥ 0. The Laplace transform of h(s) is the function of z

(Lh)(z) =

∫ ∞

0
e−szh(s)ds,

provided that the integral converges.

We won’t need to know too much about the Laplace transform, so we
won’t go into depth here. But if you want to know more, the book has
a section on the Laplace transform in XIV.2. The Laplace transform is
somewhat like the Fourier transform.

Notice that the Laplace transform, evaluated at z = 0, is

(Lh)(0) =

∫ ∞

0
e−s(0)h(s)ds =

∫ ∞

0
h(s)ds.

Recall that what we are trying to show is that

lim
R→∞

∫ R

1

(

Θ(x)

x
− 1

)

dx

x

exists. If we do a change of variages x = es, then dx = esds = xds, so the
integral becomes

lim
T→∞

∫ T

0
(Θ(es)e−s − 1)ds.

This limit is exactly the expression for (Lh)(0) above, for h(s) = Θ(es)e−s−
1. Thus, out goal will be to show that (Lh)(0) exists. If we can do that, we
will have proved the prime number theorem.

We will do this by connecting the Laplace transform with another func-
tion whose poles we understand, Φ(s).

6 Dirichlet Series

Definition 6.1. A Dirichlet series is a series of the form

∞
∑

n=1

an

ns
= a1 +

a2

2s
+

a3

3s
+ . . . .

The zeta function ζ(s) is a Dirichlet series with a1 = a2 = · · · = an =
· · · = 1.
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The proof will use a particular Dirichlet series defined by

Φ(s) =
∑

p

log p

ps
,

which converges and is analytic for Re s > 1. Here, p means that we are
summing only over the prime numbers.

We will take the product formula

1

ζ(s)
=

∏

p

(

1 −
1

ps

)

,

and take the logarithm of both sides and differentiate. On the left hand
side, we obtain

d

ds
log

1

ζ(s)
=

d

ds
log ζ(s)−1 = −

d

ds
log ζ(s) = −

ζ ′(s)

ζ(s)
.

The right hand side becomes

d

ds
log

∏

p

(

1 −
1

ps

)

=
d

ds

∑

p

log

(

1 −
1

ps

)

=
d

ds

∑

p

log
ps − 1

ps

=
d

ds

∑

p

log(ps − 1) − s log p

=
∑

p

ps log p

ps − 1
− log p

=
∑

p

log p

ps − 1
.

Noticing that
log p

ps − 1
−

log p

ps
=

log p

ps(ps − 1)
,

we conclude that

−
ζ ′(s)

ζ(s)
= Φ(s) +

∑

p

log p

ps(ps − 1)
.

The left-hand side is meromorphic on C, and the sum on the right converges
to an analytic function for Re s > 1

2 using the p-test. Thus, we can extend
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Φ(s) to be meromorphic for Re s > 1
2 . The poles of Φ(s) are at the poles and

zeros of ζ(s). In particular, Φ(s) has a simple pole at s = 1 with residue 1
(from the lone simple pole of ζ(s)) and a simple pole at s = s0 with residue
−m if ζ(s) has a zero or order m at s0.

Theorem 6.2 (p. 383). The meromorphic function Φ(s) has no poles on

the vertical line Re s = 1 except at s = 1. The zeta function ζ(s) has no

zeros on the line Re s = 1.

Proof. By the observation before the theorem, the two statements are equiv-
alent. Let t > 0, and suppose that ζ(s) has a zero of order q at 1 + it and
a zero of order q′ at 1 + 2it. Here, if 1 + it or 1 + 2it are non-zero, then we
use the convention that q = 0 and q′ = 0, respectively.

For a prime p, note that

0 ≤
(

pit/2 + p−it/2
)4

= p2it + 4pit + 6 + 4pit + p−2it.

Multiply by ε(log p)
p1+ε to obtain

0 ≤ ε[
log p

p1+ε−2it
+

4 log p

p1+ε−it
+

6 log p

p1+ε
+

4 log p

p1+ε+it
+

log p

p1+ε+2it
].

Summing over all primes then yields

0 ≤ ε[Φ(1+ε+2it)+4Φ(1+ε+it)+6Φ(1+ε)+4Φ(1+ε−it)+Φ(1+ε−2it)].

By Rule 1, if we take ε → 0, we obtain

0 ≤ Res[Φ(z), 1+2it]+4 Res[Φ(z), 1+it]+6 Res[Φ(z), 1]+4 Res[Φ(z), 1−it]+Res[Φ(z), 1−2it].

The residue at z = 1 is 1, and by assumption, the residue at z = 1 ± it is q

and at z = 1 ± 2it the residue is q′. Hence, the above becomes,

0 ≤ 6 − 8q − 2q′,

which can only be satisfied if q = q′ = 0. This proves the theorem.

7 Proof of the Prime Number Theorem

Now, we come back to the Laplace transform and connect it to Φ(s).
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Lemma 7.1. We have that

(LΘ(et))(s) =
Φ(s)

s

for Re s > 1.

Proof. The first part of the statement is actually showing that the Laplace
transform exists for Re s > 1. After that, we will show that the formula
holds.

We first claim that Θ(x) ≤ (4 log 2)x. To see this, we will use the
binomial coefficient

(

2n

n

)

< (1 + 1)2n = 22n.

Every prime number between n and 2n divides
(

2n
n

)

, hence their product

also divides
(

2n
n

)

. This means that

∏

n<p<2n

p ≤

(

2n

n

)

< 22n.

Taking logarithms yields

∑

n<p<2n

log p ≤ 2n log 2.

This means that

Θ(2m) =
m

∑

k=1

∑

2k−1<p<2k

log p

≤
m

∑

k=1

(2k) log 2

< 2m+1 log 2.

Now for any x, choose m such that 2m−1 < x ≤ 2m. Then,

Θ(x) ≤ Θ(2m) ≤ 2m+1 log 2 = 4(2m−1) log 2 < (4 log 2)x.
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Now, if we look at the Laplace transform,

|(LΘ(et))(s)| = |

∫ ∞

0
e−tsΘ(et)dt|

≤

∫ ∞

0
|e−tsΘ(et)|dt

≤

∫ ∞

0
|e−ts||(4 log 2)et|dt

=

∫ ∞

0
(4 log 2)e−t(Re s−1)dt.

This integral converges when Re s − 1 > 0, i.e. when Re s > 1.
To obtain the formula, we enumerate the primes so that pn is the n-th

prime number. Then, Θ(et) is constant for log pn < t < log pn+1. Therefore,

∫ log pn+1

log pn

e−stΘ(et)dt = Θ(pn)

∫ log pn+1

log pn

e−stdt

= Θ(pn)
e−st

−s
|
log pn+1

log pn

=
1

s
Θ(pn)(p−s

n − p−s
n+1).

Now, we break up the integral
∫ ∞

0 e−stΘ(et)dt along intervals [log pn, log pn+1]
and use the above identity to show

∫ ∞

0
e−stΘ(et)dt =

∞
∑

n

1

s
Θ(pn)(p−s

n − p−s
n+1)

=
1

s

∞
∑

n

(Θ(pn) − Θ(pn−1))p
−s
n .

Observe that Θ(pn) − Θ(pn−1) = log pn, and the above becomes

1

s

∞
∑

n

log pn

ps
n

=
1

s
Φ(s).

Notice that this identity holds for all Re s > 1. We have previously
shown that the only pole of Φ(s) on the line Re s = 1 is the simple pole at
s = 1. If we can remove this pole, then we can extend (LΘ(et))(s) past the
line Re s = 1.
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Now we consider the function h(t) = Θ(et)e−t − 1. If we look at the
Laplace transform (Lh)(s), the effect of multiplying e−t is to change that
e−st in the integrand to e−(s+1)t. Hence, the Laplace transform will converge
for Re s + 1 > 1, or in other words Re s > 0. The Laplace transform of 1 is

∫ ∞

0
e−stdt =

e−st

−s
|∞0 =

1

s
.

Hence,

(Lh)(s) =
Φ(s + 1)

s + 1
−

1

s
,

for Re s > 0. Now, Φ(s + 1) has a simple pole with residue 1 at s = 0,
but the −1

s part cancels that out. Hence, (Lh)(s) is analytic for Re s > 0,
and it has no poles on the line Re s = 0. This means that we can extend
the function to be analytic on a domain that contains the line Re s = 0.
In particular, (Lh)(0) exists, proving the prime number theorem. This last
part of extending the function is not trivial and is shown in the book on p.
385-387, but this gives a general idea of how the proof works.

8 Exercises

1. Exercise XIV.1.2

2. Exercise XIV.2.1

3. Exercise XIV.2.2

4. Exercise XIV.5.5 (this is fairly hard, but see if you can reduce it to
the problem of showing that limn→∞

log pn

log n = 1)
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