1 The Fourier Transform

So far, we’'ve discussed how to find the Fourier coefficient for a function on
[—m, w]. What if we want to take the coefficients for [T, T]? That is we have
a function f(e™T). Then, we can use the change of variables ¢ = 760/T,
we we have ¢ € [—7, 7] and f(e?), so we can find the Fourier coefficients as
before:
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To solve this in terms of ¢, we use the change of variables and find d¢ = Zd#,
so that

cp = i /T f(eiWG/T)e—ikWQ/Tde
o7 |, ’

where f(e™/T) has Fourier series > c e *m0/T,
Here, ¢, can be thought of as the component of f that has frequency %
If f:R — C, then, if we want the component of f with a fixed frequency A,
we take T'= 5% and k£ =n, and let n — oo.
This yields as the component of f with frequency A as
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As this scalar factor A/n goes to 0 as n — 0, we renormalize it by removing
the A/n part. After a change in variables, replacing 6 with x, this gives the
Fourier transform of f:
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Given the Fourier transform f , we can reconstruct the function f, under
some conditions on f. This is the so-called Fourier inversion theorem, which
states that
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For f being the restriction of a complex analytic function, this is easily
proved using the residue theorem.

Theorem 1.1. Suppose that f(z) is analytic on the strip —a < Imz < «
and that there exists a constant A such that | f(z+iy)| < A5 for all |y| < a.
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Then, f(x) = [T f(A)e™d\.



We first prove a lemma, that lets us rewrite the Fourier transform.

Lemma 1.2. Suppose that f(z) is analytic on the strip a <Imz < a and
that there exists a constant A such that |f(z + iy)| < for all |y| < a.
Then, if 0 < B < «,
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for A >0, and
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for A < 0.

Proof. We will prove the case when A > 0. Take the D to be the rectan-
gle with vertices =R and £R — ¢5. Then, by Cauchy’s theorem, we have
Jop [(2)e"?™2dz = 0.

As R — oo, the integral from —R to R becomes the Fourier transform,
and the integral from —R — ib to R — ib becomes the integral in the lemma.
So to show these two quantities are equal, it suffices to show that the integral
goes to 0 on the two vertical segments.
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This is easily seen to go to 0 as R — co. A similar calculation works for the
vertical segment R to R — ib. [

We now prove the inversion theorem.

Proof. To apply the lemma, we need to break up the integral [ F(\)e2m™ ey
into A > 0 and A < 0.
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For the second part, we use the lemma to see that
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where L is the real axis shifted down by £, u — 0.
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where Ly is the real line shifted up by 5. By the Cauchy integral formula,
we have that if Dp is the rectangle with vertices =R + i3, then
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Taking the limit as R — oo then breaks up into 4 pieces — the top and
bottom pieces are the ones we just computed to be equal to
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A ML estimate similar to the one from the lemma shows that the integrals
along the vertical segments go to 0 as R — oo, which proves the theorem. [



