
1 The Fourier Transform

So far, we’ve discussed how to find the Fourier coefficient for a function on
[−π, π]. What if we want to take the coefficients for [−T, T ]? That is we have
a function f(eiπθ/T ). Then, we can use the change of variables φ = πθ/T ,
we we have φ ∈ [−π, π] and f(eiφ), so we can find the Fourier coefficients as
before:

ck =
1

2π

∫ π

−π
f(eiφ)e−ikφdφ.

To solve this in terms of θ, we use the change of variables and find dφ = π
T
dθ,

so that

ck =
1

2T

∫ T

−T
f(eiπθ/T )e−ikπθ/Tdθ,

where f(eiπθ/T ) has Fourier series
∑
cke
−ikπθ/T .

Here, ck can be thought of as the component of f that has frequency k
2T

.
If f : R→ C, then, if we want the component of f with a fixed frequency λ,
we take T = n

2λ
and k = n, and let n→∞.

This yields as the component of f with frequency λ as

lim
n→∞

λ

n

∫ n/2λ

n/2λ

f(θ)e−i2πθλdθ.

As this scalar factor λ/n goes to 0 as n→ 0, we renormalize it by removing
the λ/n part. After a change in variables, replacing θ with x, this gives the
Fourier transform of f :

f̂(λ) =

∫ ∞
−∞

f(x)e−i2πλxdx.

Given the Fourier transform f̂ , we can reconstruct the function f , under
some conditions on f . This is the so-called Fourier inversion theorem, which
states that

f(x) =

∫ ∞
−∞

f̂(λ)ei2πxλdλ.

For f being the restriction of a complex analytic function, this is easily
proved using the residue theorem.

Theorem 1.1. Suppose that f(z) is analytic on the strip −α < Im z < α
and that there exists a constant A such that |f(x+ iy)| ≤ A

1+x2
for all |y| < α.

Then, f(x) =
∫∞
−∞ f̂(λ)ei2πλxdλ.
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We first prove a lemma, that lets us rewrite the Fourier transform.

Lemma 1.2. Suppose that f(z) is analytic on the strip −α < Im z < α and
that there exists a constant A such that |f(x + iy)| ≤ A

1+x2
for all |y| < α.

Then, if 0 < β < α,

f̂(λ) =

∫ ∞
−∞

f(x− iβ)e−i2πλ(x−iβ)dx,

for λ > 0, and

f̂(λ) =

∫ ∞
−∞

f(x− iβ)e−i2πλ(x+iβ)dx,

for λ < 0.

Proof. We will prove the case when λ > 0. Take the D to be the rectan-
gle with vertices ±R and ±R − iβ. Then, by Cauchy’s theorem, we have∫
∂D
f(z)e−i2πλzdz = 0.
As R → ∞, the integral from −R to R becomes the Fourier transform,

and the integral from −R− ib to R− ib becomes the integral in the lemma.
So to show these two quantities are equal, it suffices to show that the integral
goes to 0 on the two vertical segments.

Consider
∫ −R
−R−ib f(z)e−i2πλzdz.

|
∫
−R−ib

−Rf(z)e−i2πλzdz| ≤
∫ b

0

|f(−R− it)e−i2πλ(−R−it)|dt

≤
∫ b

0

A

1 +R2
e−2πλtdt.

This is easily seen to go to 0 as R→∞. A similar calculation works for the
vertical segment R to R− ib.

We now prove the inversion theorem.

Proof. To apply the lemma, we need to break up the integral
∫∞
−∞ f̂(λ)ei2πλxdx

into λ > 0 and λ < 0.∫ ∞
−∞

f̂(λ)ei2πλxdλ =

∫ 0

−∞
f̂(λ)ei2πλxdλ+

∫ ∞
0

f̂(λ)ei2πλxdλ
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For the second part, we use the lemma to see that∫ ∞
0

f̂(λ)ei2πλxdλ =

∫ ∞
0

∫ ∞
−∞

f(x− iβ)e−i2πλ(u−iβ)e−2πλxdudλ

=

∫ ∞
−∞

f(u− iβ)

∫ ∞
0

e−i2πλ(u−iβ−x)dudλdx

=

∫ ∞
−∞

f(u− iβ)

∫ ∞
0

−1

−i2π(u− iβ − x)
du

=
1

2πi

∫ ∞
−∞

f(u− iβ)

u− iβ − x
du

=
1

2πi

∫
L1

f(w)

w − x
dw.

where L1 is the real axis shifted down by β, u− iβ.∫ 0

−∞
f̂(λ)ei2πλxdλ = − 1

2πi

∫
L2

f(w)

w − x
dw.

where L2 is the real line shifted up by β. By the Cauchy integral formula,
we have that if DR is the rectangle with vertices ±R± iβ, then

f(x) =
1

2πi

∫
∂DR

f(w)

w − x
dw.

Taking the limit as R → ∞ then breaks up into 4 pieces – the top and
bottom pieces are the ones we just computed to be equal to∫ 0

−∞
f̂(λ)ei2πλxdλ+

∫ ∞
0

f̂(λ)ei2πλxdλ =

∫ ∞
−∞

f̂(λ)ei2πλxdλ.

A ML estimate similar to the one from the lemma shows that the integrals
along the vertical segments go to 0 as R→∞, which proves the theorem.
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