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Definition 1.1. f : U ⊂ Rn → Rm is smooth if it has continuous partial
derivatives of all orders.

Need U to be open in order to define derivative. In order to define for
arbitrary subsets, need local extension:

Definition 1.2. f : X ⊂ Rn → Rm is smooth if at each point x ∈ X, there
is an open set x ∈ U ⊂ Rn and a smooth map F : U → Rm such that
F |U∩X = f , i.e. f has a local extension in a neighborhood of each point.

Recall open subsets of X in subspace topology are precisely sets of the
form U ∩X, so smoothness is a “local” property – f : X → Rn is smooth if
it smooth in a neighborhood of each point of x (in the subspace topology).

Definition 1.3. f : X ⊂ Rn → Y ⊂ Rm is a diffeomorphism if f and f−1

are smooth (and f is a bijection).

examples: circles = knots 6= triangle, etc.

Definition 1.4. A subset X ⊂ RN is a(smooth) k-dimensional manifold if it
islocally diffeomorphic to Rk, that is every x ∈ X has a neighborhood (open
set) x ∈ V ⊂ X that is diffeomorphic to some open set U ⊂ Rk.

A diffeomorphism φ : U → V is a parametrization of (the neighborhood)
V .

The inverse diffeomorphism φ−1 : V → U is called a coordinate system
on V .

When φ−1 is written in coordinates φ−1 = (x1, . . . , xk), the smooth func-
tions x1, . . . , xk are called coordinate functions.

We say that dimX = k is the dimension of X.

We can think of U and V as identified by phi – given coordinates (x1, . . . , xk)
on U , this gives us a point on V by using the parametrization φ, and given a
point v ∈ V , we can obtain the coordinates “of v” by taking (x1(v), . . . , xk(v)).

Example: we can show that S1 = {(x, y) ∈ R2 : x2 + y2 = 1} is a
1-dimensional manifold.

We can parametrize the set of (x, y) ∈ S1 on the upper semicircle, i.e.
y > 0. φ1(x) = (x,

√
1− x2) takes the open interval (−1, 1) to the upper

semicircle with a smooth map. The inverse φ−11 (x, y) = x is smooth. For the
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lower semicircle, we take φ2(x) = (x,−
√

1− x2). This parametrizes all of S1

except for two points (±1, 0). To parametrize, we can take φ3 = (
√

1− y2, y)

and φ4 = (−
√

1− y2, y). These four parametrizations cover S1 and, for each
point (at least) one of these gives a local parametrization.

Proposition 1.5. Given X ⊂ RN and Y ⊂ RM manifolds, X × Y is a
submanifold of RN+M . Also, dimX × Y = dimX + dimY .

Proof. Let k = dimX and l = dimY . Suppose (x, y) ∈ X × Y . Then, there
exists and open set W ⊂ Rk and a local parametrization φ : W → φ(W ) ⊂
X, as well as an open subset U ⊂ Rl along with a local parametrization
ψ : U → Y .

Define φ× ψ : W × U ⊂ Rk+l → X × Y by φ× ψ(w, u) = (φ(w), ψ(u)).
One can check that φ × ψ is a local parametrization of X × Y in a

neighborhood of (x, y).

Definition 1.6. If X and Z are both manifolds in RN and Z ⊂ X, then Z
is a submanifold of X.
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Suppose f is a smooth map from (an open set of) Rn to Rm and x is in the
domain. Then, for any vector h ∈ Rn, the derivative of f in the direction of
h at x is

dfx(h) = lim
t→0

f(x+ th)− f(x)

t
.

We can define dfx : RnRm by h 7→ dfx(h). This map is linear and has matrix
form 

∂f1
∂x1

. . . ∂f1
∂xn

...
...

...
∂fm
∂x1

. . . ∂fm
∂xn


Proposition 2.1 (Chain Rule). d(g ◦ f)x = dgf(x)dfx.

A linear map can be thought of as its best linear approximation. We can
use derivatives to identify the best linear approximation a manifold X at x.
Let φ : U → X be a local parametrization around x, and assume φ(0) = x
for convenience. Then, the best linear approximation is

u 7→ φ(0) + dφ0(u) = x+ dφ0(u).
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Definition 2.2. The tangent space of X at x, Tx(X) is the image of the map
dφ0 : Rk → RN .

Tx(X) is a vector subspace of RN , and the translation x + Tx(X) is the
“best linear approximation” of X at x.

For this to be a real definition, need to make sure it is well-defined. Let
ψ : V → X be another parametrization. Then, by shrinking U and V , can
assume that φ(U) = ψ(V ). The map h : ψ−1◦φ : U → V is a diffeomorphism
(composition). Then, φ = ψ ◦ h, so by chain rule dφ0 = dψ0 ◦ dh0. Hence,
the image of dφ0 is contained in the image of dψ0. The reverse also holds
similarly, so they must be identical.

Proposition 2.3. dimTx(X) = dimX.

Proof. Let φ : U → V be smooth, and let Φ′ : W → U be a smooth map
that extends φ−1. Then Φ′ ◦ φ = id, so dΦ′x ◦ dφ = id. This implies that dφ
must be an isomorphism, i.e. dim = k.
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For an example of a tangent space, we can take the parametrization of S1,
φ : x 7→ (x,

√
1− x2).

Then

dφ =

[
1
x√
1−x2

]
.

For each point x ∈ R, this gives a vector that is tangent to S1 at
(x,
√

1− x2).
We can do a similar example for S2, with a parametrization φ : (x, y) 7→

(x, y,
√

1− x2 − y2). Then,

dφ =

 1 0
0 1
x√

1−x2−y2
y√

1−x2−y2

 .
The column space of the matrix gives a 2-dimensional subspace of R3 which
is tangent to S2 at φ(x, y).

Now want to take derivative of f : X → Y .
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We take parametrizations φ : U ⊂ Rk → RN and ψ : V ⊂ Rl → RM .
WLOG take φ(0) = x, ψ(0) = y. We have commutative diagram:

X → (f) Y

U → (h = ψ−1 ◦ f ◦ φ) V

So we can define dfx = dψ0 ◦ dh0 ◦ dφ−10 .
We claim this is independent of parametrization. Indeed, if Ψ and Φ

are two different parametrizations of X and Y , and H = Ψ−1 ◦ f ◦ Φ, then
h = ψ−1 ◦Ψ ◦Ψ−1 ◦ f ◦ Φ ◦ Φ−1 ◦ φ = ψ−1 ◦Ψ ◦H ◦ Φ−1 ◦ φ. Then,

dψ0 ◦ dh0 ◦ dφ−10 = dψ ◦ dψ−1 ◦ dΨ ◦ dH ◦ dΦ−1 ◦ φ ◦ dφ−1 = dΦ ◦ dH ◦ dΦ−1.

A similar argument shows:

Proposition 3.1 (Chain Rule). d(g ◦ f)x = dgf(x) ◦ dfx.

Proof. Let φ : U → X, ψ : V → Y and ν : W → Z. Then h = ψ−1 ◦ f ◦ φ :
U → V and j = ν−1 ◦ g ◦ ψ : V → W , and j ◦ h : U → W .

By definition, d(g ◦ f)x = dν0 ◦ d(j ◦ h)0 ◦ dφ−10 .
By the chain rule in RN , d(j ◦ h) = (dj)0 ◦ (dh)0, and also (dj)0 ◦ (dh)0 =

(dj)0 ◦ dψ−10 ◦ dψ ◦ (dh)0. Substituting yields the desired equality.
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We want to use the tangent space to study smooth manifolds.

Definition 4.1. A function f : X → Y is a local diffeomorphism if for every
x ∈ X, there exists a neighborhood x ∈ U that maps diffeomorphically to a
neighborhood f(U) of y = f(x).

In order to be a local diffeomorphism, note that dfx : Tx(X) → Ty(Y )
must be an isomorphism. This follows from a chain rule argument if f : U →
V is a diffeomorphism.

There is a version of the inverse function theorem for smooth manifolds:

Theorem 4.2 (Inverse Function Theorem). Suppose that f : X → Y is a
smooth map whose derivative dfx at the point x is an isomorphism (of vector
spaces). Then f is a local diffeomorphism at x.

As an example, f : R→ S1 : t 7→ (cos t, sin t) is a local diffeomorphism.
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A local diffeomorphism says that locally, X and Y “look the same”. We can
make this more precise by noting that we can find local coordinates around
x and y so that f(x1, . . . , xk) = (x1, . . . , xk). In particular, if φ : U → X
is a parametrization around x ∈ X, and dfx is an isomorphism, then the
composition ψ : f ◦ φ : U → Y is a parametrization around y = f(x) ∈ Y
(here it may be necessary to shrink U to a smaller set so that f is a local
diffeomorphism).

Definition 5.1. Two maps f : X → Y and f ′ : X ′ → Y ′ are equivalent if
there exist diffeomorphisms α : X ′ → X and β : Y ′ → Y so that f ◦α = β◦f ′
(i.e. diagram commutes).

f is locally equivalent to f ′ at x if there is a local diffeomorphism at x
and a local diffeomorphism at y = f(x) that makes the diagram commute.

The inverse function theorem can be interpreted to say that if dfx is an
isomorphism, then f is locally isomorphic to the identity.

If dimX < dimY , then IFT cannot apply, since the matrix dfx is not
square. The closest thing we can hope for is dfx is injective.

Definition 5.2. f : X → Y is an immersion at x if dfx : Tx(X) → Ty(Y )
is injective. If f is an immersion at every point of X, then f is called an
immersion.

Example: The canonical immersion is the inclusion map Rk → Rl :
(x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0).

Theorem 5.3 (Local Immersion Theorem). Suppose that f : X → Y is an
immersion at x and y = f(x). Then there exist local coordinates around x
and y such that f(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0). In other words, f is
locally equivalent to the canonical immersion near x.

Proof. We want to give a similar argument to the case when we had a local
diffeomorphism. However, we need to modify them amps in order to use the
Inverse Function Theorem.

First begin with a local parametrization φ : U → X and psi : V → Y
such that φ(0) = x and ψ(0) = y, and write a commutative diagram with
g = ψ−1 ◦ f ◦ φ : U → V (we may need to shrink U and V to make sure this
makes sense).
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dg0 : Rk → Rl is injective, so by changing basis, if necessary, we can
assume that dg0 is a l × k matrix of the form:[

Ik
0

]
We augment g to obtain a function G : U × Rl−k → Rl: G(x, z) =

g(x) + (0, z). Now, G maps an open set of Rl into Rl and the matrix of dG0

is:
Ik 0
0 Il−k

In particular, dG0 is invertible, so we can apply the inverse function theorem,
and G is a local diffeomorphism.

ψ and G are both local diffeomorphisms at 0, so ψ ◦ G is also a local
diffeomorphism at 0. Choosing a small enough open subset V ′ ⊂ U × Rl−k,
we have that ψ ◦ G : V ′ → Y is a local parametrization of Y near y. Also,
by construction, if h is the canonical immersion, then g = G ◦ h. Hence, we
have that, possibly after shrinking any/all of the open sets,

(ψ ◦G) ◦ h = ψ ◦ g = f ◦ φ

so that the diagram commutes, and f is locally equivalent to the canonical
immersion.

Notice that being an immersion is a local property. If X and Y have the
same dimension, then f : X → Y being an immersion means that f is a local
diffeomorphism. However, being a diffeomorphism means that f is a local
diffeomorphism but also that f is a bijection.

The image of the canonical immersion is a submanifold of Y . For an
arbitrary immersion this may not be true. For example, we can map a circle
S1 into R2 so that it has self intersections. Even if f is injective, we can have
problems, as the figure eight can be realized as the image of an immersion
from an open interval (0, 1).

On a torus T 2, we can have other problems: let R1 → T 2 be any irra-
tional slope (let T 2 be realized by the map G : R2 → S1 × S1 : (x, y) =
(cos 2πx, sin 2πx, cos 2πy, sin 2πy)). The map G is a local diffeomorphism,
so the resulting composition with the map from R1 into R2 along a line of
irrational slope is an immersion, which is injective. The image of the map is
dense in T 2. So in addition to injectivity, we need another condition.
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Definition 5.4. A map f : X → Y is proper if the preimage of every
compact set is compact.

Definition 5.5. An immersion f : X → Y is an embedding if f is injective
and proper.
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Theorem 6.1. An embedding f : X → Y maps X diffeomorphically onto a
submanifold of Y .

Proof. To show f(x) is manifold, we want to show that f is an open mapping,
so that f ◦ ψ is a parametrization whenever ψ parametrizes X.

Let W ⊂ X be open and suppose f(W ) is not open in f(X). Then
there exists a sequence of points yi ∈ f(X) that do not belong to f(W ) but
converge to a point y ∈ f(W ). Then the set C = {y} ∪ {yi}∞i=1 is compact,
as it is closed and bounded. Each yi has exactly one pre-image in X, which
we denote xi so that f(xi) = yi. We also let x ∈ W such that f(x) = y. By
assumption, f−1(C) = {x}∪{xi}∞i=1 is compact. By passing to a subsequence,
there exists a subsequence {xij}j that converges to some point z ∈ X. By
continuity, f(xij)→ f(z), but by assumption, f(xi) = yi → f(x) = y, so by
injectivity of f , it must be that z = y. Since xij → x ∈ W , it must be that
there are infinitely many xi that are in W , which contradicts that yi /∈ f(W ).

We can conclude that f(W ) is a manifold. Since f is a local diffeomor-
phism from X to f(X) and f is bijective, then f is a diffeomorphism.

Note that if X is compact, then every map f : X → Y is proper. Hence,
for compact manifolds, every one-to-one immersion is an embedding.

Now we consider when dimX > dimY . Then, the best we can hope for
for a map f : X → Y is that dfx : Tx(X)→ Ty(Y ) is surjective.

Definition 6.2. Let f : X → Y be a smooth map between smooth manifolds.
Then f is a submersion at x if dfx : Tx(X) → Tf(x)Y is surjective. If f is a
submersion for every point x ∈ X, we simply call f a submersion.

For X = Rk and Y = Rl with k > l, the canonical submersion is the map
(x1, . . . , xk) 7→ (x1, . . . , xl), which is projection in the first k coordinates.

Theorem 6.3. Suppose that f : X → Y is a submersion at x and y = f(x).
Then there exist local coordinates around x and y such that f(x1, . . . , xk) −
(x1, . . . , xl). That is, f is locally equivalent to the canonical submersion.
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Proof. Begin with local parametrizations:

X
f−−−→ Y

φ

x ψ

x
U

g=ψ−1◦f◦φ−−−−−−−→ V

WLOG φ(0) = x, ψ(0) = y.
Since dg0 is surjective, after a change in basis, we can assume it has form

Il 0

We define G(a) = (g(a), al+1, . . . , ak) where a = (a1, . . . , ak). Then dG is the
identity, so it is a local diffeomorphism at 0. Now g = (canonical submersion)◦
G, so we can write the following:

X
f−−−→ Y

φ◦G−1

x ψ

x
U ′ ⊂ Rk submersion−−−−−−→ V

As a corollary, we get a condition in which the preimage of a point is a
manifold.

Definition 6.4. Let f : X → Y be a smooth map of manifolds. Then y ∈ Y
is a regular value for f if dfx is surjective at every point x such that f(x) = y.

Theorem 6.5. If y is a regular value of f : X → Y , then the preimage
f−1(y) is a sub manifold of X, with dim f−1(y) = dimX − dimY .

Proof. Let y be a regular value of f and suppose that x ∈ f−1(y). By the
local submersion theorem, there exist local coordinates around x and y such
that f(x1, . . . , xk) = (x1, . . . , xl).

Hence, in a neighborhood around x, f−1(y) is the set of points (0, . . . , 0, xl+1, . . . , xk).
Then, in a small neighborhood of x, we can parametrize f−1(y) by (xl+1, . . . , xk) 7→
(0, . . . , 0, xl+1, . . . , xk). This shows that f−1(y) is a k − l dimensional mani-
fold.
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As an example, this gives us an easy way to show that S1 is a 1-manifold
without having to exhibit parametrizations.

Let f(x, y) = x2 + y2. Then df(x,y) = (2x, 2y). In particular, df(x,y) is
surjective as long as (x, y) 6= (0, 0). So every nonzero real is a regular value
of f , and in particular, S1 = f−1(1) is a 1-manifold.

Similarly, it is easy to see now that Sn = f−1n is a n-manifold, where
fn = x21 + · · · + x2n+1. Any other object that we can write as an implicit
function can also easily be shown to be a manifold by showing that it is the
inverse image of a regular value.

7 September 26, 2014

It is useful to note the following:

Proposition 7.1. Let Z be the preimage of a regular value y under the
smooth map f : X → Y . Then the kernel of the derivative dfx at any point
x ∈ Z is the tangent space to Z, Tx(Z).

Proof. By definition, f is constant on Z, as f(x) = y for all x ∈ Z. Hence,
dfx is zero on Tx(Z), so Tx(Z) is contained in the kernel of dfx. By the regular
value assumption, dfx : Tx(X)→ Ty(Y ) is surjective, so the dimension of the
kernel is

dimTx(X)− dimTy(Y ) = dimX − dimY = dimZ.

Hence, Tx(Z) must be the entire kernel of dfx.

An interesting application is to show that the orthogonal group O(n) is
actually a manifold. We think of n × n matrixes Mn as being Rn2

, where
with each entry of the matrix being a coordinate in Rn2

.
The orthogonal group is defined be the subset of Mn consisting of matrices

A such that AAT = I. Note that for any matrix A, AAT is symmetric,
since (AAT )T = AAT . The set of symmetric n × n matrices S(n) can be
identified with Rn(n+1)/2. So now, we can define a map f : M(n)→ S(n) by
f(A) = AAT . Then, O(n) = f−1(I), so it suffices to show that I is a regular
value of f (Exercise).

Now, let g1, . . . , gl be smooth, real-value functions on a manifold X of
dimension k ≥ l. We would like to know when the set of common zeroes

Z = {(x1, . . . , xk) : g1(x1, . . . , xk) = · · · = gl(x1, . . . , xk) = 0}
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is a manifold. We need to know when 0 is a regular value, i.e. where
g = (g1, . . . , gl) is surjective. This happens at x ∈ X when the linear func-
tions dg1x, . . . , dglx are linearly independent on Tx(X). When gi satisfy this
condition, we say they are independent at x.

Proposition 7.2. If g1, . . . , gl are smooth real-value functions on X that are
independent at each point where they all vanish, then the set Z of common
zeros is a submanifold of X with dimension equal to dimX − l.

In the situation above, we say that Z is cut out by the independent
functions g1, . . . , gl. A useful definition is as follows:

Definition 7.3. In the situation where Z is a submanifold of X, then the
codimension of Z in X is codimZ = dimX − dimZ.

The converse of the above statement is not always true. Not every sub-
manifold can be cut out by independent functions. But there are some partial
converses:

Proposition 7.4. If y is a regular value of a smooth map f : X → Y , then
the preimage submanifold f−1(y) can be cut out by independent functions.

Proof. Let h be a diffeomorphism of an open subset W ⊂ Y containing y
with an open subset containing the origin in Rl (i.e. h = ψ−1 for some
parametrization ψ), where h(y) = 0. Let g = h ◦ f .

Since h−1(0) = y and y is a regular value, then 0 is a regular value of
(h ◦ f)−1. Then the coordinate functions g1, . . . , gl cut out f−1(y).

Proposition 7.5. Every submanifold of X is locally cut out by independent
functions.

Proof. Let Z be a submanifold of codimension l, and let z ∈ Z.
Then the inclusion i : Z → X is an immersion, so by the local immersion

theorem, there exists coordinates on Z and X such that i(x1, . . . , xk) =
(x1, . . . , xk, 0, . . . , 0). So Z, locally, is the subset of X such that xk+1 = · · · =
xk+l = 0.

We want to generalize the idea of a regular value to a submanifold, i.e.
when we have f : X → Y , and Z ⊂ Y is a sub manifold, then when is f−1(Z)
a submanifold of X?
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To show that f−1(Z) is a manifold, for each point x ∈ f−1(Z), we want
to show that there exists an open set x ∈ U ⊂ X such that f−1 ∩ U is
diffeomorphic to an open subset of Rk, in other words, that f−1 ∩ U is itself
a manifold.

Since Z is a submanifold of Y , in an open set containing y, Z is the zero
set of a collection of independent function g1, . . . , gl, where l = codimZ in
Y . Near x, then f−1(Z) is the zero set of the function g1 ◦ f, . . . , gl ◦ f . Take
g = (g1, . . . , gl), which is a submersion since the gi are independent.

In order for f−1(Z) to be a manifold, we want 0 to be a regular value of
g ◦ f , i.e. d(g ◦ f) = dgy ◦ dfx surjective at any point x ∈ f−1(Z). Since dgy
is a surjection with kernel Ty(Z), then d(g ◦ f) is surjective if and only if

Im(dfx) + Ty(Z) = Ty(Y ).

Definition 7.6. We say that a smooth map f : X → Y is transversal to a
submanifold Z ⊂ Y , i.e. f −t Z, if

Im(dfx) + Ty(Z) = Ty(Y ),

for each x ∈ f−1(Z).

Theorem 7.7. If f : X → Y is transversal to a submanifold Z ⊂ Y , then
the preimage f−1(Z) is a submanifold of X. Moreover the codimension of
f−1(Z) in X equals the codimension of Z in Y .

Proof. The above discussion shows that f−1(Z) is a submanifold. Since
f−1(Z) and Z are written as the zero set of l independent functions, both
have codimension l.

If we take two submanifolds X ⊂ Y and Z ⊂ Y , then we can study the
intersection X ∩ Z ⊂ Y by using transversality.

If we take the inclusion map i : X → Y , and consider i−1(Z), this gives
the intersection X ∩ Z. In order for X ∩ Z to be a manifold, then we need
that i −t Z for each x ∈ X ∩ Z. Since dix : Tx(X) → Tx(Y ) is the inclusion
map, then being transversal simply means that

Tx(X) + Tx(Z) = Ty(Y ).

Definition 7.8. Two submanifolds X and Z in Y are transversal in Y , i.e.
X −t Z, if

Tx(X) + Tx(Z) = Ty(Y ).
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Theorem 7.9. The intersection of two transversal submanifolds of Y is a
submanifold of Y . Moreover,

codim(X ∩ Z) = codimX + codimZ.

8 September 29, 2014

We want to determine which properties hold, even when manifolds are de-
formed in a smooth manner.

Definition 8.1. f0 : X → Y and f1 : X → Y are homotopic if there
exists a smooth map F : X × [0, 1] → Y such that F (x, 0) = f0(x) and
F (x, 1) = f1(x). F is called a homotopy between f0 and f1, and we write
f0 ∼ f1.

The maps ft(x) = F (x, t) give a family of maps ft : X → Y that deform
f0 to f1.

Exercise: homotopy is an equivalence relation on smooth maps. We call
the equivalence class [f ], under homotopy, to be the homotopy class of f .

Consider intersection of 2 submanifold X,Z ⊂ Y . If X and Z are not
transversal, then X ∩ Z might still be a manifold, but a small deformation
of X and Z can change the intersection. However, if X −t Z, then the
intersections are diffeomorphic.

Definition 8.2. We say that a given property of a map (or set of maps) f0
is stable if for any homotopy ft of f0, there exists some ε > 0 such that for
every 0 < t < ε, ft also has that property. A collection of maps that possess
a particular stable property are called a stable class of maps.

Theorem 8.3 (Stability theorem). The following classes of smooth maps of
a compact manifold X into a manifold Y are stable classes:

(a) local diffeomorphism

(b) immersions

(c) submersion

(d) maps transversal to any specified closed submanifold Z ⊂ Y (and hence
transversal intersection)
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(e) embeddings

(f) diffeomorphisms

We begin with a lemma

Lemma 8.4. Let K be a compact set. Then any open set U that contains
K contains Kε = {x : d(x, s) < ε for some s ∈ K}.

Proof. Let εs = sup{ε : Bε(s) ⊂ K}. εs is a continuous function of s, so it
achieves its minimum ε = min{εs : s ∈ K} on K. The minimum is nonzero
since U is open.

Proof of Theorem. (b) Let x ∈ X. By injectivity of d(f0)x, the Jacobian

matrix d(f0)x =
[
∂(f0)i
∂xj

]
has a k × k submatrix with nonzero determi-

nant. The partial derivatives ∂(ft)i
∂xj

are continuous functions on X × I.

The determinant is a continuous function of the partial derivatives, so
by composition, it is continuous on X × I. So there exists an open set
Ux containing (x, 0) on which the determinant is nonzero, i.e. d(ft) is
injective.

Hence, there exists an open subset of X × I containing X × {0} on
which ft is an immersion at each point. Since X is compact, by the
lemma, this means there exists an ε > 0 such that d(ft) is injective for
each point of X × [0, ε), proving stability.

(a) This follows from (b) because a local diffeomorphism is an immersion
where dimX = dimY .

(c) The proof is identical, except we find a l × l submatrix with nonzero
determinant.

(d) Transversality is equivalent to the map g◦f being a submersion at each
point for some map g (see the proof that transversality implies that the
inverse image is a submanifold), so follows from (c).

(e) We suppose that f0 is an injection, and show that ft is injective for
small enough t. This suffices since immersion is a stable property, so
we know that for small enough t, ft is an immersion. And since X is
compact, any one-to-one immersion is an embedding.
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Let G : X × [0, 1] → Y × [0, 1] be defined by G(x, t) = (ft(x), t). If ft
is not injective for all t sufficiently small, then there exists a sequence
ti → 0 and xi, yi ∈ X such that G(xi, ti) = G(yi, ti). Since X is
compact, then so is X × [0, 1], so we may find a subsequence of the
xi and yi that converge. Taking this subsequence and renumbering, if
necessary, we assume xi → x and yi → y.

Since f0 is injective, then

G(x, 0) = limG(xi, ti) = limG(yi, ti) = G(y, 0)

implies that x = y.

We can see that dG(x,0) has the form

d(f0)x v
0 1

Since f0 is injective, so is d(f0)x. The last column is linearly indepen-
dent from the left block, so dG(x,0) is also injective. This implies that
G is injective in some neighborhood of (x, 0), which contradicts that
G(xi, ti) = G(yi, ti). Thus, ft must be injective for sufficiently small t.

(f) A diffeomorphism is a surjective embedding, so by stability of embed-
dings, it suffices to show that ft is surjective for small enough t.

We first prove the case when X (and hence Y ) is connected. Since
f0 is a diffeomorphism, it is a local diffeomorphism, so by stability of
local diffeomorphisms, ft is a local diffeomorphism for small enough t.
Hence, ft(X) is open in Y , as X is open. Moreover, since X is compact,
ft(X) is compact in Y , and hence closed in Y . Since ft(X) is both open
and closed, it must be all of Y , so ft is surjective for small enough t.

If X has multiple connected components, by compactness, there are
finitely many components. So we can use the above argument for each
component, then take the smallest ε.

9 October 6, 2014

We want to know how often we have a regular value so that we can use the
Preimage Theorem to obtain a manifold.
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Theorem 9.1 (Sard’s Theorem). If f : X → Y is a smooth map between
smooth manifolds, then almost every point of Y is a regular value of f .

To make precise, we need the notion of having measure zero, which gen-
eralizes the idea of having volume zero.

Definition 9.2. A set A ⊂ Rl has measure zero if it can be covered by
countably many rectangular solids with arbitrarily small total volume. In
other words, for every ε > 0, there exists a countable collection of rectangular
solids {Si} such that A ⊂ ∪Si and

∑
vol(Si) < ε.

As an example, Q has measure zero in R. To see this, take an enumeration
of the rational numbers, and given ε > 0, cover the nth rational number, qn
by a rectangle with volume ε/2n. Then

∑
ε/2n = ε.

For a manifold, we define measure zero via parametrizations.

Definition 9.3. A subset C ⊂ Y has measure zero if for every local parametriza-
tion ψ of Y , the preimage ψ−1(Y ) has measure zero in Rl.

Lemma 9.4. If A ⊂ Rl has measure zero and g : Rl → Rl is a smooth map,
then g(A) has measure zero.

Corollary 9.5. Having measure zero is independent of parametrization, i.e.
C has measure zero if it can be covered by the images of some collection of
local parametrizations ψα such that ψ−1α (C) has measure zero for each α.

Definition 9.6. Let f : X → Y be a smooth map. A point y ∈ Y is a
critical value of f if y is not a regular value.

Theorem 9.7 (Sard’s Theorem). The set of critical values of a smooth map
f : X → Y has measure zero (in Y ).

Notice that no set of measure zero can contain a non-empty open set. If it
did, it would contain a ball of radius r > 0, for some r, which then contains
some rectangular solid with positive volume v. So any set of rectangular
solids that cover the set would have to have total volume at least v. As a
corollary of Sard’s theorem, we have:

Corollary 9.8. The set of regular values of a smooth map f : X → Y is
dense in Y . If fi : Xi → Y are any countable number of smooth maps, then
the points of Y that are simultaneously regular values for all of the fi are
dense in Y .
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Proof. The first statement is a restatement of what we already know.
The second statement follows because the countable union of measure

zero sets has measure zero. For if Ci has measure zero, then given ε > 0,
there are rectangular solids that cover Ci so that the total volume is less than
ε/2i. Then, the union ∪Ci can be covered by solids that have volume less
than

∑
ε/2i = ε.

Let Ci be the set of critical values of fi, which has measure zero. So then
∪Ci also has measure zero. But the complement is the subset of Y such that
the points are regular values for all the fi.

Definition 9.9. Let f : X → Y be a smooth map. A point x inX is a regular
point of f if dfx : Tx(X)→ Ty(Y ) is surjective. If dfx is not surjective, then
x is a critical point of f .

Note that this is similar to, but distinct, from the idea of a regular value
and a critical value. This distinction is important, as Sard’s theorem says
that the set of critical values has measure zero. But this is not necessarily
true of critical points. If f : X → Y is the constant map, then every point
of X is a critical point, which is not measure zero.

10 October 8, 2014

Implicitly, in the statement of Sard’s theorem and the corollary, we discussed
the notion of measure zero for a subset of a manifold Y .

Definition 10.1. A subset C ⊂ Y has measure zero if for every local
parametrization ψ of Y , the preimage ψ−1(Y ) has measure zero in Rl.

Lemma 10.2. If A ⊂ Rl has measure zero and g : Rl → Rl is a smooth
map, then g(A) has measure zero.

Corollary 10.3. Having measure zero is independent of parametrization, i.e.
C has measure zero if it can be covered by the images of some collection of
local parametrizations ψα such that ψ−1α (C) has measure zero for each α.

an interesting question when studying manifolds is given a k-dimensional
manifold, how high does N have to be to embed Xk in RN? e.g. S2 and
T 2 can be embedded in R3, but the Klein bottle cannot, and can only be
embedding in R4. Whitney’s theorem gives an upper bound on how big N
must be. In fact, N = 2k + 1 is sufficient.
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The intuition behind the result is not too difficult to understand: a
k-dimensional manifold locally is diffeomorphic to Rk, so we can take k-
dimensional pieces and glue them together to obtain X. If at any time when
we are gluing them together, we end up with two pieces that need to “occupy
the same space,” as long as we have 2k + 1 dimensions, we can move them
apart, since each only occupies k dimensions of space.

The argument will use Sard’s theorem and the tangent bundle. The
tangent bundle is the manifold X along with its tangent space at each point.

Definition 10.4. Suppose X ⊂ RN is a k-dimensional manifold. Then the
tangent bundle of X is

T (X) = {(x, v) ∈ X × RN : v ∈ Tx(X)}.

Given a smooth map f : X → Y , we get a map on the tangent bundle df :
T (X) → T (Y ) : (x, v) 7→ (f(x), dfx(v)), which we call the global derivative
map. The derivative map satisfies the chain rule because the point wise
derivative map dfx satisfies the chain rule.

Proposition 10.5. The tangent bundle T (X) of a manifold X is a manifold,
and dimT (X) = 2 dimX.

Proof. Suppose x ∈ X, and φ : U ⊂ Rk → W ⊂ X be a local parametriza-
tion. Then, dφ : U × Rk → T (W ) is a parametrization, since dφy is an
isomorphism for all y.

This gives a parametrization of any open subset of T (X), which has the
form T (X) ∩W × RN .

11 October 10, 2014

Theorem 11.1. Every k-dimensional manifold admits a one-to-one immer-
sion in R2k+1.

Proof. We will let f : X → RN be an injective immersion of a k-dimensional
manifold. If N > 2k+1, then we will show that X can be immersed in RN−1

by projecting onto the orthogonal complement of some vector a, and proceed
by induction, starting with the inclusion of X into RN .

Let h : X ×X × R → RN be defined by h(x, y, t) = t[f(x) − f(y)], and
g : T (X)→ RN by g(x, v) = dfx(v).
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Since dim(X × X × R) = 2k + 1 < N , then dh(x,y,t) can never be a
surjection. Hence, the only regular values of h are exactly those which are
not in the image of h. Similarly, since dimT (X) = 2k < N , the only regular
values of g are those not in the image of g.

By Sard’s theorem, there exists an a ∈ RN that is a regular value of both
h and g, which means that a is not the image of h or g. Since 0 is in the
image of both h and g, we can conclude that a 6= 0.

Let H = {b ∈ RN : b ⊥ a} be the orthogonal complement of a. Take
π : RN → H be the orthogonal projection. Consider π ◦ f . Suppose that
π ◦ f(x) = π ◦ f(y). But then f(x) − f(y) = ta for some t ∈ R, since they
project along a to the same point in H. But then h(x, y, 1/t) = a, which
contradicts that a is not the image of h. Hence, π ◦ f is one-to-one.

We also show that π ◦ f : X → H is an immersion. Suppose that it is
not, so there exists x ∈ X and nonzero v ∈ Tx(X) such that d(π ◦f)x(v) = 0.
Since π is a linear map, then d(π◦f)x = π◦dfx. Hence, π◦dfx(v) = 0 implies
that dfx(v) = ta for some t ∈ R. Furthermore, f is an immersion, so t 6= 0.
Then, g(x, 1/t) = a, which contradicts that a is not in the image of g.

Recall that for a compact manifold X, all maps f : X → Y are proper,
so a one-to-one immersion is in fact an embedding. This proves Whitney’s
theorem for compact manifolds.

Corollary 11.2. Let X be a compact k-dimensional manifold. Then X
embeds into R2k+1.

12 October 22, 2014

Up until now, in our definition of a manifold, every point needed to “look”
like Rk. In particular, this meant that we never had boundary.

We generalize to manifolds with boundary. In order to allow boundary,
we use the model space Hk = {(x1, . . . , xk) : xk ≥ 0 = upper half space in
Rk.

Definition 12.1. A subset X ⊂ RN is a (smooth) k-dimensional manifold
with boundary if every point of X has a neighborhood diffeomorphic to an
open set in Hk. Such a diffeomorphism is called a local parametrization.
The boundary of X, denoted ∂X, consists of the points that belong to the
image of ∂Hk under some local parametrization. Its complement is called
the interior of X, denoted Int(X) = X − ∂X.
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Recall that smoothness of a function is defined in terms of having a
smooth extension onto an open subset. So for a point on ∂X, the fact that
φ : U → V ⊂ X is a diffeomorphism implies that it extends on an open set
containing the boundary point, i.e. extends to the lower half plane.

Remark: Be careful with the concept of interior and boundary, and do
not confuse with the topological notion of interior or boundary of X as a
subset of RN . They will generally not agree, especially when dimX < N .

The product of two manifolds with boundary is generally not a manifold
with boundary. This is primarily because the smoothness condition might
not be satisfied on boundary. For example, consider [0, 1]× [0, 1].

We do have an analogous proposition, however.

Proposition 12.2. Suppose X is a manifold without boundary and Y is a
manifold with boundary. Then X×Y is a manifold with boundary. Moreover,
∂(X × Y ) = X × ∂Y .

Proof. Take local parametrizations φ : U ⊂ Rk → X and ψ : V ⊂ H l → X.
Then, since Rk×H l = Hk+l, φ×ψ : U×V ⊂ H l → X×Y is a parametrization
of X × Y . This also shows that ∂(X × Y ) = X × ∂Y .

We define the tangent space and derivative map using parametrizations as
for the manifold without boundary case. For an interior point of a manifold
with boundary X, it’s easy to see that the notions are the same. Now, if
φ : U → X is a parametrization ad x ∈ ∂U , then smoothness of φ implies
that φ can be extended to Φ : Ũ → RN where Ũ is open in Rk and contains
U . Then, dφu is defined to be dΦu.

To show that this is well-defined, we meet to check that if Φ̃ is another
extension of φ, then we obtain the same derivative. Certainly, dΦx = dΦ̃x

for x ∈ IntU . Now, take x → u, and use continuity of the derivative. This
shows that dΦu = dΦ̃u. This then implies that we can define the tangent
space Tx(X) by Im dφu. Notice that even for a point x ∈ ∂X, the tangent
space Tx(X) is a k-dimensional linear subspace – in particular, it contains
the whole linear subspace, not just “half” of it.

13 October 24, 2014

For an arbitrary smooth map f : X → Y between smooth manifolds with
boundary, a similar argument applies to dfx by using the same commutative
diagram as before.
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We also have the following propositions:

Proposition 13.1. If X is a k-dimensional manifold with boundary, then
IntX is a k-dimensional manifold without boundary.

Proof. For x ∈ IntX, we can restrict the parametrization to the open upper
half-space IntHk, in which case open subsets of IntHk are just open subsets
of Rk.

Proposition 13.2. If X is a k-dimensional manifold with boundary, then
∂X is a (k − 1)-dimensional manifold without boundary.

Proof. The idea is that if φ : U → X is a local parametrization of a neigh-
borhood of x ∈ ∂X, then if we take V = V ∩ ∂Hk, then φ|V : Rk−1 → ∂X is
a local parametrization of ∂X.

However, recall that in the definition of ∂X, we only needed x to be
in the image of ∂Hk for some local parametrization. To make sure that the
restriction φ|V is in fact a parametrization, we must make sure that if x ∈ ∂X
under one parametrization, then it is with respect to every parametrization.
(If it is not, then φ|V (V ) might not be open in ∂X.)

So suppose that φ : U → X and ψ : W → X are two local parametriza-
tions whose images contain x, and suppose that x is the image of a point
∂U but the image of an interior point of W . Then, φ−1 ◦ ψ : W → U is a
diffeomorphism that maps an interior point of W to a boundary point of U .
By the inverse function theorem, there is a small open ball around ψ−1(x)
that maps to an open ball in U around φ−1(x), which contradicts that φ−1(x)
is on the boundary of U .

Since ∂X is a submanifold of X with codimension 1, then the tangent
space Tx(∂X) is a codimension 1 subspace of Tx(X). For a map f : X → Y ,
we define ∂f to be the restriction of dfx : Tx(X)→ Tf(x)(Y ) to the subspace
Tx(∂X).

For the generalization of the Pre-image theorem, we will want for a sub-
manifold Z ⊂ Y and a smooth map f : X → Y that f−1(Z) is a manifold,
but moreover, ∂f−1(Z) = f−1(Z) ∩ ∂X.

Theorem 13.3. Let f be a smooth map of a manifold X with boundary onto
a manifold Y without boundary, and suppose f : X → Y and ∂f : ∂X → Y
are transversal with respect to a submanifold Z ⊂ Y without boundary. Then
f−1(Z) is a manifold with boundary, and ∂f−1(Z) = f−1(Z)∩∂X. Moreover,
the codimension of f−1(Z) in X is equal to the codimension of Z in Y .
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Proof. That f−1(Z) ∩ IntX is a manifold follows from the transversality
condition of f |IntX with Z. So we only need to check that for x ∈ f−1(Z) ∩
∂X, there is a local parametrization from Hk. The idea is that transversality
of ∂f means that ∂f−1(Z) also is a submanifold of codimension l in ∂X.
Since ∂X has dimension 1 lower than X, that means that ∂f−1(Z) has 1
dimension lower than f−1(Z) ∩ IntX.

Recall that we can write Z as the zero set of some function g : Y →
RcodimZ . Then, f−1(Z) is the zero set of g ◦ f . Since x ∈ ∂X, there exists a
parametrization φ : U ⊂ Hk → X with φ(0) = x. Since g ◦ f ◦ φ is smooth,
it extends to some function g̃ : Ũ ⊂ Rk → RcodimZ . By transversality,
S = g̃−1(0) is a manifold without boundary in Rk. We want to make sure
that g̃−1(0) ∩Hk = (g ◦ f ◦ φ)−1(0) is a manifold with boundary.

But also, by transversality of ∂f , g̃−1(0)∩∂Hk is also a manifold, and thus
a submanifold of S with codimension 1 in S. Then, by the local immersion
theorem, there is a change in coordinates such that the inclusion of S ∩ ∂Hk

into S is given by (x1, . . . , xk−l−1) → (x1, . . . , xk−l−1, 0), so that S ∩ Hk is
indeed a manifold with boundary.

We also have a useful lemma.

Lemma 13.4. Suppose that S is a manifold without boundary and that π :
S → R is a smooth function with regular value 0. Then the subset {s ∈ S :
π(s) ≥ 0} is a manifold with boundary and the boundary is π−1(0).

Proof. π−1((0,∞)) is open in S, so is a submanifold of S with the same
dimension as S. If π(s) = 0, then since 0 is regular, dπs is a submersion at s,
so the local submersion theorem says it looks like the canonical submersion
(x1, . . . , xk) = xk. So a neighborhood of s in π−1([0,∞)) just looks like the
subset where xk ≥ 0, which is open in Hk.

We can use this to show that closed unit ball is a manifold with boundary
by letting S = Rk and π(s) = 1 − |s|2. The closed unit ball is the set of s
such that π(s) ≥ 0.

Sard’s theorem is easier.

Theorem 13.5 (Sard’s Theorem for manifolds with boundary). For any
smooth map f of a manifold X with boundary into a manifold Y without
boundary, almost every point of X is a regular value of both f : X → Y and
∂f : ∂X → Y .
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Proof. We apply Sard’s theorem for f |IntX and ∂f , which are both smooth
maps on manifolds without boundary. So almost every point is a regular
value of both.

But if ∂f is regular at x, then so is f , so this implies that almost every
value is a regular value of not just f |IntX and ∂f , but f as well.

14 October 27, 2014

We will want to prove a classification theorem for one manifolds. In order to
do that, we will need a small discussion on Morse functions.

Let f : Rk → R be a smooth function. If x ∈ X is a critical point
of f , then dfx = ( ∂f

∂x1
, . . . , ∂f

∂xk
) = 0. We can consider the Hessian matrix

H = ( ∂2f
∂xi∂xj

). If H is nonsingular at x, then x is a non degenerate critical

point of f .
Letting g = ( ∂f

∂x1
, . . . , ∂f

∂xk
), the fact that x is a critical point of f means

that g(x) = 0. Moreover, dgx is the Hessian, so if H is nonsingular, then g is
a local diffeomorphism in a neighborhood of x mapping to a neighborhood
of 0. In particular, this means that there can be no other critical points of f
in a neighborhood of x, i.e. the critical point are isolated.

Definition 14.1. Let X be a smooth manifold and f : X → R be a smooth
function, and let x be a critical point of f . Then x is a non degenerate critical
point if there exists a parametrization φ in a neighborhood of x such that
φ−1(x) is a non degenerate critical point for f ◦ φ.

Definition 14.2. A function f : X → R is a Morse function if every critical
point of f is nondegenerate.

Theorem 14.3. Let f : U ⊂ Rk → R be a smooth function. Then, for
almost every a = (a1, . . . , ak) ∈ Rk,

fa = f + a1x1 + . . . akxk

is a Morse function on U .

Proof. Let g : U → Rk be defined by

g =

(
∂f

∂x1
, . . . ,

∂f

∂xk

)
.
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Then for p ∈ U , we have that

(dfa)p =

(
∂f

∂x1
, . . . ,

∂f

∂xk

)
+ (a1, . . . , ak) = g(p) + a.

Hence, p is a critical point of fa if and only if g(p) + a = 0, or in other
words, g(p) = −a. We also have that the Hessian for fa at p is dgp.

By Sard’s Theorem, we know that −a is a regular value for g for almost
every a. But if −a is a regular value for g, then dgp is non-singular. This
implies that the Hessian for fa is non-singular. Since every critical point of
fa satisfies g(p) = a, then this means that every critical point of fa is non
degenerate.

Corollary 14.4. For a smooth function f : X → R, for almost every a ∈
RN , the function fa = f + a1x1 + · · ·+ aNxn is a Morse function on X.

We wish to prove the following:

Theorem 14.5. Every compact, connected one-dimensional manifold with
boundary is diffeomorphic to either a circle or a closed interval.

We will start by using a Morse function f : X → R. Let S be the union
of the critical points of f and the boundary points of X. Then, since Morse
functions have isolated singularities and X is compact, S is finite. We have
that X \S is a finite number of connected one-manifolds L1, . . . , LN . We will
first study the properties of the Li. Note that f has no critical points on Li.

Proposition 14.6. f maps each Li diffeomorphically onto an open interval
in R.

Proof. Fix an Li. By assumption, dfx is surjective for each x ∈ Li, so in
particular, is an isomorphism. This implies that f : Li → R is a local
diffeomorphism. As Li is connected, then f(Li) is connected, and we know
that f(Li) is also open since f is a local diffeomorphism. Hence, f(Li) is an
open interval. As f(Li) is contained in f(X), which is compact, then f(Li)
must be finite, so f(Li) = (a, b) for some a, b.

Fix a point p ∈ L and let c = f(p). Let Q be the set of points d such that
there exists a curve γ : [c, d] → Li such that f ◦ γ = IdR. Then, Q is open
since if we have a path from q ∈ Q and γ : [c, d]→ Li, then for r in an open
neighborhood of q, we can extend (or truncate) the path γ to r. Moreover,
Q is closed. If qj → q and qj ∈ Q, then we can can take γ = lim γj, where
γj : [c, dj] → Lj, which we can do by taking a local diffeomorphism in a
neighborhood of q.
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So now X breaks up into a bunch of pieces that are diffeomorphic to bounded
open intervals in R, which are glued together pairwise along critical points.
By connectedness, we see that we either end up with a circle, or we can end
up with at most 2 endpoints that are not glued together, giving us the closed
interval. Guillemin and Pollack shows this more explicitly by using a smooth-
ing lemma to modify the map f so that it is also a local diffeomorphism at
the critical points. This then builds the explicit diffeomorphism.

Corollary 15.1. The boundary of any compact 1-dimensional manifold with
boundary consists of an even number of points.

Proof. A compact 1-manifold will consist of finitely many connected compo-
nents, each of which has 0 or 2 boundary points by the classification theorem
for 1-manifolds.

Theorem 15.2. If X is a compact manifold with boundary, then there exists
no smooth map g : x → ∂X such that ∂g : ∂X → ∂X is the identity. That
is, there is no “retraction” of X onto its boundary.

(Non-)retraction theorem. Suppose that such a g : X → ∂X exists. By
Sard’s Theorem, there exists a x ∈ ∂X that is a regular value of g. As x
has codimension dim ∂X = dimX − 1 in ∂X, then g−1(x) has codimension
dimX − 1 in X. Hence, g−1(x) is a 1-manifold.

Notice that {x} is closed (by Hausdorff), so g−1(x) is closed. As a closed
subset of the compact set X, we have that g−1(x) is a compact 1-manifold.
By our preimage theorem for manifolds with boundary, and since ∂g is the
identity on ∂X,

∂g−1(x) = g−1(x) ∩ ∂X = {x}.

This contradicts our previous corollary.

Theorem 15.3 (Brouwer Fixed Point Theorem). Any smooth map f : Bn →
Bn of the closed unit ball to itself must have a fixed point, i.e. f(x) = x for
some x ∈ Bn.

Proof. Suppose that f : Bn → Bn does not have any fixed points. We
will construct a retraction g : Bn → ∂Bn, which contradicts our previous
theorem.
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Since f(x) 6= x, the points f(x) and x determine a straight line. Let
g(x) be the point on ∂Bn where the line starting at f(x) passing through
x intersects ∂Bn. If x ∈ ∂Bn, then g(x) = x, so ∂g : ∂Bn → ∂Bn is the
identity.

If we can show that g is smooth, this would contradict our non retraction
theorem. Since g(x) is on the segment from f(x) to x, then g(x) = t(x −
f(x)) + f(x) for some t ≥ 0. As f(x) is smooth, if we can show that t
is a smooth function, then g(x) would be a smooth function. Note that
|g(x)|2 = 1, and take the above equation and dot product with itself, we
yield

|g(x)|2 = 1 = t2|x− f(x)|2 + 2tf(x) · (x− f(x)) + |f(x)|2.

This is a quadratic equation in t, so we can solve for t by the quadratic
formula and pick the root so that t ≥ 0.

t =
−[f(x) · (x− f(x))]±

√
[f(x) · (x− f(x))]2 − |x− f(x)|2(|f(x)|2 − 1)

|x− f(x)|2
.

The denominator |x− f(x)|2 is never zero as f(x) 6= x, and the two roots of
the equation correspond to the two points on the line between f(x) and x
that intersects ∂Bn. The discriminant of the square root being zero implies
that both of these points are identical, which could only happen if f(x) = x.

Thus, if f has no fixed points, then t is a smooth function, so we have a
retraction, which contradicts our non retraction theorem.

16 October 31, 2014

We previously proved that transversality was a stable property for compact
domains. We want to now prove that transversality is “generic”, even if the
domain is not compact. This will not be quite as strong as stability, but will
at least tell us that we can deform an arbitrary map to a nearby transversal
map.

We generalize the idea of a homotopy to a smooth family of mappings,
fs : X → Y , parametrized by s ∈ S. The smoothness criteria we will
requires is that S be a smooth manifold and that F : X ×S → Y defined by
F (x, s) = fs(x) be smooth. The important theorem is below.
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Theorem 16.1. Suppose that F : X×S → Y is a smooth map of manifolds,
where only X has boundary, and let Z be any boundary less submanifold of
Y . If both F and ∂F are transversal to Z, then for almost every s ∈ S, both
fs and ∂fs are transversal to Z.

Proof. The preimage W = F−1(Z) is a submanifold of X×S with boundary
∂W = W ∩ ∂(X × S) by the transversality condition (preimage theorem).

We will let π : X×S → S be the projection map and show that whenever
s is a regular value for π|W , then fs

−t Z, and whenever s is a regular value
for ∂π|∂W , then ∂fs

−t Z. By Sard’s theorem, almost every value of s is a
regular value of both, so almost every value s ∈ S has the right transversality
conditions.

Suppose fs(x) = z ∈ Z. We wish to show fs t Z, that is we want

Im d(fs)x + Tz(Z) = Tz(Y ).

By the fact that F −t Z, we know that

Im dF(x,s) + Tz(Z) = Tz(Y ).

In other words, given a ∈ Tz(Y ), there exists a b ∈ T(x,s)(X × S) such that
dF(x,s)(b)− a ∈ Tz(Z). If we want to show that fs

−t Z, then we need to find
a v ∈ Tx(X) such that d(fs)x(v)− a ∈ Tz(Z).

We’ve previously shown that T(x,s)(X × S) = Tx(X) × Ts(S). Thus, we
know that b = (w, e), where w ∈ Tx(X) and e ∈ Ts(S). If e = 0, then we are
done, since if we fix s, then F (x, s) = fs(x), so that dF(x,s)(w, 0) = dfs(w).

The assumption that s is a regular value of π implies that

dπ(x,s) : Tx(W )× Ts(S)→ Ts(S)

is surjective, and we know from the previous exercise (1.2.9) that this is
just the projection onto the second factor. Hence, there is a vector (u, e) ∈
T(x,s)(W ), which is in the preimage dπ−1(e). As F restricted to W maps into
Z, then dF(x,s)(u, e) ∈ Tz(Z). Now, we have that

dfs(w−u)−a = dF(x,s)(w−u, 0) = dF(x,s)[(w, e)−(u, e)] = [dF(x,s)(w, e)−a]−dF(x,s)(u, e).

Both vectors in the right hand side are in Tz(Z), so the difference is as well.
This shows that any vector a ∈ Tz(Y ) can be written as the sum of a vector
in the image of d(fs)x and in Tz(Z), which is the transversality condition.

A similar argument shows that ∂fs
−t Z.
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As a consequence, the Transversality theorem implies that transversal
maps are generic if Y = RM . If f : X → RM is a smooth map, let S to be
(an open ball in) RM , and define F : X × S → RM by F (x, s) = f(x) + s.
Then F (x, s) is a submersion (see the second factor), so is transversal to any
submanifold Z ⊂ RM . So by the transversality theorem, for almost every s,
fs(x) is transversal to Z.

Now if Y is an arbitrary manifold in RM . If we extend the codomain to
RM , then we can apply the above argument to find a transversal map into
RM . To then obtain a map into Y , we somehow need to project the map
back down to Y .

17 November 3, 2014

We will need the ε neighborhood theorem, which we will prove at a later
time.

Theorem 17.1 (ε neighborhood Theorem). For a compact boundaryless
manifold Y ⊂ RM and ε > 0, let Y ε = {w ∈ RM : d(y, w) < ε for some y ∈
Y } be the ε neighborhood of Y . If ε is sufficiently small, then each point
w ∈ Y ε has a unique closest point in Y , denoted π(w), and π : Y ε → Y
is a submersion. If Y is not compact, then there still exists a submersion
π : Y ε → Y that is the identity on Y , but ε must be allowed to vary as a
smooth function on Y , and Y ε = {w ∈ RM : d(w, y) < ε(y) for some y ∈ Y }.

We first apply the theorem.

Corollary 17.2. Let f : X → Y be a smooth map, Y without boundary.
Then there is an open ball S in some Euclidean space and a smooth map
F : X × S → Y such that F (x, 0) = f(x) and for any fixed x ∈ X, the
map s 7→ F (x, s) is a submersion S → Y . In particular, both F and ∂F are
submersions.

Proof. Let S ⊂ RM be the unit ball, and define F (x, s) = π[f(x)+ ε(f(x))s].
As π : Y ε → Y restricts to the identity on Y , then F (x, 0) = π[f(x) + 0] =
f(x).

If we fix x, then s 7→ f(x) + ε(f(x))s is a submersion. A composition of
submersions is a submersion, and as π is a submersion, then s 7→ F (x, s) is
a submersion S → Y . Then F and ∂F must also be submersion if we let x
vary, as it is for any fixed x.
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Theorem 17.3 (Transversality Homotopy Theorem). For any smooth map
f : X → Y and any boundary less submanifold Z of the boundary less mani-
fold Y , there exists a smooth map g : X → Y homotopic to f such that g −t Z
and ∂g −t Z.

Proof. The previous corollary says that F (x, s) has the property that F −t Z
and ∂F −t Z. The Transversality Theorem then says that for almost every s
such that fs

−t Z and ∂fs
−t Z. But fs is homotopic to f , with the homotopy

given by F (x, ts), t ∈ [0, 1].

A more general version, which we will not prove now, is given below:

Theorem 17.4 (Extension Theorem). Suppose that Z is a closed submani-
fold of Y , both boundary less, and C is a closed subset of X. Let f : X → Y
be a smooth map with f −t Z on C and ∂f −t Z on C ∩ ∂X. Then, there
exists a smooth map g : X → Y homotopic to f , such that g −t Z, ∂g −t Z,
and on a neighborhood of C, we have g = f .

Corollary 17.5. If, for f : X → Y , the boundary map ∂f : ∂X → Y is
transversal to Z, then there exists a map g : X → Y homotopic to f such
that ∂g = ∂f and g −t Z.

Proof. This follows if we can show that ∂X is closed in X, by applying the
Extension theorem with C = ∂X. But this is easy since IntX is an open
subset of X.
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The previous section said that given an arbitrary map f : X → Y and a
submanifold Z ⊂ Y , we can always deform f by a small homotopy to find a
g ∼ f such that g −t Z. We will use this to study intersections of manifolds.

Let X,Z ⊂ Y be submanifolds of Y .

Definition 18.1. X and Z have complementary dimension if dimX+dimZ =
dimY .

In the case that X −t Z, then we have that codimX ∩ Z = codimX +
codimZ = dimZ+dimX = dimY . In other words, X∩Z is a 0-dimensional
manifold.
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If we further assume that X is compact and Z is closed, then X ∩Z is a
compact 0-manifold, so it is a finite number of points. We want to create an
invariant that counts the number of points in the intersection, #(X ∩ Z).

Now, if we have arbitrary X and Z such that X is compact and Z is
closed, removing the assumption that X −t Z, then the previous machinery
we developed of the Transversality Homotopy Theorem says that we can
deform it a little bit to make the intersection transversal. More formally, we
can take the inclusion map i0 : X → Y , and there is a map i1 : X → Y
homotopic to i0 and i1

−t Z. Instead of thinking of homotoping i0 via the
family it, we can think of “deforming” X, by taking Xt = it(X) to be the
image of X as we “deform” it. Now, X1

−t Z.
Unfortunately, different deformations of X may give a different number

of points in the intersection X ∩ Z. Luckily, we can still salvage the idea by
taking the number of intersections mod 2. It turns out that although the
number of intersection points may change, it will always be even, or it will
always be odd.

(draw example of two circles that are tangent – deforming either gives 0
intersection or 2 intersection)

Instead of using only the inclusion map, we can generalize the situation
by starting with a compact manifold X and a smooth map f : X → Y
transversal to a closed submanifold Z ⊂ Y , where dimX + dimZ = dimY .
Then, f−1(Z) is closed and has codimension in X equal to the codimension
of Z in Y . But the codimension of Z in Y is X, so f−1(Z) is 0-dimensional,
so it is a finite set.

Definition 18.2. In the above situation where f −t Z, the mod 2 intersection
number of f with Z is I2(f, Z) = #f−1(Z) (mod 2).

Now we will need the following theorem to define the mod 2 intersection
number for an arbitrary smooth map.

Theorem 18.3. If f0, f1 : X → Y are homotopic and both transversal to Z,
then I2(f0, Z) = I2(f1, Z).

Proof. Let F : X × I → Y be a homotopy of f0 and f1. Notice that X ×
{0, 1} = ∂(X × I) is closed, so by the Extension Theorem, we may assume
that F −t Z (if not, there is a G ∼ F such that G = F on X × {0, 1}, i.e.
G(x, 0) = F (x, 0) = f0(x) and G(x, 1) = F (x, 1) = f1(x)).

Also, since f0
−t Z and f1

−t Z, we have that ∂F : ∂(X × I) = X × {0, 1}
is transversal to Z.
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This means that F−1(Z) is a one dimensional submanifold of X × I, as
dim(X × I) = dimX + 1 and X and Z have complementary dimension. We
also have that

∂F−1(Z) = F−1(Z) ∩ ∂(X × I) = f−10 (Z)× {0} ∪ f−11 (Z)× {1}.

From the classification of 1-manifolds, we know that ∂F−1(Z) must have an
even number of points. But

#∂F−1(Z) = #f−10 (Z) + #f−11 (Z),

so this means that

I2(f0, Z) = #f−10 (Z) = #f−11 (Z) = I2(f1, Z) (mod 2).

This says that given an arbitrary map f : X → Y , even if it is not
transversal to Z, we can still define the mod 2 intersection number.

Definition 18.4. Let g : X → Y be smooth, with Z ⊂ Y a submanifold
that such that X and Z have complementary dimension. Then we define
the mod 2 intersection number of g by finding a homotopic map f such that
f −t Z, and define I2(g, Z) = I2(f, Z). By the previous theorem, I2(g, Z) is
well-defined, it does not depend on the choice of the homotopic map f .

By transitivity of homotopy, we also have

Corollary 18.5. If g0, g1 : X → Y are arbitrary smooth maps that are
homotopic, then I2(g0, Z) = I2(g1, Z).

Now, if we let X also be a submanifold of Y and replace f by the inclusion
map, we can define the mod 2 intersection number of X with Z by I2(X,Z) =
I2(i, Z) where i : X → Y is the inclusion.

If I2(X,Z) = 1, then X and Z cannot be pulled apart, no matter how we
deform X, e.g. two curves in a plane, or two curves on T 2.

In the case where dimX = 1
2

dimY , notice that X has complementary
dimension with itself in Y . So we can consider I2(X,X), the mod 2 self-
intersection number of X. A good example is a curve on the Mobius strip.
Convince yourself that I2(X,X) = 1, and that no matter how you deform
X, you cannot separate it from the original position of X.
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19 November 7, 2014

If X is the boundary of some submanifold W ⊂ Y , then I2(X,Z) = 0. The
idea is that if X −t Z, then each time Z “enters” X, then it also must “exit”
X, otherwise Z cannot close up.

Theorem 19.1 (Boundary Theorem). Suppose that X is the boundary of
some compact manifold W and g : X → Y is a smooth map. If g may be
extended to all of W , then I2(g, Z) = 0 for any closed submanifold Z in Y
of complementary dimension.

Proof. Let G : W → Y extend g to W , such that ∂G = g. By the Transver-
sality Homotopy Theorem, we can find F : W → Y homotopic to G such
that F −t Z and ∂F −t Z. Let f = ∂F , then we have that f ∼ g, so that
I2(g, Z) = I2(f, Z) = #f−1(Z). But F−1(Z) is a compact one-dimensional
manifold with boundary, so ∂F−1(Z) = f−1(Z) is even.

Intersection theory can also be used to define an invariant for maps that
is preserved under homotopy.

Theorem 19.2. If f : X → Y is a smooth map of a compact manifold X
into a connected manifold Y and dimX = dimY , then I2(f, {y}) is the same
for all y ∈ Y .

Proof. Given any y ∈ Y , we have by the Transversality Homotopy Theorem
that there is a map homotopic to f that is transversal to {y}. So WLOG,
we assume that f −t {y}. By the “Stack of Records Theorem” (Chapter
1, Section 4, Exercise 7 on Homework #4), we have that there is an open
neighborhood U of y such that f−1(U) is a disjoint union V1 ∪ · · · ∪ Vn of
finitely many open sets, each diffeomorphic mapped to U by f .

Hence, I2(f, {z}) = n for al z ∈ U , so that I2(f, {z} is locally constant. As
Y is connected, then it must be that I2(f, {z}) is constant for all z ∈ Y

This gives rise to the definition below:

Definition 19.3. Let f : X → Y be a smooth map of a compact mani-
fold X to a connected manifold Y with dimX = dimY . Then, deg2(f) =
I2(f, {y}), y ∈ Y is called the mod 2 degree of f .

We know that intersection number is the same for homotopic maps, so
we immediately get that
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Theorem 19.4. If f ∼ g, then deg2(f) = deg2(g).

As an immediate corollary of the Boundary Theorem, we get that

Corollary 19.5. If X = ∂W and f : X → Y may be extended to all of W ,
then deg2(f) = 0.

We can apply the degree of a map to determine with a function has a
zero within a given set. Let p : C → C be a smooth function (here, we use
smooth to mean that it is a smooth map R2 → R2, where C is considered
to be R2). Let W be a smooth compact region in the plane. We want to
know if p(z) = 0 for z ∈ W . Assume first that p(z) has no zeros on ∂W , so

that f(z) = p(z)
|p(z)| : ∂W → S1 is defined and is smooth as a map of compact

one-manifolds.
If p(z) has no zeros inside W , then we have that f(z) is defined on all of

W , so the previous theorem says that deg2(f) = 0. Hence,

Corollary 19.6. If deg2(
p(z)
|p(z)|) 6= 0, then p(z) has a zero inside W .

One can think of this as a mod 2 argument principle. We obtain as a
further corollary:

Corollary 19.7. If p(z) is a polynomial of odd degree, then p(z) has a root.

Proof. Let p(z) = zm +a1z
m−1 + · · ·+am be a polynomial of odd degree (i.e.

m is odd). Define a homotopy

pt(z) = tp(z) + (1− t)zm = zm + t(a1z
m−1 + · · ·+ am).

Then, p0(z) = zm, and p1(z) = p(z).
For W a ball of sufficiently large radius, pt(z) has no zeros in ∂W (as

|z| → ∞, we can easily see that |pt(z)| → ∞, so pt(z) can’t be 0).

So then pt(z)
|pt(z)| is a homotopy between p0

|p0| and p1
|p1| = p

|p| , so they have

the same mod 2 degree. But p0
|p0| = zm

|zm| . On ∂W = boundary of a large
disk of radius R, the denominator is a just a constant Rm, and we see that
for any point y ∈ S1, then zm

Rm has exactly m pre images in ∂W . Thus,
deg2(

p0
|p0|) = deg2(

p
|p|) = m mod 2. So if m is odd, then p must have a zero

inside W .
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20 November 10, 2014: Jordan-Brouwer Sep-

aration Theorem

The Jordan Curve Theorem is a classical theorem that says that a simple
closed curve in R2 divides the plane into two pieces – the “inside” of the
curve and the “outside” of the curve.

Our goal will be to prove this separation theorem in the general case for
an n−1 dimensional manifold embedded in Rn. The statement we will prove
is

Theorem 20.1. Let X be a compact, connected manifold of codimension 1
in RN (we refer to X as a hyper surface). The complement of X in RN

consists of two connected open sets, the “outside” D0 and and “inside” D1.
Moreover, D̄1 is a compact manifold with boundary ∂D̄1 = X.

Give some example, starting with a curve in R1, then maybe
some surfaces like S2 or T 2 in R3.

Consider a compact, connected n − 1 dimensional smooth manifold X
and a smooth map f : X → Rn. We want to know how f wraps the image
of X around in Rn. Fix a point z ∈ Rn \ f(X), and consider the unit vector

u(x) =
f(x)− z
|f(x)− z|

.

The quantity u(x) indicates the direction from z to f(x). From our study
of mod 2 intersection theory, we know that u : X → Sn−1 hits almost
every direction the same number of times mod 2, which we previously called
deg2(u). For a curve in the plane, we can see that this measures how f winds
the image of X = S1 around z. Let’s pick an x0 ∈ S1 and denote v = u(x0).
Then as the image of f winds around, u(x) will return to v each time that we
make a full circuit around z. So we will make this into a general definition:

Definition 20.2. The mod 2 winding number of f around z is W2(f, z) :=
deg2(u).

The exercises in the book prove this theorem (sketch provided below):
We first start with a proof of the theorem below.

Theorem 20.3. Suppose that X is a n− 1 dimensional manifold that is the
boundary of a compact manifold with boundary, D, and let F : D → Rn be
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a smooth map extending f : X → Rn, i.e. ∂F = f . Then F−1(z) is a finite
set, and W2(f, z) = #F−1(z) mod 2. In other words, f winds X around z
as often as F hits z, mod 2.

1. Show that if F does not hit z, then W2(f, z) = 0

From a theorem on p. 81, we have that if X = ∂D and u : X → Y
can be extended to all of D, then deg2(f) = 0. Since u(x) = f(x)−z

|f(x)−z|

and F extends f to D, then we can extend u to D by U(x) = F (x)−z
|F (x)−z| .

This is a smooth map because by assumption, F does not hit z, so the
denominator is never 0. Hence, by the theorem, W2(f, z) = deg2(u) =
0.

2. Suppose that F−1(z) = {y1, . . . , yl}, and around each point yi
let Bi be a ball (that is Bi is the image of a ball in Rn via
some local parametrization of D). Demand that the balls be
disjoint from one another and from X = ∂D. Let fi : ∂Di → Rn

be the restriction of F , and prove that

W2(f, z) = W2(f1, z) + · · ·+W2(fl, z) mod 2.

Take
D′ = D \ (∪li=1Bi).

Then X ∪ (∪li=1∂Bi) = ∂D′. For our extension F , we have that F |D′
does not hit z, and apply the previous exercise. This gives

W2(f, z) +W2(f1, z) + · · ·+W2(fl, z) = 0 mod 2,

which proves the statement.

3. Use the regularity of z to choose the balls Bi so that W2(fi, z) =
1, and thus prove the theorem.

Suppose yi ∈ F−1(z). As z is a regular value of F , and F maps a
n-dimensional manifold D into Rn, this must mean that dFyi is an iso-
morphism, which implies that F is a local diffeomorphism in a neigh-
borhood of yi. So choose the Bi small enough such that F |Bi

is diffeo-

morphic (via F ) to a small sphere near z. Then ui(x) = fi(x)−z
|fi(x)−z| hits

every vector exactly once, so W2(fi, z) = deg2 ui = 1.
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We can apply this theorem in the case where X is actually a smooth
manifold of dimension n− 1 in Rn. If X separates Rn into the “inside” and
“outside”, then X is the boundary of a compact n-dimensional manifold with
boundary D, which is the inside of X. If we take f to be the inclusion map
on X and F to be the extension to the inclusion on D, then we can use
W2(X, z) := W2(i, z) to determine whether z ∈ D is on the inside (in which
case W2(X, z) = 1) or z /∈ D is on the outside (in which case W2(X, z) = 0).

This gives the “converse” of the separation theorem.

21 November 12, 2014

Now we show that we can use the winding number to find the inside and
outside.

4. Let z ∈ Rn \ X. Prove that if x is any point of X and U any
neighborhood of x in Rn, then there exists a point of U that
may be joined to z by a curve not intersecting X.

Let A be the subset of X for which the above is true. A is closed
because if xi → x and each xi ∈ A, then any open neighborhood U of
x contains at least one xi. Then, U is also a neighborhood of xi, and
as xi ∈ A, there is a point in U that may be joined to z by a curve not
intersecting X.

To show A is open, let x ∈ A. Then, X → Rn is an immersion, so by
the local immersion theorem, there are local coordinates around x so
that in an open neighborhood U of x, X is Rn−1 inside Rn. As x ∈ A,
there is a point x′ ∈ U that is connected to z by a path. Then, for any
other point y ∈ X ∩ U , we can connect y to x′, then concatenate with
x′ to z to get a path (this might not be a smooth path, but in this case,
it’s OK if it isn’t).

So A is either empty or all of X. But A is non-empty since we can take
a ray from z that intersects X. Let x be the first point on the ray that
intersects X. Then x ∈ A.

5. Show that Rn \X has, at most, two connected components.

Again, using the local immersion theorem at a point x ∈ X, there is a
neighborhood U of x where the inclusion of X into Rn is locally equiva-
lent to the the canonical immersion (x1, . . . , xn−1) 7→ (x1, . . . , xn−1, 0).
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Without loss of generality, we let x map to 0. Then, we can take a
small ball Bε(0). Now, Bε(0) \X has two components, the upper half
sphere and lower half sphere. Take z0, z1 in each component. WLOG,
we also shrink U so that it is diffeomorphic to Bε.

Now let y ∈ Rn \ X be an arbitrary point. By the previous exercise,
there exists a point in U that is connected to y through a path not
intersecting X. But each point in U is connected to either z0 or z1 by
a path not intersecting X.

Hence, Rn \ X has at most 2 components, one containing z0 and the
other z1.

6. Show that if z0 and z1 belong to the same connected compo-
nent of Rn \X, then W2(X, z0) = W2(X, z1).

If z0 and z1 are in the same connected component, then there is a
curve γ : [0, 1]→ Rn \X such that γ(0) = z1 and γ(1) = z1. Moreover,
γ(t) /∈ X for any t. So we can see that

ut(x) =
x− γ(t)

|x− γ(t)|

is a well-defined homotopy between u0(x) = x−z0
|x−z0| and u1(x) = x−z1

|x−z1| .

Homotopic maps have the same degree, so W2(X, z0) = W2(X, z1).

7. Given a point z ∈ Rn \ X and a direction vector v ∈ Sn−1,
consider the ray r emanating from z in the direction of v,

r = {z + tv : t ≥ 0}.

Check that the ray r is transversal to X if and only if v is a
regular value of the direction map u : X → Sn−1. In particular,
almost every ray from z intersects X transversally.

We have from a previous exercise (Chapter 1, Section 5, Exercise 7)
that g ◦ f −t W if and only if f −t g−1(W ).

Let f be the inclusion i : X → Rn and g : Rn \ {z} → Sn−1 given by
g(y) = y−z

|y−z| . Then, u(x) = g ◦ f = g ◦ i. The condition of v being a

regular value of u is the same thing as u being transversal to {v}.
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We have that u −t {v} and if only if i −t g−1({v}). But as i is the
inclusion, the image of dix is just Tx(X). And g−1({v} is the set of
points in Rn \ {z} on the ray from z in the direction of v.

Hence, the latter transversality condition is equivalent to saying that
X −t r, as desired.

8. Suppose that r is a ray emanating from z0 that intersects X
transversally in a nonempty (necessarily finite) set. Suppose
that z1 is any other point on r (but no on X), and l be the
number of times r intersects X between z0 and z1. Verify that
W2(X, z0) = W2(X, z1) + l mod 2.

By the assumption that the intersection of r with X is transversal,
Exercise 7 states that v is a regular value of u for z0. But r can also
be considered as a ray from z1, so the ray emanating from z1 also
intersects X transversally, and hence v is a regular value of u for z1.
But W2(X, z0) is the mod 2 degree of u, which is the number of points
in the preimage of v, which we can also count as the number of times
the ray from z0 intersects X. Similarly, W2(X, z1) is the number of
times the ray from z1 intersects X, so W2(X, z1) + l = W2(X, z0).
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9. Conclude that Rn \X has precisely two components, D0 = {z :
W2(X, z) = 0} and D1 = {z : W2(X, z) = 1}.
Fix a z0 ∈ Rn \ X. WLOG, assume z0 ∈ D0. Then, since almost
every ray r from z0 is transversal, take any ray from z0 that inter-
sects X transversally. Take z1 to be any point on the ray after the
first intersection with X. By the Exercise 8, then we must have that
W2(X, z1) = W2(X, z0) + 1 = 1. Hence, z1 ∈ D1.

By Exercise 5, Rn \ X has at most two connected components. By
Exercise 6, any two points in the same connected component have the
same mod 2 winding number. Thus, D0 and D1 make up the two
components of Rn \X.

10. Show that if z is very large, then W2(X, z) = 0.
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As X is compact, X is bounded, and there exists a ball Br(0) such that
X ⊂ Br(0). Now, take a point z such that |z| = 2r.

Then, we can see that the image of u with respect to this z is contained
in u(B̄r(0)). But we can see that then the image of u is contained in
an area of Sn−1 whose angular diameter is π

3
(draw a picture). In other

words, then there is a non measure 0 set of v for which #u−1(v) = 0,
which implies that W2(X, z) = deg2 u = 0.

11. Prove the Jordan-Brouwer Separation Theorem: The comple-
ment of the compact connected hyper surface (i.e. codimen-
sion 1 submanifold) X in Rn consists of two connected open
sets, the “outside” D0 and the “inside” D1. Moreover, D̄1 is a
compact manifold with boundary ∂D̄1 = X.

By exercise 10, if |z| is sufficiently large, then W2(X, z) = 0. Hence, the
set D0 = {z : W2(X, z) = 1}must be bounded. So then by Heine-Borel,
D̄0 is closed and bounded, which implies compact.

That D0 and D1 are open follows because X is compact, hence closed.
Thus, Rn \X is open, so each component of Rn \X is open. The open
condition also means that D0 and D1 are n dimensional manifolds, as
every point x of Di has an open ball around x that is contained wholly
inside Di.

So now, it suffices to show that every point x ∈ ∂D̄1 = X has a local
parametrization with an open subset of Hn. The inclusion i : X → Rn

is an immersion, so by the local immersion theorem, there exists a
parametrization φ taking an open subset U ⊂ Rn diffeomorphically to
a neighborhood V ⊂ Rn of x, such that X ∩ V = φ(U ∩ Rn−1). Then,
either φ(Hn ∩ U) or φ(−Hn ∩ U) parametrizes a neighborhood of x in
D1.

12. Given z ∈ Rn \ X, let r be any ray emanating from z that is
transversal to X. Show that z is inside X if and only if r
intersects X in an odd number of points.

Suppose |z| is very large so that z is outside of X. Then, by Exercise
10, we know that W2(X, z) = 0, so r intersects X an even number of
times.

Conversely, if r intersects X an even number of times, then pick a z1 on
the ray r such that |z1| is very large and z1 is outside of X. Then, the
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part of the ray starting from z1 does not intersect X, so the number of
intersections between z and z1 is even, so z, z1 ∈ D0. As z is contained
in the same component as z1, which is outside of X, then z is also
outside of X.

23 November 17, 2014

We will use the Jordan-Brouwer Separation Theorem and the mod 2 inter-
section theory to show that Sn and T n = S1×· · ·×S1 are not diffeomorphic.

We will need the boundary theorem.

Theorem 23.1 (Boundary Theorem). Suppose that X is the boundary of
some compact manifold W and g : X → Y is a smooth map. If g may be
extended to all of W , then I2(g, Z) = 0 for any closed submanifold Z in Y
of complementary dimension.

Corollary 23.2. Suppose that X is the boundary of some compact mani-
fold W and Z is a submanifold of complementary dimension in Y . Then,
I2(X,Z) = 0.

Proof. This follows immediately from the boundary theorem by taking the
inclusion map iX : X → Y , which then extends smoothly to iW : W → Y .
Since I2(X,Z) is defined to be I2(iX , Z), then the boundary theorem says
that I2(X,Z) = I2(iX , Z) = 0.

We then arrive at the following result from the Jordan-Brouwer Separa-
tion Theorem:

Lemma 23.3. Suppose that X,Z are manifolds in R2, and X ∼= Z ∼= S1.
Then, I2(X,Z) = 0.

Proof. X is a manifold of codimension 1 in R2, so by the Jordan-Brouwer
Separation Theorem (Jordan Curve Theorem), X is the boundary of a com-
pact manifold W . By the previous corollary, it follows that I2(X,Z) = 0.

Lemma 23.4. Suppose that X,Z ⊂ Y are submanifolds, and f : Y → Y ′ is
a diffeomorphism. Then, I2(X,Z) = I2(f(X), f(Z)).
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Proof. Since a diffeomorphism f is a bijection, f preserves the intersection, as
a set, so it preserves the number of points in the intersection. So it suffices
to show that if X −t Z, then f(X) −t f(Z). But this follows easily, as a
diffeomorphism f induces an isomorphism dfx on tangent spaces.

In particular, if X −t Z, then this implies that Tx(X) + Tx(Z) = Tx(Y )
for all x ∈ X ∩ Z.

Then, this implies, as dfx is a linear isomorphism, that dfx(Tx(X)) +
dfx(Tx(Z)) = dfx(Tx(Y )). As f is a diffeomorphism, we know that dfx(Tx(Y )) =
Tf(x)Y

′, dfx(Tx(X)) = Tf(x)(f(X)), and dfx(Tx(Z)) = Tf(x)(f(Z)). This
shows that f(X)−t f(Z).

We now apply this to curves in S2.

Proposition 23.5. Suppose that X,Z are submanifolds of S2, and X ∼= Z ∼=
S1. Then, I2(X,Z) = 0.

Proof. We have previously shown that if we take iX : X → S2 to be the
inclusion map, then y ∈ S2 is a regular value if and only if y is not in
the image of iX , since dimX < dimS2. Similarly, y is a regular value of
iZ : Z → S2 if and only if y is not in the image of iZ .

By Sard’s Theorem, then there exists a y ∈ S2 such that y is not in the
image of either inclusion map. Hence, y /∈ X and y /∈ Z. We now think of
y as the north pole in a stereographic projection πy of S2 \ {y} onto a plane
P ∼= R2.

We have that πy is a diffeomorphism, so X and Z are mapped to dif-
feomorphic manifolds X ′ and Z ′ of R2. Now we are left with the previous
situation of two submanifolds of R2, each diffeomorphic to S1, so by the
previous lemma, I2(X

′, Z ′) = 0.
As πy is a diffeomorphism, then I2(X,Z) = I2(X

′, Z ′) = 0.

We use this fact to show that S2 and T 2 = S1×S1 are not diffeomorphic.

Theorem 23.6. S2 and T 2 are not diffeomorphic.

Proof. We will find two submanifolds X,Z of T 2, each diffeomorphic to S1,
whose mod 2 intersection number is 1. This will show that T 2 is not diffeo-
morphic to S2 – if it were, then the previous proposition says that the mod
2 intersection number I2(X,Z) = 0, a contradiction.

But this is easy to do: Fix a point p ∈ S1 and take X = S1 × {p} and
Z = {p}×S1. One can easily check that this intersection is transversal, and
there is exactly 1 point in the intersection, namely (p, p).
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A similar technique can be used to show that Sn and T n are not diffeo-
morphic.

Theorem 23.7. Sn and T n are not diffeomorphic.

24 November 19, 2014

Theorem 24.1 (Borsuk-Ulam Theorem in dimension 1). Let f : S1 → S1

be a smooth map such that f(−x) = −f(x). Then, deg2(f) = 1.

Proof. Let y ∈ S1 be a regular value of f(x) – we know such a y exists by
Sard’s Theorem. Removing y and −y from S1 makes the set S1 \ {y,−y}
into a union of two components, U1 and U2.

Suppose that deg2(f) = 0. Then f−1(y) and f−1(−y) both have an even
number of points, and f−1({y,−y}) consists of 4k points, for some k ∈ N.
Then, S1 \ f−1({y,−y}) is a union of 4k components V1, . . . , V4k (here, we
order the components counter-clockwise along the circle).

We first claim that for each i, f(Vi) lies entirely within U1 or entirely
within U2. Since Vi is connected, f(Vi) is connected as well. But if f(Vi)
contains two points z1 ∈ U1 and z2 ∈ U2, then f(Vi) must contain a path
between z1 and z2. But such a path must pass through either y or −y.

We now also claim that the image of any two adjacent open sets Vi and
Vi+1 must lie in different Uj. Let z be the common endpoint of Vi and
Vi+1. Since y is a regular value of f(x), then −y is also a regular value of
f(x), since the preimage of −y is exactly −f−1({y}), and df−x = −dfx since
f(−x) = −f(x). Then, the fact that y and −y are regular values of f , and
z ∈ f−1({y,−y}) implies that dfz : Tz(S

1)→ T±y(S
1) is an isomorphism.

Since Tz(S
1) is 1-dimensional, it is spanned by a single vector v. By

Chapter 1 Section 2 Exercise 12, then v is the velocity vector of some curve
γ : [−ε, ε]→ S1, and dfz(v) = f(γ(t))′|t=0. But if both Vi and Vi+1 map to the
same Uj, then γ(t) ∈ Uj for all sufficiently small t. By continuity, we can find
a sequence of ti < 0 and si > 0 such that ti, si → 0 and f(γ(ti)) = f(γ(si)).
But then, this implies that f(γ(t))′|t=0 = 0, which contradicts that dfz is an
isomorphism.

From the second claim, we see that f(V1) and f(V2k+1) must both lie
in the same Uj. WLOG, say that j = 1. On the other hand, the fact that
f(−x) = −f(x) implies that the set of endpoints of the Vi must be symmetric
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about the origin, so V2k+1 = −V1. Therefore, f(V2k+1) = f(−V1) = −f(V1),
which means that f(V2k+1) must lie in U2.

25 November 21, 2014

Theorem 25.1 (Borsuk-Ulam Theorem). Let f : Sk → Rk+1 be a smooth
map whose image does not contain the origin, and suppose that f satisfies
the symmetry condition f(−x) = −f(x) for all x ∈ Sk. Then, W2(f, 0) = 1.

Proof. For k = 1, this follows from the one-dimensional case: if f : S1 → R2,
then we can define f̃ : S1 → S1 by f̃(x) = f(x)/|f(x)|. Then f̃ still satisfies
the symmetry condition, and

W2(f, 0) = deg2(
f(x)− 0

|f(x)− 0|
) = deg2(f̃) = 1.

We proceed by induction. Suppose the theorem holds for k− 1. Suppose
f : Sk → Rk=1 \ {0} satisfy the hypotheses of the theorem. Let Sk−1 denote
the equator (x1, . . . , xk, 0). Let g be the restriction f |Sk−1 of f to Sk−1. By
Sard’s Theorem, there exists a vector ~a that is a regular value for both g/|g|
and f/|f |. By the symmetry argument, we see that −~a is also a regular value
of both maps.

Since g/|g| maps from a k − 1 dimensional manifold to a k dimensional
manifold, regularity implies that neither ~a nor −~a are in the image of g/|g|.

Furthermore, since ~a and −~a are regular values of f/|f |,t hen f/|f |
is transversal to {~a,−~a}. Take h(u) = u/|u|. This means that h ◦ f −t
{~a,−~a}. By Chapter 1 Section 5 Exercise 7, then f −t h−1({~a,−~a}). But
h−1({~a,−~a}) = span(~a) = l.

By definition,

W2(f, 0) = deg2(f/|f |) = #(f/|f |)−1(~a) (mod 2).

By the symmetry of f , #(f/|f |)−1(~a) = #(f/|f |)−1(−~a), and each of these
can be computed by the number of times f hits l in the upper hemisphere.

But the upper hemisphere is a manifold with boundary, with boundary =
Sk−1. Now, g is a map from Sk−1 but the codomain has dimension too high
to invoke the inductive hypothesis. Let V be the orthogonal complement of
l and take π : Rk+1 → V be the orthogonal projection. As π is linear, it
preserves the symmetry of g, so π ◦ g : Sk−1 → Rk satisfies the symmetry
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condition. Moreover, π ◦ g is never equal to 0, since by assumption, g/|g|
does not have {~a,−~a} in it image, and hence, g does not contain any point
of l = ker π in its image.

The inductive hypothesis then implies that W2(π ◦ g, 0) = 1.
Recall the theorem from the proof of the Jordan Brouwer Separation

Theorem:

Theorem 25.2. Suppose that X is a n− 1 dimensional manifold that is the
boundary of a compact manifold with boundary, D, and let F : D → Rn be
a smooth map extending f : X → Rn, i.e. ∂F = f . Then F−1(z) is a finite
set, and W2(f, z) = #F−1(z) mod 2. In other words, f winds X around z
as often as F hits z, mod 2.

This implies that W2(π ◦ g, 0) is equal to the number of times π ◦ f hits
0, which is also equal to the number of times that f hits π−1(0) = l in the
upper half sphere. We previously argued this is the same as W2(f, 0).

We obtain the following applications:

Theorem 25.3. If f : Sk → Rk+1 \ {0} is symmetric about the origin, i.e.
f(−x) = −f(x), then f intersects every line through the origin at least once.

Proof. If f never hits l, then f is transversal to l, but this contradicts the
part of the above proof that f hits l, 1 mod 2 times.

Theorem 25.4. Any k smooth functions f1, . . . , fk on Sk that satisfy the
symmetric condition fi(−x) = −fi(x) must possess a common zero.

Proof. Apply the previous theorem to f(x) = (f1(x), . . . , fk(x), 0), with l
being the xk+1 axis. But the xk+1 axis is defined to be the points where
x1 = x2 = · · · = xk = 0, so if f hits l,t hen f1(x) = · · · = fk(x) = 0.

Theorem 25.5. For any k smooth functions g1, . . . , gk on Sk there exists a
point p ∈ Sk such that g1 = g1(−p), . . . , gk(p) = gk(−p).

Proof. Take fi(x) = gi(x)−gi(−x). Then fi satisfies the symmetry condition,
so by the previous theorem, there is a common zero. This implies that
0 = gi(x)− gi(−x), or gi(x) = gi(−x).
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Theorem 26.1 (ε neighborhood Theorem). For a compact boundaryless
manifold Y ⊂ RM and ε > 0, let Y ε = {w ∈ RM : d(y, w) < ε for some y ∈
Y } be the ε neighborhood of Y . If ε is sufficiently small, then each point
w ∈ Y ε has a unique closest point in Y , denoted π(w), and π : Y ε → Y
is a submersion. If Y is not compact, then there still exists a submersion
π : Y ε → Y that is the identity on Y , but ε must be allowed to vary as a
smooth function on Y , and Y ε = {w ∈ RM : d(w, y) < ε(y) for some y ∈ Y }.

We will introduce the normal space and the normal bundle, which are
like the tangent space and tangent bundle.

Definition 26.2. Let X ⊂ RM be a smooth manifold and x ∈ X. Then,
the normal space of X at x, Nx(X) is the orthogonal complement to Tx(X)
in RM .

The normal bundle N(X) is the set

N(X) = {(x, v) : v ∈ Nx(X)}.

The tangent space and tangent bundle are intrinsic to X – for different
embeddings into RM for differentM , we get isomorphic/diffeomorphic spaces.
But for the normal space and normal bundle, they depend very much on the
ambient space. If the dimension of the ambient space is larger, then the
dimension of the normal space/bundle will be larger.

Proposition 26.3. If X ⊂ RM , then N(X) is a manifold of dimension M ,
and σ : N(Y )→ Y is a submersion.

Lemma 26.4. Let A : RM → Rk is a linear map (i.e. a matrix). If A is
surjective, then AT maps Rk isomorphically onto the orthogonal complement
of kerA.

Proof. We first show AT is injective. Suppose ATw = 0. Then, for every
v ∈ RM , we have that Av · w = v · ATw = v · 0 = 0. But A is surjective, so
this must mean that w = 0.

Now we show that AT is orthogonal to kerA. Suppose Av = 0. Then,
for every w ∈ Rk, Av · w = v · ATw = 0. Hence, ATw is orthogonal to the
kernel of A, and the image of AT is contained in the orthogonal complement
of kerA. But as A is surjective, kerA has dimension M − k, and its orthog-
onal complement has dimension k. So the image of AT must be the entire
orthogonal complement.
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Proof of Proposition. Let x ∈ X and take Ũ to be an open subset of RM

that contains x. We know that X can be written as the zero set of some
function, so take φ : Ũ → RcodimX so that U = X ∩ Ũ = φ−1(0). We have
that N(U) = N(X) ∩ (U × RM) is open in N(X).

Then ψ : U × RcodimX → N(U) defined by ψ(x, v) = (x, dφTx v) gives the
desired parametrization of N(U).

σ is the submersion because σ ◦ ψ is the standard submersion.

Epsilon neighborhood theorem. Let h : N(Y ) → RM be defined by h(y, v) =
y+v. Note that h is regular at every point in Y ×{0}. This is because dh(y,0)
splits into two pieces, the first part acting on Ty(Y ), mapping it into Ty(Y )
(this is from the y part), and the second part acting on Ny(Y ), mapping it
into Ny(Y ) (this is from the v part). Since Ty(Y ) + Ny(Y ) = RM , this is
surjective.

Now h maps Y ×{0} diffeomorphically onto Y and is regular at each (y, 0),
so it maps a neighborhood of Y ×{0} diffeomorphically onto a neighborhood
of Y in RM (for Y compact, this is the generalized inverse function theorem
from I.3.10 on Homework #4. The general case is Exercise I.8.14). Any
neighborhood of Y contains some Y ε (again, we have proved this in the
compact case, the general case requires additional techniques). Then, h−1 :
Y ε → N(Y ) is defined, and π = σ ◦ h−1 : Y ε → Y is the desired submersion.

We now discuss the main tool from going from compact manifolds to
non-compact manifolds: partitions of unity.

Theorem 26.5. Let X be an arbitrary subset of RN . For any covering of
X by subsets {Uα} open in X, there exists a sequence of smooth functions
{θi} on X, called a partition of unity subordinate to the cover {Uα} with the
following properties:

1. 0 ≤ θi(x) ≤ 1 for all x ∈ X and all i

2. Each x ∈ X has a neighborhood on which all but finitely many functions
θi are identically zero.

3. Each function θi is identically zero except on some closed set contained
in one of the Uα.

4. For each x ∈ X,
∑

i θi(x) = 1.
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Proof. If Uα is open in X, then there exists Wα open in RN such that Uα =
X ∩Wα. Let W = ∪αWα. Take {Kj} be a sequence of compact sets Kj ⊂
IntKj+1 such that ∪jKj = W . Such a sequence exists – for example, one
can take Kj = {z ∈ W : |z| < j and d(z,WC) ≥ 1/j}.

Take the set of open balls in RN whose closure lies entirely inside at least
one of the Wα. As Wα is open in RN , this forms a cover of W – if x ∈ W ,
then x ∈ Wα for some α. Then, take an ε such that Bε(x) ⊂ Wα, and take
the ε/2 ball about x, whose closure is contained in Wα.

By the compactness of K2, we can consider the cover of W as a cover
of K2 and take a finite subcover. By Chapter 1 Section 1 Exercise 18, we
know that there exists a function that is identically 1 on a given ball and
identically 0 on a given ball of larger radius, and between 0 and 1 in between.
So for each ball in the finite sub cover, there exists a smooth nonnegative
function on RN that is equal to one on the ball and equal to 0 outside of a
closed ball that is contained in Wα. We call these functions η1, . . . , ηr.

We now proceed inductively – for each j ≥ 3 the subset Kj \ IntKj−1 is
a compact set that is contained inside the open set W \Kj−2. Take the set
of all open balls whose closure is contained wholly in W \Kj−2 and some Wα

– this forms a cover of Kj \ IntKj−1. Then take a finite sub cover, and for
each ball, add another function ηs for each ball that is 1 on the ball and 0
on a closed ball contained in both W \Kj−2 and in some Wα.

For each j, only finitely many function ns are nonzero on Kj. Hence,∑
s ηs is finite in a neighborhood of every point of W , and at least one term

is nonzero at any point of W , as the sequence of finite subcovers cover W .
Hence,

ηi∑
s ηs

is well-defined and smooth. Let θi be the restriction to X, and {θi} satisfies
the desired properties.

We obtain the important corollary:

Corollary 26.6. On any manifold X, there exists a proper map p : X → R.

Proof. Let {Uα} be the collection of open subsets of X whose closure is
compact. Let θi be a partition of unity subordinate to the cover {Uα}. Then,

p =
∞∑
i=1

iθi
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is a well-defined smooth function since only finitely many θi are nonzero at
a given point.

If p(x) ≤ j, then it must be that for all i > j, that θi(x) = 0. Since
at each point x,

∑
i θi(x) = 1, this means that at least one of the first j

functions θ1, . . . , θj is nonzero at x.
Then p−1([−j, j]) is contained in

∪ji=1{x : θi(x) 6= 0}.

The above set has compact closure, as it is contained in the union of at
most finitely many of the Uα. Every compact subset of R is contained in
some [−j, j], so this shows that the inverse image of every compact subset is
compact.

27 November 26, 2014

As an example of an application of partitions of unity, we will apply them
to extend the generalized inverse function to noncompact manifolds. Recall
the compact version:

Proposition 27.1 (Chapter 1 Section 3 Exercise 10). Let f : X → Y be a
smooth map that is one-to-one on a compact submanifold Z of X. Suppose
that for all x ∈ Z, dfx : Tx(X)→ Tf(x)(Y ) is an isomorphism. Then f maps
an open neighborhood of Z in X diffeomorphically onto an open neighborhood
of f(Z) in Y .

We wish to prove the noncompact version (cf Chapter 1 Section 8 Exercise
14):

Proposition 27.2 (Chapter 1 Section 8 Exercise 14). Suppose f : X → Y
maps a submanifold Z diffeomorphically onto f(Z) and that for each x ∈ Z,
dfx is an isomorphism. Then f maps a neighborhood of Z diffeomorphically
onto a neighborhood of f(Z).

We begin with a definition and a lemma:

Definition 27.3. An open cover {Uβ} of X is a refinement of the open cover
{Vα} if for every α, there exists a β such that Uα ⊂ Vβ.

Definition 27.4. An open cover {Uα} of X is locally finite if every x ∈ X
has a neighborhood that intersects only finitely many of the Uα.
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Lemma 27.5 (Chapter 1 Section 8 Exercise 13). Every open cover {Vα} of
a manifold X has a locally finite refinement.

Proof. Let {θi} be a partition of unity subordinate to Vα. Take Ui =
θ−1i ((0,∞)). As θi is smooth, Ui is open. Since {Ui} is a partition of unity,
for each x ∈ X, there exists an i such that θi(x) > 0, so x ∈ Ui for some i.
Hence, {Ui} is a cover of X.

Moreover, as {θi} is subordinate to Vα, each θi has is identically zero
except on a closed set contained wholly inside one of the Vα, so Ui ⊂ Vα for
some α. In other words, {Ui} is a refinement of the cover {Vα}.

Finally, each x ∈ X has a neighborhood on which all but finitely many of
the θi are identically zero, so this neighborhood only intersects finitely many
of the Ui.

We now prove the proposition.

Chapter 1 Section 8 Exercise 14. Suppose f : X → Y maps Z ⊂ X diffeo-
morphically onto f(Z) ⊂ Y .

Since dfx : Tx(X)→ Ty(y) for each x ∈ Z, there exist open sets x ∈ Ux ⊂
X and Vx ⊂ Y such that f maps Ux diffeomorphically onto Vx, by the inverse
function theorem for manifolds.

The {Vx}x∈X forms an open cover of f(Z), since f(x) ∈ Vx. Now, apply
the lemma to take a locally finite refinement, which we will call Vi, with local
inverse gi : Vi → X, such that f ◦ gi = IdVi .

Define W = {y ∈ Y : gi(y) = gj(y) whenever y ∈ Vi ∩ Vj}. On W , it is
clear we can define a global inverse g : W → X by taking g(y) = gi(y) for
any i such that y ∈ Vi. This is well defined on W as gi(y) = gj(y) whenever
y ∈ Vi ∩ Vj.

W contains Z, as f maps Z diffeomorphically on f(Z), so gi(y) = gj(y) =
f−1(y) for any y ∈ Z. Now fix a f(x) ∈ f(Z). We wish to show that W
contains an open neighborhood of f(x). By the property that {Vi} is a locally
finite cover of f(Z), there exists a neighborhood V of f(x) that intersects
only finitely many of the Vi – by reindexing them, if necessary, call them
V1, . . . , Vk.

Then Ṽ = V ∩V1∩· · ·∩Vk is a finite intersection of open sets that contain
f(x), so Ṽ is an open neighborhood of f(x). Moreover, on Ṽ each gi is a
local diffeomorphism with g(Ṽ ) ⊂ Ui 3 x. Hence, on Ṽ , the gi all agree, so
Ṽ ⊂ W . This proves the proposition.
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We will now discuss how partitions of unity can be used to prove the Whit-
ney embedding theorem for noncompact manifolds. Recall that we proved:

Corollary 27.6. On any manifold X, there exists a proper map p : X → R.

Recall that the Whitney immersion theorem, which says that Xk has
an injective immersion into Rk was proved inductively by projecting along
a vector to get an injective immersion into a lower dimensional space. If
X is compact, an injective immersion is automatically proper, so it is an
embedding.

Theorem 27.7 (Weak Whitney Embedding Theorem). Every k-dimensional
manifold embeds into R2k+1.

Proof. We first use the Whitney immersion theorem, which says that for Xk,
there exists an immersion f : Xk → R2k+1. Compose with the diffeomor-
phism

g : R2k+1 → B1(0) : z 7→ z

1 + |z|2
.

This gives an injective immersion g ◦ f : X → R2k+1 such that |g ◦ f(x)| < 1
for all x ∈ X. Take p : X → R to be the proper function from the corollary.
We define an injective immersion F (x) = (g ◦ f(x), p(x)).

We then do the projection π : R2k+2 → H along a vector a onto its
orthogonal complement H, as in the Whitney immersion theorem, so that
π ◦ F is still an injective immersion.

The claim is that the properness of p actually now makes π ◦ F proper.
This is proved by showing that if |π ◦ F (x)| ≤ c,t hen there exists a d such
that |p(x)| ≤ d. Since p is proper, this will show properness of π ◦ F . The
details are in Guillemin and Pollack.
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