Proof of Jordan-Brouwer Separation Theorem

UC Berkeley, Math 141, Fall 2014

November 20, 2014

1. Show that if *F* does not hit *z*, then $W_2(f, z) = 0$

Suppose $z \in \mathbb{R}^n - F(D)$. Then, we can define the unit vector mapping u on X by

$$u(x) = \frac{f(x) - z}{|f(x) - z|}.$$

As stated, this formula is valid for both *X* and *D*, since we assumed that $z \notin F(D)$; therefore, we can define $U : D \rightarrow Y$ with $U|_X = u$, by using the formula

$$U(x) = \frac{F(x) - z}{|F(x) - z|}.$$

Furthermore, *U* is smooth because it is the composition of $x \mapsto F(x)-z$ and $x \mapsto x/|x|$, which are both smooth since the latter is defined on F(D) - z, which doesn't include 0. This proves that *U* is an extension of *u* to all of *D*, so by the theorem on p. 81 in the book, we have $\deg_2(u) = 0$. Thus,

$$W_2(f,z) = \deg_2(u) = 0.$$

2. Suppose that $F^{-1}(z) = \{y_1, \ldots, y_l\}$, and around each point y_i let B_i be a ball (that is B_i is the image of a ball in \mathbb{R}^n via some local parametrization of D). Demand that the balls be disjoint from one another and from $X = \partial D$. Let $f_i : \partial D_i \to \mathbb{R}^n$ be the restriction of F, and prove that

$$W_2(f,z) = W_2(f_1,z) + \dots + W_2(f_l,z) \mod 2.$$

The values y_1, \ldots, y_l are all distinct, and the condition $z \notin f(X)$ implies that $y_1, \ldots, y_l \notin X$, so we can demand that the balls are disjoint and separated from one another and from X, since \mathbb{R}^n is a regular (T3) Hausdorff space. Define

$$D' = D - \bigcup_{i=1}^{l} \operatorname{Int}(B_i).$$

Note that by shrinking each B_i , we can require that they are contained in Int(D), so each ∂B_i (here we mean the topological boundary) is contained in Int(D) as well. ∂B_i is a n - 1 dimensional manifold, so by the local immersion theorem, there exists a local parametrization $\phi : \mathbb{R}^n \to V$ where $\phi(0) = y \in V$, and ∂B_i , locally, is the subset \mathbb{R}^{n-1} of \mathbb{R}^n where the *n*th coordinate is 0. Therefore, $\partial B_i \subseteq \partial D'$ (here, we mean the manifold boundary). Since X is separated from the balls, we can shrink any local parametrization of a point $y \in \partial D \subseteq D$ so that it is also a local parametrization of $y \in D'$ with y on the boundary. This shows that $\partial D \subseteq \partial D'$. Since all other points in D' are interior points, we've proven that

$$\partial D' = \partial D \cup \bigcup_{i=1}^l \partial B_i.$$

Let $F_{D'}$ be the restriction of F to D'. By contruction, $F_{D'}$ never hits z, so letting $f_{\partial D'} = \partial F_{D'}$, we have by Exercise 1 that $0 = W_2(f_{\partial D'}, z)$. But if $u : \partial D' \to S^{n-1}$ is the unit vector map induced by $f_{\partial D'}$ and z, then for any $y \in S^{n-1}$,

$$0 = W_2(f_{\partial D'}, z) = \deg_2(u) = I_2(u, \{y\}) = \#[u^{-1}(y)] \mod 2.$$
(1)

Since $X = \partial D, \partial B_1, \dots, \partial B_l$ are all disjoint and have union $\partial D'$, we have

$$0 = \#[u^{-1}(y)] = \#[u^{-1}(y) \cap \partial D] + \#[u^{-1}(y) \cap \partial B_1] + \dots + \#[u^{-1}(y) \cap \partial B_l].$$

Clearly $u^{-1}(y) \cap Z = u_Z^{-1}(y)$, where u_Z is the unit vector map induced by z and the restriction of $f_{\partial D'}$ to the submanifold $Z \subseteq \partial D'$, so the above translates to

$$0 = \#[u_{\partial D}^{-1}(y)] + \#[u_{\partial B_1}^{-1}(y)] + \dots + \#[u_{\partial B_l}^{-1}(y)],$$

which translates by (1) to

$$0 = W_2(f, z) + W_2(f_1, z) + \dots + W_2(f_l, z) \mod 2.$$

Rearranging, and noting that $a = -a \mod 2$, we conclude that

$$W_2(f,z) = W_2(f_1,z) + \dots + W_2(f_l,z) \mod 2$$

3. Use the regularity of z to choose the balls B_i so that $W_2(f_i, z) = 1$, and thus prove the theorem.

Since *z* is a regular value of *F*, we have that $dF_z : D \rightarrow Y$ is surjective. It was presumed that dim $D = n = \dim Y$, so dF_z is thus bijective, and thus an isomorphism, so by the inverse function theorem, *F* is a local diffeomorphism at each y_i .

So for each *i*, we can find an open subset $U \subseteq D$ with $y_i \in U$ and open $V \subseteq \mathbb{R}^n$ with $z \in V$ such that $F : U \to V$ is a diffeomorphism. By openness, we can pick a closed ball $A_i \subseteq V$ centered at *z* such that the restriction of *F* to some closed set $B_i \subseteq U$ (with $y_i \in B_i$) maps diffeomorphically to A_i . Exercise 2.1.2 tells us that the restriction of *F* to ∂B_i (call it f_i) maps ∂B_i diffeomorphically to ∂A_i .

 ∂A_i is a small sphere centered at z, so for any $w_1, w_2 \in \partial B_i$, we have $f_i(w_1), f_i(w_2) \in \partial A_i$, and thus we may write them uniquely as

$$f_i(w_1) = z + rv_1 \& f_i(w_2) = z + rv_2$$

where *r* is the radius of A_i and $v_1, v_2 \in S^{n-1}$. But then we have we have, with $u : \partial B_i \to S^{n-1}$ denoting the unit vector map induced by f_i and *z*, and if $u(w_1) = u(w_2)$, then

$$u(w_1) = u(w_2)$$

$$\Rightarrow \frac{f_i(w_1) - z}{|f_i(w_1) - z|} = \frac{f_i(w_2) - z}{|f_i(w_2) - z|}$$

$$\Rightarrow \frac{rv_1}{|rv_1|} = \frac{rv_2}{|rv_2|}$$

$$\Rightarrow v_1 = v_2$$

$$\Rightarrow z + rv_1 = z + rv_2$$

$$\Rightarrow w_1 = w_2,$$

so *u* is injective. It's also surjective because as we showed just above,

$$[v \in S^{n-1}] \Longrightarrow [z + rv \in \partial A_i] \Longrightarrow [u(f_i^{-1}(z + rv)) = v \in S^{n-1}].$$

Since *u* is bijective, we have for any $v \in S^{n-1}$ that $u^{-1}(v)$ contains a single point. But then

$$1 = #[u^{-1}(v)] = I_2(u, \{v\}) = \deg_2(u) = W_2(f_i, z),$$

for each *i*. Therefore,

$$W_2(f,z) = W_2(f_1,z) + \dots + W_2(f_l,z) = l = \#[F^{-1}(z)] \mod 2.$$

4. Let $z \in \mathbb{R}^n \setminus X$. Prove that if x is any point of X and U any neighborhood of x in \mathbb{R}^n , then there exists a point of U that may be joined to z by a curve not intersecting X.

Fix $z \in \mathbf{R}^n - X$. Let *S* be the set of all points of *X* such that the above is true. First we will show that *S* is closed in *X*.

Let (s_i) be a sequence of points of *S* which converge to some point *s* in *X*, $s_i \rightarrow s$. If we have that $s \in S$, then we are done. Assume that $s \notin S$.

Let *U* be an open neighborhood of *s* in \mathbb{R}^n , $s \in U$. Clearly we have some $s_i \in U$. But then there exists some open neighborhood *U'* of s_i , $s_i \in U'$. Without loss of generality, we may assume that *U'* is small enough such that $U' \subset U$. Then, because $s_i \in S$, there must exist a point of *U'* that may be joined to *z* by a curve not intersecting *X*. But this this implies such a point exists in *U*, which is a contradiction, as we have assumed that $s \notin S$. Thus, we must have that $s \in S$, and hence *S* is closed.

Now we may show that *S* is open. We will do so by showing that every point in *S* is an interior point. Let $s \in S$ be any point. From the inclusion map $i : X \to \mathbb{R}^n$, the Local Immersion Theorem tells us that there exists local coordinates on a neighborhood *U* of *s* in \mathbb{R}^n such that $U \cap X$ is equal to the set of all points of the form $(u_1, \ldots, u_{n-1}, 0)$.

Now, because $s \in S$, there exists a point $\tilde{u} \in (U - X)$ such that \tilde{u} can be connected to z by a curve. Write $\tilde{u} = (u_1, \dots, u_n)$, with $u_n \neq 0$, as $\tilde{u} \notin X$. Thus, u_n may either be positive or negative. Without loss of

generality, let us assume that $u_n > 0$. Now, take any point $s_1 \neq s$, with $s_1 \in U \cap X$, and take any neighborhood V of s_1 in \mathbb{R}^n . We have that $V \cap U \neq \emptyset$. Thus, there exists some point $v \in V \cap U$ such that the *n*th coordinate of v is positive. Because $v \in U$, we can join v to \tilde{u} by a curve that doesn't intersect X. We can then concatenate this curve from v to \tilde{u} with the curve from \tilde{u} to z, deforming slightly at \tilde{u} if needed to maintain smoothness. This new curve from v to z does not intersect X, and thus $s_1 \in S$.

This shows us that $(U \cap X) \subset S$. Because $U \cap X$ is open in X, we have that s is an interior point. Thus, S must be open, as every element of s is an interior point.

5. Show that $\mathbb{R}^n \setminus X$ has, at most, two connected components.

Again, using the local immersion theorem at a point $x \in X$, there is a neighborhood U of x where the inclusion of X into \mathbb{R}^n is locally equivalent to the the canonical immersion $(x_1, \ldots, x_{n-1}) \mapsto (x_1, \ldots, x_{n-1}, 0)$. Without loss of generality, we let x map to 0. Then, we can take a small ball $B_{\epsilon}(0)$. Now, $B_{\epsilon}(0) \setminus X$ has two components, the upper half sphere and lower half sphere. Take z_0, z_1 in each component. WLOG, we also shrink U so that it is diffeomorphic to B_{ϵ} .

Now let $y \in \mathbb{R}^n \setminus X$ be an arbitrary point. By the previous exercise, there exists a point in U that is connected to y through a path not intersecting X. But each point in U is connected to either z_0 or z_1 by a path not intersecting X, so we can concatenate the paths to get a path from y to either z_0 or z_1 .

Hence, $\mathbb{R}^n \setminus X$ has at most 2 components, one containing z_0 and the other z_1 .

6. Show that if z_0 and z_1 belong to the same connected component of $\mathbb{R}^n \setminus X$, then $W_2(X, z_0) = W_2(X, z_1)$.

Since z_0 and z_1 belong to the same connected component which is a subset of \mathbb{R}^n -X, there exists a path between z_0 and z_1 ,

$$z_t: [0,1] \mapsto U \tag{2}$$

with $z_t(0)=z_0$ and $z_t(1)=z_1$

Consider such a curve z_t in \mathbb{R}^n -X connecting z_0 to z_1 . We have the

following map which is clearly a homotopy:

$$u_t(x) = \frac{x - z_t}{|x - z_t|} \tag{3}$$

It is always defined since $z_t \in \mathbb{R}^n$ -X, and thus $z_t \neq x$. u_0 and u_1 are homotopic and homotopic maps have same mod 2 degree. This implies that $deg_2(u_0) = deg_2(u_1)$ and consequently, $W_2(x, z_0) = W_2(x, z_1)$.

7. Given a point $z \in \mathbb{R}^n \setminus X$ and a direction vector $v \in S^{n-1}$, consider the ray *r* emanating from *z* in the direction of *v*,

$$r = \{z + tv : t \ge 0\}$$

Check that the ray r is transversal to X if and only if v is a regular value of the direction map $u : X \to S^{n-1}$. In particular, almost every ray from z intersects X transversally.

The following exercise, Chapter 1 Section 5 Exercise 7, was proven by a student during the review for the first midterm :

Let $X \xrightarrow{f} Y \xrightarrow{h} Z$ be a sequence of smooth maps of manifolds, and assume that *h* is transversal to a submanifold *W* of *Z*. $f \xrightarrow{d} h^{-1}(W)$ if and only if $h \circ f \xrightarrow{d} W$.

Consider a point $z \in \mathbb{R}^n - X$ and a direction vector $\vec{v} \in S^{n-1}$. Define r to be the set $r := \{z + t\vec{v} : t \ge 0\}$. Also, let $g : \mathbb{R}^n - \{z\} \mapsto S^{n-1}$ be defined by $g(y) = \frac{y-z}{|y-z|}$. Note that $u : X \mapsto S^{n-1}$ is simply g composed with the inclusion map $i : X \mapsto \mathbb{R}^n$.

First, note that $g^{-1}(\{v\}) = r$. This is because if $x \in r$, then $x = z + t\vec{v}$ for some $t \ge 0$. Hence, $g(x) = \frac{z+t\vec{v}-z}{|z+t\vec{v}-z|} = \frac{t\vec{v}}{|t\vec{v}|}$ and since $\vec{v} = 1$, then $g(x) = \vec{v}$ and consequently $x \in g^{-1}(\{\vec{v}\})$. Thus, $r \subset g^{-1}(\{v\})$. For the other direction, suppose that $x \in g^{-1}(\{\vec{v}\})$. Thus, $\vec{v} = \frac{x-z}{|x-z|}$. Letting t = |x-z|(where *t* some real number greater than or equal to 0), then $\vec{v} = \frac{x-z}{t}$. Rearranging, we see that $x = z + t\vec{v}$. Thus, $g^{-1}(\{v\}) \subset r$.

To apply the previously proved problem, we first need to see that \vec{v} is a regular value of g. Since g goes from $\mathbb{R}^n - \{y\}$ to S^{n-1} , the derivative map dg_x goes from $T_x(\mathbb{R}^n - \{y\})$ to $T_{\vec{v}}(S^{n-1})$. The tangent space of $\mathbb{R}^n - \{y\}$ at x is n-dimensional, and the tangent space of S^{n-1} is (n-1)-dimensional.

If \vec{v} is the direction from x to y, then \vec{v} is the only direction in which g remains constant at x. Thus ker $(dg_x) = \text{span}(\vec{v})$, and so the dimension of the nullspace of dg_x is 1. By the rank-nullity theorem, the rank of dg_x is n - 1, which equals the dimension of the codomain. Thus g is a submersion at any point $x \in g^{-1}(\vec{v})$.

Now, consider the sequence of smooth maps of manifolds $X \xrightarrow{i} \mathbb{R}^n \xrightarrow{g} S^{n-1}$. As we have shown, g is transversal to the submanifold $\{\vec{v}\}$ of S^{n-1} . Thus, $i \triangleq g^{-1}(\{\vec{v}\}) \iff g \circ i \triangleq \{\vec{v}\}$. Since $g^{-1}(\vec{v}) = r$, then $i \triangleq g^{-1}(\{\vec{v}\}) \iff i \triangleq r$. By the definition of sets being transversal, $i \triangleq r \iff X \triangleq r$. By construction $g \circ i = u$. Thus, $g \circ i \triangleq \{\vec{v}\} \iff u \triangleq \{\vec{v}\}$. Combining all of these equivalences, $u \triangleq \{\vec{v}\} \iff X \triangleq r$.

By Sard's Theorem almost every element \vec{v} of the codomain of u is a regular value of u. From the result of the previous paragraph almost every ray from z intersects X tranversally.

8. Suppose that *r* is a ray emanating from z_0 that intersects *X* transversally in a nonempty (necessarily finite) set. Suppose that z_1 is any other point on *r* (but no on *X*), and *l* be the number of times *r* intersects *X* between z_0 and z_1 . Verify that $W_2(X, z_0) = W_2(X, z_1) + l \mod 2$.

Let $u_0 = (f(x) - z_0)/|(f(x) - z_0)|$ and $u_1 = (f(x) - z_1)/|(f(x) - z_1)|$. By definition, $W_2(X, z_0) = #u_0^{-1}(v) \mod 2$, and $W_2(X, z_1) = #u_1^{-1}(v) \mod 2$.

By exercise 7, v is a regular value for u_0 and u_1 . This implies that $#u_0^{-1}$ is finite, as $dimX = dim(S^{n-1})$, as is $#u_1^{-1}$. X is compact.

 $#u_0^{-1}$ equals the number of intersections of u_0 with X along v from z_0 . It also equals the number of intersections from z_0 to z_1 plus the number of intersections of u_0 with X along v starting from z. This in turn equals l plus the number of intersections of u_1 and X along v, which equals $l + #u_1^{-1}(v)$.

Thus in conclusion, $W_2(X, z_0) = (\#u_1^{-1}(v) + l) \mod 2$, which equals $(W_2(X, z_1) + l) \mod 2$, as desired.

9. Conclude that $\mathbb{R}^n \setminus X$ has precisely two components, $D_0 = \{z : W_2(X, z) = 0\}$ and $D_1 = \{z : W_2(X, z) = 1\}$.

We first establish that there exist $z_0, z_1 \in \mathbb{R}^n \setminus X$ such that $W_2(X, z_0) \neq W_2(X, z_1)$. Let $z_0 \in \mathbb{R}^n \setminus X$ be arbitrary and let *r* be a ray emanating

from z_0 intersecting *X* transversally; such a ray exists by Exercise #7. Let z_1 be a point on the ray such that there is exactly one point of *X* on *r* between z_0 and z_1 . Specifically, $r = \{z_0 + t\vec{v} : t \in [0, \infty)\}$, where \vec{v} is is the direction of *r*. Then, if there is exactly one point where *r* intersects *X* (say, at $t = t_0$) we may let $z_1 = z_0 + 2t_0\vec{v}$. If there are at least two points of intersection (say, the first at $t = t_1$ and the second at $t = t_2$ where $t_1 < t_2$), we may let $z_1 = z_0 + \frac{t_1 + t_2}{2}\vec{v}$.

By Exercise #8, then, $W_2(X, z_0) = W_2(X, z_1) + 1 \pmod{2}$. Therefore, $W_2(X, z_0) \neq W_2(X, z_1)$. Suppose without loss of generality that $W_2(X, z_0) = 0$ and $W_2(X, z_1) = 1$. Now, by Exercise #6, z_0 and z_1 necessarily belong to two distinct connected components of $\mathbb{R}^n \setminus X$; let D_0 be the connected component with $z_0 \in D_0$ and D_1 that with $z_1 \in D_1$. Since by Exercise #5 $\mathbb{R}^n \setminus X$ has at most two connected components, we have that the connected components of $\mathbb{R}^n \setminus X$ are precisely D_0 and D_1 . By Exercise #6, we have that $D_0 \subseteq \{z : W_2(X, z) = 0\}$ and $D_1 \subseteq \{z : W_2(X, z) = 1\}$.

We now consider the reverse inclusion. Note now that because $D_0 \cup D_1$ forms a partition of $\mathbb{R}^n \setminus X$, each $z \in \mathbb{R}^n \setminus X$ must belong to either D_0 or D_1 . Suppose that $z \in \mathbb{R}^n \setminus X$ is such that $W_2(X, z) = 0$; by Exercise #6, z cannot be an element of D_1 as $W_2(X, z)$ and $W_2(X, z_1)$ differ; similarly, if $W_2(X, z) = 1$, z cannot be an element of D_0 as $W_2(X, z)$ and $W_2(X, z_0$ differ. Hence, we have that $D_0 \supseteq \{z : W_2(X, z) = 0\}$ and $D_1 \supseteq \{z : W_2(X, z) = 1\}$. Therefore, with both inclusions, we then have that $D_0 = \{z : W_2(X, z) = 0\}$ and $D_1 = \{z : W_2(X, z) = 1\}$.

10. Show that if z is very large, then $W_2(X, z) = 0$.

By definition, $W_2(X, z) = \deg_2(u_z)$, where $u_z(x) = \frac{x-z}{|x-z|}$. Because S^{n-1} is connected, by the definition of degree, $W_2(X, z)$ is $\#\{x : \frac{x-z}{|x-z|} = y\}$ (mod 2), for any $y \in S^{n-1}$. Now, consider the map $u_z(x)$. We have that

$$||u_{z}(x) - \frac{-z}{||z||}|| = \left\|\frac{x-z}{||x-z||} + \frac{z}{||z||}\right\| = \frac{1}{||z|| \cdot ||x-z||} \cdot \left\|||z||(x-z) + ||x-z||z|\right\|.$$

Rewriting this expression and applying the triangle inequality gives that the quantity above is

$$\frac{1}{\|z\| \cdot \|x - z\|} \cdot \left\| \|z\| + z(\|z - x\| - \|z\|) \right\| \le \frac{1}{\|z\| \cdot \|x - z\|} \cdot \left(\left\| \|z\| + \left\|z(\|z - x\| - \|z\|) \right\| \right) \right)$$

$$\leq \frac{2||z|| \cdot ||x||}{||z|| \cdot ||x - z||} = \frac{2||x||}{||z - x||}$$

(The final inequality follows from the facts that $||z(||z - x|| - ||z||)|| = |||z - x|| - ||z|| |\cdot ||z||$ and $|||z - x|| - ||z||| \le ||x||$.) Now, since *X* is compact, it is bounded, so there exists *M* such that $||x|| \le M$ for all $x \in X$. Combining all inequalities and using the fact that $||z|| - M \le ||z|| - ||x|| \le ||z - x||$, we then have that

$$\left\| u_{z}(x) - \frac{-z}{\|z\|} \right\| \le \frac{2M}{\|z - x\|} \le \frac{2M}{\|z\| - M}$$

implying that as $||z|| \to \infty$, $||u_z(x) - \frac{-z}{||z||}|| \to 0$. That is, as the magnitude of *z* increases without bound, $u_z(x)$ approaches $\frac{-z}{||z||}$.

Therefore, there exists M' such that for all z with $||z|| \ge M'$, $||\frac{x-z}{||x-z||} - \frac{-z}{||z|}|| < 1/2$. Now, note that $W_2(X, z) = \#\{x : \frac{x-z}{|x-z|} = y\} \pmod{2}$ for any regular value $y \in S^{n-1}$. Let $y = \frac{z}{|z|}$, and see that y is a regular value: Since for all z with $||z|| \ge M'$, $u_z(x) \in B(\frac{-z}{||z||}, \frac{1}{2}) \cap S^{n-1}$, we have that $y \notin \operatorname{Im}(u_z)$.¹ Hence, y is trivially a regular value and clearly $\#\{x : \frac{x-z}{||x-z||} = y\} = 0$, so we have that $W_2(X, z) = \#\{x : \frac{x-z}{||x-z||} = y\} \pmod{2} = 0$.

11. Prove the Jordan-Brouwer Separation Theorem: The complement of the compact connected hyper surface (i.e. codimension 1 submanifold) X in \mathbb{R}^n consists of two connected open sets, the "outside" D_0 and the "inside" D_1 . Moreover, \overline{D}_1 is a compact manifold with boundary $\partial \overline{D}_1 = X$.

We know by part (9) that the complement of X in \mathbb{R}^n consists of precisely two connected components, D_0 and D_1 . Note that since X is closed, $\mathbb{R}^n - X$ is open. Since D_0 and D_1 are connected components of $\mathbb{R}^n - X$, we can take open sets U_0, U_1 of \mathbb{R}^n so that $D_0 \subset U_0, D_1 \subset U_1$. Then $D_0 = U_0 \cap \mathbb{R}^n - X$, so as an intersection of open sets, D_0 is open. By a similar argument D_1 is open as well.

Now we seek to show that \overline{D}_1 is a compact manifold with boundary $\partial \overline{D}_1 = X$. By part (10) we know that $\forall z$ sufficiently large, $W_2(X, z) = 0$ which implies that $z \in D_0$. Thus D_1 is bounded. By taking the closure

¹Here $B(x, \epsilon)$ is the ball of radius $\epsilon > 0$ centered at x.

of D_1 , we have constructed a closed and bounded subset of \mathbb{R}^n which implies that \overline{D}_1 is compact. To show that $\overline{D}_1 = D_1 \cup X$, note that D_0 is open $\Rightarrow D_0^c = D_1 \cup X$ is closed. Thus, $\overline{D}_1 \subset D_1 \cup X$. Now we claim that $D_1 \cup X \subset \overline{D}_1$ or more specifically that $X \subset \overline{D}_1$. Pick an $x \in X$ and $z \in D_1$. We will construct a sequence $(z_n) \in D_1$ that converges to x. By exercise (4) we can take any arbitrarily small neighborhoods U of x and there exists a $z_i \in U$ such that z_i is connected to z. As $z \in D_1$, and D_1 is a connected component of $\mathbb{R}^n \setminus X$, it must be that $z_i \in D_1$ as well. Since our \mathbb{R}^n is second countable, from a previous homework, if we construct our sequence with nested open sets about x we can form a sequence (z_n) in D_1 that converges to x. Since our choice of xwas arbitrary, we have that $X \subset \overline{D}_1$. Thus $\overline{D}_1 = D_1 \cup X$ and $\partial \overline{D}_1 = X$.

Now we show that \overline{D}_1 is a manifold with boundary. Let $x \in X$. Since X is a submanifold of \mathbb{R}^n of dimension n - 1, by the local immersion theorem, by considering the inclusion map from X to \mathbb{R}^n we can find a parametrization $\psi : B \to U$, where B is an open ball around 0 in \mathbb{R}^n and U is a neighborhood of x in \mathbb{R}^n , so that if $\psi = (x_1, x_2, ..., x_n)$ then $\psi|_{U \cap X} = (x_1, x_2, ..., x_{n-1}, 0)$. That is, $\psi(B \cap \mathbb{R}^{n-1}) = X \cap \psi(B)$.

We claim that *U* is separated into D_0 , D_1 by *X*. Pick $z \in \mathbb{R}^n - X$. Then by exercise (4) it can be joined by a path to some element in *U*. Thus these two elements belong to the same connected component and thus by exercise (6) have the same winding number. So both of these elements belong to either D_0 or D_1 . Since this holds for every element in $\mathbb{R}^n - X$ and D_0 , D_1 are nonempty, we have that *U* is separated into subsets of D_0 and D_1 by *X*.

Thus consider $\psi(B \cap (H^n - \mathbb{R}^{n-1}))$ and $\psi(B \cap (-H^n - \mathbb{R}^{n-1}))$. Since $B \cap (H^n - \mathbb{R}^{n-1})$ is connected and ψ is continuous, $\psi(B \cap (H^n - \mathbb{R}^{n-1}))$ is connected. So it maps entirely into either $U \cap D_0$ or $U \cap D_1$. By symmetry, $\psi(B \cap (-H^n - \mathbb{R}^{n-1}))$ is also connected and maps entirely into either D_0 or D_1 . Because ψ is a diffeomorphism, it is a bijection. Thus it must be that $\psi(B \cap (H^n - \mathbb{R}^{n-1})) \cap \psi(B \cap (-H^n - \mathbb{R}^{n-1})) = \emptyset$ for if this wasn't the case, then our map ψ would fail to satisfy surjectivity. So we can assume without loss of generality that $\psi(B \cap (H^n - \mathbb{R}^{n-1})) \subset D_1$ and $\psi(B \cap (-H^n - \mathbb{R}^{n-1})) \subset D_0$. Thus by restricting ψ to $B \cap H^n$, we have constructed a parametrization of \overline{D}_1 , which shows that \overline{D}_1 is a manifold with boundary. (If $\psi(B \cap (-H^n - \mathbb{R}^{n-1})) \subset D_1$, then one could just compose ψ with the function that takes the last coordinate of an

element in \mathbb{R}^n to its negative to construct the parametrization.)

12. Given $z \in \mathbb{R}^n \setminus X$, let *r* be any ray emanating from *z* that is transversal to *X*. Show that *z* is inside *X* if and only if *r* intersects *X* in an odd number of points.

We first consider $r \cap X$. Note that r is a 1-dimensional manifold. Since r is transversal to X, $r \cap X$ is a manifold with with codimension

$\operatorname{codim} r + \operatorname{codim} X$

However, dim r = 1 and dim X = (n - 1), so codim r = n - 1 and codim X = 1. Thus $r \cap X$ has codimension n - 1 + 1 = n, and $r \cap X$ has dimension 0. However, r is closed and X is compact, so $r \cap X$ is compact. Since $r \cap X$ is 0-dimensional and compact, it must be finite.

Assume *z* is inside *X*. Let $m = \#r \cap X$ be the number of times *r* intersects *X*. By exercise 10, there exists some M_0 such that for $y \in r$, $|y| > M_0$, we have that $W_2(X, y) = 0$. By the above, we have that *m* is finite, so we can let M_1 be the distance of the farthest intersection between *r* and *X* from *z*. Thus take $y \in r$ so that $|y| > M_0$ and $d(y, z) > M_1$. Note that since $d(y, z) > M_1$, we have that

l := number of times *r* intersects *X* between *z* and *y*

is equal to *m*. Thus by exercise 8, we have that

$$W_2(X, z) = W_2(X, y) + l \mod 2$$
$$= W_2(X, y) + m \mod 2$$

However, we had that $W_2(X, y) = 0$ by our definition of *y*, so

$$W_2(X,z) = m \mod 2 \ (1)$$

We prove the forward direction. Suppose *z* is inside *X*. Then $W_2(X, z) = 1$, so thus $m \equiv 1 \mod 2$, i.e. *m* is odd, as desired.

The backward direction is similar. Suppose $m \equiv 1 \mod 2$. Then $W_2(X, z) = 1$ by equation (1), so *z* is inside *X* by definition.