
Proof of Jordan-Brouwer Separation
Theorem

UC Berkeley, Math 141, Fall 2014

November 20, 2014

1. Show that if F does not hit z, then W2( f , z) = 0

Suppose z ∈ Rn
− F(D). Then, we can define the unit vector mapping

u on X by

u(x) =
f (x) − z
| f (x) − z|

.

As stated, this formula is valid for both X and D, since we assumed
that z < F(D); therefore, we can define U : D → Y with U|X = u, by
using the formula

U(x) =
F(x) − z
|F(x) − z|

.

Furthermore, U is smooth because it is the composition of x 7→ F(x)−z
and x 7→ x/|x|, which are both smooth since the latter is defined on
F(D) − z, which doesn’t include 0. This proves that U is an extension
of u to all of D, so by the theorem on p. 81 in the book, we have
deg2(u) = 0. Thus,

W2( f , z) = deg2(u) = 0.

2. Suppose that F−1(z) = {y1, . . . , yl}, and around each point yi let Bi

be a ball (that is Bi is the image of a ball in Rn via some local
parametrization of D). Demand that the balls be disjoint from one
another and from X = ∂D. Let fi : ∂Di → Rn be the restriction of F,
and prove that

W2( f , z) = W2( f1, z) + · · · + W2( fl, z) mod 2.
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The values y1, . . . , yl are all distinct, and the condition z < f (X) implies
that y1, . . . , yl < X, so we can demand that the balls are disjoint and
separated from one another and from X, since Rn is a regular (T3)
Hausdorff space. Define

D′ = D −
l⋃

i=1

Int(Bi).

Note that by shrinking each Bi, we can require that they are contained
in Int(D), so each ∂Bi (here we mean the topological boundary) is
contained in Int(D) as well. ∂Bi is a n − 1 dimensional manifold, so
by the local immersion theorem, there exists a local parametrization
φ : Rn

→ V where φ(0) = y ∈ V, and ∂Bi, locally, is the subset Rn−1

of Rn where the nth coordinate is 0. Therefore, ∂Bi ⊆ ∂D′ (here, we
mean the manifold boundary). Since X is separated from the balls,
we can shrink any local parametrization of a point y ∈ ∂D ⊆ D so that
it is also a local parametrization of y ∈ D′ with y on the boundary.
This shows that ∂D ⊆ ∂D′. Since all other points in D′ are interior
points, we’ve proven that

∂D′ = ∂D ∪
l⋃

i=1

∂Bi.

Let FD′ be the restriction of F to D′. By contruction, FD′ never hits z,
so letting f∂D′ = ∂FD′ , we have by Exercise 1 that 0 = W2( f∂D′ , z). But
if u : ∂D′ → Sn−1 is the unit vector map induced by f∂D′ and z, then
for any y ∈ Sn−1,

0 = W2( f∂D′ , z) = deg2(u) = I2(u,
{
y
}
) = #[u−1(y)] mod 2. (1)

Since X = ∂D, ∂B1, . . . , ∂Bl are all disjoint and have union ∂D′, we
have

0 = #[u−1(y)] = #[u−1(y)∩ ∂D] + #[u−1(y)∩ ∂B1] + · · · + #[u−1(y)∩ ∂Bl].

Clearly u−1(y)∩Z = uZ
−1(y), where uZ is the unit vector map induced

by z and the restriction of f∂D′ to the submanifold Z ⊆ ∂D′, so the
above translates to

0 = #[u∂D
−1(y)] + #[u∂B1

−1(y)] + · · · + #[u∂Bl
−1(y)],
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which translates by (1) to

0 = W2( f , z) + W2( f1, z) + · · · + W2( fl, z) mod 2.

Rearranging, and noting that a = −a mod 2, we conclude that

W2( f , z) = W2( f1, z) + · · · + W2( fl, z) mod 2.

3. Use the regularity of z to choose the balls Bi so that W2( fi, z) = 1,
and thus prove the theorem.

Since z is a regular value of F, we have that dFz : D→ Y is surjective.
It was presumed that dim D = n = dim Y, so dFz is thus bijective, and
thus an isomorphism, so by the inverse function theorem, F is a local
diffeomorphism at each yi.

So for each i, we can find an open subset U ⊆ D with yi ∈ U and
open V ⊆ Rn with z ∈ V such that F : U → V is a diffeomorphism.
By openness, we can pick a closed ball Ai ⊆ V centered at z such
that the restriction of F to some closed set Bi ⊆ U (with yi ∈ Bi) maps
diffeomorphically to Ai. Exercise 2.1.2 tells us that the restriction of
F to ∂Bi (call it fi) maps ∂Bi diffeomorphically to ∂Ai.

∂Ai is a small sphere centered at z, so for any w1,w2 ∈ ∂Bi, we have
fi(w1), fi(w2) ∈ ∂Ai, and thus we may write them uniquely as

fi(w1) = z + rv1& fi(w2) = z + rv2

where r is the radius of Ai and v1, v2 ∈ Sn−1. But then we have we
have, with u : ∂Bi → Sn−1 denoting the unit vector map induced by fi

and z, and if u(w1) = u(w2), then

u(w1) = u(w2)

⇒
fi(w1) − z
| fi(w1) − z|

=
fi(w2) − z
| fi(w2) − z|

⇒
rv1

|rv1|
=

rv2

|rv2|

⇒ v1 = v2

⇒ z + rv1 = z + rv2

⇒ w1 = w2,
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so u is injective. It’s also surjective because as we showed just above,

[v ∈ Sn−1] =⇒ [z + rv ∈ ∂Ai] =⇒ [u( fi
−1(z + rv)) = v ∈ Sn−1].

Since u is bijective, we have for any v ∈ Sn−1 that u−1(v) contains a
single point. But then

1 = #[u−1(v)] = I2(u, {v}) = deg2(u) = W2( fi, z),

for each i. Therefore,

W2( f , z) = W2( f1, z) + · · · + W2( fl, z) = l = #[F−1(z)] mod 2.

4. Let z ∈ Rn
\X. Prove that if x is any point of X and U any neighbor-

hood of x in Rn, then there exists a point of U that may be joined
to z by a curve not intersecting X.

Fix z ∈ Rn
− X. Let S be the set of all points of X such that the above

is true. First we will show that S is closed in X.

Let (si) be a sequence of points of S which converge to some point s
in X, si → s. If we have that s ∈ S, then we are done. Assume that
s < S.

Let U be an open neighborhood of s in Rn, s ∈ U. Clearly we have
some si ∈ U. But then there exists some open neighborhood U′ of si,
si ∈ U′. Without loss of generality, we may assume that U′ is small
enough such that U′ ⊂ U. Then, because si ∈ S, there must exist a
point of U′ that may be joined to z by a curve not intersecting X. But
this this implies such a point exists in U, which is a contradiction,
as we have assumed that s < S. Thus, we must have that s ∈ S, and
hence S is closed.

Now we may show that S is open. We will do so by showing that
every point in S is an interior point. Let s ∈ S be any point. From the
inclusion map i : X→ Rn, the Local Immersion Theorem tells us that
there exists local coordinates on a neighborhood U of s in Rn such
that U ∩ X is equal to the set of all points of the form (u1, . . . ,un−1, 0).

Now, because s ∈ S, there exists a point ũ ∈ (U − X) such that ũ can
be connected to z by a curve. Write ũ = (u1, . . . ,un), with un , 0, as
ũ < X. Thus, un may either be positive or negative. Without loss of
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generality, let us assume that un > 0. Now, take any point s1 , s,
with s1 ∈ U ∩ X, and take any neighborhood V of s1 in Rn. We have
that V ∩ U , ∅. Thus, there exists some point v ∈ V ∩ U such that
the nth coordinate of v is positive. Because v ∈ U, we can join v to
ũ by a curve that doesn’t intersect X. We can then concatenate this
curve from v to ũ with the curve from ũ to z, deforming slightly at ũ
if needed to maintain smoothness. This new curve from v to z does
not intersect X, and thus s1 ∈ S.

This shows us that (U ∩X) ⊂ S. Because U ∩X is open in X, we have
that s is an interior point. Thus, S must be open, as every element of
s is an interior point.

5. Show that Rn
\ X has, at most, two connected components.

Again, using the local immersion theorem at a point x ∈ X, there is a
neighborhood U of x where the inclusion of X intoRn is locally equiv-
alent to the the canonical immersion (x1, . . . , xn−1) 7→ (x1, . . . , xn−1, 0).
Without loss of generality, we let x map to 0. Then, we can take a
small ball Bε(0). Now, Bε(0) \ X has two components, the upper half
sphere and lower half sphere. Take z0, z1 in each component. WLOG,
we also shrink U so that it is diffeomorphic to Bε.

Now let y ∈ Rn
\ X be an arbitrary point. By the previous exercise,

there exists a point in U that is connected to y through a path not
intersecting X. But each point in U is connected to either z0 or z1 by a
path not intersecting X, so we can concatenate the paths to get a path
from y to either z0 or z1.

Hence, Rn
\ X has at most 2 components, one containing z0 and the

other z1.

6. Show that if z0 and z1 belong to the same connected component of
Rn
\ X, then W2(X, z0) = W2(X, z1).

Since z0 and z1 belong to the same connected component which is a
subset of Rn-X, there exists a path between z0 and z1,

zt : [0, 1] 7→ U (2)

with zt(0)=z0 and zt(1)=z1

Consider such a curve zt in Rn-X connecting z0 to z1. We have the
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following map which is clearly a homotopy:

ut(x) =
x − zt

|x − zt|
(3)

It is always defined since zt∈Rn-X, and thus zt ,x.
u0 and u1 are homotopic and homotopic maps have same mod 2
degree. This implies that deg2(u0) = deg2(u1) and consequently,
W2(x, z0) = W2(x, z1).

7. Given a point z ∈ Rn
\ X and a direction vector v ∈ Sn−1, consider

the ray r emanating from z in the direction of v,

r = {z + tv : t ≥ 0}.

Check that the ray r is transversal to X if and only if v is a regular
value of the direction map u : X→ Sn−1. In particular, almost every
ray from z intersects X transversally.

The following exercise, Chapter 1 Section 5 Exercise 7, was proven
by a student during the review for the first midterm :

Let X
f
−→ Y h

−→ Z be a sequence of smooth maps of manifolds, and
assume that h is transversal to a submanifold W of Z. f −t h−1(W) if
and only if h ◦ f −tW.

Consider a point z ∈ Rn
− X and a direction vector ~v ∈ Sn−1. Define

r to be the set r :=
{
z + t~v : t ≥ 0

}
. Also, let g : Rn

− {z} 7→ Sn−1 be
defined by g(y) =

y−z
|y−z| . Note that u : X 7→ Sn−1 is simply g composed

with the inclusion map i : X 7→ Rn.

First, note that g−1({v}) = r. This is because if x ∈ r, then x = z + t~v for
some t ≥ 0. Hence, g(x) = z+t~v−z

|z+t~v−z| = t~v
|t~v| and since ~v = 1, then g(x) = ~v

and consequently x ∈ g−1(
{
~v
}
). Thus, r ⊂ g−1({v}). For the other

direction, suppose that x ∈ g−1(~v). Thus, ~v = x−z
|x−z| . Letting t = |x − z|

(where t some real number greater than or equal to 0), then ~v = x−z
t .

Rearranging, we see that x = z + t~v. Thus, g−1({v}) ⊂ r.

To apply the previously proved problem, we first need to see that
~v is a regular value of g. Since g goes from Rn

−
{
y
}

to Sn−1, the
derivative map dgx goes from Tx(Rn

−
{
y
}
) to T~v(Sn−1). The tangent

space of Rn
−

{
y
}

at x is n-dimensional, and the tangent space of Sn−1

is (n − 1)-dimensional.
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If ~v is the direction from x to y, then ~v is the only direction in which g
remains constant at x. Thus ker(dgx) = span(~v), and so the dimension
of the nullspace of dgx is 1. By the rank-nullity theorem, the rank of
dgx is n − 1, which equals the dimension of the codomain. Thus g is
a submersion at any point x ∈ g−1(~v).

Now, consider the sequence of smooth maps of manifolds X i
−→ Rn g

−→

Sn−1. As we have shown, g is transversal to the submanifold
{
~v
}

of
Sn−1. Thus, i −t g−1(

{
~v
}
) ⇐⇒ g ◦ i −t

{
~v
}
. Since g−1(~v) = r, then

i −t g−1(
{
~v
}
) ⇐⇒ i −t r. By the definition of sets being transversal,

i −t r ⇐⇒ X −t r. By construction g ◦ i = u. Thus, g ◦ i −t
{
~v
}
⇐⇒

u −t
{
~v
}
. Combining all of these equivalences, u −t

{
~v
}
⇐⇒ X −t r.

By Sard’s Theorem almost every element ~v of the codomain of u is a
regular value of u. From the result of the previous paragraph almost
every ray from z intersects X tranversally.

8. Suppose that r is a ray emanating from z0 that intersects X transver-
sally in a nonempty (necessarily finite) set. Suppose that z1 is any
other point on r (but no on X), and l be the number of times r inter-
sects X between z0 and z1. Verify that W2(X, z0) = W2(X, z1) + l mod
2.

Let u0 = ( f (x) − z0)/|( f (x) − z0)| and u1 = ( f (x) − z1)/|( f (x) − z1)|. By
definition, W2(X, z0) = #u−1

0 (v) mod 2, and W2(X, z1) = #u−1
1 (v) mod 2.

By exercise 7, v is a regular value for u0 and u1. This implies that #u−1
0

is finite, as dimX = dim(Sn−1), as is #u−1
1 . X is compact.

#u−1
0 equals the number of intersections of u0 with X along v from

z0. It also equals the number of intersections from z0 to z1 plus the
number of intersections of u0 with X along v starting from z. This in
turn equals l plus the number of intersections of u1 and X along v,
which equals l + #u−1

1 (v).

Thus in conclusion, W2(X, z0) = (#u−1
1 (v) + l) mod 2, which equals

(W2(X, z1) + l) mod 2, as desired.

9. Conclude that Rn
\ X has precisely two components, D0 = {z :

W2(X, z) = 0} and D1 = {z : W2(X, z) = 1}.

We first establish that there exist z0, z1 ∈ Rn
\ X such that W2(X, z0) ,

W2(X, z1). Let z0 ∈ Rn
\ X be arbitrary and let r be a ray emanating
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from z0 intersecting X transversally; such a ray exists by Exercise #7.
Let z1 be a point on the ray such that there is exactly one point of X
on r between z0 and z1. Specifically, r = {z0 + t~v : t ∈ [0,∞)}, where
~v is is the direction of r. Then, if there is exactly one point where r
intersects X (say, at t = t0) we may let z1 = z0 + 2t0~v. If there are at
least two points of intersection (say, the first at t = t1 and the second
at t = t2 where t1 < t2), we may let z1 = z0 + t1+t2

2 ~v.

By Exercise #8, then, W2(X, z0) = W2(X, z1) + 1 (mod 2). There-
fore, W2(X, z0) , W2(X, z1). Suppose without loss of generality that
W2(X, z0) = 0 and W2(X, z1) = 1. Now, by Exercise #6, z0 and z1 neces-
sarily belong to two distinct connected components of Rn

\ X; let D0

be the connected component with z0 ∈ D0 and D1 that with z1 ∈ D1.
Since by Exercise #5 Rn

\ X has at most two connected components,
we have that the connected components of Rn

\ X are precisely D0

and D1. By Exercise #6, we have that D0 ⊆ {z : W2(X, z) = 0} and
D1 ⊆ {z : W2(X, z) = 1}.

We now consider the reverse inclusion. Note now that because D0∪D1

forms a partition of Rn
\ X, each z ∈ Rn

\ X must belong to either D0

or D1. Suppose that z ∈ Rn
\ X is such that W2(X, z) = 0; by Exercise

#6, z cannot be an element of D1 as W2(X, z) and W2(X, z1) differ;
similarly, if W2(X, z) = 1, z cannot be an element of D0 as W2(X, z)
and W2(X, z0 differ. Hence, we have that D0 ⊇ {z : W2(X, z) = 0} and
D1 ⊇ {z : W2(X, z) = 1}. Therefore, with both inclusions, we then have
that D0 = {z : W2(X, z) = 0} and D1 = {z : W2(X, z) = 1}.

10. Show that if z is very large, then W2(X, z) = 0.

By definition, W2(X, z) = deg2(uz), where uz(x) = x−z
|x−z| . Because Sn−1

is connected, by the definition of degree, W2(X, z) is #{x : x−z
|x−z| = y}

(mod 2), for any y ∈ Sn−1. Now, consider the map uz(x). We have that

‖uz(x) −
−z
‖z‖
‖ =

∥∥∥∥∥ x − z
‖x − z‖

+
z
‖z‖

∥∥∥∥∥ =
1

‖z‖ · ‖x − z‖
·

∥∥∥∥∥‖z‖(x − z) + ‖x − z‖z
∥∥∥∥∥.

Rewriting this expression and applying the triangle inequality gives
that the quantity above is

1
‖z‖ · ‖x − z‖

·

∥∥∥∥∥‖z‖x+z(‖z−x‖−‖z‖)
∥∥∥∥∥ ≤ 1
‖z‖ · ‖x − z‖

·

(∥∥∥∥∥‖z‖x∥∥∥∥∥+∥∥∥∥∥z(‖z−x‖−‖z‖)
∥∥∥∥∥)
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≤
2‖z‖ · ‖x‖
‖z‖ · ‖x − z‖

=
2‖x‖
‖z − x‖

.

(The final inequality follows from the facts that
∥∥∥z(‖z − x‖ − ‖z‖)

∥∥∥ =∣∣∣‖z−x‖−‖z‖
∣∣∣·‖z‖ and

∣∣∣‖z−x‖−‖z‖
∣∣∣ ≤ ‖x‖.) Now, since X is compact, it is

bounded, so there exists M such that ‖x‖ ≤M for all x ∈ X. Combining
all inequalities and using the fact that ‖z‖ −M ≤ ‖z‖ − ‖x‖ ≤ ‖z − x‖,
we then have that∥∥∥∥∥uz(x) −

−z
‖z‖

∥∥∥∥∥ ≤ 2M
‖z − x‖

≤
2M
‖z‖ −M

implying that as ‖z‖ → ∞, ‖uz(x)− −z
‖z‖‖ → 0. That is, as the magnitude

of z increases without bound, uz(x) approaches −z
‖z‖ .

Therefore, there exists M′ such that for all z with ‖z‖ ≥ M′, ‖ x−z
‖x−z‖ −

−z
‖z‖‖ < 1/2. Now, note that W2(X, z) = #{x : x−z

|x−z| = y} (mod 2) for
any regular value y ∈ Sn−1. Let y = z

|z| , and see that y is a regular
value: Since for all z with ‖z‖ ≥ M′, uz(x) ∈ B( −z

‖z‖ ,
1
2 ) ∩ Sn−1, we have

that y < Im(uz).1 Hence, y is trivially a regular value and clearly
#{x : x−z

‖x−z‖ = y} = 0, so we have that W2(X, z) = #{x : x−z
‖x−z‖ = y}

(mod 2) = 0.

11. Prove the Jordan-Brouwer Separation Theorem: The complement
of the compact connected hyper surface (i.e. codimension 1 sub-
manifold) X in Rn consists of two connected open sets, the “out-
side” D0 and the “inside” D1. Moreover, D̄1 is a compact manifold
with boundary ∂D̄1 = X.

We know by part (9) that the complement of X in Rn consists of
precisely two connected components, D0 and D1. Note that since X is
closed,Rn

−X is open. Since D0 and D1 are connected components of
Rn
− X, we can take open sets U0,U1 of Rn so that D0 ⊂ U0,D1 ⊂ U1.

Then D0 = U0 ∩Rn
−X, so as an intersection of open sets, D0 is open.

By a similar argument D1 is open as well.

Now we seek to show that D̄1 is a compact manifold with boundary
∂D̄1 = X. By part (10) we know that ∀z sufficiently large, W2(X, z) = 0
which implies that z ∈ D0. Thus D1 is bounded. By taking the closure

1Here B(x, ε) is the ball of radius ε > 0 centered at x.
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of D1, we have constructed a closed and bounded subset ofRn which
implies that D̄1 is compact. To show that D̄1 = D1 ∪ X, note that D0

is open⇒ Dc
0 = D1 ∪ X is closed. Thus, D̄1 ⊂ D1 ∪ X. Now we claim

that D1 ∪ X ⊂ D̄1 or more specifically that X ⊂ D̄1. Pick an x ∈ X and
z ∈ D1. We will construct a sequence (zn) ∈ D1 that converges to x.
By exercise (4) we can take any arbitrarily small neighborhoods U of
x and there exists a zi ∈ U such that zi is connected to z. As z ∈ D1,
and D1 is a connected component of Rn

\X, it must be that zi ∈ D1 as
well. Since our Rn is second countable, from a previous homework,
if we construct our sequence with nested open sets about x we can
form a sequence (zn) in D1 that converges to x. Since our choice of x
was arbitrary, we have that X ⊂ D̄1. Thus D̄1 = D1 ∪ X and ∂D̄1 = X.

Now we show that D̄1 is a manifold with boundary. Let x ∈ X. Since
X is a submanifold of Rn of dimension n − 1, by the local immersion
theorem, by considering the inclusion map from X toRn we can find
a parametrization ψ : B→ U, where B is an open ball around 0 in Rn

and U is a neighborhood of x in Rn, so that if ψ = (x1, x2, ..., xn) then
ψ|U∩X = (x1, x2, ..., xn−1, 0). That is, ψ(B ∩Rn−1) = X ∩ ψ(B).

We claim that U is separated into D0,D1 by X. Pick z ∈ Rn
−X. Then

by exercise (4) it can be joined by a path to some element in U. Thus
these two elements belong to the same connected component and
thus by exercise (6) have the same winding number. So both of these
elements belong to either D0 or D1. Since this holds for every element
in Rn

−X and D0,D1 are nonempty, we have that U is separated into
subsets of D0 and D1 by X.

Thus consider ψ(B ∩ (Hn
− Rn−1)) and ψ(B ∩ (−Hn

− Rn−1)). Since
B ∩ (Hn

−Rn−1) is connected and ψ is continuous, ψ(B ∩ (Hn
−Rn−1))

is connected. So it maps entirely into either U ∩ D0 or U ∩ D1. By
symmetry,ψ(B∩(−Hn

−Rn−1)) is also connected and maps entirely into
either D0 or D1. Because ψ is a diffeomorphism, it is a bijection. Thus
it must be that ψ(B∩ (Hn

−Rn−1))∩ψ(B∩ (−Hn
−Rn−1)) = ∅ for if this

wasn’t the case, then our map ψ would fail to satisfy surjectivity. So
we can assume without loss of generality thatψ(B∩ (Hn

−Rn−1)) ⊂ D1

and ψ(B ∩ (−Hn
− Rn−1)) ⊂ D0. Thus by restricting ψ to B ∩ Hn, we

have constructed a parametrization of D̄1, which shows that D̄1 is a
manifold with boundary. (Ifψ(B∩ (−Hn

−Rn−1)) ⊂ D1, then one could
just compose ψ with the function that takes the last coordinate of an

10



element in Rn to its negative to construct the parametrization.)

12. Given z ∈ Rn
\X, let r be any ray emanating from z that is transversal

to X. Show that z is inside X if and only if r intersects X in an odd
number of points.

We first consider r∩X. Note that r is a 1-dimensional manifold. Since
r is transversal to X, r ∩ X is a manifold with with codimension

codim r + codim X

However, dim r = 1 and dim X = (n − 1), so codim r = n − 1 and
codim X = 1. Thus r ∩ X has codimension n − 1 + 1 = n, and r ∩ X
has dimension 0. However, r is closed and X is compact, so r ∩ X is
compact. Since r∩X is 0-dimensional and compact, it must be finite.

Assume z is inside X. Let m = #r ∩ X be the number of times r
intersects X. By exercise 10, there exists some M0 such that for y ∈ r,
|y| > M0, we have that W2(X, y) = 0. By the above, we have that m
is finite, so we can let M1 be the distance of the farthest intersection
between r and X from z. Thus take y ∈ r so that |y| > M0 and
d(y, z) > M1. Note that since d(y, z) > M1, we have that

l := number of times r intersects X between z and y

is equal to m. Thus by exercise 8, we have that

W2(X, z) = W2(X, y) + l mod 2
= W2(X, y) + m mod 2

However, we had that W2(X, y) = 0 by our definition of y, so

W2(X, z) = m mod 2 (1)

.

We prove the forward direction. Suppose z is inside X. Then
W2(X, z) = 1, so thus m ≡ 1 mod 2, i.e. m is odd, as desired.

The backward direction is similar. Suppose m ≡ 1 mod 2. Then
W2(X, z) = 1 by equation (1), so z is inside X by definition.
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