MATH 141: Differential Topology

Homework \#1
Due September 11, 2014
Please turn in the starred (*) problems only.

1. Let (X, \mathcal{T}) be a topological space and $A \subset X$.
(a) Show that every open set contained in A is contained $\operatorname{in} \operatorname{Int}(A)$. Conclude that

$$
\operatorname{Int}(A)=\bigcup_{U \in \mathcal{T}, U \subset A} U
$$

(In other words, $\operatorname{Int}(A)$ is the largest open subset contained in A.)
(b) Show that every closed set containing A contains \bar{A}. Conclude that

$$
\bar{A}=\bigcap_{C \text { is closed, } A \subset C} C .
$$

(In other words, \bar{A} is the smallest closed subset containing A.)
2. Let $X=\mathbb{R}$, and let S be the set of irrational numbers. Find \bar{S} in the usual topology, the trivial topology, the discrete topology, and the cocountable topology.
3.* Find a topology on \mathbb{R} along with a subset $S \subset \mathbb{R}$ such that not every limit point of S is a limit of a sequence in S.
4.* Show that \mathbb{R}^{n}, with the usual topology, has a countable basis.
5. If Y is a subspace of (X, \mathcal{T}) and Z is a subspace of Y, show that Z is a subspace of X.
6.* Let $\left(\mathbb{R}^{n}, \mathcal{T}\right)$ be \mathbb{R}^{n} with the usual topology (i.e. from the Euclidean metric). Let $A \subset \mathbb{R}^{n}$ have the subspace topology. Show that a set $O \subset A$ is open in the subspace topology if and only if for each $x \in O$, there exists an $\epsilon>0$ such that all points of A of distance less than ϵ lie in O.

