MATH 141: Differential Topology

Homework #1 Due September 11, 2014

Please turn in the starred (*) problems only.

- 1. Let (X, \mathcal{T}) be a topological space and $A \subset X$.
 - (a) Show that every open set contained in A is contained in Int(A). Conclude that

$$\operatorname{Int}(A) = \bigcup_{U \in \mathcal{T}, U \subset A} U.$$

(In other words, Int(A) is the largest open subset contained in A.)

(b) Show that every closed set containing A contains A. Conclude that

$$\bar{A} = \bigcap_{C \text{ is closed}, A \subset C} C.$$

(In other words, \overline{A} is the smallest closed subset containing A.)

- 2. Let $X = \mathbb{R}$, and let S be the set of irrational numbers. Find \overline{S} in the usual topology, the trivial topology, the discrete topology, and the cocountable topology.
- 3.* Find a topology on \mathbb{R} along with a subset $S \subset \mathbb{R}$ such that not every limit point of S is a limit of a sequence in S.
- 4.* Show that \mathbb{R}^n , with the usual topology, has a countable basis.
- 5. If Y is a subspace of (X, \mathcal{T}) and Z is a subspace of Y, show that Z is a subspace of X.
- 6.* Let $(\mathbb{R}^n, \mathcal{T})$ be \mathbb{R}^n with the usual topology (i.e. from the Euclidean metric). Let $A \subset \mathbb{R}^n$ have the subspace topology. Show that a set $O \subset A$ is open in the subspace topology if and only if for each $x \in O$, there exists an $\epsilon > 0$ such that all points of A of distance less than ϵ lie in O.