
Math 104 Section 2
Final Exam

December 19, 2013

Name:

• Complete the following problems. In order to receive full credit, please provide rigorous
proofs and show all of your work and justify your answers. Unless stated otherwise,
you may use any result proved in class, the text, or in homeworks, but be sure to
clearly state the result before using it and to verify that all hypotheses are satisfied.

• Unless explicitly stated otherwise, you may assume any derivatives or integrals of
functions that you learned in calculus. These include common functions like xn, sin x

and cos x, ex, log x, etc.

• You are allowed one page (front and back) of your own personal notes. Books and other
notes are not permitted. No electronic devices, including cellphones, headphones, cal-
culation aids, will be permitted for any reason. Optical aids that are non-prescription
will also not be permitted. Please staple your notes to your exam before turning it in.

• You will have 150 minutes to complete the exam. The start time and end time will
be signaled by the instructor. Do not open the exam or write anything on the exam,
including on this cover sheet, until the exam has begun.

• The exam and all papers must remain in the testing room at all times. When you are
finished, you must hand your exam paper to the instructor. In the case of a fire alarm,
leave your exams in the room, face down, before evacuating. Under no circumstances
should you take the exam with you.

• If you need extra room for your answers, use the back side of each page. You may also
use those back sides as well as the spare blank pages at the end of the exam for scratch
work. If you must use extra paper, use only that provided by the instructor; make sure
to write your name on it and attach it to this exam. Do not unstaple or detach pages
from this exam.

After reading the above instructions, please sign the following:

On my honor, I have neither given nor received any aid on this examination.
I have furthermore abided by all other aspects of the honor code with respect

to this examination.

Signature:
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1. (a) (8 points) Define d1 : R × R → R by d̄(x, y) =
√

|x − y|. Show that d̄ is a metric

on R. Hint: Consider (
√

|x − y| +
√

|y − z|)2.

Solution: Since we are dealing with the positive square root, we see that
d̄(x, y) ≥ 0 for all x, y ∈ R.

Also, if x = y, then d̄(x, y) =
√

|x − y| = 0. Conversely, if d̄(x, y) =
√

|x − y| =
0, then |x − y| = 0, which implies x = y.

Also, d̄(x, y) =
√

|x − y| =
√

|y − x| = d̄(y, x).

To prove the triangle inequality, we first note that

(
√

|x − y|+
√

|y − z|)2 = |x− y|+2
√

|x − y||y − z|+ |y− z| ≥ |x− y|+ |y− z|.

Taking the square root of both sides, we conclude that
√

|x − y| +
√

|y − z| ≥
√

|x − y| + |y − z|. We also note that |x−z| ≤ |x−y|+|y−z| implies
√

x − z ≤
√

|x − y| + |y − z|. Putting all of this together, we have that for x, y, z ∈ R,

d̄(x, z) =
√

|x − z|
≤
√

|x − y| + |y − z|
≤
√

|x − y| +
√

|y − z|
= d̄(x, y) + d̄(y, z).

Hence, d̄ satisfies the properties of a metric.
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(b) (6 points) Show that a subset U ⊆ R is open in (R, d̄) if and only if U is open in
(R, d), where d(x, y) = |x − y| is the usual metric on R.

Solution: We will differentiate between the open ball in (R, d̄) and (R, d) by
calling them Bd̄(x,R) and Bd(x,R). Note that Bd̄(x,R) = Bd(x,R2).

(⇒) Suppose that U is open in (R, d̄). Then, for each x ∈ U , there exists a
δ > 0 such that Bd̄(x, δ) ⊂ U . Then, we have that Bd(x, δ2) ⊂ U , so each point
in U has a d−open ball about it contained in U . Hence, U is open in (R, d).

(⇐) Suppose that U is open in (R, d). Then, for each x ∈ U , there exists a
δ > 0 such that Bd(x, δ) ⊂ U . Then, we also have that Bd̄(x,

√
δ) ⊂ U . Hence,

U is also open in (R, d̄).

(c) (6 points) Show that a sequence (xn)∞n=1 converges to p in (R, d̄) if and only if it
converges to p in (R, d).

Solution: (⇒) Suppose (xn) converges to p in (R, d̄). Let U be any d−open
neighborhood of p. Then U is also open in (R, d̄) by part (b). Since (xn)
converges to p in (R, d̄), there exists an N such that n > N implies xn ∈ U by
Proposition 7.3.8. Hence, we have that every neighborhood of p that is open
in (R, d) has an N such that n > N implies xn ∈ U . By applying Proposition
7.3.8 again for (R, d), we have that (xn) converges to p in (R, d).

(⇐) The argument is identical to the above, with d and d̄ switched.
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2. Determine whether the following statements are true or false. No justification is required.

(a) (2 points) If (an)∞n=1 and (bn)∞n=1 are convergent sequences and an < bn for all n,
then lim an ≤ lim bn.

TRUE false

(b) (2 points) If fn → f uniformly, then fn → f pointwise.

TRUE false

(c) (2 points) Every continuous function on [a, b] is the uniform limit of polynomials
on [a, b].

TRUE false

(d) (2 points) If E ⊆ X is not open, then E is closed.

true FALSE

(e) (2 points) Every closed and bounded subset of R3 is compact.

TRUE false
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3. Give examples of the following. No justification is required.

(a) (3 points) A convergent series
∑

an where a rearrangement
∑

aσ(n) converges to a
different value.

Solution: Any convergent series that is not absolutely convergent will satisfy
this property, such as

∑

∞

n=1(−1)n 1
n
.

(b) (3 points) A metric space (X, d) and a subset A ⊆ X so that Ā = A.

Solution: We can take any space (X, d) and any closed subset A. For example,
(R, d(x, y) = |x − y|) and A = [0, 1].

(c) (3 points) An open subset of Rn with the metric d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =
√

(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2.

Solution: The open ball is open in any metric space, so we can pick B(0, 1),
the open ball of radius 1 centered at the origin.

(d) (3 points) A metric space that is not complete.

Solution: Take X = (0, 1) and d the restriction of the usual metric on R to
the open interval (0, 1).

(e) (3 points) A bounded function on an interval that is not Riemann integrable.

Solution: Define f(x) = 1 if x ∈ Q and f(x) = 0 otherwise. Then f is not
integrable on [0, 1].
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4. (10 points) Let f and g be continuous functions on [a, b] and suppose that f(a) = g(b)
and f(b) = g(a). Show that there exists some c ∈ [a, b] such that f(c) = g(c).

Solution: Let h(x) = f(x) − g(x). Without loss of generality, assume h(a) ≥ 0 (if
not, take −h(x)). Then,

h(b) = f(b) − g(b) = g(a) − f(a) = −h(a) ≤ 0.

Then, by the intermediate value theorem, since h(b) ≤ 0 ≤ h(a), we have there exists
a c ∈ [0, 1] such that h(c) = 0. In other words, f(c) − g(c) = 0, or f(c) = g(c) as
desired.
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5. (a) (7 points) Show that for any p > 1,

∞
∑

n=1

1

np
sin nx

and
∞
∑

n=1

1

np
cos nx

converge uniformly on all of R.

Solution: We will use the Weierstrass M -test. Note that

| 1

np
sin nx| ≤ 1

np

| 1

np
cos nx| ≤ 1

np

for all x ∈ R. Since
∑

∞

n=1
1
np converges if p > 1, then by the Weierstrass M -test,

∑

∞

n=1
1
np sin nx and

∑

∞

n=1
1
np cos nx converge uniformly on all of R.
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(b) (8 points) Show that for any p > 2,

(

∞
∑

n=1

1

np
sin nx

)

′

=
∞
∑

n=1

1

np−1
cos nx.

Solution: If p > 2, then p − 1 > 1, so by part (a),
∑

∞

n=1
1

np−1 cos nx converges
uniformly on R. Then, by Theorem 25.2, we can integrate term-by-term, and

∫ x

0

∞
∑

n=1

1

np−1
cos nt =

∞
∑

n=1

1

np
sin nx.

By the Fundamental Theorem of Calculus,

∞
∑

n=1

1

np−1
cos nx =

(

∫ x

0

∞
∑

n=1

1

np−1
cos nt

)

′

=

(

∞
∑

n=1

1

np
sin nx

)

′

.
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6. (10 points) Suppose that (X, d) is a complete metric space, and

E1 ⊃ E2 ⊃ E3 ⊃ · · · ⊃ En ⊃ En+1 ⊃ ...

where each Ej ⊆ X is a nonempty compact subset of X. Show that

E = ∩∞

j=1Ej

is nonempty.

Solution: Suppose (X, d) is complete and E = ∩∞

j=1Ej an intersection of countably
infinite nonempty compact sets E1 ⊃ E2 ⊃ E3 ⊃ · · · . For each En take any point
xn ∈ En. This gives us a sequence {xn}∞n=1 in E1. Since E1 is compact, by Theorem
7.4.8, there exists a subsequence {xnk

}∞k=1 that converges to some point x ∈ E1.
But also, for k > 1, we have nk > 1, so each xnk

∈ E2. Again, E2 is compact, so
there exists a further subsequence xnkj

that converges to a point in E2. But since

subsequences of convergence sequences converge to the same point, it must be that
xnkj

converges to x. Hence, x ∈ E2. We can then proceed inductively, and since each

Ei is compact, x ∈ Ei. Hence, x ∈ ∩∞

j=1Ej, so the intersection is nonempty.
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7. (a) (10 points) Let dn be the usual metric on Rn, and d1 be the restriction to [0, 1]
of the usual metric on R. Let p, q ∈ Rn. Show that f : [0, 1] → Rn defined by
f(t) = (1 − t)p + tq is continuous.

Solution: If p = q, then f(t) = (1− t)p + tq = p for all t, so f(t) is a constant
function. For any ε > 0, for any s, t ∈ [0, 1], we have that dn(f(s), f(t)) =
dn(p, p) = 0 < ε, so we can pick any δ > 0 and we satisfy the necessary
condition for continuity.

Otherwise, let p = (p1, . . . , pn) and q = (q1, . . . , qn) be points in Rn. Let s ∈ [0, 1]
and fix ε > 0. Set δ = ε

dn(p,q)
. Then, if d1(t, s) < δ, we have that

dn(f(t), f(s)) = dn((1 − t)p + tq, (1 − s)p + sq)

=
√

[(1 − t)p1 + tq1 − (1 − s)p1 − sq1]2 + · · · + [(1 − t)pn + tqn − (1 − s)pn − sq

=
√

[(s − t)p1 + (t − s)q1]2 + · · · + [(s − t)pn + (t − s)qn]2

=
√

(s − t)2(p1 − q1)2 + · · · + (s − t)2(pn − qn)2

= |s − t|
√

(p1 − q1)2 + · · · + (pn − qn)2

= d1(s, t)dn(p, q)

<
ε

dn(p, q)
dn(p, q) = ε.

Hence, f is continuous at s. Since this is true for any s ∈ [0, 1], f is continuous
on [0, 1].
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(b) (10 points) Define a set S ⊆ Rn to be star-convex if there exists a p ∈ S such that
for each x ∈ S, the straight line segment Lp,x between p and x lies entirely within
S, i.e. Lp,x ⊂ S. Show that if S is star-convex, then S is connected.

Solution: First, note that Lp,x = f([0, 1]). Moreover, [0, 1] is connected by
Proposition 7.2.14. Since f is continuous by part (a), f([0, 1]) is connected by
Lebl Exercise 7.5.5.

Now let S be a star-convex set and suppose that U, V are open subsets of Rn

such that (U ∪ V )∩ S = S and (U ∩ V )capS = ∅. Let p be as in the definition.
Without loss of generality, p ∈ U .

Consider x ∈ S. Since S is star-convex, Lp,x ⊂ S. In other words, we also have
that (U ∪ V ) ∩ Lp,x = Lp,x and (U ∩ V ) ∩ Lp,x = ∅. Since Lp,x is connected and
U is nonempty in Lp,x, we can conclude that V ∩ Lp,x = ∅. Therefore, x ∈ U .
Since this is true for all x ∈ S, then we can conclude that V ∩S = ∅ and S ⊂ U .
As U and V were arbitrary open sets, this shows that S is connected.
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Question: 1 2 3 4 5 6 7 Total

Points: 20 10 15 10 15 10 20 100

Score:
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