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Pin Structures on Low-dimensional Manifolds
_ by
R. C. Kirby! and L. R. Taylor!

0. Introduction .

Pin structures on vector bundles are the natural generalization of Spin struc-
tures to the case of non-oriented bundles. Spin(n) is the central Z/2Z extension
(or double cover) of SO(n) and Pin~(n) and Pint(n) are two different central

‘extensions of O(n), although they are topologically the same. The obstruction to

putting a2 Spin structure on a bundle £ (*- R® = E -+ B) is wz(£)eH*(B; Z/22);
for PinT it is still wg(f), and for Pin~ it is w2(¢) + w?(€). In all three cases, the
set of structures on ¢ is acted on by H'(B;Z/2Z) and if we choose a structure,
this choice and the action sets up a one~to—one correspondence between the set of
structures and the cohomology group.

Perhaps the most useful characterization (Lemma 1.7) of Pin¥ structures is
that Pin™ structures on ¢ correspond to Spin structures on £ @ det £ and Pin* to
Spin structures on £ @ 3det £ where det ¢ is the determinant line bundle. This is
useful for a variety of “descent” theorems of the type: a Pin® structure on £@ n
descends to a Pint {or Pin~ or Spin) structure on { when dimy = 1 or 2 and
various conditions on 5 are satisfied.

For example, if nisa trivialized line bundle, then Pin¥ structures descend to
£ (Corollary 1.12}, which enables us to define Pin?* bordism groups. In the Spin
case, Spin structures on two of £, n and £ @ 1 determine a Spin structure on the
third. This fails, for example, for Pin~ structures on n and £ @& n and £ orientable,
but versions-of it hold in some cases (Corollary 1. 15), adding to the intricacies of

" the subject.

Another kind of descent theorem puts a _Pin “structure on a submanifold which
is dual to a characteristic class. Thus, if V™1 is dual to w;(Tx) and M™ is Pin?,
then VMV gets a Pin® structure and we have a homomorph1sm of bordism groups
(Theorem 2 5),

nw?] : Rt — ]
that proved useful in [K-T]. Or, if F™=? is the obstruction to exte‘nding a Pin~
structure on M™ — F over M, then F gets a Pin™ structure if M _is oriented
(Lemma 6.2) or M is not orientable but FMV has a trivialized normal bundle in
V (Theorem 6.9). These results give genera.lxzatmns of the Guillou-Marin formula
[G-M], Theorem 6.3, _ 1

28(F)=F .F—sign M (mod 16)

! Partially supported by the N.S.F. ;

o
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to any characterized pair (M*, F?) with no condition on H(M*; Z/27).

Here, S(F) is the Z/8Z Brown invariant of a Z/47Z quadratic enhancement
of the Z/2Z intersection form on H,(F; Z/2Z); given a Pin~ structure on F, the

enhancement counts half-twists, mod 4, in imbedded circles representing clements
of H(F;Z/2ZZ). This is developed in §3, where it is shown that

gl ., 7/37
gives the isomorphism in the following table.

Qirin =792 QP =222 Q=0
Qfin™ =Z2/22 QFin" =2/8Z Qfi" =0
inn"‘ =0

=7
" . op =0
QFint = Z/2Z QPin* =797 QPint ~ 77167

In §2 we calculate the 1 and 2 dimensional groups and show that the non—zero one

dimensional groups are generated by the circle with its Lie group framing, §j;..

(note the M&bius band is a Pint boundary for 5},,); RP? generates ] ; the
Klein bottle, the twisted Sf;, bundle over S5?, generates 2" ; and T2, the torus

_ with its Lie group framing generates Qf pn By 85 enough technique exists to

calculate the remaining values and show that Qf int s generated by the twisted
T? bundle over S! with Lie group framing on the fiber torus; Q7" is generated
by RP*. The Cappell-Shaneson fake RP* represents +9 € Z/16Z {Stolz]; the
Kummer surface represents 8 € Z/16Z and in fact, a Spin 4-manifold bounds a
S};-IST::! 5-manifold iff its index is zero mod 32. The Kummer surface also generates
P

Section 4 contains a digression on Spin structures on 3-manifolds and a geo-

metric interpretation of Turaev’s work [Tu] on trilinear intersection forms

H, (M 2/22) ® H, (M*2/2Z) ® Hy (M, 2/2Z) — Z/2Z .

T%]is is U..SGd in calculating the p—invariant: let u(M,©;) be the p-invariant of A

with Spin structure ©;. The group H'! (M?; Z/2Z) acts on Spin structures, so let

a € H' (M*;2/2Z) determine ©,. Then a is dual to an imbedded surface F? in

M which gains a Pin~ structure from ©; and
1(02) = u(©1) — 28(F)  (mod 16)

Fo.ur dimensional characteristic bordism  is studied in §6 with generalizations

of [F-K] and [G-M]. We calculate, in Theorem 6.5, the g-invariant of circle bundles

over surfaces, 5(57), whose disk bundle, D(#), has orientable total space. Fix a Spin
structure on 5(7), ©. Then

;J(S(r,'.),e) = sign (D{n)) — Euler class(n) + 2- o(F) (mod 16)
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where b(F) = 0 if the Spin structure © extends across D{(n) and is 8 of a Pin~
structure on F induced on F from © otherwise,

" The characteristic bordism groups are calculated geometrically in §7, in par-
ticular, :

0 =2/8Z0ZAZDZ/2Z .

Just as Robertello was able to use Rochlin’s Theorem to describe the Arf in-

" variant of 2 knot [R], so we can use 8 : Q" — Z/8Z to give a Z/8Z invariant to

a characterized link L in a Spin’ 3-manifold M with a given set of even longitudes
for L (Definition 8.1). This invariant is a concordance invariant {Corollary 8.4),
and if each component of L is torsion in H1(M; Z), then L has a natural choice of
even longitudes (Definition 8.5). '

Section 9 contains a brief discussion of the topological case of some of our
4-manifold results. In particular, the formula above must now contain the triangu-
lation obstruction #(M) for an oriented, topological 4-manifold M*:

28(F) = F.F —sign (M)+8c(M)  (mod 18)
(recall that (M, F) is a characterized pair). .
§1. Pin Structures and generalities on bundles

The purpose of this section is to define the Pin groups and to discuss the notion
of a Pin structure on a bundle.

Recall that rotations of R are products of reflections acroSs.(n — 1)-planes

. through the origin, an even number for orientation preserving rotations and-an odd

number for orientation reversing rotations. These (n— 1)-planes are not oriented so

" they can equally well be described by either unit normal vector. Indeed, if u is the

unit vector, and if x is any point in R®, then the reflection is given by z—2(x - u)u.
Thus an element of O(n) can be given as (v, )(E£va): - (Evi) where each v; is
a unit vector in R™ and k is even for 50(n). Then elements of Pin(n), a double
cover of O(n), are obtained by choosing an orientation for the (n — 1}-planes or
equivalently c’.oosing one of the two unit normals, so that an element of Pin(n) is
vy -+ vg; if k is even we get elements of Spin(n). With this intuitive description as
motivation, we proceed more formally to define Pin (see [ABS]).

Let V be a real vector space of dimension n with a positive definite inner prod-
uct, ( , ). The Clifford algebra, CLifff(V), is the universal algebra generated by
¥ with the relations - T :

v, w) for CLifft(V)
—2(v,w) for Cliff (V)

VWA Wy =

K ey, ..+e, is an orthonormal basis for V, then the relations imply that e;e; =
~eje;, i # j and eje; = x1in Cliff¥(V). The elements ey = e;,:--e;,, I =
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{1 <4 <ize- <ix £ n}form a (ejey = 0, eyer = £1) basis for Chﬂ'i(V
So dim Chﬁ'i( V') = 27; note that as vector spaces, Ciff*(V') is isomorphic to the
exterior algebra gencrated by V, but the multlpllcatlons are different, e.g. e,e, =
+1#£0=e;Ae;.

Let Pmi(V) be the set of elements of C!lﬂd:(V) whxch can be written in the

form v,v; - - vg where each Vv; is a unit vector in V; under multiplication, Pin®(V)

is a compact Lie group. Those elements vivqy---vi € _Pm*(V) for which k is even
form Spin(V'). ' S '
Define a tra.nspose el = e, --e;, = (1) les and an algebra homo-
morphlsm a(er) = (<1)te; = (—1)1le; and extend linearly to CLfff(V). We
have a Z/‘»‘Z—gradmg on Cllﬂ'*(V) Cliff*(V)p is the +1 eigenspace of o and
Chﬂ'i(V)l is the —1 eigenspace. For w € Chﬂ")‘(V), define an automorphism
p(w): CHFF (V) — CHEFE(V) by

wvw‘ fOI' Cl'ﬂ"’ V
_P(w')(”) = { aw)vw! B for Cl;ﬂq—EVg

We can define a norm in the Clifford algebra, N: CLiff* — R+ by N(z) = o(z)z for
all z € CLiff*(V). Then we can define Pin*(V) to be {w € CHFE(V) | plw)(V) =
V and N(w) =1 }. Hence if w € Pin*(v), p(w) is an automorphismof V s0 pis s
representation p: Pin®(V) — O(V') and by restriction p: Spin(V)-— SO(V).

It is easy to verify that p{w) acl:s on V by reﬂectlon across the hyperplane wt
e.g. for Pin—(V),

- 2 ! .
—ele; = * ep - z?l_.l
1<i i
e )e; — eje;e) = .
P( 1) R { efe; = —; 1=1

Ifr and I are basepomts in the components of O(V), where 7 is reﬂectlon
across ef, then p~1{r, I} = {+e,,£1} and :

Z/2Z ®Z/2Z for Pint(V)
M *”z{' - 2/42 for Pin—(V)

The Z/"Z = {~1,1} € Pin? is central and Pmi(V)/{:tl} =0(V). ¥n>1,
* this Z/2Z is the center of Pin®*(V) and, since O(V) has a non-trivial center, for
n > 1, the Z/27Z central extensions Pin® — O(V') are non-trivial.

Thus Pin%(V) is a double cover of O(V). As spaces, Pmi(V) = Spm(V)
Spin(V') but the group structure is different in the two cases. We can think of —1 €
p~ (I} as rotation of V ( about any axis ) by 2r and +1 € p~*(I) as the identity.
More precisely, an arc in Pin* (V) from 1 to —1 maps by p to a loop in O(V'} which
generates m (O(V)); in fact, for 8 € [0, 7], the arc § — Le; - (cosfe; + sinfe,) is
one such. Even better, we may think of Pin? as scheme for distinguishing an odd
number of full twists from an even number.

We use Pin%(n) to denote Pint(V) where V is R".
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" Remark. The tangent bundle of RP?, Typs, has a Pin~(2)-structure.

We can “see” the Pin—(2) structure on Trp: as follows: decompose RP? into a
2-cell, B2, and a Mébius band, M B, with core circle RP'. Then Tgp2|pmp can be
described using two coordinate charts, U and U, with local trivializations (e, ez),
in which e, is parallel to RP! and e, is normal, and with transition function
U) nUy; — Pin~(2) which sends the two components'of U3 N U, to 1 and e,.
Then Trp2|snp is a trivial R2-bundle over §! = @M B which is trivialized by the
transition function 1 and e = —1. Now e; would be tangent to S! but the e = —1

- adds a rotation by 27 as §' = M B is traversed. But this trivialization on Trp:|s1 ..

is exactly the one whlch extends over the 2-cell B2, Thus RP? is Pin~. Note that -
this process fails if €3 = +1, and, in fa.ct RP2 does not support a Pint structure -
(see Lemma 1.3 below).

We now review the theory of G bundles, for G a topological group, and the -
theory of H structures on a G bundle. A principal G bundle is a space E with a
left G action, E X G — F such that no point in E is fixed by any non-identity -
element of G. We let B = E/G be the orbit space and p: E — B be the projection. -
We call B the base of the bundle and say that E is a bundle over B. We also -
require a local triviality condition: Exphcﬂ.ly, we require a numerable cover, {U; 1,

of Band G maps ri:lf; X G — E such that the composite U; X ¢ELBie just -
projection onto U4; ‘followed by inclusion into B. Such a collection is called an atlas
for the bundle and it is convenient to describe bundles in terms of some atlas. The .
functions r;'er; are G maps, Ui nu, x G = U; NU; x G, which commute with |

J
the projection. Hence they can be given as transition functions gi;:U; NU; — G.

‘Note gi; = id, g'tJ = g;i and gir = gijegjk onU; NU; NUy. Conversely, given any

numerable cover of a space B and a set of maps sa.tlsfymg these three conditions,
we can find a principal G bundle and an atlas for it so the base space is B and the
transitions functions are our given functions. :

Suppose Ey and E; are two G bundles over By and B, respectwely Let
f:Eo — E; be 8 map. A bundle map covermg fisa G map F: Ey — E, so that %
proF = fo po; where p; is the projection in the i-th bundle. We say two buridles over
B are equivalent iff there exists a bundle map between them covering the identity. f":'

Given 2 bundle over B, say E, with atlas i{; and g;;, and a map f: By — B,
the pull-back of E along f is the bundle over Bo with numerable cover f~!(;) and
transition functions gijo f. The pull-backs of equivalent bundles are equivalent. A -
bundle map between Ey and E; covering f: By — B is equivalent to a bundle
equivalence between Ep and the pull-back of F) along f. Hence we mostly discuss '

. the case of bundle equivalence. N

Given any atlas for a bundle, say ;; gi5, and a subcover V., of U; we can restrict
the gij to get a new family of transition functions gog. Clearly these two atlases
represent the same bundle. Given two numerable covers, it is possible to find & third -
numerable cover which refines them both, so it is never any loss of generality when
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-onsidering two bundles over the same base to assume the transition functions are
defined on a common cover. _ o ' -
A bundle equivalence between bundles given by transttion fur_lctfons gij anj 5:1,1 11
Tor the same cover is given by maps h,-:l;{,; — G such that, for all £ and j and all
w € U; s, gly(u) = hi(w) gas(u) (Ritw)) " R
Civen a continuous homomorphism ¢: H — G, we can form a principal G

bundle from a principal H bundle by applying # to any atlas for the H bundle. .

"E — B is the H bundle; we let py: E xg'G — B denote the associated
Ié%u‘idle. Equivalent H bundles go to equivalent G bundles.. .We say th:t a(,i 1G .
bundle, p: E — B, had an H structure provided that there exxsts‘ an H a'lu_nt :,
p1: E1 — B so that the associated G bundle, (p1)y: B xu G — B is equivalen g
the G bundle. More correctly one should say that we have a ¢ struct}n"e on our | '
bundle, but we won't. An H structure for a G bundle, p: E — B consists of a pa;f.
an H bundle, py: By — B, and a G equivalence, 7 from_ (p1)y: BE1 X G — B to the
original G bundle, p: & — B. Two structures p1: Ei:—Bm a.nd p2:Ep — B,gg
on p: E — B are equivalent if there exists an efluwa,lence of H bundles f: E; — Eq
such that, if fy denotes the corresponding equivalence of G bundles, 11 = 12° fy.

We assume the reader is familiar with this next result.

Theorem 1.1. For any topological group, G, there :e_:x_ists a space BG such that
equivalence classes of G bundles over B are in 1_—1 corre§pondenpe with :ho.rztl)ltzpy
classes of maps B — Bg. (A map B — Bg gorrespondmg to a bundle is t:'Be a
classifying map for the bundle.) Given W H —+G we g_'et an 1gduf:ed map B‘l,b.‘ HB—-‘
Bg. If this map is not a fibration, we may make it into one W:thoyt-chan‘glng g
or the homotopy type of By, so assume By is a Hurewicz ﬁ_bratxon. GIVEf] a
bundle with a classifving map B — Bg, H structures on this bundle are in 1-1
correspondence with lifts of the classifying map for the G bumﬂe to By.

Example. Let p: E — B be a trivial O(n) bundle, z.a.nd Suppose the atlas has one
open set, namely B. and one transition function, the 1_::lent1ty. One S0(n) st.rucl:wtlre
on this bundle consists of the same transition funct:on.but thought of as takllng
values in SO(n) together with the bundle equivalen.ce which maps B t.o the.lden.txty
in O(n)}. Another SO(n) structure is obtained by using thfa- same tra?.nmtlon f.unct:;ms
but taking as the bundle equivalence a map B to O(n) whlch.iands in the onentatmn
reversing component of O(n). Indeed any map B — O(n) gives an S50(n) structure
on our bundle. It is not difficult to see that any two maps 1{1130 the same comppm?nt
of O(n) give equivalent structures and that two maps into different components: give
structures that.are not equivalent as structures. Clearly the SO'(n) bum-:lle 1n.a.11
cases is the same. One gets from here to the more traditiona,l. r}o.tmn of ?r_lgntam?n
for the associated vector bundle as follows. Since the transition functions are in
O(n), O(n) acts on the vector space fibre. But for matrices to act on a vector space
o basis needs to be chosen. This basis orients the S0{(n) bundle: in the first case
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" the equivalence orients the underly_ihg O(n) bundle one way and in the second case

the equivalence orients the bundle the other way.

Finally recall that an O(n) bundle has an orientation iff the first Stiéfel—_
Whitney class, w; of the bundle vanishes. If there is an SO(n) structure then
H®(B;Z/2Z) acts in a simply transitive manner on the set of structures.

' The Lie group Spin(n) comes equipped with a standard double cover map

‘ Spin(n) — SO(n), and this is the map ¢ we ‘mean when we speak of an SO(n)
- bundle, or an oriented vector bundle, having a Spin structure. There is a fibration

sequence Bsz'n(n) l-—f_Bso(,,)‘ — K (Z/2Z_,'2), so the obstruction to the existence
of a Spin structure is 2 2-dimensional cohomology class which is known to be the
second Stiefel-Whitney class wp. If the 'set of Spin structures is non-empty, then -~
H'(B;Z/2Z) acts on it in a simply transitive manner. =~ - - h

The action can be seen explicitly as follows. Fix one Spin structure, say g;;. An
element in ‘H' (B; Z/2Z) can be represented by a Cech cocycle: i.e. a collection of
maps ¢;;: Ui NU; — +1 satisfying the same conditions as the transition functions for
abundle, The new Spin structure consists of the transition functions gij-ci; with the
same SO(n) bundle equivalence, where we think of +1 as a subgroup'of Spin(n) and
- denotes group multiplication. It is not hard to check that cohomologous cocycles

give equivalent structures.

Wg"ho{v, explore the relation between Spin structures on an otiented vector

- bundle and framings of that bundle. A framing of a bundle is the same thing as an

H structure where H is the trivial subgroup. Hence H is naturally a subgroup of

~ Spin(n) and an equivalence class of framings of a bundle gives riséto an equivalence:

class of Spin structures. Consider first the case n = 1. Recall SO(1) is trivial and -
Spin(1) = Z/2Z. Hence an SO(1) bundle already has a unique trivialization, and"

hence a “canonical” Spin structure. ' There are often other Spin structuires, but,

none of these come from framings. In case n = 2, Spin(2) = 5, SO(2) = §! and
the map is the double cover. If an SO(2) bundle is trivial, framings are acted on -

simply transitively by H? (B;Z). The. corresponding Spin structures are equivalent

iff the class in H! (B; Z/27) is trivial. If B is a circle the bundle is trivial iff it has & -
Spin structure and both Spin structures come from framings.. The ‘Spin structure
determines the framing up to an action by an even elément in Z, so we often say
that the Spin structure determines an even framing. If n'> 2 and B is still a circle,
then the bundle is framed iff it has & Spin structure and now framings and Spin
structures are in 1-1 correspondence. ~ © - o ' e ' '
Of ‘course, given anyf‘,S'pz'f';_ structure on a bundle over B, and any map f: §! —
B, we can pull the bundle back via f and apply the above discussion. Since Spin

* structures on the bundle are in 1-1 correspondence with H! (B; Z/2Z), which is

detected by mapping in circles, we can recover the Spin structure by describing
how the bundle is framed when restricted to each circle (with a little care if n = 1
or 2). Moreover, if an SO(n) bundle over a CW complex is trivial when restricted
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to the 2--skeleton, then wy vanishes, so the bundle has a Spin structure. K n #2
and the bundle has a Spin structure then, restricted to the 2- skeleton, it is trivial.
If n = 2 this last remark is false as the tangent bundle to 5% shows. '

Finally, we need to discuss stabilization. All our groups come in families in-
dexed by the natural numbers and there are inclusions of one in the next. An
example is the family O(n) with O(n} — O(n + 1) by adding 2 1 in the bottom:
right, and all our other families have similar patterns. This is of course a special case
of our general discussion of H structures on G bundleés. Given a vector bundle, £,
and an oriented line bundle, €', the O(n) transition functions for £ extend naturally
to a set of O(n + 1) transition functions for £ @ €’ using the above homomorphism,
and any of our structures on £ will extend naturally to a similar structure on £ @e’.
We call the structure on £ @ el the stabilization of the structure on £.

A particular case of great interest to us is the relation between tangent bundles
in a manifold with boundary. Suppose M is a codimension 0 subset of the boundary
of W. We can consider the tangent bundle of W, say Ty, restricted to M. It is
naturally identified with Tas @ vmcw where v deénotes the normal bundle, This
normal bundle is framed by the - “inward-pointing” normal, so we can compare
structures on M with structures on W using stabilization.

Since both Pin*(n) are Lie groups and have ‘homomorphisms into O(n), the
above discussion applies.

Remarks. With this definition it is clear that, if there is a Pin¥ structure on a
bundle £ over a space B then H' (B;Z/2Z) acts on the set of Pin? structuresina.
simply transitive manner. It is also clear that the obstruction to existence of such
a structure inust be a 2-dimensional cohomology class in H* (Bo(n),Z/2Z) that
restricts to wy € H? (Bsoqmy; Z/22) and hence is either wy(£) or wa(€) + w ).

Here wi denotes the i-th Stiefel-Whitney class of the bundle.

We sort out the obstructions next.

Lemma 1.2. Let A be a line bundle over a CW complex B. Then X has a Pint
 structurc-and A A @ X has a Pin™ structure.

Proof‘: Since Pin*(1) — O(1) is just a projection, Z/2Z @ 2727 — Z /27, there is
a group homomorphism, O{1) - Pin*(1), splitting the projection. If we compose
transition functions for A with this homomorphism, we get a set of Pin* transition
functions for A. If we have an equivalent O(1) bundle, the two Pint(1) bundles are
also equiv; alent. '

Transition functions for 3\ are given by taking transition functions for A and
composing ‘with the homomorphism O(1)} — O(3) which sends +1 to the matrix

1 0 0
('.0 +i. © ) It is easy to check that this homomorphasm lifts through a
0 0 =1
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homomorphism 0(1) — Pin=(3). If we have an equivalent O(1) bundle, the two
Pin~(3) bundles are also eqmvalent .

Addendum to 1.2. Notice that we have proved a bit more. The homomorphisms
we chose are not unique, but can be chosen once and for all. Hence 2 line bundle
has a “canonical” Pint structure and 3 times a line bundle has a “canonical” Pin~
structure.

Remark. There are two choices for the homomorphisms above. If we choose the -
other then the two “canonical” Pin* structures on a line bundle differ by the action
of wy of the line bundle, with a similar remark for the Pin~ case.

Lemma 1.3. The obstruction to lifting an OG(n)-bundle to a Pin*(ﬁ)—bund!e is
wy, and to a Pin~(n)-bundle is wy + wi. If £ ® A = trivial bundle, then £ has a
Pin~ structure iff A has a Pint structure.

Proof: A line bundle has a Pint structure by Lemma 1.2, so we = 0, but there are
examples, e.g. the canonical bundle over RP?, for which w? # 0.. Hence w, is the
obstruction to a bundle having a Pint structure.

For 3 times a line bundle, wy = wi, so we can find examples, e.g. 3 times the
canonical bundle over RP2 for whlch wo + wl = 0 but w, # 0. Hence w; + w? is
the obstruction to having a Pm structure:

The remeining claim is an easy characteristic class calculation.

The fact that the tangent bundle and normal bundles have different structures
can lead to some confusion. In the rest of this paper, when we say a manifold has
a Pin% structure, we mean that the tangent bundle to the manifold has a Pin®* _
structure. As an example of the possibilities of confusion, the Pin bordism theory
calculated by Anderson, Brown and Peterson, [ABP2], is Pin~ bordism. They do
the calculation by computing the stable homotopy of a Thom spectrum, which as -
usual is the Thom spectrum for the normal bundles of the manifolds. The key fact
that makes their calculation work is that w; vanishes, but this is w» of the normal
bundle, so the tangent bundie has a Pin™ structure and we call this Pin™ bordism.

We remark that a Pin? structure is equivalent to a stable Pint structure and
similarly for Spin. This can be seen by observing that

Pin*(n) — PinE(n+1).
1 i
O(n) - O(n+1)

commutes and is a pull-back of groups, with a similar diagram in the Spin case.
In order to be able to carefully discuss structures on bundles, we introduce the

following notation and definitions. Given a vector bundle, £, let Pin*(£) denote the .

set of Pin® structures on it. If £ is an oriented vector bundle, let Spin(£) denote
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the set of Spin structures on it. Throughout this paper we will be writing down
functions between sets of Pin® or Spin structures. All these sets, if non-empty are
acted on, simply tran51t1vely, by H?(B;Z/2Z) where B is the base of the bundle.

Definition 1.4. We say that a functlon between two sets of structures on bundles
over bases B, and B; respectively is natural provided there is a homomorphism
HY(By;Z/2Z) — H'(B2; Z[2Z) so that the resulting map is equivariant.

One eéxample of this concept is the following construction.

Construction 1.5. Let f: & — & be a bundle map covering f: By — B,. Given
a cover and transition functions for Bs and £, we can use f and f to construct a
cover -and transition functions for By and &;. This construction induces a natural
function

F*: Pin®(&2) - Pin*(£))
with a similar map for Spin structures if we usef to pull back the orientation.

There are two examples of this construction we will use frequently. The first
is to consider an open subset U C M of a manifold M: here the derivative of
the inclusion is a bundle. map so Constriction 1.5 gives us a natural restriction
of structures. The second is to consider a codimension § immersion between two
‘manifolds, say fN — M. Again the derivative is a bundle map so we get a natural
restriction. of structures.

We can also formally discuss sta.bilization
Lemma 1.6. Let £ bea vector bundle, and let é be a trivial line bundle, both
over a connected space B. There are natura] one to one correspondences
S:(€): Pin*() » Pin*(£@ @) .

If £ is oriented there is a natural one to one correspondence

Sf(f):Spini(g) - Spini(f D s_éal‘el.) .

———

Given a bundle map f: & — Eg, thcre is a.ziother bundle map (f H}) é '71): E; EB Gr:" 61 —

89 . The obuous squares mvoIvmg these bundfe maps and the stab:.hzatmn

mdps commute

We would like a result that relates Pin? structures on bundles to the geometry
of the bundle restricted over the 1-skeleton mimicking the framing condition for the
Spin case. We settle for the next result. Let £® be an n-plane bundle over a CW-
complex X, and let det € be the determinant bundle of £7.
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Lemma 1.7. There exist natural bijections

Tap41(E): Pin~(€) — Spin(t @ (4k + 1) det £)
Dap43(€): Pint(¢) = Spin(€ ® (4k + 3) det £)
Uy po(€): Pint(€) — Pin¥F(€ @ (4k + 2) det £)
Tar(€): PinE(E) - Pin(€ @ (4k) det £)
and . U} (€): Spin(€) — Spin(¢ @ (4k)det &) .

A bundle map f:& "-’.fz defines a bundle map deté; — det ;. Using this map
between determinant bundles, all the squares involving the ¥ maps commute.

Proof: Tt follows from Lemsmna 1.3 that the existence of a structure of the correct
sort on £ is equivalent to the existence of a structure of the correct sort on @ det £.

Let us begin by recalling the transition functions for the various bundles. There
are homomorphisins 6,: O(n) — O(n + r) defined by sending an n X n matrix A to
the (n +r) X (n + r) matrix which is 4 in the first m xm Iocatlons, det A in the
remmmng r ulagonal locations, and zero elsewhere

¥ U;, gij:Ui NU; — O(n) is a family of transltlon functnons for £, then b0 gi;
is a family of transition functions for £ @ rdet £. :

" Next, we describe a function from the set of structures on E to the set of
structures onéd rdeté.

Begm w:th the case in.which ¢ has a Pin~ structure w;t.h transition functions
Gij:U; NU; — Pin™(n) lifting the given set gij into O(n). Pick an element ¢ in
the Cllfford algebra for R® @ R so that e? = —1 and & maps to reflection through
R" under the canonical map to O(n + 1). There are two such choices but' choose

. one once and for all. Define H;; into Pin~(n + 1) by Hij(u) = i(Gij(u)) - zij(u)
" where i denotes the natural inclusion of Pin~(n) into Pin™(n+ 1) and a:,,(u) ise
if det gs5(z) = —1 and 1 otherwise.

It is clear that the H;; land in Spin(n + 1), but what needs to be checked
is that they are a set of transition functions for our bundle. Clearly they lift the
transition functions for the underlying SO(n + 1) bundle, so we need to consider
the cocycle relation. This says that Hi;(u)Hjx(u)Hyi(u) = 1. If we replace the

_H’s by G's, we do have the relation, so let us compute Hy;(u)Hjx{u)Hri{u) =

_ G._,(u):t:.,(u)G’_,k(u):c,k(u)Gh(u)m.(u) Any x commutes past a G if the z associ-
-ated to the G is 1 and it goes past with a sngn switch if the z a.ssoc:ated to the G is
e. Also note that either none or two of the z's in our product are e, We leave it to
the reader to work through the cases to see that the cocycle: relation always holds
and to note that the key point is that e = —1.

Next, consider the case in which £ has a Pint structure, and let- G;; continue
to denote the transition functions. Let €, ¢; and e3 denote elements in the Pin*
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Clifford algebra for R™ @ R3: each e; covers reflection in a hyperplane perpendic-
ular to one of the three standard basis vectors for the R?® factor. Define H;; as
above except replace e by e;e;e3. The proof goes _]ust as before after we note that
(CI 8263)2 =1,

For the case in which 7 = 2 and ¢ may have either a Pint or a Pin~ structure,
choose €, and e;; note that (e;e;)? = —1 and proceed as above.

The last natural bijection is also easy. If gij are transition functions for £it
is easy to choose the cover so that there are lifts G;; of our functions to Pin~(n)
{or Pin*(n) if the reader prefers), but the cocycle relation may not be satisficd.
We can define new functions H;; into Spin(4n) by just juxtaposing 4 copies of G;;
thought of as acting on four copies of the same space.- These functlons can easily
be checked to satisfy the cocycle condition.

Now that we have defined our functions, the results of the theorem are easy.
The reader should check that the functions we defined are H' ( ; Z/2Z) equivariant
and hence induce 1-1 transformations. .

Remark 1.8. We did make a choice in the proof of 1.7, The choice was global
and so the lemma holds, but it is interesting to contemplate the effect of making

the other choice. It is not too hard to work out that if we continue to use 1, but -

replace e by —e, the new Spin structure will differ from the old one by the action
of wy{€}. The same result holds if we switch an odd number of the e,, €3, €3 in the
Pint case or an one of €1, €3 in the 7 = 2 case.

For later use, we need a version of Lemma 1.7 in which the line bundles are
merely isomorphic to the determinant bundle. To be able to describe the effect of
changing our choices, we need the following discussion.

There is a well-known operation on an oriented vector bundle known as “re-
versing the orientation”. Explicitly, suppose that we have tranmsition functions,
¢ij, defined into SO(n) based on a numerable cover {Z{ }. Then we choose maps
hilly — O(n) — SO(n) and let the bundle with the “opposite orientation™ have
transition functions hiegijeh7! and use the maps k; to get the O(n) equivalence
with the original bundle. The choice of the h; is far from unique, but any two choices
yield equivalent 50(n) bundles. In the same fashion, given a Spin{n) bundle, we
can consider the opposite Spin structure. Proceed just as a.bove using Spin{(n) for
S$0(n) and Pin*(n) or Pin™(n) for O(n).

Note that a Spin structure and its opposite are equwa.lent Pint or Pin~
structures. Conversely, given a Pin® structure on a vector bundle which happens to

“be orientable, then there are two compatible Spin structures which are the opposites
of cach other. We summarize the above discussion as

Lemma 1.9. If £ is an oriented vector bundle, then there is a natural one to one
-correspondence, called reversing the spin structure,

Re: Spin(£) — Spin(—£)
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where —¢ denotes £ with the orientation reversed. We have that ReoR_¢ is the
identity. Finally, given a bundle map f as in Construction 1.5, the obvious square
commuties.

Proof: We described the transformation above, and it is not hard to see that it
is H (; Z/2Z) equivariant. It is also easy to check that the composition formula
holds. » .

In practice, we can rarely 1dent1fy our bundles with the accuracy demanded
by Lemma 1.7 or Lemma 1.8, so we discuss the effect of a bundle automorphism

-
on the sets of structures. Suppose we have a bundle x = { @ ‘$1A’ where A is a
=

line bundle, We will study the case X is trivial (so called “stabilization”) and the
case ) is isomorphic to det£. Let v be a bundle automorphlsm of x which is the

sum of the identity on £ and some automorphlsm of Ga A. The transition functions

for @ ) are either the identity or minus the identity, both of which are central in
i=1
O(r) so v is equivalent to a collection of maps 7: B — O(r), where B is the base of

the bundle. The bundle automorphism induces a natural automorphism of Pin®*
structures on ¥, described in the proof of

Lemma 1.10. Let the base of the bundle, B, be path connected‘ The map induced
by v on structures, denoted v*, is the zdentjty if v lands in SO(r) Otherwise it
reverses the Spin structure in the Spin case and acts via w;(£) in the Pin* case if
X is trivial and by r - wy (§) if A is isomorphic to det €.

Proof: To fix notation, choose transition functions for a structure on £ (either Spin
or Pint). Pick transition functions for A using the same cover. If A is trivial, take
the identity for the transition functions and if A i the determinant bundle take the
determinant of the transition functions for §. The new structure induced by ~ has
transition functions 7(u)o;;(u)¥ 1 (u) where 0;; denotes the old transition functions
and F(u) denotes a lift of 7(u) to Pin(r) and then into Pin*(n + r) where £ has
dimenston n. There may be no continucus choice of 7, but since the two lifts yield
the same conjugation, the new transition functions remain continuous. The element
0;j(1)Pin®(n + r) has the form z with = involving only the first n basis vectors in
the Clifford algebra. if det 0;;(u) = 1 or if A is trivial: otherwise Ten4; -+ - €nyr with
r as before.

Recall 4z = (—1)“")"(”3:"7 and Fepsy - €npr = (1) ey o menyF
where « on Pin® is the restriction of the mod 2 grading from the Chﬁ'ord'algebra
and & on O(r) is 1 iff the element is in SO(r) The result now follows for Pint
structures. The result for Spin structures is now clear. If -y takes values in SO(r)
then the bundle map preserves the orientation and the underlying Pin™ structure,
hence the Spinstructure. If v takes values in O(r) — SO(r), compose the map
induced by - with the reverse Spin structure map. The reverse Spin structure map
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is induced 'b:,f any constant map B - O(r) — SO(r). Hence the composite of these
two maps is induced by a map B — SO(r) and hence is the identity.

There are a Cfmple c:f further compatibility questions involving the functions we
hlave been discussing. Given an SO(n) bundle £ and an oriented trivial line bundle
€ (,EWe g?ti a natural SO(n + r) bundle £ @ re’ and an isomorphism —¢ @ re! =
—(E&re ) -

I}]emm.a 1.11. With the above identifications, stabilization followed by reversing
the Spin structure agrees with reversing the Spin structure and then stabilizing:

ie. RegreoSF(E) = SH—E)oR(€).

Proof: Left to the reader. a

. Let M™ be Pint and let V™~ be a codimension 1 manifold of M with normal
!:ne bundle ». We wish to apply Lemma 1.7 to the problem of constructing a
natural” structure on V. If there is a natural map from structures on Mgto
structures on V, we say that V inherits a structure from the structure on M. Of
course, the homomorphism HY (M, Z2/2Z) — H'(V;Z/2Z) implicit in the use
“natural” js just the one induced by the inclusion. ’

Corollary 1.12. If v is trivialized then V inherits a Pin* structure from a Pint

structure on M. If M and V are orfented then V i i .
. : inherits
Spin structure on M. a Spin structure from a

P::oof : When v is trivialized the result follows from Lemma 1.6; IfMand V aré
orlented,' then we can trivialize (i.e. orient) v so that the orientation on Ty @ v
agrees with the orientation on Ths|y. s

A case mut:h like Corollary 1.12 occurs when M is a manifold with boundary.
V=0M.In this case, the normal bundle, v, is trivialized by the geometry, name) ;
the preferred direction is inward. Just as in Corollary-1.12, we put v la,st: eti;iny
TMJ&M = Ts11 @ v. On orientations this gives the convention “inward normfl la.st§
which we adopt for orienting boundaries, Furthermore, a Spin or Pin® structure

on M now induces one on &M, so we have a bordi 3 i
o Pink e ordismn theory of szﬁ mazpfold.s and

.In the Spin case, the inverse in the bordism group is formed by taking the
Ir.lamfold, M.', with Spin structure on Thy, and reversing the Spin structt'm;g 1
efther the Pin* or the Pin~ case, the inverse in bordism is formed by acting ox; t112
given structure by wl-(‘lfl ). Having to switch the Pin? structure to form the inverse
is \\'}}at prevents 2" from being a Z/2Z vector space like ordipary unoriented
bordism. The explicit formula for the inverse does imply )

Corollary 1.13. The image of Q57" X) in QF *
.13. F S in Q0 (X) has ex;
complex X, or even anv spectrum. - ponent 2 for any CW
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The “inward pormal last” rule has some consequences. Suppose we have a
manifold with boundary M, 8M, and & structure on M X R!. We can first restrict
to the boundary, which is (8M) x R, and then do the codimension 1 restriction, or
else we can do the codimension 1 restriction to M and then restrict to the boundary.

Lemma 1.14. The two natural functions described above,
/
PinE(M x R*) - Pin*(0M) ",

differ by the action of w1(M). The same map between Spin structures reverses the
Spin structure. :

Proof: By considering restriction maps it is easy to see that it suffices to prove the
result for M = (8M) x [0,00), and here the functions are bijections. Consider the
inverse from structures on @M to structures on OM X R* x [0, 00). The two different
functions differ by a bundle automorphism which interchanges the last two trivial
factors. By Lemma. 1.10, this has the effect claimed. s

In the not necessarily trivial case we also have a “restriction of structure” result.

Corollary 1.15. If v is not necessarily trivial, then V inherits a_structﬁre from
one on M in three of the four cases below: :

Fl

: Pint Pin~
'V orientable L
= det Ty Spin l None
V not ily orientabl

not necessarily orientable Pin- Pin—
v=det Ty

o 3
Proof: In the northwest case, Ty v = Thplv hasa Pint structure, so Ty @ det Ty
3 3 4
‘has a Spin structure. But T ©det Tylv =TvoveddetTyly =Tv @ det Taslv

" s0 Ty and hence V acquires a Spin structure. However, there is a choice in the

above equation: we have had to identify » with det Trlv. When we say that the v
and det T are equal, we mean that we have fixed & choice. i :

A similar argument works in the southeast case: Ty @ det Ty is naturally
oriented, so an identification of v with det Tv gives Tv @ v = Tumlv. Since M has
a Pin~ structure, V gets a Pin™structure. '

In the southwest case, consider £ C M, a tubular neighborhood of V. Since ¢
and det Ty are identified, and since Ty @ det Ty is naturally oriented, E is oriented
and hence the Pin™ structure reduces uniquely to a Spin structure. From here the
argument is the same as in the last paragraph.

Lastly, consider the northeast case. If we let V = RP® C RP® = M, we se
that M has a Pin™ structure; v and det Ty ave isomorphic; V is orientable buf
does not have any Spin structures at all. s o

i
1
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Remark. If we just assume that the line bundles in the table are isomorphic, which
is surely the more usual situation, then we no longer get a well-defined structure.
The new structure is obtained from the old one by first reversing orientation in the
Spin case, and then acting by wl(u) A similar remark applies to Corollary 1.12.

). Pin~ structures on low—dimensional manifolds and further generalities.

We begin this section by recalling some well-known characteristic class formu-
las. Every 1-dimensional manifold is or!entable and has Spin and Pin? structures.
It is easy to parlay this into a proof that § Spin &~ 7 and QP"‘i = Z/2Z, with
the isomorphism being given by the number of points (for Spm) and the number
of points mod 2 for Pin*. Using the Wu relations, [M-S, p. 132}, we see that
every. surface and every 3-manifold has a Pin~ structure, and hence oriented 2
and 3-manifolds have Spin structures. We can also say that a 2 or 3-manifold has
a Pint structure iff w? = 0. For surfaces this translates into having even Euler
_ characteristic or into being an unoriented boundary. ,

We next-give a more detailed discussion of structures on S1. The tangent
bundle to 5! is trivial and 1-dimensional, hence a trivialization is the same thing
- as-an orentation. Since H' (§7;Z/22) = Z/2Z, there are two Spin structures on
the circle. Since the tangent bundle to 5 does not extend to a non-zero vector
_ field over the 2-disk, the two Spin structures on an oriented 5'can be described as
follows: one of them is the Spin structure coming from the framing given by the
orientation (this is called the Lie group framing or the Lie group Spin structure)
and the other one is the one induced by the unique Spin structure on the 2-disk
restricted to S'. :

Theorem 2.1. The group QISP"" = Z/2Z, géncmted by the Lie group Spin struc-
turc on the circle; QP = Z/2Z and the natural map Q;7™ — QF"” is an

. - s +
isomorphism; QF """ = 0.

Proof: Since the 2-disk has an orientation reversing involution, the restriction of
this involution to the boundary gives an equivalence between S! with Lie group Spin
structure and ,S' 1 with the orientation reversed and the Lie group Spin structure.
Hence (57" and Qf in* are cach 0 or Z/2Z. Suppose 5' is the boundary of an
oriented surfdce F. It is easy to check that all Spin structures on F induce the same
Spin structure on S'. If we let F denote FU B2 then F also has a Spin structure,
and it is easy to see that any Spin structure on F extends (uniquely) to one on F.
In particular, the Spin structure induced on S! is the one which extends over the
2-disk, so 5! with the Lie group Spin structure does not bound.

The proof for the Pin™ case is identical because any surface has a Pin™ struc-
ture.

In the Pint case however, RP? docs not have a Pint structure. On the other
hand, RP? ~ int B? (which is the Mébius band) does have a Pint structure. The
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induced Pint structure on the boundary must therefore be one which does not
extend over the 2-disk, and hence the circle with the Lie group Pin* structure
does bound. »

In dimension 4, the generic manifold supports neither a Spin nor a Pin*
structure. A substitute which works fairly well is to consider a 4-manifold with a
submanifold dual to ws or wz +w?}. We will also have need to consider submanifolds
dual to w;. A general discussion of these concepts does not seem out of place here.

Let M be a paracompact manifold, with or without boundary. Let a be a
cohomology class in H*(M;Z/2Z). We say that a codimension ¢ submanifold of -
M, say W C M, is dual to a iff the embedding of W in M is proper and the boundary :
of M mtersects W precisely in the boundary of W. The fundamental class of W -
is a class in H-L.(W,8W; Z/2Z), where H'f denotes homology with locally finite :
chains. With the conditions we have im fposed on our embedding, this class maps
under the inclusion to an element in H, r‘__,(.M OM;Z/2Z). Under Poincaré duality,

H,ﬂ_{ (M, 0M;Z[2Z) is isomorphic to H #(M;Z{2Z) and we require that the image ;

of the fundamental class of W map under this isomorphism to a. Specifically, in
H'T(M,0M;Z{2Z), we have the equation a N [M, M) = i,[W,0W].

A cohomology class in H" (B; A), is given by a homotopy class of maps, B -+
K(A,n), where K(A,n) is the Eilenberg-MacLane space with'w, = A. If TO(n) -
denotes the Thom space of the universal bundle over BO(n), then the Thom class -
gives a map TO(n) — K(Z/2Z,n). If M is a manifold, the Pontrjagin-Thom .
construction shows that a € H™(M;Z/2Z) is dual to a submanifold iff the map
M — K(Z[2Z,n) representing a lifts to a map M — TO(n). Similar remarks .

‘hold if A = Z with BO{n) replaces by BSO(n). The submanifold, V, is obtained

by transversality, so the normal bundle is identified with the universal bundle over
BO(n) or BSO(n) and the Thom class pulls back to a. Hence there is a map
(M,M - V) = (TO(n),*) which is a monomorphism on H" (;Z/2Z) by excision.
The Thom isomorphism theorem shows H™ (M, M — V;Z/22) = H*(V;Z/2Z) so
H™(M,M —V;Z/2Z) is naturally. isomorphic to & direct product of Z/2Z’s and
the Thom class in H™ {TO(n), *; Z/2Z) restricts to the product of the generators.
It follows that a restricted to M — V is 0. It also follows that a restricted to V' is :
the Euler class of the normal bundle. ' '

Since TO(1) = RP™ = K(Z/2Z,1) all 1-dimensional mod 2 cohomology
classes have dual submanifolds. Since TSO(1) = §' = K(Z,1) all 1-dimensional
integral homology classes have dual submanifolds with oriented normal bundles.
This holds even if M is not orientable, in which case the submanifold need not be
orientable either. Since T'SO(2) = CP* = K(Z,2), any 2-dimensional integral "
cohomology class has a dual submenifold with oriented normal bundle. A case of :.
interest to us is TO(2). The map TO(2) = K(Z/2Z,2) is not an equivalence, and
not all 2-dimensiona! mod 2 cohomology classes have duals. As long as the manifold |
has dimension < 4, duals can be constructed directly, but these techniques fail in di-
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mensions 5 or more. A more detailed analysis of the map TO(2) — K(Z/2Z,2) also
shows the same thing: there are no obstructions to doing the lift until one gets to di-

mension 5 and then there are. It is amusing to note that the obstruction to realizing -

a class @ in a 5~manifold is $¢*Sq'a+aSq'a € H® (M;Z/2Z) [Sq'(H* (M; Z/2Z)):
‘in particular, if M is not oriéntable, then any class can be realized.

In our case we want to consider duals to wy, ws and we + w?. We begin with
wy. This is an example for which the above discussion shows that we always have
a dual, say V™! C M™, We want to use the fact that we have a dual to w;. The
first question weé want to consider is when is an arbitrary codimension 1 submanifold
dual to wy. The answer is supplied by :

Lemma 2.2. A’ codimension 1 submanifold V C M is dual to wi(M) iff there
exists an orientation on M — V which does not extend across any component of V.
The set of such orientations is acted on simply transitively by H° (M;Z/2Z).

Remark. We say that an orientation on N — X does not extend across X if there
is no orientation on IV which restricts to the given one on N ~ X. We can take
N =(M-V)UV; and X = V4, where V, is a component of V. By varying V; over
the path components of V' we get a definition of an orientation on M —V which does
not extend across any component (= path component) of V. A similar definition
applies to the case of a Spin or Pin® structure on M — V which does not extend
across any component of V. :

‘Proof: Suppose that M — V is orientable and fix an orientation. If v; denotes
the normal bundle to the compenent V; of V, let (D(w;), S(14)) represent the disk
sphere bundle pair.. Each S(1;) is oriented by -our fixed orientation on M — V
since M- 1l D(v;) C M ~ V is a codimension 0 submanifold (hence oriented) and
1L §{;) can be naturally added as a boundary. Defineb € H' (M, M — V;Z/2Z) =
®&H' (D(v;),5(14); Z/2Z) =2 ®Z/2Z on each summand as 1 if the orientation on
S{vi) extends across D) and —1 if it does not. The class b hits wy(M) in
HY(M;Z/2Z). This can be easily checked by considering any embedded circle
in M and making it transverse to the V;’s subject to the further condition that if it
intersects V; at-a point then it just enters S(v;) at one point and runs downs a fibre
and out the other end. The tangent bundle of M restricted to this circle is oriented
iff it crosses the V; in an even number of points iff (i*(8),7.[S*]) = 1, where i*(b) is
the image of b in H' (M;Z/2Z) and j.[S] is the image of the fundamental class of
the circle in H; (M;Z/2Z). Since w, (M) also has this property, i*(b) = wy (M) as
claimed. If we act on this orientation by ¢ € H® (M —V;Z/2Z), the new element

in H' (M, M — V;Z/2Z) is just b+ 6*(c), where §*(c) is the image of ¢ under the .

coboundary H® (M~ V;Z/2Z) — H' (M, M -V, Z/27Z).

Now suppose that M — V has an orientzition which does not extend across any
component of V. The b for this orientation has a ~1 in each summand, and is hence
the image of the Thom class. Therefore V is dual to wy(M). .

aMbs{E o
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Next suppose that V is dual to wi(M). Then w;(M) restricts 0 to M —
V, and hence M < V is orientable. Fix one such orientation and consider the
corresponding b. Since both & and the image of the Thom class hit wy, we can find
c€ HY(M — V;Z/2Z) so that b+ §*(c) is the image of the Thom class. If we alter
the given orientation on M -V by ¢, we get & new one which does not extend across
any component of V. s ' ' : '

There is also a “descent of structure” result here. |

;

Proposition 2.3. Given M™, the Poincaré dual to wy(M) is an orientable (m—1)-
dimensional manifold V™1, There is an orientation on M — V' which does not
extend across any component of V and this orients the boundary of a tubular
neighborhood of V. This boundary is a double cover of V' and the covering transia-
tion is an orientation preserving free involution. In particular, V' is oriented. Recall
that o € H® (M; Z/2Z) acis simply transitively on'the orientations of M —V which
do not extend across any component of V. Hence e acts on the set of orientations of
V' by taking the image of a in H®(V; Z/2Z) and letting this class act as it usually
does. , R - '

Remark. IV has more components than M, not all orientations on V can arise
from this construction. .

Proof: Suppose there is a loop A in V which reverses orientationin V. If the normal
line bundle v to V in M is trivial when restricted to A, then A reverses orientation in
M also, so AV =1 (mod 2); but AeV = 0 since v is trivial over A, & contradiction.
If v]) is nontrivial, then A preserves orientation in M so AV =0 {mod 2); but
MV =1 since v is nontrivial, again a contradiction. So orientation reversing loops
X cannot exist. - ' : : .
Another proof that V -is orientable: As we saw above w;(v) = i*(w(M)), where
i:V C M. Since Ty|v = Tv @ v, it follows easily from the Whitney sum formula
that wi(V) =0. : ' . _ _ _

We now continue with the proof of the proposition. Let E be a tubular neigh-
borhood of V and recall that H! (E,8E; Z/2Z) is H® (V;Z/2Z) by the Thom iso-
morphism theorem. By Lemma 2.2 each component of E can be oriented so that
the orientation does not extend across E. Clearly 8E is a double cover of V classified
by i*(w;y(M)). Since V is orientable, the covering translation must be orientation
preserving and we can orient V so that the projection map is degree 1. It is easy to
check the effect of changing the orientation on M — V which does not extend across
-any component of V. u _ o g -

We continue this discussion for the 2~dimensional cohomology classes w; and
wy + w?. Again we need a lemma which enables us to tell if a codimension 2
submanifold is dual to one of these classes. We have

Theorem 2.4. Let M be a paracompact manifold, with or without boundary. Let
F be a codimension 2 submanifold of M with finitely many. components and with



196 Kirby & Taylor; Pin structures on low-dimensional manifolds

OM N F = 8F. Then F is dual to wy + w} iff there is 2 Pin™~ structure on M — F
which does not extend across any component of F. Furthermore H' (M; Z/27) acts
simply transitively on the sct of Pin~ structures which do not extend across any
component of F'. There are similar results for Pin™ structures and Spin structures.

Proof: The proof is rather similar to the proof of the previous result. First, let
F be a codimension 2 submanifold of M with i:F — M denoting the inclusion.
.Let (D(v:), S(v:)) denote the disk, sphere bundle tubular neighborhoods to the
components of F. Suppose M — F has a Pin~ structure. {The proof for Pin* or
Spin structures is sufficiently similar that we leave it to the reader.) From Lemma
1.6, each S5(#:) inherits a Pin~ structure. Define b € H? (M, M — F;Z/27) &
@H? (D(v;),S(1:); Z/2Z) = ®Z /2% on each summand as 1 if the Pin~ structure
on S(v;} extends across D(v;) and —1 if it does not. The class b hits wy(M) in
H*(M;Z/27). To see this, let j:N —» M be an embedded surface which either
misses an F; or hits it in a collection of fibre disks. As before (¢*(b),7.[N]) is 1 if
Tumln has a Pin™ structure and is —1 if it does not, since a bundle over a surface
with a Pin™ structure over N— Il D? such that the Pin~ structure does not
extend over the disks has & Pin™ structure iff there are an even number of such
disks. Since wa( M) has the same property, i*(b) = wa(M).
Now H'(M — F;Z/2Z) acts simply transitively on the Pin~ structures on
M — F and, for ¢ € H' (M —~ F;Z/2Z), the new b one gets is b + §*(c). The proof
is now sufficiently close to the finish of the proof of Lemma 2.2 that we leave it to
the reader to finish.s

There is also a “descent of structure” result in this case, but it is sufficiently
complicated that we postpone the discussion until §6.

There are two cases in which we can show a “descent of structure” result for
Pin¥ structures. As above, given M we can find a submanifold V dual to wi (M)
We can then form VMV which is the submanifold obtained by making V transverse
to itself. If v denotes the normal bundle to V in M, then the normal buadle to VMV
in V is naturally identified with v|,,5,,, and hence the normal bundle to VAV in
M is naturally identified with v}, 4, ®v|,, 4. Since V is orientable, 2.3, “lymy is
isomorphic to det TMlvmv- Hence by Lemma 1.7, a Pin® structure on M induces
one on VMV after we identify v, 4, with det Thlypyy- I we choose the other
identification, the structure on VMV changes by twice w;(M) restricted to VAV
i.e. the final structure on VMV is independent of the identification.

Theorem 2.5. The function above
Nwi]: Pin (M) - PinF(V V)
is a natural function using the map, H' (M;Z/2Z) — H' (VV;Z/2Z), induced by

the inclusion. If ViV is another choice then there is a dual towy,, W C M x [0,1]
which is V' at one end and V, at the other, so that WMW can be constructed
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as a Pin¥ bordism between the two PinT structures. The map [Nw}] induces a
homomorphism of bordism theories

[nufl: 0 (X) — 2= (x)

for any CW complex or spectrum X. K

Proof: The naturality result follows easily from the naturality result in Lemma 1.7.
The first bordism result follows easily once we recall that TO(1) = K(Z/2Z,1) so -
1-dimensional cohomology classes in M are the same as codimension 1 submanifolds -
up to bordism in M x [0,1]. The bordism result is also not hard to prove.s

For another example of “descent of structure”, we consider the following: given *
any manifold, M™, the dual to w;{M) is a codimension 1 submanifold V™1, Since
V is orientable, Proposition 2.3, we are in the northwest situation of Corollary 1.15 :
and V receives a pair of Spin structures. Let (Q,f,"“*')n dencte the subgroup of -
0Pin* consisting of those elements so that the two Spin structures on V are bordant.
It is not hard to see that if the two structures are bordant for one representative in -
Q_f,‘“+, then they are for any representative. Moreover, it is easy to check that the °
induced map is a homomorphism: ‘

Lemma 2.6. There is a well-defined homomorphism

[Pl (@R"), — 92723

Remark. It is not difficult to see that (Q,’;""+)0 contains the kernel of the map -
[Mw?] since any such element has a representative for which the normal bundle to
V is trivial. For such a V, we see a Spin bordism of 2 V to zero, so V and -V .
represent the same element in Spin bordism. Moreover, the cohomology class by
which we need to change the Spin structure is the zero class. |

We conclude this section with some results we will need later which state that
different ways of inducing structures are the same.

The first relates structures (Spin or Pin%) and immersions. Given an immer- -
sion f: N — M the derivative gives a bundle map between the tangent bundles and ~
so we can use it to pull structures on M back to N. The induced map on structures, :
denoted f*, is natural in the technical sense defined earlier. Suppose we have an
embedding Mp x R! C M. Let Ny = f~}(Mo) and note that there is an embedding
Noe x R! C N s0 that f restricted to Ny x R! is ¢ % id where g: No — M, is also -
an immersion. 5 '
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Lemma 2.7. The following diagram commiites

Pin*(N) —— Pint(M)
swl 18k

Pint(Ny) ——— Pin*(Mo)

where we orient R! and Lemma 1.6 gives us the natural map 8}, as the composite

s
Pint (M) - PinE (M x R )——Pint(M,) with a similar definition for §. There
is a similar result for Spin structures.

Proof: We can easily reduce to the case M = M, x R1. The required result can
now be checked by choosing transition functions on My and extending to transition
functions for all the other bundles in sight, The two bundle we want to be 1som0rph:c
will be identical. »

The next result relates double covers and Pin? structures. Let M be a manifold
with a Spin structure, and let z: (M) — Z/2Z be a homomorphism (equivalently,
t € H' (M;Z/2Z)). Let E be the total space of the induced line bundle over M.
By Lemma 1.7, E has a natural Pin* structure induced from the Spin structure
on M. Hence JE receives a Pint structure. Furthermore, F is orientable and
we orient it by requiring the covering map 7:0E — M to be degree 1. The Pin*
structure and the orientation give a Spin structure on dE. We can also use the
immersion 7 to pull the Spin structure on M back to one on 9E.

Lemma 2.8. The two Spin structurcs on JE are the same.

Proof: Begin with the 1-dimensional case. Here we are discussing Spin structures
on the circle. Suppose that the line bundle is non-trivial. Thinking of the circle
as the boundary of F, we see that it has the Lie Spin structure from Theorem 2.1.
Thinking of it as the connected double cover we also see that it has the Lie group
Spin structure. so the result is true in dimension 1. The case in which the line
bundle is trivial is even easier.

The proof procéeds by induction on dimension. Suppose we know the result
in dimension m — 1 and let M have dimension m > 1. It suffices to show that the
two Spin structures on E agree when restricted to embedded circles. We can span
H (M;Z/2Z) by embedded circles, §}, i = 1,---,r, where all the circles except
the first lift to disjoint circles in the double cover. The first double covers itself
if the line bundle is non-trivial and lifts to disjoint circles otherwise.. The group

H, (DE:Z/27) is spanned by the collection of connected components of the covers.

from the circles in M.

_ Let Ay be the boundary of the tubular neighborhood of such a cirele and let
My be a connected component of the corresponding double cover. It suffices to
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prove that the two Spin structures on 8F agree when restricted to Mo. We can
restrict the line bundle to My and consider the resulting total space Eq. First note
that Fy has trivial normal bundle in F and that it suﬁices to show that the two
Spin structures on 8E agree when restricted to 9Ey.

Consider first the S pin structure induced by the double cover map This map
is an jmmersion, so Lemma 2.7 shows that inducing the structure on 8E andthen
restricting to Fp is the same as first restricting the structure to Mg and then
inducing via the double cover map 8Fy — M.

Next consider the Spin structure induced by restricting the Pin™ structure to
the boundary. We can restrict the Pin* structure on E to Fg and then restrict to
OE, or else restrict to the boundary and then to 8E;. These are not obviously the
same: if we let 1, be the normal vector to Ej in E, restricted to 8Ep, and let v, be
the normal bundle to 8E in E, again restricted to 8E. We have a Spin structure
on Tglag,, and in the two cases we identify this bundle with Tog, & v, @ 2 in
one case and with Tag, @ v2 @ 11 in the other. By Lemma 1.10, these two ways of
getting the Spin structure via boundaries agree up to a reverse of Spin structure.
But we are using the orientation of M to keep track of all the other orientations,
so the structures turn out to agree.

QOur inductive hypothesis applies over My and we conclude that the two Spin
structures on 8Ep agree. s

The other result relates double covers and the ¥5, Let M be a manifold and let
E' be the total space of the bundle det Ths & det Ty over M. There is a natural one
to one function ¥y: Pint(M) — PinF(E'). Let E C E' be the total space of the
first copy of ‘det Ths: note 8E — M is a 2 sheeted cover. The embedding 8E C E'
has a normal bundle which we see as two copies of the trivial bundle, which happens
to be det Tpp. This gives a natural function ¥y Pin¥(E') -+ Pin*(SE)..

Theorem 2.9. The Pint structure defined above on JE is the same as the one
induced by the double cover map.

Proof: We begin by proving that certain diagrams commute. To fix notation, let
My x RY'C M. Let By denote the total space of det Ty, D det Thy, and observe that
we can embed Ey x R! in E. We can arrange the embedding so that on 0 se¢tions
it is our given embedding, and so that (8Ep) x R! is embedded in dE. We begin
with

2

Pint(M) — PREY
. Lll iLs
Pint(Mp) ——— PF(ES)

where L, is just §! followed by. the restriction map induced by the embedding of
My x R! in M and L, is defined similarly but using the embedding of Ey x R! in
E. This diagram commutes by Lemma 1.10. We can then restrict thisstructure to
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OF and then further to (8Ep) x R'. Since stabilization commutes with restriction
e see Pint(M) —— Pint(9E)

L] ' 1L

Pint(My) ——+ Pin*(0E,)

commutes, where Ly is defined by restricting from M to My x R‘ followed by th;:
inverse stabilization map and Ly is defined by restricting from 9E to (9Fo) x R.
followed by the inverse stabilization map. .

The proof now proceeds much like the last one. First w? check the ;esult for
§'. Applying the last diagram to the 2-disk with boundary § shfm-rs_the result‘for
the structure which bounds. Apply the Pint diagram to the Mobxu?_band. to see
the result for the Lie Pin* structure. The result now holds for any Pint structure
on 5. Hence it holds for Spin structures and hence for Pin™ structures.

For M of dimension at least 2 we induct on the dimensiot}._ ABut just like the
proof of the preceding result, this follows from. the commutativity of our second

diagram. »

. ' i rown’ invariant.
. Pin™ structures on surfaces, quadratic forms and Brown’s arf invari

In this section we waﬁt to recall an algebraic wé,y of describing Pin™ structures
due to Brown [Br]. . . :
Definition 3.1. A function q: Hy (F; Z/2Z) — Z/4Z is called a quadratic enhance-
ment of the intersection form provided it satisfies g(z+y) = q(z) +q(y) +2: 2oy for
all z,y € Hy (F; Z/2Z) (here 2. denotes the inclusion Z/2Z C Z/4Z and » denotgs
intersection number. ' o -

The main technical result of this section is

Theorem 3.2. There is a canonical 1-1 correspondence between Pin™ structures
on a surface F and quadratic enhancements of the intersection form.

Discussion. One sometimes says that thereis a 1-1 correspondenpe ]?gtween Pin.’
structures on F and H(F;2/27), but this is non-canonical. Canonically, there is

an'action of H' (F; Z/2Z) on the set of Pin™ structures which is simply transitive. _

Once a base point has been selected, the action gives a 1-1 corr_eépondenc’e between
HY(F;Z/2Z) and the set of Pin™ structures. . '

Note also that H! (F;Z/2Z) acts on the set of quadratic enhancements, by |

g X v goes to ¢, defined by

'3.3) a+(y) = g(y) +2- ~+(y)

and note that this action is simply transitive. The 1-1 correspondence in Theorem -

3.2 is equivariant with respect to these actions. Indeed, the proof of Theorem 3.2 will

Kirby & Taylor: Pin structures on low-dimensional manifolds 201

be to fix a Pin™ structure on F and use it to write down a quadratic enhancement.
This gives a transformation from the set of Pin— structures to the set of quadratic
enhancements. We will check that it is equivariant for the H! (F; Z/2Z) action and
this will prove the theorem. : : _ .

Befdr_e déscr_i__bing the enhancemént,'we prove a lemma that prbduces enhance- .
ments from functions on embeddings. Specifically .

Lemma 3.4. Let § be a function which assigns an element in Z /4% to each em-

bedded disjoint union of circles in a surface F subject to the following conditions:

(2) § is additive on disjoint union; if Ly and L; are two embedded collections of
circles such that Ly 1L L, is also an embedding then §(L, AL L;) = §(Ly) +
§(L2) ' o '

(b) if Ly and L, are embedded collections of circles which cross transversely at
r points, then we can get a third embedded collection, Ly, by replacing each
crossing: we require §(Ls) = §(L,) + §(L2)+2-r 7 D

(c) if L is a single embedded circle which bounds a disk in F, then g(L) =0. _

Then §(L) depends only on the underlying homology class of L, and the induced

function q: Hy (F;Z/22) — Z/4Z is a quadratic enhancement,. . :

Proof: The first step is to show how given L, we may replac; it with a single
embedded circle K such that the L and K represent the same homology class
in Hy(F;Z/2Z) and have the same §. If L has more than one component, it

is possible to draw an arc between two different components. A small regular

neighborhood of this arc is a disk, and let 'K, be its boundary circle. By (c),
§(K1) = 0. The circle X, has two pairs of intersection points with I. Apply (b):
the new embe lding consists of a new collection L, which has one fewer components.
that L, and two small circles K3 and K3, each of which bounds a disk. Condition
(b} says that §(L; IL Ky 1 K3)= 4(L) + 4(K1) = §(L). From (a) and (c) we see
that §(L, UL Kp W K3) = §(L,), so §(L) = ¢(L1), and L and L, represent the
same homology class. Continue until there is only one component left.

Next we prove isotopy invariance of d in several steps. First, suppose A C F
is an embedded annulus with boundary Ky I K, and core ¢. We want to show
§(Ko) = §(K,) = §(C). Draw an arc from Ko to C and let K; be a circle bounding
a regular neighborhood of this arc. Apply condition (b): the result is two circles,
cach of which bounds a disk. From conditions () and (c) we see §(C) = d(Kop). A
similar proof establishes the rest. We can also show that §(C) must be even. Let
Cy be a copy of C pushed off itself in the annular structure, Then §(C) = §(Cy)
since they are both §(Kp). Let L = ¢ 1L Ci: Then §(L) = 2§(C) by (a). On the
other hand, just as above, we can use (b) to transform L into a picture with two
circles bounding disks, so by (a) and (c) we see 4(L) =0 and the result follows.
Hence any curve in F with trivial normal bundle has even §. Finally, suppose that -

§  C)is embedded in A and represents the same element in mod 2 homology as C.
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We can find a third curve C; which also represents the same element in mod 2
homology and which intersects both €| and C transversely. Consider say C; and
C. Apply (b): ris even as are both §(C) and §(C;). Hence §(C) = §(C;). Simitarly
G(C1) = §(C2) and we have our result. .
Next suppose that M C F is a Mobius band with core Cy. We can push
Co to get another copy, C) intersecting Cp transversely in one point. We can
push off another copy C; which intersects Co and C) transversely in a single point
zi,nd-'all three points are distinct. “Applying (b) to pairs of these circles, we get
“g(Ci) + ¢(C;) = 2 for 0 < 4,7 < 2,4 # j. Adding all three equations we see
2(§(Co)+4(C1)+§{C2)) = 2, s0 at least one §(C;) must be odd. But then returning
to the individual equations we see that §(Co) = §(C1) = ¢(C3), so we see that §(C)
must be odd whenever the normal bundle to C is non-trivial. Let C; be any
embedded circle in M which represents the core in mod 2 homology. It is possible
to find a third embedded circle, C, which also repf:esents the core and intersects
Co and C; transversely. Since §(C;) must-be odd, it is not hard to use (b} to show
that §{Cy) = §(C)). '
* To show isotopy invariance proceed as follows. Let K be a circle with a neigh-
}jorhood W. Any isotopy of K will remain for a smiall interval insideé W and the
‘image K, will continue to represent the core in mod 2 homology. By the above dis-
cussion § will be constant on Kj; the circle at time . Hence, the subset of ¢ € [0,
i:or which ¢(K¢}) = ¢(K) is an open set. Likewise the set of ¢ € [0,1] for whi,ch
q(I¢) # §(K). is an open set, so we have isotopy invariance for a single circle, By
part (a), the result for general isotopies follows as above. -
Next we prove homology invariance. ‘Suppose L; and L; represent the same
. element in homology. By isotopy invariance, we may assume that they intersect
t:ra.nsverseiy, Let Ls be the result of applying condition (b). ~§(Lg) = ¢(Ly) +
§{L2)+ 2 -7, and L; is null-homologous. If we can proveﬁ(La) = 0 then we are
done.- As we saw above, it is no Joss of generality to assume that Lj is connected
a.nd since it is null-homologous, it has trivial normal bundle, so §{L) is even. AIso,
since Ly is null-homologous, there exists a 2-manifold with boundary a single circie'
say 1V, and an embedding W C F so that 8W = L;. If W is a disk we are donv;:
by (c), so. we work by induction on'the Euler characteristic of W. If W is not a
d‘isk then we can write W = W, UV where 8V = &V 1L §V = S! 1L 8. V is
either a twice punctured torusor a punctured Mébius band, and W; has larger ,Euler
characteristic than W. We are done if we can show §(8 V) = §(8,V). We begin with
the toral case. Using (b) and (c) as usual, we can see that, §(dV) = §(Sa) + 4(Sh)
\frhere Sa and’ Sy are two meridian circles, one on either side of the hole. Likewise
g V) = G(Sa) + 4{Ss) so we are done with this case. In the Mdbius band case we
can again use (b) and (¢) and see that §{&V)+ §(8,V) = 0. Since they are both
even, again they are equal. ‘ :
Tllis shows that § induces a function ¢: H; (F;Z/22) -+ Z/4Z, and (b) trans-
lates immediately into the relation ¢(z + y) = g(z) +q(y) + 2 zoy. n .
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Now we describe our function. Let A be aline bundle over F' with w;(A) =

. wi(F) and let E()) denote its total space. From Lemma 1.7, a Spin structure on

E()) gives a Pin~ structure on F. Let K be an embedded circle in F, and'let 7
denote the tangent bundle of E() restricted to-K. A Spin structure on E(X) yields
a trivialization of 7. It is also true that r =T O vk cr @ VrcE(), where v denotes
normal bundle. Note all three of these bundles are line bundles, Pick a point p € K
and orient each of the line bundles at p so: that the orientation on 7 agrees with
that coming from the Spin structure. Since Ts: is trivial, the orientation picks out
a trivialization, and hence vk cF @ vrcE acquires a preferred even framing. (Note
that framings of a 2-plane bundle correspond to Z, while those of a 3—plane bundle
correspond to Z/2Z. Hence the framing of the 3-plane bundle picks out a set of
framing of the 2-plane bundle, a set we call even.) . .. .. .

_Definition 3.5. Choose__aﬁ odd framing on YicF @IUFC £ and using it, count the

number  (mod 4) of right half twists that vicr makes in a complete traverse of
K. This is 4(K). Given a disjoint union of circles, Lemma 3.4 (a) gives the value

of § in terms of the individual components. _ ‘

- We first need to check that § really only depends on the embedded curve and
not, on’ the choice of p or the local orientations made at p or ‘on the choice of odd
framing. It is easy to see that the actual choice of framing within its homotopy
‘class ia irrelevant because we get the same count in either frame. If we choose @
new odd framing the new count of right half twists will change by a multiple of 4.
so the specific choice of odd framing is irrelevant, I we move p to a new point.
we can move around K in'the direction of the orientation and transport the local
orientations as we go. If we make these choices at our new point, nothing changes
so the choice of point is irrelevant. Since we must keep the same orientation on 7
we are only free to change orieiitations in pairs. If we keep the same orientatior
on K, the odd framing on the normal bundle remains the same and so we get the
-same count. Finally, suppose we switch the orientation on K. We can keep the
same framing on the normal bundle provided we switch the order of the two fram
vectors. I we do this and traverse K in the old positive direction we get the same
‘count as before, except with a minus sign. Fortunately, we are now required ‘tc
traverse K in the. other direction which introduces another minus sign, so the ne
result is the same count as before. Hence § only depends on the embedded curve.

Since ¢ satisfies Lemma 3.4 (2) by definition, we next show that it satisfie:
conditions (b) and (c) also. We begin with (c). In this case, all'three line bundle:
are trivial, hence framed after our choice of p and the local orientations. However
this stable framing of the circle is the Lie group one, so it is not the stable framin,
of the circle which extends over the disk, Theorem 2.1. Since the framing from th
Spin structure does extend over the disk, the framing constructed above is an odc
framing, and § is clearly O for these choices. To show (b), consider 2 small dis!
neighborhood of 2 crossing. It is not hard to check that in the framing coming fron
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that of the disk, we can remove the crossing without changing the count. However,
this is the even framing and we are supposed to do the counting using the odd
framing. This introduces a full twist, and so we get a contribution of 2 for each
crossing. This is (b). ' '

Thanks to Lemma 3.4 we have described a function from the set of Pin~
structures on F to the set of gquadratic enhancements on the intersection form on
H, (F;Z/2Z). Suppose now we (':ha.ngé the Pin~ structure by v € H' (F,Z/2Z).
The effect of this change is to reverse even and odd framings on K for which

4(K) = —1 and to leave things alone for K for which ¥(K) = 1. The effect on the
resulting ¢ is to add 2 to ¢(z) if 7y(z) = —1 and add nothing to it if v(z) = 1. But
this is just ¢,.

This completes the proof of Theorem 3.2,

Next we describe an invariant due to Brown, [Br], associated to any quadratic
enhanceme_nt gq.. Given ¢, form the Gauss sum .

A= ' Z : e:zﬂ"-"T(’.’j/'t ..
r€H\ (F:2/2Z)

This complex number has absolute value VIH (F;Z/2Z) | and there exists an ele-
ment S(q) € Z/8Z such that A, = /|1 (F; Z/22Z)| e2mifa)/8

Hence we can think of 3 as-a function from Pin~ structures on surfaces to

Z/8Z. 1t also follows from Brown’s work, that g is an invariant of Pin™ bordism:
two surfaces with Pin~ structures that are Pm bordant have the same ﬂ

Lemma 3. 6. The homomorphxsm
ﬁ: QFi"T o Z/8Z

. . . _ A
is an isomorphism. The composite Q™" —Z/8Z — Z/2Z is the mod 2 Euler
characteristic and hence de;ennfngs the unoriented bordism class of the surface.

Proof: Brown proves that 8 induces an isomorphism between Witt equivalence
classes of quadratic forms and Z/8Z. One homomorphism from the Witt group is
the dimension mod 2 of the underlying vector space, Since this is just the mod 2
Euler characteristic of our surface, the second result follows.

Hence, if 3(F) = 0, the manifold is an unoriented boundary, say of w3, There
is an obstruction in H? (W, 8W; Z/2Z) to extending the Pin~ structure on F across
W. If this obstruction is O we are done, so assume otherwise. There is a dual circle,
K C W — F and the Pin™ structure on F extends across W — K. The boundary
of a neighborhiood of K is either a torus or a Klein bottle, so if #(F) = 0, F is
Pin~ bordant to a torus or a Klein bottle with g stili 0. Moreover, since the Pin™
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structure is not supposed to extend across the neighborhood of K, one of the non—
zero classes in H; has a non-zero ¢. For the Klein bottle, two of the non—zero classes
have odd square and the other has even square. It is the class with even square
that must have a non-trivial ¢ on it to prevent the Pin~ structure from extending
across the disk bundle. But the Klein bottle with this sort of enhancement has
non-zero 3, so the boundary of K must be a torus. For the torus, ¢ must vanish
on the remaining classes in H, in order.to have § = 0 and it is easy to find a Pin™
boundary for it. s

Exercise. Show that RP? with its two Pin™ structures has # = +1 € Z/8Z.

The relation between Pin~ structures and quadratic enhancements is perva-
sive in low-dimensional topology. In [Ro], {F-K] and [G-M] enhancements were
produced on characteristic surfaces in order to generalize Rochlin’s theorem. In
§6, we will show how to find an enhancement without the use of membranes. This
gives some generalizations of the previous work. In the next section we will study

surfaces embedded in “spun” 3-manifolds. An interesting theory that we do not

pursue is Brown’s idea of studymg immersions of a surface in R®. Since R? has
a unique Spin structure, an immersion pulls back a Spin structure onto the total
space of & line bundle over the surface with oriented total space,

Anothe- point we wish to investigate is the behavior of # under change of Pin™
structure. Hence fix a quadratic form ¢q: V —» Z/4Z: i.e. V is a Z/2Z—vector space;
g(rz) =r?q(z) for all z € V and r € Z; and q(z + y) — g{z) — q(y) is always even
and gives rise to a non-singular bilinear pairing \: V X V — Z/2Z.

Given a € V, define ¢, by ¢a(z) = g(z) + 2 Ma, z).

Lemma 3.7. With notation as above, 'ﬂ(q.,) = f{q)+2- q(d). '

Proof: There is a rank 1 form (1) consisting of a Z/2Z vector space with one
generator, z, for which ¢(2) = 1. There is a similar form (—1). It is easy to check
the formula by hand for these two cases. Or, having checked it for (1) and a = z
and a = 0, argue as follows. Given any form g, there is another form —g¢ defined on
the same vector space by {—¢){z) = —q(a:) It is easy to check that f(—q) = —5(g).
If the formula holds for ¢ and a, it is easxly checked for —¢ and a after we note
(—9)a = —(ga)-

Given two forms ¢; on V; and ¢; on V%, we can form the orthogonal sumq; 1 gz
omV, 0V, by the formula (g L g2)(v1,v2) = @1{v1) + ¢z(v2). Brown checks that
Blg: L g2) = 1) + Blqz). K a; € V;, note (@1 L 2)ar,a:) = (91)ay L (g2)ay, 50 if
the formula holds for the two pieces, it holds for the orthogonal sum. Moreover, if.
it holds for the sum and one of the pieces, it holds for the other piece.

Finally, note that if a = 0, the formula is true.

Now use Brown, [Br, Theorem 2.2 (viii)] to see that it suffices to prove the
formula for a form isomorphic to m(1) 4+ n(—1) and any a and this follows from the
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above discussion. « .
Next we present a geometnc calculahon of the Spin and Pm"‘ bord:sm
groups in dimension 2.

Proposition 3.8. Any Spin structure induces a unique Pin‘ structure, so 3 is
defined just as above for surfaces with a Spin structure. We have § defines an
isomorphism QSP'" — Z/2Z. Any surface with odd Euler characteristic with any
Pin~ structure is a generator for Q" and the 2-torus with the Lie group Spin
structure is a generator for Q7™

Proof: The proof is almost identical to that of Lemma 3.6. The surface F bounds
an oriented 3-manifold W and by considering the obstruction to extending the Spin
structure we see that F is Spin bordant to a torus with the same Spin structure as
in the proof of Lemma 3.6. Just note that the boundary constructed there is actually
a Spin boundary. It is a fact from Brown that 3 restricted to even forms only takes
on the values 0 and 4. The results about the generators are straightforward.

The Pint case is more interesting. We have already seen that the only way a
surface can have a Pint structure is for w} to be 0. Hence the [ﬂwf] map must

also be 0, so the [Mw,] map is defined on all of Qf int, _

Proposition 3.9. The homomorpbxsm [Nuw):Qfm" QS’"" = Z/2Z is an iso-

.morphism. A generator is given by the Klem bottle in han of its four Pint struc-

tures.

Proof: A surface, F, has a Pint structure. iff wy(F) = 0 iff F is an unoriented
boundary, say F' = 8W. The obstruction to the Pint structure on F' extending
to W is given by a relative 2-dimensional cohomology class, so its dual is a 1-
dimensional absolute homology class. We can assume that it is a single circle, and
so F is Pint bordant to etther a torus or a Klein bottle, and the Pint structure
has the property that it does not extend over the corresponding 2-disk bundle over
st .

Since S! with either Pin™ structure is a Pin* boundary it is not hard to see
that the torus with any Pin* structure is a Pin* boundary. There are two Pin*t
structures on the Klein bottle which do not extend over the disk bundle. If one cuts
the Klein bottle open along the dual to w; and glues in two copies of the Moblus

band, one secs 2 Pint bordism between these two Pin't structures. Hence Q57 int

has at most two elements. On the other hand it is not hard to see that the Klem
bottle with the Pint structures which do not extend over the disk bundle hit t.he
non-zero element in QSP " under [Nw;]. « '

For future convenience let us discuss another way to “see” structures on the
torus and the Klein bottle. We begin with the torus, 77,

Example 3.10. We can write T% as the union of two open sets U; = §7 x (-1,1)
so that U; N U, is two disjoint copies of $! x (~1,1), say U1 NU; = Vi AL V.
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We can frame 5 % (—1,1) using the product stmcture and the framings of the two
1-dimensional manifolds, §? and {(—1,1). If we form an SO(2) bundle over T? with
transition function g,; defined by g12(Uy NU3) = 1 then we get the tangent bundle.
If we think of 1 as the identity of Spir{2) then the same transition functions give
& Spm structure on T2. This Spin structure is the Lie group one: clearly the copy
of §* in the S! x (—1,1)’s receives the Lie group structure, and it is not difficult
to start with a framing of (—1,1) and transport it around the torus to get the Lie
group structure on this circle. If we take as Spin(2) transition functions h;, defined
by hy2(Viz) =1 and Rh12(V12) = —1 € Spin(2), then we get a Spin structure whose
enhancement is 0 on the obwous 5' and 2 on the c1rcle formed by gluing the two
intervals. ‘

Example 3.11. We can write the Klein bottle, K as the union of two open
sets U = S* x (~1,1) so that U; NV, is two d]SjOlnt cop:es of §t-x (~1,1), say
Uy Uy =Wy A W,y3. We can frame §? x (—1,1) using the product structure
and the framings of the two I~dimensional manifolds, $* and (—1,1). If we form
an O(2) bundle over K? with transition function g;» defined by g1a(Wy) =1 and
g12(Wig) = (_é (1)) € 0(2) then we g’et the tangent bundle (we are writing the
S! tangent vector ﬁrst) I we define hu(Wl) =1 and hlg(ng) = e) € Pin(2), we
get a Pin structure on the tangent bundle. The copy of 57 in'the § x (=1,1)’s
receives the Lie group structure, s0 1f we are descnbmg 8 Pin~ structure, then we
get the bordlsm generator. ' '

We conclude this section with two amusing results that we will need later. -

Theorem 3. 12 Let F' be a surface with a Spm structure. Let g Hy (F;Z2/2Z) —
Z/2Z denote the induced quadratic enhancement. Let z € H! (F;Z/2Z). Corre-
sponding to = there is a double cover of F, F which has an induced Spin structure
There is also a dual homology class a and

[F] < ala) € 2722 .

Proof: We can write F' as T2 F, where T? is a 2 torus and a is contained in
T2, Then F = Tz#Fl#Fl, where 7 is a double cover of 7% given by z €
H! (T%Z/22). Note {r,a) = 1 not ——I,so a lifts to 2 disjoint parallel circles.
Moreover, H; (T} ,Z/2Z) is generated by one component of the cover of q, say i,
and another circle, say b which double covers a circle, say b in T2. ' '

Note [F] = [T?] + 2[R, s0 [F] = [7?). The enhancement §: H; (T7; Z/2Z)
satisfies (@) = g(a) and §(b) = —1. Hence the Spin bordism class of T} in Z/2Z
is given by g{a). »
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The second result is the following. Given any surface, ¥, we can take the
otientation cover, ', and orient F' so that the orientation does not extend across
any component of the total space of the associated line bundle. Given a Pint
structure on F, we can induce a Spin structure on F.

Lemma 3.13. The orientation double cover map induces homomorphisms

Pint Spin
Q" —

which are independent of the orientation on the double cover. The Pin™ map is
" trivial, and the Pint map is an isomorphism.

Proof: If we switch to onentatxon on F, we get the reverse of the Spm structure
we originally had. Since Q; Spin o 7./97 this shows that the answer is independent
of orientation. By applymg the construction to a bordism between two surfaces we
see that the maps are well-defined on the bordism groups. Since addition is dlS_]Olllt
union, the maps are clearly homomorphisms.

In the Pin~ case, RP? is a generator of the bordism group. The oriented cover

is 5% which has a unique S pm structure and is a Spin boundary. This shows the
Pin~ map is trivial.

In the Pin* case, a generator is given by the Klein botile. Consider the

transition functions that we gave for this Pin™® structure in Example 3.11. This give
us a set of transition functions for the torus which double covers the Klein bottle.
We get 4 opén sets, but it is not difficult to amalgamate three of the cylinders into
one. The new tra.nsition function, hyz, takes the value 1 on one component of the
overlap and the value €} on the other. Since e; € Pin*(2), ¢? €1 = 1 so we get the Lie
group structure on T2 by Example 3.10. s

Remark. If we started with a non-bounding Pin~ structure on the Klein bottle,
then the above proof would show that the double cover has Spin transition functions
given by 1 on one component of the overlap and -1 on the other, and, as we saw,
this Spin structure bounds (as Lemma 3.13 requires).

§4, Spin structures on 3—manifolds.

Let M* be a closed 3-mamfo]d with a gwen Spin structure. We begin by
generalizing some of the basic ideas in the calculus of framed links in S°.

Given any embedded circle k: 81 — M3, the normal bundle is trivial, and
therefore has a countable number of framings. If the homology class represented by
k is torsion, we car give a somewhat more geometric description of these framings.
Recall that there is a non-singular linking form

f:torH, (M Z) @ torHy (M Z) — Q/Z .

Let £ € Hy (M; Z) be the class represented by k, and assume that x is torsion.

Kirby & Taylor: Pin structures on low-dimensional manifolds 209
Lemma 4.1. The framings on the normal bundle to k are in one—to—one corre-
spondence with rational numbers q such that the class of ¢ in Q/Z is £(z, ).

Proof: We describe the correspondence. A framing on the normal bundle of £ is
equivalent to a choice of longitude in the torus which bounds a tubular neighborhood

of k. Suppose r € Z is chosen so that r -z = 0 in H, (M;Z). Take r copies of the

longitude in the boundary torus and let F be an oriented surface which bounds
these r circles. Count the intersection of F' and k with signs as usual. If one gets
p € Z, then assign the rational number 2 to this framing. It is a standard argument
that § is well-defined once the framing is fixed. It is also easy to see that £ mod
Z is £(z,z), and that if we choose a new framing which turns through ¢ full right
twists with respect to our original frmmng, then the new rational number that we
getis £ 4t 9

A Spm structure on M gives a Spin structure on the normal bundle to k
as follows. Restriction gives a Spin structure on the tangent bundle to S plus
the normal bundle. Choose the Spin structure on the normal bundle so that this
Spin structure plus the one on §? which makes S? into a Spin boundary gives the
restricted Spin structure.

Definition 4.2. We call the above fra.mings even,

If z as above is torsion and M is spun, then the Spin structure picks out half
of the rational numbers for which the longitude gives a framing compatible with
the Spin structure on the normal bundle. Given one of these rational numbers, say
q, the remaining ones are of the form ¢ + 2¢ for ¢ an integer. Hence we can define a
new elemenit in Q/Z, namely £. This gives a map

y:torty (M;Z) - Q/Z
which is a quadratic enhancement of the linking form:i.e.

() +1(y) + &=,v) ,
r?.q(z) for any integer r .

7z +y)
¥(rz)

(]

Suppose now that z is zero in Hy (M;Z/2Z), but not necessarily torsion in
H,(M;Z). Then any Spin structure on M induces the same Spin structure in a
neighborhood of k, and hence the notion of even framing is independent of Spin
structure for these classes. -

Theorem 4.3. A knot k which is mod 2 trivial as above, bounds a surface which -
does not intersect k. This surface selects a longitude for the norma.! bundie to k,
and this longitude represents an even framing.

Proof: Let E be a tubular neighborhood for k with boundary 7%. (This T? is
often called the peripheral torus.) We can select a basis for Hy (T%2Z/2Z) as
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follows. One element, the meridian, is the unique non—trivial element in the ker-
nel of the map H, (T%,2/2Z) — H\ (E;Z/2Z). One calculates that the sequence
H, (T%Z2/2Z} — Hy (M — k;2/22) —» H,(M;Z/2Z) is exact, and that the im-
age of Hy (T% Z/2Z) in Hy (M — k;Z/2Z) is 1-dimensional and generated by the
meridian. Hence there is a unique non-trivial element, the mod 2 Iongitude, in
the kernel of Hy (T* Z/2Z) — H,(M — k;Z/2Z). An even longitude for k is an
element £ € Hy (T?%; Z) which reduces in mod 2 homology to the mod 2 longitude.

Fix an even longitude, . It follows that there is an embedded surface, F? C M
such that &F = k. This surface can be chosen to intersect T? transversely in the
even longitude. The southeast corner of Corollary 1.15 assigns a Pin~ structure o
F. Restricted to k, the normal bundle to F' in M is trivial, so the surface frames the
normal bundle to k in M. Hence the Spin structure on M restricted to & is seen es
the Spin structure on the circle coming from the restriction of the Pin~ structure
on F plus the Spin structure on the normal bundle coming from the framing. We
saw in the proof of Theorem 2.1 that, regardless of the Pin~ structure on F, the
boundary circle receives the non-Lie structure. This is the definition of the even
framing. = '

Remarks 4.4. )

(i) In S* with its unique Spin structure, the framing on k designated by an even
number in the framed link calculus is an even framing in the above sense.

(ii) I the class z has odd order, then £(z,z) = £ with r odd. There are then two
sorts of representatives in Q for {{z, z): the p is even for half the representatives
and odd for the other half. The framings that the Spin structure will call even
are the ones with even numerator.

(iil) If we change the Spin structure on M by a class &« € HY(M;Z[2Z) the even
framings on a circle change iff & evaluates non-trivially on the fundamental
class of the citcle.

(iv) If we attach a handle to a knot in & 3-manifold, M®, we get a 4-manifold W
with Hy (W, M;Z) = Z. If our knot in M? is torsion, we get a unique (up to
sign) class r € H,y (W;Q) which hits our relative class, If we attach a handle
with framing ¢ € Q from Lemma 4.1, then = intersects itself with a value of g.
Hence the signature of W is sign (g), where sign (¢) =1if¢>0; ~1if g <0
and 0 if ¢ = 0.

By Corollary 1.15 the surface F we used in the proof of Theorem 4.3 inherits
a Pin~ structure from one on M. This suggests trying to define a knot invariant
in this situation. Indeed, for knots in 5%, this is one way to define Robertello’s Arf
invariant, [R]. The situation in general is more complicated and needs results from
§6, so we carry out the discussion in §8.

An invariant of a 3-manifold with a Spin structure is the y—invariant. We
discuss in Theorem 5.1 the classical result that QS” ™ = 0. It follows that any
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3-manifold, M?, is the boundary of a Spin 4-manifold, W.

Definition 4.5. The signature of W, reduced mod 16, is the p—invariant of the
manifold M with its Spin structure. It follows from Rochlin’s theorem that p(M)
is well-defined once the Spin structure on M is fixed.

Remark. Some authors stick to Z/2Z homology spheres so that there is a unique
Spin structure and hence a yx invariant' that depends only on the manifold.

We now turn to a geometric interpretation of some work of Turaev [Tu]. Inter-

section defines a symmetric trilinear product

7 Hy (M; Z/2Z) x Hy (M; B/2Z) x Hy(M; Z/2Z) — Z/2Z
We introduce a symmetric bilinear form |
AtHy (M Z/22) x Hy (MG Z/2Z) — Z/2Z

which is defined as follows, Let F; and F, be embedded surfaces representing two
classes z and y in H, (M; Z/2Z). To define A(z,y) put the two surfaces in general
position. The intersection will be a collection of embedded circles. The normal
bundle of each circle in M has a sub-line bundle, ., given by ‘the inward normal
to the surface Fy. Define A(z,y) to be the number of circles with non—trivial £_.

Here is an equivalent definition of A. Any codimension 1 submanifold of a
manifold is mod 2 dual to a 1-dimensional cohomology class in the manifold. If
this cohomology class is pulled-back to the submanifold, it becomes w; of the
normal bundle to the embedding. Hence, if #* and y* are the Poincaré duals to
T and y, Mz,y) = z* U z* U y*[M], where [M] is the fundamental class of the 3-
manifold. This follows because z*Uy*[M] is the homology class represented by the
intersection circles, and to count the number with non-trivial £z we just evaluate
w; of the normal bundle on these circles. But w; = z* so we are done. We can
also prove symmetry using this definition. Since M is orientable, 0 = w(M ):n y* =
Sgt(a*y") = (2°)2y" + 2°(u" ).

Yet another definition of A is .

Mz, y) =7(z, 7,3} .

Hence A is symmetric and bilinear.
Given a Spin structure on M, we can enha.nce A to a function

f: Hy (M;Z/2Z) x Hy (M;2/2Z) — Z/4Z .

To begin, we define f on embedded surfaces F, and Fy in M as above, but now use
the Spin structure to put even framings on the intersection circles and then count

:
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the number of half twists in each £.. (Since the collection of circles is embedded,
there is no correction term needed to account for intersections.) Note if we defined
¢, in the obvious manner and counted half twists in 1t instead of in £, we would
get the same number, so f is symmetric.

Here is another description of f(F%,Fy). In M3 F, is dual to a cohomology
class, o € H! (M;Z/2Z), and we could take & and restrlct. it to F:, getting a, €
H'(F:;Z/2Z). The Poincaré dual of a, in. F; is just the class represented by our
collection of circles, which we will denote by §. Associated to our Pin™ structure
on Fi, there is a quadratic enhancement .. Note

(4.6) o F(Foy Fy) = al§) -

In particular, note f(Fy, Fy) o'.nly depends on the homology class of Fy, and hence
by symmetry also only on the homology class of F. '

Once we see the pairing is well-defined, it is easy to see that f(z,0) = f(0,z) =
0 for all z € Hy (M; Z/2Z). We have lost bilinearity and gained

(4.7) fzy+2)= f(z,9) + f(2,2) + 2r(2,9,2) -

Proof: With notation as above, we apply formula 4.6. We need to show P, (y + z) =
Yo (§) + 3:(2)+ 27(z, ¥, 2}, which is just the quadratic enhancement property of ¢,
and the identification of §¢Z in' Fy with r(z,y,2). s
If we change the Spin structure on M by a € H' (M;Z/2Z), then we change f
as follows. Let f, denote the new pa.lrmg and’let a € Hy (M; Z/ZZ) be the Poincaré
dual to &. Then
folz,y) = f(z,y} + 2r(z,y,0) ,

or

fa(x’y) = f(ﬂ»‘,y-I-ﬂ)—f(ﬂfaa) .

Proof: We prove the first formula. Using 4.6 we see that the first formula is
equivalent to ¥,(9) = ¥(¥) + 27(z, y, a), which follows easily from formula 3.3. »

Finally, we have a function
(4.8) ' B: Hy (M;2/22) — Z/87 .

We define § by taking an embedded surface representing 2, using the Spin structure

on M to get a Pin™ structure on Fy, taking the underlymg Pin~ bordism class,
and using our explicit identification of this group with Z /87,

We need to see why this is independent of the choice of embedded surface

Given two such surfaces, there is a bordism in M x [0, 1] between them. Let W C

« M x [0,1] be a 3-manifold with the two boundary components representing the

same element in Hy (M; Z/2Z). Since M x {0,1] is spun, we get a Pin~ structure
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on W which is our given Pin™ structure at the two ends. Since Brown’s Z/8Z is a
Pin™ bordism invariant, we are done. It further follows that 8(0) =

Reduced mod 2 () is just the mod 2 Euler class of an embedded surface
representing x, and hence f is additive mod 2. We have . :

(4.9) Bz +y) = Blz) + B(v) + 2f(,9) -
which we will prove in a minute. It follows that f(z,2) = —f(z) reduced mod 4.

-. Note that, mod 4, (= +y) = (=) + B(y) + 27(z, =z, y).

How does # change when we change the Spin structure by a € H (M; Z/2Z)?
The principle is easy. Given a surface, F', restrict o to F and consider it to be a
change in Pin~ structure on F. Compute the Brown invariant for this new Pin™ .
structure, and this is the value of the _nevé Bon F, It follows from Lemma 3.7 that

(4.10) Pol(2) = B(2) +2f(,0)

with notation as above.

Given the theorem below, we now prove formula 4.9. From this theorem we
get: % — g = 2f(a) and u ~ uq, = 20(a;). Also uy —~ o, = 2fa(a) — a). Hence -
Ba(a1 — a} = f{a;) — B(a). Set a; = z + a and use formula 4.10. »

The main result concerning S is

Theorem 4.11. Let M be a spun 3-manifold with resulting function f and p- -
invariant u in Z/162. Let o« € H' (M;Z/22) be used to change the Spin structure,
and let u, be the new p—invariant. Then ?

u — U, = 20(a) {mod 16)
where a € Hy(M;Z[2Z) is the Poincaré dual to a.

Proof: The proof is just the Guillou-Marin formula, [G-M, Theoreme, p. 98], or -
our discussion of it in §6, 6.4. On M x (0,1} put the original Spin structure on :
M x 0 and put the altered one on M x 1. We can cap this off to a closed 4-manifold :
by adding Spin manifolds that the two copies of M bound to either end. The !
resulting 4-manifold has index #g — u. Let F be a surface in M representing a. :
Then F x 1/2 is a dual to wy for the 4-manifold. Since F is in a product, FeF =0
and the enhancement used in the Guillou-Marin formula is the same as the one we °

- put on F to calculate 8. By formula 6.4, 4 — ug = 26(a). =

As a corollary we get a result of Turaev, [Tu]

Corollary 4.12. The quadratic enhancement of the linking form gives the ,u—‘ i
invariant mod 8§ via the Milgram Gauss sum formula. 5

Proof: This was proved in [Ta] for rational homology spheres. Pick a basis for the '
torsion free part of H; and do surgery on this basis. The resulting bordism, W, has
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signature 0; both boundary components have isomorphic torsion subgroups-of Hi:
and the top boundary component has no torsion free part. Put a Spin structure on
the bordism, which puts a Spin structure at both.ends. The two enhancements on
the linking forms are equal, and they stay equal if we change both Spin structures
by an element in H!' (W;Z/2Z). Any Spin structure on M can be obtained from
our initial one by acting on it by an element of the form = + y, where z comes
from H!(W;Z/2Z) and y comes from H' (M;Z). But acting by this second sort
of element does not change the mod 8 y-invariant or the quadratic enhancement of
the linking form. :

~ . . int
§5. Geometric calculations of Q"™

We begin this section with'a calculation for the 3-dimensional Spin, Pin~ and
Pint bordism groups.

Theorem 5.1. Q77" 2 0; QP = 0 and [Ny |: QF"* — Q5P & 797 is an

isomorphism.

Proof: The Spin bordism result is classical: [ABP1), [Ka] or {Ki].
Given a non-orientable Pin# manifold M3, we will try to find a PinT bordism
to an orientable manifold which then Pin* bounds by the Spin case. The dual to

w; (M) is an orientable surface F' by Proposition 2.3. The first step is to reduce to .

the case when F has trivial normal bundle. If not, consider F' intersected trans-
versely with itself. It can be arranged that this is a single circle C, which is dual in
F to wy (M) pulled back to F. The normal bundle to ¢ in M is vreM|e @ vrenlc
which is also vocr @ veer which is trivialized.  Hence the Pin?® structure on M
induces a Pin¥ structure on C. Suppose C with this structure bounds Y2 let E
denote the total space of ('@ ¢ over ¥, where € is the determinant line bundle for
Y. Note that inside GF there is a copy of (8Y) x B2, and E has a Pin¥ structure
extending the one on (9Y) x B%. We can form M x [0, 1] U E by gluing (8Y2) x B?

to C x B? x 1 where C x B? is the trivialized disk bundle to C above. Clearly the

Pin¥ structure extends across the bordism, and the “top” is a new Pin* manifold
M, with a new dual surface F; with trivial normal bundle.

In the Pin™ case, C has a Pin* structure which bounds (QiD int 0, Theorem
2.1) so we have achieved the (M), F}) case. In the Pin?t case an argument is needed
to see that we never get C representing the non-zero element in "™ = Z/2Z,
Le. C does not get the Lie group Spin structure. -

To show this, let V be a dual to w; and let E be a-tubular neighborhood of
1" By the discussion just before Lemma 2.7, since E as a Pint structure, there is
an inherited Spin structure on ¥ (in fact there are two which differ by the action
of 2 € H'(V;Z/2Z), where z denotes the restriction of w; to V). Note z also
describes the double eover 8E — V. The boundary, JF, also inherits a Pin*t
structure and we saw, Lemma 2.7, that, if we orient 8F and V so that the covering

A
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map is degree 1, the Spin structure on @E is the same as the one induced by the
covering map. The Spin structure on 8F bounds the Spin manifold which is the
closure of M — E, so if C is the dual to = and g is the quadratic enhancement on
Hy(V;2Z/2Z), ¢(C) = 0 by Theorem 3.12. Recall that the normal bundle to V in
M, when restricted to C is trivial. Hence the framing on C as a circle in V is the
same as the Pin™ structure on C as V intersect V in a Pin* manifold. Hence C
has the non-Lie group Spin structure and hence represents 0 in Qf” ",

Hence we may now assume that F' has trivial normal bundle in M. Therefore
F inherits a Pin® structure from the one on M, and hence, after choosing an
orientation, F' has a Spin structure. If the Spin structure on F is 2 boundary then
it is easy as above to construct a Pin® bordism to an oriented manifold. In the
Pin* case we are entitled to assume that the surface bounds because that is what
the invariant [Mw,] is measuring. In the Pin™ case, the Klein bottle x5! with
the Lie group framing is an example for which the F' has the non-bounding Spin
structure. But if we add this manifold to our original M, for the new manifold, F
will bound and we are done.

We have now proved that [Nw;] is injective in the Pin* case and that QPin~
is generated by K xS, where K is the Klein bottle and the Pin~ structure comes
from some structure on the surface and the Lie group Spin structure on S, In some
Pin~ structures, X bounds and hence so does K x $*. In the others, K is Pin~
bordant to two copies of RP?, so K x S! is bordant to twe copies of RP? x §1.
Hence, if we can prove that [Mw;] is'onto and that RP? x §? bounds, we are done.

I we take the'generator of Q" and cross it with S with the Lie group Spin
structure, we get ‘a 3-manifold with [Mw;} being the 2~torus with Lie group Spin
structure so by Proposition 3.8; [Mw,] is onto. ' ' .

‘Consider RP? in RP*: it is the dual to w? +ws so there is & Pin™ structure on
RP* —RP? which restricts to the Lie group structure on the normal circle to RP?.
An easy calculation of Stiefel-Whitney classes shows that the normal bundle v of
RP? in RP* is orientable but wz(v) # 0. So we take the pairwise connected sum
(RP*, RP?)#(CP?, CP!) and then the normal bundle of RP? = RP?#CP" in
RP*#CP? has w; = w, = 0. For a bundle over RP? this means that the bundle
is trivial, so its normal circle bundle is RP? x §'. The two Pin™ structures on
RP‘#CP? — RP? bound two Pin~ structures on RP? x §7 which have the Lie
group structure on S'. Since this is all the Pin~ structures that there are with the
Lie group Spin structure on the S?, we are done. s '

- Next we turn to the 4-~dimensional case. The result is
- \
. e N { L )
Theorem 5.2. The group'ﬂf’-’ " = Z generated by the Kummer surface; Q7™ =

0; and the group QFi"" = 2162 generated by RP*.

Proof: The Spin result may be found in [Ki, p. 64, Corollary]. Our first lemma
determines the image of 237" in the Pin* bordism groups. '
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Lermma 5.3. The Kummer surface bounds a Pin~ manifold hence so does any 4-
dimensional Spin manifold. Twice the Kummer surface bounds a Pin™ manifold,
but the Kummer surface itself does not. Hence a 4-dimensional Spin manifold
Pin™t bounds iff its signature is divisible by 32,

Proof: The Enriques surface, E, [Ha], is a complex suiface with =,(F) = Z/2Z
with wa(E) # 0. Habegger shows that H?(M;Z) = Z'° @ Z/2Z and wy(M) is
the image of the non-zero torsion class in H? (M;Z), see paragraph 2 after the
Proposition on p. 23 of [Ha]. If y € H' (E;Z/2Z) is a generator, then from the
universal cocfficient theorem, y* = wy(W). If L is the total space of the line bundle
over E with w; = y, then it is easy to calculate that L is Pin~ (but not Pin*),
and @F is the Kummer surface. This proves the Kummer surface bounds a Pin™
manifold. Since {2 Spin o~ 7 generated by the Kummer surface, this proves any Spin
4-manifold bounds as a Pin~ manifold.

Let M* is a Spin manifold and let W® be a Pin~ manifold with 8W = M
as Pin~ manifolds. Consider the obstruction to putting a Pint structure on W
extending the one on M*. The obstruction is wy(W) = wi(W), so the dual class
is represented by a 3-manifold formed as the intersection to a dual to w; pushed
off itself. As usual, this 3-manifold has a natural Pint structure and it is easy to
see that we get a well-defined element in 28"" = Z/2Z. If this clement is 0, then
we can glue on the trivializing bordism and extend its normal bundle to get a new
Pin~ manifold W) which still bounds M and has no obstruction to extending the
Spin structure on the boundary to a Pint structure on the interior.. Hence, if our
element in in* is 0, M bounds. From this it is easy to see that twice the I{ummer
surface bounds. Hence any 4-dimensional Spin manifold with index divisible by 32
-bounds a Pin* manifold.

Suppose that W is a Pint manifold with 8W = M otientable. Let V C W
be a dual to w; contained in the interior of W. Let E be a tubular neighborhood
of V with boundary JE. As usual, JE is orientable and the covering translation is
oricntation preserving. Since V is orientable with a normal line bundle, if we fix an
orientation, Spin structures on V correspond to Pin™ structures on E. Since W is
a Pint manifold, E has an induced Pint structure and V acquires an induced Spin
structure. The bordism between M and JE is an oriented Pint bordism, so M
and @F have the same signature. But 8E is the double cover of V so has signature

- twice the signature of V., Since V is Spin, the signature of V is divisible by 16, so
the signature of Af is divisible by 32. This shows that the Kummer sutface does
not bound a Pin™ manifold and indeed that any 4-dimensional $pin manifold of
index congruent to 16 mod 32 does not bound a Pin* manifold. «

Since 27" = Z generated by the Kummer surface this lemma calculates the

image of Q57" in QF™* and our next goal is to try to produce a Pint bordism
from any Pin® manifold to an orientable one.

To this end let A be a 4-manifold with V3 a dual to w,.

f

Consider the dual
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to wy intersected with itself, It is a surface F ¢ M and the normal bundle is

two copies of the same line bundle. Indeed, the transversality condition gives an

isomorphism between the two bundles. This line bundle is also a.bstractly isomorphic -
to the determinant line bundle for F. A Pin¥ structure on F gives rise to a Pin¥
structure on the total space of the normal bundle of F in M by Lemma 1.7. Hence
we can use the Pin® structure on M to put a Pin¥ structure on F and it is not
hard to check that we get a homomorphism Qf it QP in¥ I F bounds in this
structure, one can easily see a Pin® bordism to an new 4—mamfold M, in which
the dual to w; has trivial normal bundle. This puts a Pin* structure on V;. By
orienting Vi we get a Spin manifold and if V; bounds in this Spin structure, M,
Pin* bounds an orientable manifold.

Con31der the Pin™ case. Any element in the kernel of the map [Nw}]: Q" _
b in* i3 Pin~ bordant to a Pin~ manifold whose dual to wy, say V, has tnvxa.l
normal bundle. Orienting this normal bundle gives a Pin™ structure on ¥, and since
37" = 0, we can further Pin~ bord our element to an orientable representative,
It then follows from Lemma 5.3 that the map [Nw})] is injective.

To show that this map is trivial, which proves Q" = 0, proceed as follows,
Let V C M be a dual to w (M) and let F? denote the transverse intersection of |
V with itself. Since the normal bundle to F in M is 2 copies, of the determinant -
line bundle for F', F acquires a Pint structure from the Pin~ structure on M.

‘Let E C V be a tubular neighborhood for F' in V. Theorem 2.9 applies to this

situation to show that the Pin* structure on 8E induced by the double cover map
OF — F is the same as the Pin* structure induced on 8E C M from the fact that -
its normal bundle is exhibited as the sum of 2 copies of its determinant line bundle.
Since the normal bundle to V in M is trivial on V — F, V — F has a Spin structure

“-which restncts to the given one on JF. By Lemma 3.13, the oriented cover map

178 in - SPin i3 an isomorphism, so F is a Pint boundary, which finishes the :

Pm case,

So consider the Pint case. This time our homomorphism goes from QFin*
to 5" = Z/8Z and the example of RP* shows that it is onto. Just as in the
Pin™ case, any element in the kernel of this homomorphism is Pin* bordant to *
an orientable manifold. This together with Lemma 5.3 shows that 0 — Z/2Z — =
Qpint _, Z /82 — 0 is exact.

To settle the extension requires more work Given a Pm"’ structure on a -
4-manifold M, we can choose a dual to w,, say'V C M, and an orientation on .
M =V which does not extend across any component of V. We can consider the :
bordism group of such structures, say G4. There is an epimorphism G, — QFin* 4
defined by just forgetting the dual to w; and the orientation. There is another 7
homomorphism G4 -+ Q/32Z defined as follows. Let E be a tubular neighborhood
of V with boundary GE. The covering translation on 9F is orientation preserving,
so V is also oriented. The normal bundle to 8E in M is a trivial line bundle,



L T B S T L e O T T T AT TR

218 Kirby & Taylor: Pin structures on low-dimensional manifolds

oriented by inward normal Jast, where inward is with respect to the associated disk
bundle. Hence 3E acquires a Spin structure, and hence a g invariant in Z/16Z.
The manifold F is a 3-manifold with an orientation preserving free involution
on it, hence there is an associated Atiyah-Singer a invariant, a(0E) € Q. Define
WM, V)=0o(M ~int V) + a(9F) — 2_u(V) € Q/32Z. It is not bard to check that
3 depends only on the class of (M,V) in G4 and defines a homomorphism, We
can make choices so that p(RP?, RP?) = +2. Hence (b(S(RP“ RP?)) = 16 with
these choices, The Pint bordism of 8 copies of RP* to an oriented manifold is
seen to extend to a bordlsm_preservmg the dual to wi and orientation data. This
oriented, hence Spin manifold has index congruent to 16 mod 32, and so we have
constructed a Pin* bordism {with some extra structure which we ignore) from 8
copies of RP? to a Spin manifold which is Pint bordant to the Kummer surface.
This shows Q""" = 2/16Z.4

" §6. 4—.d1mensiona_l.characi_:erist_ic bordism.

The purpose of this section is to study the relations between 4-manifolds and
embedded surfaces dual to w; + wi.

Deflnition-6.1. A pair (M, F) with the embeddmg of F in M proper and the
boundary of M intersecting F precisely in the boundary of F is called a charac-
teristic pair if F is dual to ws + w?. A characteristic pair is called characterized
provided we have fixed a Pin™ structure on M — F which does not extend across
any component of F. The characterizations of a characteristic pair are in one to
one correspondence with H (M;Z/27). :

We begin by discussing thé oriented case.

Lemma 6.2. Let M be an oriented manifold with a cod:mensron 2 submanifold F
“}nch is dual to wq. There exists a function

" Char(M,F) - Pin~(F) .

The group H'(M;Z/2Z) acts on Char(M F), the group H' (F;Z/2Z) acts on
Pin~{F) and the map is eqmvanant with respect to the map induced on H' (;Z/2Z}
by the inclusion F C M.

Remark. Later in thls section we will define this function in a more genera.l situ-
ation.

Proof: There is an obvious restriction map from characteristic structures on (M, F}
to those on (£, F'}, where F is the total space of the normal bundle to F' in M,
denoted r. Hence it suffices to do the case M = E. In this case we expect our
function te be a bijection. After restricting to the case M = FE it is no further
restriction to assume that F is connected since we may work one component at a
time.
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We begin with the case that F' has the homotopy type of a circle, In this case
v has a section, so choose one and write v = A@e*. Orient ¢! and use it to embed F
in OE. The normal bundle to 8E in E is oriented; E is oriented; so 8F is oriented.
The normal bundle to the embedding of F in 3E is A so the orientation on E plus
the orientation of ! pick out a preferred isomorphism between A and det T#. From
Corollary 1.15, there is a Pin™ structure on F induced from the one on 8E.

We want to see that this Pin~ structure is mdependent of the section we chose.
It is not difficult to work out the effect of reorienting the section: there is none.

Suppose the bundle is trivial. We divide into two cases depending on the
dimension of E. In the 1-dimensional case, we may proceed as follows. The manifold
F is a circle and since the bundle has oriented total space, it must be trivial. Hence
OE = T? and H, (T?;Z/2Z) has one preferred generator, the image of the fibre,
otherwise known as a meridian, denotéd m. Let z denote another generator. Since
the Spin structure is not to extend over the disk, the enhancement associated to
the Spin structure on T?, say ¢, satisfies ¢(m) = 2. The Spin structure on the
embedded base is determined by g of the image, which is either z or £ + m. Check

g(z) =q(z+m).

In the higher dimensional case, there is an Sl embedded in F and the normal
bundle to this embedding is trivial. Over the §! in F there is an embedded T2 in
AE and the bundle projection, p, identifies the normal bundle to T2 in 8F with the
normal bundle to S! in F. Fix a Spin structure on one of these normal bundles
and use p to put a Spin structure on the other. The Spin structure on GE restricts
to one on 12 and it is not hard to check that the Pin™ structure we want to put on
F using the section is determined by using the section over 5! and checking what
happens in T?. We saw this was independent of section so we are done with the
trivial case.

Now we turn to the non-trivial case, still assuming that F' is the total space of
a bundle over S§'. The minimal dimension for such an F' is 2 since the bundle, v, is
non-trivial. In this case F is just a Mdbius band. Since E is oriented, the bundle
we have over F' is isomorphic to det i @ €'. S1tt1ng over our copy of S e in F is the
Klein bottle, K2, and the normal bundle to K2 in JE is just the pull-back of v.
One can sort out orientations and check that there is an induced Pin™ structure
on K? so that the Pin™ structure that we want to put on F is determined by the
enhancement of the section applied to S as a longxttide of K% This caleulation
is just like the torus case. In the higher dimensional case, v is a non-trivial line

‘bundle plus a trivial bundle so we can reduce to the dimension 2 case just as above.

Now we turn to the case of a general F'.

Since we have done the circle case, we may as well assume that the. dlmensmn

. of F is at least 2. If the dimension of F is 2, then we can find a section of our bundle

over F — pt. The embedding of F' —pt in BE gives a Pin~ structure on F — pt and
this extends uniquely to a Pin~ structure on F. This argument even works if F
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has a boundary and we take as the function on the boundary the function we have
already defined. Now if we restrict this structure on F to a neighborhood of an
embedded circle, we get our previous structure. Since this structure is independent
of the section, the structure on all of F is also independent of the section since Pin~
structures can be detected by restricting to circles. :

The higher dimensional case is a bit more complicated. We can define our
function by choosing a set of disjointly embedded circles and taking a tubular neigh-
borhood to get U, with Hy (U; Z/2Z) — H, (I} Z/2Z) an isomorphism. We then
use our initial results to put a Pin™ structure on U and then extend it uniquely to
all of F. Now let V be a tubular,neighborhoo'd_ of a circle in F. We cari restrict
the Pin~ structure on F to V, or we can use our “choose a section, embed in E
.and induce” technique. There.is an embedded surface, W?, in F which has the core
circle for ¥V as one boundary component and some of the cores of U as the others.
Let X be a tubular neighborhood of W in F. The bundle restricted to X has a
section so we can induce a Pin~ structure on X using the section. This shows that
the two Pin~ structures defined above on V agree. It is not hard from this result
to see that the Pin~ structure on F is independent of the choice of U.

Remarks. Notice that the proof shows that the Pin™ structure on a codimension
0 subset. of F, say X, only depends on the Pin~ structure on the circle bundle lying
over X. It is not hard to check that our function commutes with takmg boundary,
we get a well-defined homomorphlsm, 8, from the rth Guillon—Marin bordism group
to QFin". :

Theorem 6.3. Let M* be an oriented 4—m;.nif01d, and suppose we have a charac-
teristic structure on the pair (M, F). The following formula holds:

(6.4) 2. B(F) = FoF — sign(M) (mod 16).

where the Pin™ structure on F is the one induced by the characieristic structure
on (M, F) via 6.2,

Proof: By the Guillou-Marin calculation, their bordism group in dimension 4 is
Z ¢ Z, generated by (S*,RP?) and (CP?, 5%). The formula is trivial to verify
for (CP2 §%). For (5%, RP?) we. must verlfy that RP2RP? = 2 implies that the
resulting ¢ is 1 on the generator. Now RP? has two sorts of embeddings in S$*.
"There is a “right-handed” one, which has RPZRP? = 2, and a “left~hand” one
which has RPZeRP? = —2. The “right-handed” one can be constructed by taking
_ a ‘right-handed” M&bius strip in the equatorial $* and capping it off with a ball
in the northern hemisphere. For our vector field, use the north~pointing normal.
The “even” framing on the bundle to v, the core of the Mobius band, is the one
given by the O-framing in §%. Hence we may count half twists in S°, where the
right-hand Mdébius band half twists once. »
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It would be nice to check that the Pin~ structure we put on the character- .
ized surface agrees with those of Guillou-Marin and Freedman-Kirby. For the
Freedman~-Kirby case we take an embedded curve k in F and cap it off by an ori-
entable surface, B, in M. We start B off in the same direction as our normal vector

- field, so then the normal bundle to B in M, when restricted to the boundary circle,

will be the 2-plane bundle around ¥ we are to consider. The Guillou-Marin case is
similar except that B need not be orientable. Since B is a punctured surface, the .
normal bundle to B in M splits off a trivial line bundle and =0 is a trivial bundle-
plus the determinant line bundle for the tangent bundle. Having chosen one section, -:
the others are classified by H* (B;Z%!) , where Z"* denotes Z coefficients twisted ::
by w; of the normal bundle. When restricted to the boundary circle, this gives a
well-defined “even” framing of the normal bundle. '

If B does not intersect F" except.along 8B, Theorem 4.3 shows that the framing °
on 98 is the even one in the sense of Deﬁmtxon 4.2. We can agsume in general that -
B intersects F transversally away from 8B. The surface B = B— 1L D2 lies in -
M — F and each circle from the transverse intersection has the non-bounding Spin :
structure. Hence, in general, the framing on 8B is even iff the mod 2 intersection -
number of F and B is even. Moreover, the number of half right twists mod 4 is just -
the obstruction to extending the section given by the normal to & in F over all of B.
This shows that our enhancement and those of Freedman—Kirby and Guillou-Marin

_ agree when both are defined.

The enhancement above is defined more generally since we do not need the
membranes to select the Pin™ structure and hence do not need the condition that
Hy(F,Z[2Z) — H,(M;Z{22) should be 0. One nice application of this is to

. compute the p—invariant of circle bundles over surfaces when the associated disk .

bundle is orientable.

Any O(2)-bundle, 1, over a 2 complex, X, is determined by w; () and the Euler

- class, x(n) € H?(X;2Z"r), where Z“" denotes Z coefficients twisted by w;(y). In .

our case, X is a surface which we will denote by F'; the bundle 5 has the same w,
as the surface; and the Euler class is in H? (F; 2™ ) = Z. Let S(n) denote the circle
bundle. One way to fix the isomorphism is to orient the total space of 7 and then
FeF = x(n). The signature of the disk bundle is also easy to compute. We denote :
it by o(7) since we will see it depends only on 7; indeed it can be computed from *
wy(n) and x(n). If wi(n) =0 then a(y) = sign x(7) (1 or 0 depending on x(x)):.
if wy(n) #0 then () = 0. By Lemma 6.2, Spin structures on $(5) which do not

extend across the disk bundle are in 1-1 correspondence with Pin™ structures on

F. .

Theorem 6.5.. With notation as above fix a Spin structure on $(n). Let 5(F) =0..
if this structure extends across the disc bundle and let b(F') = g(F) if it does not::
and the Pin™ structure on F is induced via the function in Lemma 6.2. We have

(6.6) p(S(m) = o(n) = x()+2-4(F)  (mod 16) .
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Proof: The result follows easily from 6.4.2 - ;

We want to describe 'a homomorphism from various characteristic bordism

groups into the Pin~ bordism group in two dimensions. lt?SS. -.Rnugl?ly thedho~
momorphism is described as follows. We have a characteristic pair (M, F) a;x‘:hwe
will sce that, with certain hypotheses, F is a Pin™ manifold.. We then use the char-

acterization of the pair to pick out a Pin~ structure on F. .'The };qmo'rporp!usm :

then just sends (M, F) to the Pin™ bordism class qf F. |
To describe our hypotheses, consider the following commutative s_._qua,re

F "Bo(g)
i !
M —  TO(2)

2(TO(2); Z/2Z) denote the Thom class and recall tha_t U7 pulls back
:Joe twi]i: I?z ((ng);)Z/ éZ)) The 2-plane bundle classified by u‘is just the (r;on}n:ﬂ
bundle to the embedding i: F C M, and f*(U) € H* (M; Z/2Z) is j;he class ualt ' 0
F. Let a denote the class dual to F. Then we see that i*(a) "——.;wg.(:»'pc M), w u:_c
vrear is the normal bundle to the embedding. Let 1;3 apply this last equa:):ondlo
our characteristic situation. The class a is w(M )+w1(M ) and we ha,ve'fhe un —r.-
equation *(Ty) = Tr @ vrcu. Nou.' *wn (M) ;2w1(F) + wy{v} and i wz(M(}‘-)-
wa( F)+wa(w)+wy(F)-w; (v): Hence i*(wp(M)+wl(M)) = wp(F)+wa(v)+s(]

. - i 2 =
wy (1) +w?(F)+w?(v) and using our equation for wy{r) we see that wy(F)+wi(F}= .

wy(v) - i*w;(M). Hence F is Pin™ iff the right hand product vanishes or

Lemma 6.7. The surface F has a Pin~ structure iff

(wr(F) + wi(n)) U wy(n) =0 .

Tok study w, (v} - i*wy (M) we may equally study w:(¥) N (*wi(M) N [F,0F]).

The term i*wy (M )N[F,8F] can be described as the image of the fundamental class

of the manifold.obtained by transversally intersect_in.g F a'nc_l a manifold.V(iﬁa ‘M .-
dual to w;. Hence, the product wi{v) - i*w; (M) vanishes if the normal bundle tp

F NV CV is orientable. This suggests studying the following situation.

Definition 6.8 . Let M be a manifold with a proper, codimension 2 submanifold . '@

F {proper means that M N F' = 8F and that every compact set i.n M meets' F

in a compact set). A characteristic structure on the pair (M, F) is a collection

consisting of . - =
a} a proper submanifold V' dual to wi (M) which 1nter$ects F transversgly |
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b} an orientation on M — V which does not extend across any component of ¥V

¢) a Pin™ structure on M — F that does not extend across ‘any component of #'
(s0-F is dual to w; +w?) . o :

d} an orientation for the normal! bundle of VN Fin V.
Let Char~—(M, F) be the set of characteristic structures.on (M, F). :

: T'h_él next goal of th:is'sectibz_i is to ?proirg a ,_;‘reduction of structure * result, the
Pin™ Structure Correspondence Theorem. . ' ' '

Theorem 6.9, There exists a function
U:Char~ (M, F) — Pin=(F) _

which is natural in the following sense. If we.change the Pin™ structure on
M — F which does not extend across any component of F' by acting on it with
a € H'(M; Z/2Z), then we change ¥ of the structure by acting on it with i*(a) €
H(F;Z/2Z), where i: F' C M is the inclusion. If X. denotes a collection of com--
ponents of F NV, then the dnal to X is a class inz € HY(F,Z{2Z). Ifwe switch
the orientation to the normal bundle of FN V in F. over X -and not ‘over the other
components, .then we alter ¥ by acting with z. ' If we change the orientation on.
M-V whzch .does not. extend across any component of V, we do not change ¥
of tbe_l.,.l?;'rrj._.‘ structure. . Finally, if My C M is a codimension 1 submanifold with
trivialized normal bundle such that.F and.V . intersect M, -transversely (including -
the case My = &M ), then the characteristic structure on M restricts to one on M;.
The Pin~ structure we get.on F} = My N F is-the restriction of the one we got o

Remark. The observation that ;:ha.ra;ctqrist__ig:' étructurés_restrict to boundaries'al-_ ,
lows us to define bordism groups: let Q denote the bordism group of characteristic
structures, o o

Reduction 6.10. Given a closed manifold M with & characteristic structure, let
E C M denote the total space of the normal bundle of F in M. The associated
circle bundle, OE, is embedded in M with-trivial normal bundls and without loss
of generality /e may assume that V intersects 5E transversally. Hence E acquires
the.above data by restriction. ' ‘ ' o R

This reduces the general case to the following local problem. We may deal
with one component at'a time now and so we must describe how to put a Pin— -
structure on'a connected Pin™ manifold F, given that we have a 2-disc bundle over
F with total space E; a Pin~ structure on 9E which does not extend to all of E; a
codimension 1 submianifold V which is dual to w{E'} and intersects F transversally;
an orientation on E — V' which does not extend across any component of V; and an
orientation for the normal bundle of FNV in V. We must also check that the Pin—
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structure that we get on F is independent of our choice of tubular neighborhood.
Note for reassurance that Pin~ structures on F are in one to one correspondence
with Pin~ structures on 8E which do not extend to E,

Let us consider the following situation. We have a circle bundle p: 9E — F
over F with associated disc bundle £. We let E denote the total space of {. We have
a codimension 1 submanifold, V, of E which is dual to w1{E) and which intersects
F' transversally. We are given an orientation on E — V which does not extend
across any component of V and we are given an orientation of the normal bundle
to FNV in V. We are going to describe a one to one correspondence between
Pin~ structures on F and Pin™ stiuctures on 8E which do not extend across E.
Furthermore, suppose that I C F is a submanifold with trivialized normal bundle.
Suppose that U intersects V transversally and let Ey denote the total space of the
disk bundle for ¢ restricted to U. Then over U we have our data. Notice that any
Pin~ structure on F' restricts to one on U, and any Pin~ structure on 8F restricts
to one on 8Ey. Let Pin~ (F,U) denote the set of Pin™ structures on F' which
restrict' to-a fixed one on U. Define Pin™(0F, BEU) similarly except we require
that the Pin~ structures do not extend across the disk bundles. Below we will
define a 1-1 map ¥: Pin—(8E,#) — Pin~(F,8). I we fix a Pin~ structire on U,
which comes from one on F, and use ¥ for U to pick out a Pin~ structure on dEy,
then we also get a 1-1 map:

0 Pin” (aE 0By) - Pin™(F, U)

There is an isomorphism, p*: I-.i'1 (FU; Z/2Z) — Hl (BE 8Ey u S Z/2Z) in-
duced by the projection map, p: 8E — F, where 5! denotes a fibre of the bundle
(if U # 0 then 8FEy U S' = 8Ey). The group H' (8E,8Ey U S';Z/2Z) acts in a
-simply transitive fashion on Pin~(9E,8Ey) and the group H! (F,U;Z/2Z) acts in
a simply transitive fashion on Pin™(F), U] The map V¥ is’ equwana.nt with respect
to these actions and p*. . .

The relative version of the Pin~ Structure Correspondence gives the uniqueness
result needed in Reduction 6.10 since any two choices are related by a picture with
aur data over E % I with structure fixed over £ x 0 and F x 1.

Note first that F has a Pin™

Recall that there is a sub—bund_le of Tz, na.mely the bundle zlong the fibreés,

" 7. This is a line bundle which is tangent to the fibre circle at each point in 8E. The

" quotient _bundl_é, p, is naturally isomorphic to Tr, via the projection map, p. Our
first task is to use our given data to describe an isomorphism between 1 ® det(Tsr)
and det(p) @ ¢'. To fix notation, let’N be a tubular neighborhood of V in 8E and
fix an isomorphism between p @ 5 and TaE.

On AE — V we have an orientation of T5g. This describes an isomorphism
between det{Tag) and ¢'. Furthermore, the orientation picks out an isomorphism

structure by the calculations a.bove

s isomorphic to @ €.

.and so the Spin structure does not change.
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between 1 and det(p) as follows. These two line bundles are isomorphic since they
have the same w;, and there are two distinct isomorphisms over each component of
OE — V. Pick a point in each component of 8E — V, and orient 5 at those points. :
The orientation of T ¢ picks out an orientation of p, and hence det(p), at each point.
We choose the isomorphism between n and det(p) which preserves the orientations
at each point. It is easy to check that if we reverse the orientation at a point for , '
we reverse the orientation for det(p) and hence get the same isomorphism between
these two bundles. The isomorphism between n @ det(Tpz) and det(p) @ €' is just
the sum of the above two isomorphisms, i

~ We turn our attention to the situation over N. Over Fn V, £ is the normal
bundle to FNV in V and hence it is oriented. Hence so is p*(¢) in BE and p*(¢)
The outward normal to F in E orients the €!, and hence
7 is oriented over p~}(F'N V'), and hénce over N. This time det(p) and det(Tor)
aré abstractly isomorphic, and we can choose an isomorphism by choosing a local
orientation. Since 1y is oriented and 0 — n — Tpgp — p — 0 is exact, there is a

“natural correspondence between orientations of Tor at a point and orientations of

p at the same point. As before, if we switch the orientation on Tyz, we still get the
same isomorphism between det(p) and det(Tsg). As before, the crientation for  :
defines an isomorphism between n-and €, but this time we take the isomorphism
which reverses the orientations. We tzke the sum of these two isomorphisms as our
preferred isomorphism between 5 @ det(Ta£) and det(p) @ ¢

Nowover N—-V, we have two isomorphisms between neBdet(TaE) and det(p)®
¢!, If we restrict attention to a neighborhood of 3N both bundies are the sum of two
trivial bundles, and our two lsomorphlsms differ by composition with the matrix

(2 )

Parameterize a neighborhood of 8N in N by 9N x [0, 7/2] and twist one bundle
cos(t) —sin(2)

in(t)  cos(f)
phisms together to get an isomorphism between 5 & det(TaE) and det(p) @ ! over
all of OF.

Fma]ly, we can describe our correspondence between Pm structures. Suppose -
that we have a Pin~ structure on F. This is a Spin structure on Tr @ det(Tr).
Since p is isomorphic vxa P to Tr, we get a Spin structure on p @ det(p), and
hence on p @ det(p) @ €. Using our constructed isomorphism, this gives a Spin
structure on p O 7 & det(TaE). Choose a splitting of the short exact sequence
0~ n— Tog — p — 0, and we get a Spin structure on Thg @ det(TsE).

isomorphism by the matrix ( ) We can now glue our two isomor-

:If we choose & different splitting, we get an automorphism of Tsg and hence an
automorphism of Toe @ det{Thz) which takes one Spin structure to the other. But
this automorphism is homotopic through bundle automorphisms to the ndenhty,

1
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Flnally, let us consider the Pin~ structure induced on a fibre 5, We will look
at this situation for a fibre over a point in F where we have an orientation of Tgg.
Restricted to 57, ! the bundle T g splits as 5 plus the normal bundle of §? in 8E, so
n is naturally ldentlﬁed as the tangent bundle of § ! and the normal bundle of S' in
OE is trivialized using the bundle map 2 The trivialization of the normal bundle
of §' in OF plus the Spin structure on T @ det(The) yields a trivialization of

nls1, which then yields a trivialization of the ta.ngent bundle of S!. Since SO(1)
is a point, any oriented 1-plane bundle has a unique framing, which in the case of
the tangent bundle to the circle is the Lie group framing. The Pin™ structure that
results from a framing of the tangent bundle of S? is therefore the one that does
not extend across the disk, so our Pin™ structure on 8F does not extend across E.

‘Recall that Pin™ structures on JF that do not extend across E are acted on
by HY(F;Z/2Z) in a simply-transitive manner by letting p*(z) € H' (9F;Z/2Z)
act ‘as usual on Pin~ structures on JE. ¥ we change Pin™ structures on F by
z € HY (F;Z/2Z), we change the Pin™ structure that we get on 3F by the p*(z)
in HY(8E;Z/2Z) so our procedure induces a one to one correspondence between
Pin™ structures on F' and PinT structures on 8E which do not extend across E.

Next, we consider the effects of changing our orientations. We wish to study
how the choices of orientations on.2E —V and on £ effect the resulting map between
Pin~ structures on F and Pin~ structures on JE which do not extend across E.
Let us begin by considering the effect of changing the orientation on £. This switches
the orientation on n and so our bundle map remains. the same over E — N and
_[1} "This has’ the effect of puttmg
s full twists into the framing around any circle that mtersects Fﬂ v geometncally
t times where s =t . (mod 2). Hence the class in HY(F; Z/2Z) that measures the
change in Pin~ structure is just the class dual to F N V. K F NV has several
components and we switch the orientation of £ over only one of them then the class
in HY (F;Z/2Z) that measures the change in Pin™~ structure is just the class dual
to that component of FNV. . .

Now suppose that we switch the orientation on £ a,nd on M — V. This time the

two bundle maps differ over all of BE by multnphcat:on by the matrix (_(1] _2 |

str'ucture on F via wl(F). This follows

over N it is multiplied by the matrix (_é

The effect of this is to change the Pin~

from Lemma 1. .G.

From the two results above the reader can work out the effect of the other
possible changes of orientations. Finally, the’ dlhgent reader should work through
the relative version.

This ends our description of the Pin™ Structure 'Correspondence. s

As an application of the Pin~ Structure Correspondence and Reduction 6.10
we present
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Theorem 6.11. There exists a homomorphism R: Q. — QF '2 {Bo(z)): Given an
object, z € ., let F denote the submanifold dual to wy - w?. This manifold has a
map F — Boy) classifying the normal bundle. Use the above construction to put
a Pin~ structure on F: R(z) is the bordism class of this Pin structure on F

Vana.nts of this map enter into the discussions below

Corollary 6.12. If MFK, denotes the r-th bordism group of F}'eedma.n-Kery,
then there exists a long exact sequence

- Q¥ L MFK, -0 (Bsom)—>9,”1" 4

where R takes the Spin bordism class of the classifying map for the normal bundle
to F' in M, and a takes the Spin structure we put on the total space of the assocmted
circle bundle. The V' we always take is the empty set. .

Remark 6.13. There are definitely non—trivial extensions:in this sequence.

Remark 6.14. The Freedman-Kirby bordism theory is equivalent to the bordism

- theory Spin®, the theory of oriented manifolds with a specific reduction of w; to

an integral cohomology class. Thig bordism theory has been computed, e.g. Stong
[Stong), and is determined by Stiefel-Whitney numbers, Pontrjagin numbers, and
rational numbers formed from products of Pontrjagin numbers-and powers of the
chosen integralization of wy.

Remark 6.15. There are versions of this sequence for the bordism theory studied
by Guillou-Marin and for our bordism theory In both of these cases we replace
Q5Pin by the Pin~ bordism groups QP , We also replace Q,__z (Bso(z)) by the
bordism groups of O(2)-bundles over Pm manifolds with some extra structure.
The bordism groups of O(2)-bundles over Pin~manifolds can “be identified with-
the homotog:- groups of the Thom spectrum formed from B Pin- X Bog) using the
universal bundle over Bp;,- and the trivial bundle over Bo(y). The associated -

bordism groups are denoted X% (Bo(y)). In the Guillou-Marin case we define

BGM as the fibre of the map Bpi,~ x Bo(ay — K(Z/2Z,1) where the map is the
sim of w; of the universal bundle over Bp;,- and wy of the universal bundle over
Bo(z)- In our case we let BE be the fibre of the map Bp;,- X Bogz) — K (Z/2Z 2)
where the map is the product of two 1-dimensional cohomology classes: namely
w; of the universal bundle over Bp;,- and w; of the universal bundle over Bggy. -
Over either BGM or BE we can pull back the universal bundle over Bp;,- plus the
trivial bundle over Bp(g) and form the associated Thom spectrum. The homotopy
groups of these spectra fit into the analogous exa.ct sequences for the bordzsm theory
studied by Gu:llou—Mann and by us. " '

Remark 6. 16. All the bordlsm groups defined in Theorem 6.11, Corollaxy 6. 12
and its two other versions are naturally modules over the Spin bordism ring, and ,
&ll the maps defined above are maps of {2, SPi"_modules.
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§7. Geometric calculations of characteristic bordism.

In this section we will calculate the characteristic bordism introduced in the
last section up through dimension 4. A .

The first remark is that any manifold M of dimension less than or equal to 4
has a characteristic structure. Hence !-bordism is onto unoriented bordism through
dimension 4. We show next that '

Theorem 7.1. The forgetful map
o - Qro
is an isomorphism for r = 0, 1, and 2. Hence Q= Q) = Z2/2Z and ) 2 0.

Proof: Since the forgetful map is onto, it is merely necessary to show that the
!~bordism groups are abstractly isomorphic to Z/2Z or 0. We begin in dimension
0. The only connected manifold is the point and it has a unique characteristic
structure: F' and V are empty. Hence Q is a quotient of Z. It is easy to find &
characteristic structure on [0, 1] which has 2 times the oriented point as its boundary:
Fis empty and V = {1/2}. Hence £} 2 Z/27 given by the number of points mod 2.

In dimensions at least 1, it is easy to add l-handles to show any object is
bordant to a connected one. ‘Hence in dimension 1, the only objects we need to
consider are characteristic structures on S'. Here F is still empty, and V is an even
number of points. The circle bounds B2, the 2-disk, and it is easy to extend V
to a collection of arcs in B? and to extend the orientation on §! — V. The Pin~
structure on the circle either bounds a 2-disk) in which case extend it over B2, or
it does not, in which case take F' to be a point in B? which misses the arcs and
extend the Pin~ structure over B? — pt. Hence 2} = 0. )
In dimension 2 we can assume that M is connected and that it bounds as
an unoriented manifold. The goal is to prove that it bounds as a characteristic
structure. Note V' is a disjoint union of circles, and F is a finite set of points with
F iV being empty. Since every surface has a Pin~ structure, F is an even number
of points. Let W be a collection of embedded arcs in M x [0, 1} which miss M x 1
~and have boundary F. Since W is a dual to wy + wi, there is a Pin~ structure
“on M x [0,1] — W which extends across no component of W. This induces such a

structure on M x 0. Since H' (M; Z/27Z) acts on such structures, it is easy to adjust

to get a Pin” structure on M x [0,1) — W which extends across no component of W
- and which is our original Pin~ structure on M x0. Given V C M x 0 we can extend
to an embedding V x [0,1] in M x [0,1]. The orientation on M ~ V extends to one
on M x {0,1] — V x [0,1]. Clearly this orientation extends across no component of
V x [0,1], so this submanifold is dual to w;. Hence we may assume our surface has
empty F with no loss of generality: i.e. M has 2 fixed Pin~ structure.

Let E}- denote the total space of the non-trivial 2-disk bundle over the circle,
The boundary of E}; is K%, the Klein bottle and H; (K; Z/2%) is spanned by a fibre
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circle,tf? t» and a choice of cirele which maps non-trivially to the base, ;. Consider -
the Pin~ structure on K? whose quadratic enhancement satisfies oCr) =2 a.nd
q(Ce) = 1. This structure does not extend across Eg so let F be the core circle in .
}:7};(. Let V be a fibre 2-disk. Orient the normal bundle to VR Fin F any way one .:
likes. It is easy to check that this gives a characteristic structure on E} extending
the one on K2 which does not bound as & Pin~ manifold. By adding copies of this -
structure on K? to M, we can assume that M is a Pin- boundary, so let W? be g -
Pin~ boundary for M. ’ :

. Inside W we find a dual to w,, say X2, which extends V in M. There is some :
onen:ta.tion on W - X which extends across no component of X and this structure -
restricts to such a structure on M — V. Since M is connected, there are only two
such sf.ructures and both can be obtained from such a structure on W — X. Hence -
our original characteristic structure is a characteristic boundary assuming nothing |
more than that it was an unoriented boundary, » '

The results in dimensions 3 and 4 are more complicated. We begin with the
3-dimensional result. : "

Theorem 7.2. The homomorphism R of Theorem 6.11 » followed by forgetting the
map to Bo(y) yields an isomorphism )

F

RQ) - QPin" 2297

Proof: We first show that R is onto and then that it is injective.

Let E} denote the disk bundle with boundary the Klein bottle as in thelast -
proof. 'I_‘he Pin™ structure received by F in this structure is seen to be the Lie
group Pin™ structure. There is a simijlar story for the torus, T2, There is a 2-disk
bundle over a circle, E3, and a Pin~ structure on the torus which does not extend
across the disk bundle so that the core circle receives the Lie group Pin™~ structure,
Indeed, E% is just a double cover of E.. If we take two copies of K2 with its Pin— .
structure and one copy of T? with its Pin~ structure, the resulting disjoint unijon

bounds in """, Let W* denote such a bordism. Let M? = .[ﬁ_E}’( AL ER L we
with the boundaries identified. Let F be the disjoint union of the three core circles, -
and note F' is & dual to w; + w? since the complement has a. Pin~_structure which,
does not extend across any of the cores. Let V be a dual to w; and arrange it to
meet F' transversely. Indeed, with a little care one can arrange it so that VN F -
consists of 2 points, one on each core circle in a E};. This is our characteristic
structure on M. Our homomorphism applied to M is onto the generator of Q7"

It remains to show monicity. Let M be a characterized 3-manifold. By adding
l—hant%les, we may assume that M is connected. First we want to fix it so that
VN F is empty. In general, V N F is dual to watry + wj and, for a 3-manifold, this
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vanishes. Hence V N F consists of an even number of points. We explain how to
remove a pair of such points.

Pick two points, pe and py, in VN F. Each point in F' has an oriented normal
bundle. The normal bundle to each point in V is also trivial and V is oriented,
so the normal bundle to each point in V is oriented. Attach a l-handle, H =
(B x{0,1]) x B? 50 as to preserve the orientations at po and p;. Let W* denote the
resulting bordism. Inside W*, we have embedded bordisms, V;* and F} beginning
at ¥V and F in M. Notice that at the “top” of the bordism, the “top” of V; and
the “top” of F} intersect in 2 fewer points. Moreover, the orientation of the normal
bundle of ¥ N F in F clearly extends to an orientation of the normal bundle of
Wi NF in F. _ ' _

Since F) is a codimension 2 submanifold of W, it is dual to some 2-~dimensional
cohomology class. Since H* (W, M;Z/2Z) is 0 except when * = 1 (in which case
it is Z/2Z), this class is determined by its restriction to H?(M;Z/2Z). Hence
F, is dual to wo + w%, so choose a Pin~ structure on W — F} which extends
across no component of Fj. This restricts to a similar structure on M, and since
H'(W:Z/22Z} —» H'(M;Z/2Z) is onto, we can adjust the Pin~ structure until it
extends the given one on M ~ F.,

The above argument does not quite work for ¥;, but it is easy in this case to see
that W — V| has an orientation extending the one on M — V. Any such orientation
can not extend over any components of V;. Hence we have a characteristic bordism
as required.

We may now assume that VN F is empty. Since F is a union of circles and
VNF =0, F has a trivial normal bundle in M. If our homomorphism vanishes
on our element, F is a Pin~ boundary, which, in this dimension, means that it is
a Spin boundary: i.e. F bounds @?, an orientable Pin™ manifold. Glue Q% x B?
to M x {0,1] along F x B* C M x 1 to get a bordism X*. Since @ is orientable,
V % [0,1] is still dual to w;, and it is not hard to extend the Pin™ structure on
M — F to one on X —  which extends across no component of ¢. Since @ and
V x {0, 1] remain disjoint, the “top” of X is a new characteristic pair for which the
dual to wp + w? is empty: ie. the “top”, say N 3 has a Pin~ structure. Since
Q""" =0, N bounds a Pin~ manifold, Y*. Since M was connected, so is N and
there is no obstruction to extending the dual to w; in N, say Vi, to a dual to wy
in Y, say U, and extending the orientation on N — V] to an orientation on ¥ — U
which extends across no component of /. The union of X4 and Y* along N? isa
characteristic bordism from M3 to 0. s

The last goal of the section is to compute €. Since the group is non-zero,
we begin by describing the invariants which detect it. Given an element in £,
we get an associated surface F? with a Pin~ structure, and hence a quadratic
enhancement, g. We may also consider 7, the normal bundle to F in our original
4-manifold. We describe three homomorphisms. The first is 8: Q) — Z/8Z which
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just takes the Brown invariant of the enhancement ¢. The second homomorphism
is U: Q) — Z/4Z given by the element ¢(w,(5)) € Z/4Z. The third homomorphism
is w: O — Z/2Z given by {w(n), [F]) € Z/2Z. We leave it to the reader to check
that these three maps really are homomorphisms out of the bordism group, Q.

Theorem 7.3. The sum of the boﬁomomhfsms
7

BOYSwyQ, — Z/3Z D L/AZ 9 Z/2Z
is an isomorphism. ' ' ' '

Proof: First we prove the map is onto and then we prove it is 1-1. Recall from
Lemma 6.7 that a surface, M, with a Pin~ structure and a 2-plane bundle, 5, can
be completed to a characteristic bordism element iff (10y(M) + w1 (7)) U wy(n) = 0.
Notice that this equation is always satisfied since cupping with w;(M) and squaring
are the same. Hence we will only describe the surface with its Pin~ structure and
the 2-plane bundle. '

First note that RP? with the trivial 2-plane bundle generates the Z/87Z and
maps trivially to the Z/4Z and the 2/2Z.

The Hopf bundle over the 2-sphere maps trivially into the Z/8Z and the Z/4Z
since $? is a Pin~ boundary and ¥ vanishes whenever the 2-plane bundle has
trivial w1. However, $? and the Hopf bundle maps non-trivially to the Z/27.

Let K2 denote the Klein bottle, and fix a Pin~ structure for which K? is a
Pin~ boundary. Let # be the 2-plane bundle coming from the line bundle with
w; being the class in H' (K?;Z/2Z) with non-zero square. Since K? is a Pin~
boundary, B(K?) = 0. Since 7 comes from a line bundle, w,(y) = 0. However,

~ g(w1(n)) is an element in Z/4Z of odd order and is hence a generator,

This shows that our map is onto. Before showing that our _mhp is 1-1, we need
a lemma, : B o

Lemma 7.4. There exists a 2-disk bundle B;,, over the Jg.)uncture::c.i St x 82, 81
S? — int B®, whose restriction to the boundary §* has Euler class 2n, n € Z.

Proof: Start with the 2-disk bundle B, over $? with Euler number n and pull it
back over the product §%xI. Now add a 1-handle to §? x I, forming S x §Z~int B3,
and extend the bundle B, over the 1-handle so as to create a nop—orientable bundle
Ban. Then x(Bzu|52) =2n. » o ' '

Suppose M4, V3, FZ, % is a representative of an element of 2} and that
B(F?) =0, ¥(wi(n)) = 0, and w,(n) = 0. We need to construct a l-bordism to 8. -

Since we may assume that F', M and V are connected, there is a connected
l-manifold, an $?, which is Poincaré dual to w, (n); then the normal vector to
§' in F makes an even number of full twists in the Pin~ structure on F as S!
is traversed. It follows that we can form a I~bordism by adding to F a B? x B!
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where S x B! is attached to the dual $' to wy(n) and its normal B! bundle.
Clearly the Pin™ structure on F extends across the bordism. Since the dual to 5!
has’self-intersection zero in F, 5 restricted to S! is orientable, so n extends over
B? x B

Sinee wy(n) = 0, it follows that x(n)[F] = 2r for some n € Z. By Lemma 7.4
there is a bundle B_y, over a punctured $! x $2 with x{B-zn|s2) = —2n. We form
© a 5-dimensional bordism to the boundary connected sum, i.e. in M4 x1C M4xI,
choose a 4-ball of the form B? x B? where B2 x 0 C F? — (VN F) and p x B?
is a normal plane of 17 over p, and identify B? x B? with B_,,| sz where 52 is a
-hemisphere of 52.

The new boundary to our -bordism, which we shall denote (M, V, F, n) now
has a trivial normal bundle 5. -

Since B(F?) = 0, F Pin~ bounds a 3-manifold N3, so we add N° x B? to
M x 1 along the normal bundle n to F, F x B?, where it does not matter how
we trivialize 7. The Pin~ structure on M — F extends over the complement of N
(using the Pin~ Correspondence Theorem, 6.9, and the Pin™ structure on N), so
the new boundary to our -bordisin consists of a Pin™ manifold M with empty F2.
Since 4-dimensional Pin~ bordism, Q" is zero, we can complete our '~bordism
- by gluing on to M x 1 a 5-dimensional Pirn~ manifold.

Remark. It is worth comparing this argument with the argument in [F-K] showing
that if (M*, F?) is a characteristic pair with M* and F? orientable and with
sign(M?) = 0 and FeF = 0, then (M, F) is characteristically bordant to zero.
The arguments would have been formally identical if we had also assumed that the
Spin structure on F, obtained from the Pin~ Correspondence Theorem, bounded
in 2-dimensional Spin bordism, Qf P = Z/2Z (corresponding to S(F) = 0 above).
However, it is possible to show that Q" = Z @ Z without the extra assumption

on F, and this Z /27 improvement leads to Rochlin’s Theorem (see [F-K], [Kil, ...).

Further Remark. The image of the Guillou-Marin bordism in this theory can be
determined as follows. The group is Z @ Z generated by (S, RP?) and (CP?, 5%).
Both # and ¥ vanish on (CP?, 5%), but w; is non-zero. On (§*, RP?), w; evaluates
0 {the normal bundle comes from a line bundle): 3 is either 1 or —1 depending on
which embedding one chooses. Morcover, ¥ is either 1 or —1 (the same sign as §).

£8, New knot invariants.

The goal here is to describe some generalizations of the usual Arf invariant of
a knot (or some links) due to Robertello, [R]. '

We fix the following data. We have a 3-manifold M? with a fixed Spin structure
and a link L: 1L S" — M?. Since M is Spin , wy(M) = 0 and we require that [L] €
Hy{M;Z/2Z) is also 0, hence dual to ws{M). We next require a characterization of
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the pair, (M, L): i.e. a Spin structure on M — L which extends across no component
of L. We call such a characterization even iff the Pin™ structure induced on each
component of L by Lemma 6.2 is the structure which bounds, We say the link is*
even iff it has an even characterization.

One way to check if a link is even is the following. Each component of I has a:
normal bundle, and the even framing of this normal bundle picks out a mod 2 lon-
gitude on the peripheral torus. The link is even iff the sum of these even longitudes
is0in Hy (M - L; Z/2Z) o

Remark. Not all links which represent 0 are even: the Hopf link in S° is ani
example where any structure which extends across no component of I induces the
Lie group Spin structure on the two circles. We shall see later that a necessary and
sufficient condition for a link in 5% to be even is that each component of the link:

should link the other components evenly. This is Robertello’s condition, [R].

Definition. A link, L, in M?® with a fixed Spin structure on M-and a fixed Spin -
structure on M — I which extends across no component of L and induces the i
bounding Pin™ structure on each component of I is called a characterized link.

Given a characterized link, (M, L), we define & class y € H\.(M — L; Z/2Z): v
is the class which acts on the fixed Spin structure on M — L to-get the one which is
the restriction of the one on M. The class v is defined by the characterization and
conversely & characterization is defined by a choice of class y € H! (M ~ L; Z/2Z) so :
that, under the coboundary map, the image of v in H? (M, M ~ L; Z/27) hits each ;
generator. (Recall that by the Thom isomorphism theorem, H2 (M, M — L; Z/2Z)
is a sum of Z/2Z’s, one for each component of L.) :

Let E be the total space of an open disk bundle for the normal bundle of Z, and
let S be the total space of the corresponding sphere bundle. Note S is a disjoint :
union of a peripheral torus for each component of L. The class v is dual to an 3

- embedded surface F' C M — E and 3F N S is a longitude in the peripheral torus .

of each component of L. Let € denote this set of longitudes. We will call £ a set of
even longitudes. We will call F a spanning surface for the characterized link. ;

The set of even longitudes is not well~defined from just the characterized link. It
is clear that two surfaces dual to the same 4 must induce the same mod 2 longitudes. :
But if we act on one component of L by an even integer, we can find a new surface -
dual to v which has the same longitudes on the other components and the new |
longitude on our given component differs from the old one via action by this even
integer. Hence the characteristic structure only picks out the mod 2 longitudes and °
any set of integral classes which are longitudes and which reduce correctly mod 2 :
can be a set of even longitudes. Moreover, any set of even longitudes is induced by g
an embedded surface, :

Since M is oriented, the normal bundle to any embedded surface, F, is isomor-
phic to the determinant bundle associated to the tangent bundle of F. The total

£
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space of the determinant bundle to the tangent bundle is naturally oriented. The
total space to the normal bundle to F is M is oriented by the orientation on M.
Choose the isomorphism between the normal bundle to F in M and the determi-
nant bundle to the tangent bundle of F so that, under the induced diffeomorphism
between the total spaces, the two orientations agree. Under these identifications,
Corollary 1.15 picks out 2 Pin™ structure on F from the Spin structure on M. We
apply this to an F which is a spanning surface for our link. Of course we could apply
the same result but use the Spin structure on M — L. It is not bard to check that
the two structures on F differ under the action of w;{F') since this is the restriction
of v to F. Hence it is not too crucial which structure we use but to fix things we
use the structure on M.

We can restrict this structure on F to a component of L H we put the Spin
structure on F* coming from that on M — L it is easy to see that we get the bound-
ing Pin™ structure on each component of L. Hence this also holds for the Pin~
- structure on F' coming from the one on M. Hence, a spanning surface for a char-
acterized link has an induced Pin™ structure which extends to the corresponding
closed surface uniquely.

Our link invariant is a mod 8 integer which depends on the charactenzed link
and the set of even longitudes. :

Definition 8.1. Given a characterized link, (M L), and a set of even longitudes,

£, pick a spanning surface F for L which induces the given set of longitudes. Then
define

B(L, 6, M) = §(F)

where F is F with a disk added to each component of L; the Pin~ structure is

extended over each disk; and g is the usua.l Brown invariant apphed to a closed

surface with a Pin™ structure.

Remarks.

i) Notice that unlike Robertello’s invariant, our invariant does not require that
the link be oriented.

ii} It follows from the proof of Theorem 4.3 that a knot is e.ven iff it is mod 2
trivial.

ili} If each component of L represents 0 in H 1 (M; Z/2Z) then the mod 2 lmkmg
number of a comiponent of L with the rest of the link is defined. If F is
an embedded surface in M with boundary L, the longitude picked out for a
component. of L is even iff the mod 2 Imklng number of that component of L
with the rest of the link is 0.

iv) If M is an oriented Z/22Z homology 3 sphere, t.hen it hasa umque Spin structure
and there is a unique way to characterize an even link L.

v) Let M be an integral homology 3 sphere containing a link L. Orient each
component of the link. Let £; be the linking number of the ith component of L
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with the rest of the link. Each component of L has a preferred longitude, the
one with self-linking 0, so £; also denotes a longitude. The link L is even iff
each £; is even. Robertello’s Arf invariant is equal to (L, —£, M), whefe the
Spin structure and characterization are unique and £ is the set of longitudes
obtained by using --£; on each component. Notice that £; depends on how the

link is oriented.

[

1t is not yet clear that our mvanant really only depends on the characterizations
and the even longitudes.

Theorem 8.2. Let L be a link in a 3-manifold M. Suppose M has a Spin structure
and that L is characterized. Let £ be a collection of even longitudes. Then §(L,¢, M
is well-defined. Let W* be an oriented bordism between M; and M,. Let L; C .ﬂf!.',
i = 1,2 be characterized links. Let F C W be a properly embedded surface with
FnM; = Li. Suppose W — F has a Spin structure which extends across nc
component of F and which gives a Spin bordism between the two structures on
M; - L;, 1 = 1,2, given by the characterizations.

The normal bundle to F in W has a section over every non-closed component
of F so pick one. This choice selects a longitude for each component of each link.
Suppose the longitudes ‘picked out for each L;, say {:, are-even. The surface F
receives a Pin~ structure by Lemma 6.2. With this structure, each component o
OF bounds and hence F has a f invariant. If we orient W so that M, receives the
reverse Spin structure then the following formula holds.

B(L2, 00, Ma) = (L, 0, My) = —B(F) — sign(W) - (M) + s(My) -

Proof: We begin by discussing some constructions and results involving a Spin 3-
manifold N and a spanning surface, V? for & characterized link, L. To begin, given
e: V2 C N?, define V C N x [0, 1] as the image of e x f, where f: V — [0,1/2] is any
map with f 1(0) = V. I N has a Spin structure, N x [0, 1] receives one. The clas:
represented by [V, L} in Hy (N x [0,1,N x 0 L N x 1; Z/2Z) = H, (N x 0;Z/2Z
is the same as that represented by [L] in H,(N x 0;2Z/2Z). Hence it represent<
0. Since wa(N x [0,1]} is also trivial, there is a Spm structure on N x [0,1] —
which does not extend across any component of V Such structures are acted or
simply transitively by H! (N;Z/2Z), so it is easy to construct & unique such Spir
structure +hich restricts to the initial one on N x 1.

We proceed-to identify the Spin structure induced on N x 0 — L. Let X =
V x [0, 1] and embed two copies of V in the boundary so that X = V' UV where
the union is along 8V thought of as @V x 1/2. First observe that we can em
bedeNx{Ol]sothataXlsVCNxOumoanl V. Since X
has codimension 1, the Poincaré dual to W is a 1-dimensional cohomology clas:
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z.€ HY(N x[0,1] - V;Z/2Z). Suppose we take the Spin structure on N x {0,1]
and restrict it to N x [0,1] -V and then act on it by z. This is a Spin structure on
N x [0,1] — V which extends across no component of V' and which is the original
oneon N x 1. On N x 0 - L it ean be described as the one obtained by taking the
given Spin structure on NV x 0, restricting it, and then acting on it by the restriction
of . But the restriction of z is just the Poincaré dual of F C N x 0 and so it is
the Spin structure which characterizes the link, By Lemma 6.2, there is a preferred
Pin~ structure on V', which is easily checked to be the same as the one we put on
it in §4. The above Spin structure on N x [0,1] — V will be called the standard
characterization of the pair (N x [0,1], V).

With this general discussion behind us, let us turn to the situation described
in the second part of the theorem. Recall W* is an oriented bordism between M,
and My; Ly € M, and Ly C M; are characterized links; F? C W be a properly
embedded surface with FNM; = L;; and W — F has a Spin structure which extends
across no component of F and which gives a Spin bordism between the structures
on M; — L;. Define sets of even longitudes #; as in the statement of the theorem.

Let F; C_M; be a spanning surface for L;. Inside W= My x[-1,00UWUM, x
[0,1] embed F = F} U FU Fy, where F; is defined with function f: F} — [~1/2,0]
and still £-1(0) = @F,. There is a Spin structure on W — F which extends across
no component of F. 1t is just the union of the standard characterization of M; x
[-1,0}, F}, the given Spin structure on W — F and the standard characterization
of M, x [0,1];, F3.

By Lemma 6.2 again, there is a preferred Pin™ structure on F, which agrees
with the usual ones on Fy and Fi. In particular, F also receives a Pin™ structure
which only depends on W, not on the choice of F; or F;. However, from F; and
F,, we see that the Pin™ structure induced on each component of each link is the
bounding one. Moreover, §(F) = A(F) + 8(Fz) — B(F1).

‘By construction, FeF is 0, so 6.4 says that

B(Fy) = B(F1) = —(B(F) + sign(W) + p( M) — p(M1))

- where the y invariants arise because 6.4 only applies to closed manifolds.

Apply this to the case W = M x [0,1], F = L x [0,1] embedded as a product.
- Since we may use different spanning surfaces at the top and bottom, this shows g is
well-defined. The formula in the theorem now follows from the formula immediately
above. s

The next thing we wish to discuss is how our mvariant depends on the longi-
tudes. Given two different sets of even longitudes, £ and £', for a characterized link
L ¢ M3, there is a set of integers, one for each component of L defined as follows.
.The integer for the ith component acts on the longltude for £ to give the longitude
for #. Since both these longitudes are even, so is this integer.

s
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Theorem 8.3. Let L C M? be a characterized link with two sets of even longitudes .
¢ and £. Let 2r be the sum of the integers which act on the longitudes £ to give ;

the longitudes ¢'. Then
B(L, & M) = B(L, &, M) +r {mod 8) .

l

Proof: Given Fi, a spanning surface for the longitude £, we can construct a spa.nmng

surface for #' as follows. Take a neighborhood of the peripheral torus, which will
have the form W = T2 x [0,1].

Ha (W, 8W; Z/2Z) The Spin structure on M restricts to one on W which is easily |
described: it is the stabilization of one on 7% and this can be described as the :

one which has enhancement 0 on the longitude and 0 on the meridian. Since the -
=Vu F] has
invariant the invariant for Fy plus the invariant for V. We further see that the
invariant for V only depends on the surface and the Spin structure in W. But :

Pin— structure induced from Corollary 1.15 is local, we see that F;

these are independent of the link and so we can calculate the d1fference of the 8% -
using the unknot.

Furthermore, we see that the effect of successive changes is add:twe, 50 we only

need to see how to go from the 0-longitude to the 2 longitude, and the 2 longltude

is given by the Mébius band, which inherits a Pin™ structure. This Pin~ structure :
extends uniquely to one on R.P2 and this RP? has 3 invariant +1. ;

Remark. Even in the case of links in 5%, the longitudes used enter into the answer. |
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Inside W embed a surface V which intersects ;
T? x 0 in the longitude £, which intersects T2 x 1 in the longitude £', which has no -
boundary in the interior of W; and which induces the zero map Ho (V v, Z/22) —

It is just in this case that there is a unique set of longitudes given by using an

orientable spanning surface.

Unfortunately, in general there is no natural choice of longltud&s s0 it seems
simplest to .ncorporate them into the definition. The drawback comes in d1scussmg

notions like link concordance. In order to assert that our invariant is a link concor-:

dance invariant, we need to describe to what extent a link concordance allows us®
to transport our structure for one link to another. Recall that a link concorda.nce
between Lg C M and L; C M is an embedding of(JJ. 51y % [0,1) € M x [0, 1] with®
is (UL §1) x ¢ being L; for i = 0,1. Suppose Ly is an even link with £o a set of even ;
longitudes. There is a unique way to extend this framing of the normal bundle to:
Lq in M to a framing of the normal bundle of (1L §') x [0,1] in M x [0,1]. Hence:
the concordance picks out a set of longitudes for Ly which we will denote by ..
There is a unique way to extend a characterization of Lg to a Spin structure on
M x [0,1) — (1L 5*) x {0,1] and hence to M — L,.

Corollary 8.4. Let Ly and L, be concordant links in M. Suppose Lq is charac-

terized and that £y is a set of even framings. Then the transport of framings and
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Spin structures described above gives a characterization of Ly and £y is a set of
even framings. Furthermore (Lo, €y, M) = f(L1,¢;, M).

Proof: The proof follows immediately from Theorem 8.2 and the fact that (L
 §') x [0,1]; when capped off with disks, is a union of $%’s and so has # invariant
0.»

We do know one scheme to remove the longitudes which works in many cases.
Suppose that each component of the link represents-a torsion class in H, (M;Z).
Each component has a self-linking and by Lemma 4.1 the framings, hence longitudes
are in one to one correspondence with rational numbers whose equivalence class in
Q/Z is the self-linking number. There is & unique such number, say ¢; for the ith
component, so that ¢; represents an even framing and 0 < ¢; < 2. We say that this
is the minimal even longitude. To calculate linking numbers it is necessary to orient
the two elements one wants to link, but the answer for self-linking is independent
of orientation.

Definition 8.5. Let L be a link in M so that each component of L represents a
torsion class in H; (M;Z). Suppose L is characterized. Define

B(L, M)} = B(L,8, M)

where £ is the set of even longitudes such that each one is minimal.
Remark. It is not hard to check that 7 is a concordance invariant.

As we remarked above; # and 3 (if it is defined) do not depend on the orien-
tation of the link. If we reverse the orientation of ‘M, and also reverse the Spin
structure on M and on M — L, it is not hard to check that the new Pin™ structure
on F is the old one acted on by w,(F) so the new invariant is minus the old one..

The remaining point to ponder is the dependence on the two Spin structures.
To do this properly would require a relative version of the 8 function 4.8, It does
not seem worth the trouble.

Remark. We leave it to the reader to work out the details of starting with a

characteristic structure on M? with the link as a dual to w, + w? (i.e. Tepresents 0
in Hy (M;Z/27)). '

 §9. Topological versions.

There is a topological version of this entire theory. Just as Spin(n) is the
double cover of SO(n) and Pint(n) are the double covers of O(n), we can consider
the double covers of STop(n) and Top(n). We get a group TopSpm(n) and two
groups TopPin®(n). A Top(n) bundle with a Tomei(n) structure and an O(n)
structure is equivalent to a Pin*(n) bundle,
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Any manifold of dimension < 3 has a unique smooth structure, so there is n
difference between the smooth and the toplogical theory in dimensions 3 and less
The 3-dimensional bordism groups might be different because the bounding object.
are 4-dimensional, but we shall see that even in bordism there is no difference.

We turn to dimension 4. First recall that the triangulation obstruction (strictl;
speaking, the stable triangulation obstruction) is a 4-dimensional cohomology clas
so evaluation gives & homomorphism, which we will denote «, from any topologica
bordism group to Z/2Z. Since every 3-manifold has a unique smooth structure
the triangulation obstruction is also defined for 4-manifolds with boundary. Ever;
connected 4-manifold M* has a smooth structure on M — pt, and any two suc
structures extend to a smoothing of M x [0,1] - pt x [0,1].

Some of our constructions reqmre us to study submanifolds of M. In part:cula.r
the definition of characteristic requires a submanifold dual to w; and a submanifol
dual to w, + w?. We require that these submanifolds be locally—flat and hence
by [Q], these submanifolds have normal vector bundles. Of course we continue ¢
require that they intersect transversely. Hence we can smooth a ne1ghborhood C
these submanifolds. The complement of these smooth neighborhoods, say U, is
manifold with boundary, which may not be smooth. If we remove a point from th
interior of each component of I/, we can smooth the result. With this trick, it is na
difficult to construct topological versions of all our “descent of‘structure” theorems
In part1cu1a.r, the [Mw?], {Mw1] and R maps we defined into low—dimensional Pin’
bordism all factor through the corresponding topological bordism theories.

Theorem 9.1. Let Smooth bordism, denote QS" G 1 int , Q, or the Freedman
Kirby or Guillou-Marin bordism theories. Let Top — bordzsm. denote the topoIog
ical version. The natural map

Smaoth — bordismz — Top f.'bOT.‘d’ismg
is an isomorphism.
Smooth — bordism, — Top — bordismgi»Z/ZZ =0

is exact.

Proof: The Fa manifold, [F], is a Spin manifold with non-trivial triangulatio
obstruction. Suppose M?® is a 3-manifold with one of our structures which is

topological boundary. Let W* be a boundary with the necessary structure. Smoot
neighborhoods of any-submanifolds that are part of the structure. This gives a ne
4-manifold with boundary U*. If the triangulation obstruction for 2 component «
U/ is non—zero, we may form the connected sum with the Es manifold. Hence w
may assume that U has vanishing triangulation obstruction. By {L-§] we can ad
some S x $%’s to I/ and actually smooth it. The manifold W can now be smoothe
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so that all submanifolds that are part of the structure are smooth. Hence M? is
already a smooth boundary.

The Ey manifold has any of our structures, so the map T'op—bordismy — Z/2Z
given by the triangulation obstruction is onto.

Suppose that it vanishes. We can smooth neighborhoods of any submanifolds,
so let U be the complement. Each component of U has a triangulation obstruction
and the sum of all of them is 0. We can add Ej’s and —Eg’s so that each component
has vanishing triangulation obstruction and the new manifold is bordant to the old.
Now we can add some $? x §%'s to each component of I/ to get a smooth manifold
with smooth subrnanifolds bordant to our original one.

Theorem 9.2. The fopological bordism groups have the following values. Q7 757"
& 7; Q] PP = 707, QTPPT & 787 0 2/2Z; and QTP = Z/8Z. 0 Z/4Z &
Z/2Z & Z/22. The triangulation obstruction map is split in all cases except the
Spin case: the smooth to topological forgetful map is monic in all cases except
the TopPin® case where it has kernel Z/2Z. The triangulation obstruction map
is split onto for the topological versions of the Freedman—Kirby and Guillou-Marin
theories and the smooth versions inject.

Proof: The TopPin™ case is easy from the exact sequence above. The TopSpin
case is well-known but also easy. The Fy manifold has non—tnv1a1 triangulation
obstruction and twice it has index 16 and hence generates Q Spin

There is a [Nw?] homomorphism from Q1 °P Pint 4o Qfin” ~ Z/BZ which is
onto. Consider the manifold M = E3#5% x RP2. The oriented double cover
of M is Spin and has index 16, hence is bordant to a generator of the smooth
Spin bordism group. It is not hard to see that the total space of the non—trivial
line bundle over M has a Pint structure, so the Kummer surface is a TopPin*
boundary. Hence there is a Z/2Z in the kernel of the forgetful map and the [Mw?]
‘map shows that this is all of the kernel. Furthermore, Fg represents an element of
order 2 with non-trivial triangulation obstruction. _

The homomorphisms used to compute Q! factor through RT"P = so 9:{” -~
Qo Z/22.

Likewise, the homomorphlsms we use to compute smooth Freedman-Kirby or
Gu:llouuMa.rm bordism factor through the topological versions. o'

Corollary 9.3. Let M be an oriented topological 4~mamfoId, and suppose we

have a characteristic structure on the pair (M, F). The following formula holds:
2-8(F)= ~sign{M) + 8- w(M) (mod 16)

where the Pin_.stm_cture on F is the one induced by the characteristic structure

on (M, F') via the topological version of the Pin™ Structure Correspondence, 6.2.

i
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Proof: Generators for the topological Guillou-Marin group consist of the smooth
generators, for which the formula holds, and the Fy manifold, for which the formula
is easily checked. » -

Remark. The above formula shows that the generator of H ( ;Z) of Freedman's |
Chern manifold, [F, p. 378], is not the image of a locally-flat embedded S2.
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