SOME THEOREMS ON TOPOLOGICAL MANIFOLDS

by R. C. Kirby and L. C. Siebenmann University of California, Los Angeles

and

Universite de Paris, Orsay

We list here some theorems about topological manifolds, most of which were announced in [7], [8], with proofs to appear in [9], [10], [11]. In addition, see [12], [13], [15], [6].

First is the theorem on existence and uniqueness (Hauptvermutung) of PL structures on manifolds [7], [13]:

Theorem 1: Let Q^q be a q-dimensional topological manifold and let C be a closed subset of Q. Suppose that a neighborhood of C has a PL structure Σ_Q . Let $q \geq 6$ or q = 5 if $\partial Q \subset C$. If $H^4(Q,C;Z_2) = 0$, then Q has a PL structure Σ which agrees with Σ_Q near C.

Given the PL structure Σ , then the PL structures (up to isotopy) on Q which agree with Σ near C are classified by $H^3(Q,C;\mathbb{Z}_2)$.

<u>Definition</u>: Let Σ and Θ be two PL structures on Q. Then Σ and Θ are said to be equivalent (up to homotopy, or up to isotopy) if there exists a PL homeomorphism $f: \mathbb{Q}_{\Sigma} \to \mathbb{Q}_{\Theta}$ (which is homotopic, or isotopic, to the identity). In the relative case, $\Sigma = \Theta$ near C and the homotopy, or isotopy, fixes a neighborhood of C.

Sullivan proved the following theorem on uniqueness up to homotopy [20], [1], [17].

Theorem 2: Let Σ and Θ be two PL structures on $\mathbb Q$ which agree near $\mathbb C$. Suppose $H^1(\mathbb Q,\mathbb C;\mathbb Z)$ has no 2-torsion. Suppose one of the following conditions holds:

(i)
$$\partial Q \subset C$$
, $q \ge 5$, Q compact, and $\pi_1(Q) = \pi_1(\partial Q)$,

(ii)
$$\partial Q \neq C$$
, $q \geq 6$, Q compact, and $\pi_1(Q) = \pi_1(\partial Q)$,

(iii) Q non-compact,
$$q \ge 6$$
 and $\pi_1(Q) = 0$.

Then there exists a proper homotopy $h_t: \mathbb{Q}_{\Sigma} \to \mathbb{Q}_{\Theta}$, $t \in [0,1]$ from the identity to a PL homeomorphism h_t with h_t = identity near C for all $t \in [0,1]$.

The two uniqueness theorems are related as follows: let $\beta: H^3(Q,C;Z_2) \to H^4(Q,C;Z)$ be the Bockstein homomorphism coming from the exact sequence of coefficients $0 \to Z \to Z \to Z_2 \to 0$ (which is the sequence $0 \to \pi_{\downarrow}(G/PL) \to \pi_{\downarrow}(G/TOP) \to \pi_{\downarrow}(TOP/PL) \to 0$). Assume the conditions of Theorem 2. Then if Q has PL structures Σ and Θ corresponding to $[\Sigma]$, $[\Theta] \in H^3(Q,C;Z_2)$, then Σ and Θ are equivalent (rel C) up to homotopy iff $\beta([\Sigma]) = \beta([\Theta])$.

This fails however for $Q = S^3 \times R^2$, which has two PL structures, because Theorem 2 fails in this case. The uniqueness half of Theorem 1 fails for closed 3-manifolds, but it is a good conjecture that Theorem 1 holds in dimensions > 3.

Let τ_Q be the tangent q-bundle of Q which is classified by a map $f:Q\to B_{TOP(q)}.$ There is a Serre fibration $B_{CAT(q)}\to B_{TOP(q)}$ with fiber TOP(q)/CAT(q) where CAT is either the PL or DIFF (differential) category.

Theorem 3 ([7],[13],[6]): Let $r \ge k$ and $r \ge 5$. Then the stabilization map

$$s:\pi_k(TOP(r),PL(r)) \rightarrow \pi_k(TOP(r+1),PL(r+1))$$

is an isomorphism and

$$\pi_{k}(\text{TOP}(r), \text{PL}(r)) = \pi_{k}(\text{TOP}, \text{PL}) = \begin{cases} 0 & k \neq 3 \\ \mathbb{Z}_{2} & k = 3 \end{cases}$$

Thus by obstruction theory, f lifts to a map $f':Q \to B_{PL(q)}$ (meaning τ_Q reduces to a PL bundle) if an obstruction in $H^4(Q,C;\pi_3(TOP(q),PL(q))=0$; if f' exists, then the homotopy classes of liftings of f (equals the concordance classes of PL reductions of τ_Q) correspond bijectively to $H^3(Q,C;Z_2)$. Theorem 1 now follows from the classification theorem below.

The complex $\operatorname{Cat}(\operatorname{Q} \operatorname{rel} \operatorname{C}; \Sigma_{\operatorname{O}})$ of CAT structures on Q which are equal to $\Sigma_{\operatorname{O}}$ near C is defined to be the (semi-simplicial, Kan) complex of which a typical d-simplex is a CAT structure Γ on $\Delta^d \times \operatorname{Q}$ such that projection onto Δ^d is a CAT submersion and $\Gamma = \Delta^d \times \Sigma_{\operatorname{O}}$ near $\Delta^d \times \operatorname{C}$. If $C = \emptyset$, we write $\operatorname{Cat}(\operatorname{Q})$.

Similarly, let Lift(f rel C,f_O) be the (semi-simplicial, Kan) complex of lifts of $f:Q\to B_{TOP(q)}$ to maps $f':Q\to B_{CAT(q)}$, where f' agrees near C with the lifting f_O induced by Σ_O .

Theorem 4 (Classification Theorem [10]): The natural map $\theta: Cat(Q rel C, \Sigma_Q) \rightarrow Lift(f rel C, f_Q)$ is a homotopy equivalence for $q \neq 4$, and $q \neq 5$ if $\partial Q \not= C$.

Lashof [12], Morlet [15], and C. Rourke have also proved versions of the classification theorem. We discuss ingredients of the proof below.

Let Γ be a CAT structure on INQ and let $0\times\Sigma$ be its restriction to $0\times Q$. Suppose $\Gamma = I\!\!\times\!\Sigma$ near INC.

Theorem 5 (Concordance implies isotopy) [9]: Let $q \ge 6$ or q = 5 if $\partial Q \subset C$. There exists an isotopy $h_t: IXQ \to IXQ$, to [0,1], fixing 0XQ and a neighborhood of IXC, such that $h_0 = identity$ and $h_1: IXQ \to (IXQ)_\Gamma$ is a CAT isomorphism. Furthermore h_t can be chosen arbitrarily close to the identity.

Theorem 6 (Sliced concordance implies isotopy) [9]: Suppose $q \neq h$, and $q \neq 5$ if $\partial Q \not\subset C$. Also suppose the projection $(I\times Q)_{\Gamma} \to I$ is a CAT submersion. Then h_{τ} exists as in Theorem 5. Furthermore $h_{\tau}(s\times Q) = s\times Q$ for all $s\in I$. This assertion holds if, more generally, a pair (Δ^d, Λ) replaces the pair (I, 0), where Δ^d is the standard d-simplex and Λ is a contractible subcomplex such that $\Gamma \mid \Lambda \times Q = \Sigma \times Q$.

Theorem 6 readily implies the sliced concordance extension theorem:

Theorem 7: Let Q' be an open subset of Q containing C. Suppose $q \neq 4$, and $q \neq 5$ if $\partial Q \not= C$. Then the restriction map $Cat(Q rel C, \Sigma) \rightarrow Cat(Q rel C, \Sigma)$ is a Kan fibration.

Theorems 5 and 6 are established by decomposing Q_{Σ} into small handles and then applying inductively a version where Q is an open k-handle $R^k \times R^n$, q = k+n, and $C = (R^k - intB^k) \times R^n$. This version differs in that h_1 needs to be a CAT imbedding only near $I \times (R^k \times B^n)$ and the smallness condition is replaced by the condition that h_t fix all points outside a compactum (which is independent of t).

The handle version of Theorem 5 is most efficiently established by use of a variant of the Main Diagram of [7] (see also [9], [6]) which uses only the s-cobordism theorem.

In case CAT = PL (but not DIFF), the Alexander isotopy device (invalid for DIFF) and the s-cobordism theorem can be used to strengthen Theorem 5 to read: given the data of Theorem 5, the semi-simplicial space of concerdances of the given structure Σ on Q, rel IXC, is contractible (a d-simplex is a PL structure Γ on $\Delta^d \times I \times Q$ such that projection on Δ^d is a submersion, $\Gamma | \Delta^d \times C \times Q = \Delta^d \times C \times C$ and Γ equals $\Delta^d \times I \times C$ near $\Delta^d \times I \times C$.

For the handle version of Theorem 6, first note that the (many parameter) TOP isotopy extension theorem will deduce it from the statement that $(\Delta^d \times B^k \times R^n)_{\Gamma}$ is CAT isomorphic to $\Delta^d \times (B^k \times R^n)_{\Sigma}$ by a map respecting projection to Δ^d . This statement follows from a similar isomorphism of $(\Delta^d \times B^k \times (R^n - 0))_{\Gamma}$ with $\Delta^d \times (B^k \times (R^n - 0))_{\Sigma}$ which is established via a useful technical lemma.

Lemma. This lemma will hold for CAT equals TOP as well as PL or DIFF.

Consider a CAT manifold E with two ends equipped with

a) a CAT submersion $p:E \to \Delta^d$ (the leaves $F_u = p^{-1}(u)$, $u \in \Delta^d$, are CAT manifolds, possibly with boundary),

- b) a proper CAT map $\pi: E \to R$ such that for each pair of integers a,b with a < b the preimage $F_u(a,b) \equiv (\pi | F_u)^{-1}(a,b) = F_u \cap \pi^{-1}(a,b)$ of the open interval (a,b) of real numbers is a CAT product of a compact manifold with R, or at least has the following engulfing property:
- * $F_u(a,b)$ has two ends ϵ_- , ϵ_+ and if U_- , U_+ are given open neighborhoods of ϵ_- , ϵ_+ , then there exists a CAT self-isomorphism h of $F_u(a,b)$ fixing points outside some compactum such that $h(U_-) \cup U_+ = F_u(a,b)$.

Then $p:E \to \Delta^d$ is a CAT product bundle.

To prove this one can apply the d-parameter CAT isotopy extension theorem and an elementary engulfing argument to show that (*) holds "globally" with E in place of $F_u(a,b)$. Then glue together the ends of E as in [18] to deduce the result from the known fact that every <u>proper</u> CAT submersion is a CAT bundle map.

The Classification Theorem now follows from the immersion theory machine [2]. Theorem 7 is the key tool; with it, the machine works easily once we observe that the classification theorem holds for zero-handles, and this amounts to identifying $Cat(R^q)$ with the complex of CAT structures on the trivial R^q bundle over a point.

A somewhat different method of proving Theorem 1 (see [7], [6]) involves a stable version of the classification theorem. We have seen that the stable tangent bundle reduces if an obstruction in $H^1(Q,C;\pi_3(TOP,PL)=Z_2)$ vanishes, and concordance classes of stable reductions are classified by $H^3(Q,C;Z_2)$. By Milnor's arguments in [14], a stable reduction gives a PL structure on $Q \times R^S$ for some s and concordance classes of stable reductions correspond to concordance classes of PL structures on $Q \times R^S$. Application of the concordance-implies-isotopy Theorem (Theorem 5) and the Product Structure Theorem below finish this proof of Theorem 1.

Theorem 8 (Product Structure Theorem). Let $q \geq 6$ or q = 5 if $\partial Q \in C$, and let Σ_O be a CAT structure near C. Let Θ be a CAT structure on $Q \times R^S$ which agrees with $\Sigma_O \times R^S$ near $C \times R^S$. Then Q has a CAT structure Σ , extending Σ_O near C, and $\Sigma \times R^S$ is concordant to Θ modulo $C \times R^S$.

Moreover, there is an ϵ -isotopy $h_t: \mathbb{Q}_{\Sigma} \times \mathbb{R} \to (\mathbb{Q} \times \mathbb{R}^S)_{\Theta}$ with h_0 = identity, h_1 PL, and h_t = identity near CxR, where $\epsilon: \mathbb{Q} \times \mathbb{R}^S \to \mathbb{R}$ is a continuous function.

Note that the theorem fails for closed 3-manifolds; e.g. $S^3 \times R^2$ has two PL structures but S^3 has only one.

The Product Structure Theorem is equivalent to the Concordance-implies-isotopy

Theorem plus the Annulus Theorem [5]; the equivalence is not too hard to prove [9].

The classical PL-DIFF Product Structure Theorem (Cairns-Hirsch Theorem) [3] follows easily from the TOP-CAT versions of the Product Structure Theorem and Concordance-implies-isotopy Theorem. By using the Sliced-concordance-implies-isotopy Theorem (Theorem 6) in addition, we may also recover the PL-DIFF version of Concordance-implies-isotopy [4], [16]. (Since $\Gamma_{i} = 0$ for $i \leq 6$, there is nothing to prove in the low dimensions not covered by Theorems 5-8.)

The Product Structure Theorem is particularly significant because of Theorems 9, 10, and 11 below which follow easily, (see [11], [6]).

Theorem 9. Let M^m be a TOP manifold. Then M has a well defined simple homotopy type (infinite if M is non-compact [19]) which agrees with the usual definition if M is PL or is a handlebody. This implies that the Whitehead torsion of a homeomorphism is zero [7].

Theorem 10 (Transversality). Let $\xi^n = \mathbb{E}(\xi^n) \xrightarrow{\pi} X$ be an n-plane bundle over a topological space X and let $f:M^m \to \mathbb{E}(\xi^n)$ be a continuous function. Then if $m \neq 4$ and $m-n \neq 4$, f is homotopic to a map f_1 which is transverse to the zerosection of ξ (this means $f_1^{-1}(0\text{-section})$ is an (m-n)-manifold P with a normal bundle in M equal to $(\pi f_1 | P)^*(\xi)$). If f is transverse near a closed set $C \subseteq M$, then the homotopy equals f near C.

Theorem 11. If $m \ge 6$, then M^m is a TOP handlebody. (If m = 6 and $\partial M \ne \emptyset$, then we obtain M by adding handles to ∂M). Equivalently, M admits a Morse function $f: M \to R$ (that is, f is locally of the form $x_1^2 + \dots + x_{\lambda}^2 - x_{\lambda+1}^2 - \dots - x_{m}^2$). On the other hand, in dimension 4 or 5 (or both), there exists a manifold which is not a handlebody and thus has no Morse function.

REFERENCES

- 1. Cooke, G., <u>Hauptvermutung according to Sullivan</u>, Lecture notes, Inst. for Advanced Study, 1968.
- 2. Haefliger, A., and Poenaru, V., <u>La Classification des Immersion Combinatoires</u>, Publ. Math. Inst. Hautes Etudes Sci., 23(1964), 75-91.
- 3. Hirsch, M., On Combinatorial Submanifolds of Differentiable Manifolds, Comment. Math. Helv., 36(1962), 103-111.
- 4. Hirsch, M., Smoothings of Piecewise-Linear Manifolds I: Products, Preprint, Geneva and Berkeley, 1969.
- 5. Kirby, R., Stable Homeomorphisms and the Annulus Conjecture, Ann. of Math., 89(1969), 575-582.
- 6. Kirby, R., Lectures on Triangulations of Manifolds, Lecture notes, UCLA, 1969.
- 7. Kirby, R., and Siebenmann, L., On the Triangulation of Manifolds and the Hauptvermutung, Bull. Amer. Math. Soc., 75(1969), 742-749.
- 8. Kirby, R., and Siebenmann, L., Notices Amer. Math. Soc., 16(1969), 848,695,698.
- 9. Kirby, R., and Siebenmann, L., <u>Deformation of Smooth and Piecewise Linear</u>

 Manifold Structures, to appear.
- 10. Kirby, R., and Siebenmann, L., <u>Classification of Smooth and Piecewise-Linear</u>

 <u>Manifold Structures using the Product Structure Theorem</u>, to appear.
- 11. Kirby, R., and Siebenmann, L., to appear.
- 12. Lashof, R., The Immersion Approach to Triangulations, Proc. Athens, Georgia
 Topology Conference, August 1969.

- 13. Lashof, R. and Rothenberg, M., <u>Triangulation of Manifolds</u>. I, II., Bull. Amer. Math. Soc., 75(1969), 750-757.
- 14. Milnor, J., Microbundles, I. Topology, 3 Supplement 1(1964), 53-80.
- 15. Morlet, C., <u>Hauptvermutung et Triangulation des Varietes</u>, Sém. Bourbaki (1968-69), Exposé 362.
- 16. Munkres, J., Concordance is Equivalent to Smoothability, Topology 5(1966), 371-389.
- 17. Rourke, C., <u>Hauptvermutung According to Sullivan</u>, II, Lecture notes, Inst. Advanced Study, 1968.
- 18. Siebenmann, L., A Total Whitehead Torsion Obstruction, Communt. Math. Helv., 45(1970), 1-48.
- 19. Siebenmann, L., Infinite Simple Homotopy Types, Indag. Math., to appear.
- 20. Sullivan, D., On the Hauptvermutung for Manifolds, Bull. Amer. Math. Soc., 73(1967), 598-600.