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This paper proves that any knot is concordant to a prime knot; it thus solves
Problem 13 of (3). In doing so it makes an exploration of a fairly general method of
proving that a knot is a prime. Throughout, the word ‘knot’ means a knot of 81 in §°
(orientations being here irrelevant); occasionally reference will be made to the idea of a
knotted arc spanning a 3-ball. o ' :

The method used in this paper is to take the connected sum of two knots and find s,
concordance to what is intuitively a more complicated knot which can be shown to be
prime. Thus, there are relations between concordance classes of prime knots of the
form 4+ B = C. One might wonder if one can determine an independent set of gen-
erators for the group of concordance classes. Litherland (4) has proved that the classes of
the torus knots do form an independent set, though it does not generate. _

The techniques used here are the usual elementary methods of 3-manifold topology.
" The paper should be interpreted as being in the piecewise linear category, but that isnot
very important. Standard definitions and results of knot theory may be found in (5).
The word ‘tangle’ is borrowed from (1) and is used to mean a finite set of disjoint arcs
properly embedded in a 3-ball.

Definition. A tangle t in a 3-ball B is prime if it has the following properties:

(1) Any 2-sphere in B, which meets ¢ transversely in two points, bounds in B a ball -
meeting { in an unknotted spanning are. '

(2) The arcs of t cannot be separated by & dise properly embedded in B.

Lamma 1. Let kbea prime non-trivial knot in 82, Then there exists, embedded n S a
2-sphere 'meetiﬂg k transversely in four points and separating 8® into 3-balls A and B such
that : '

) (4, Ank)is a trivial tangle (i.e. 41k consists of two unlinked unknotted arcs
spanning A); _ ' '

(ii) (B, Bnk)is a prime tangle. o

Proof. Let X and Y be (small) disjoint 3-balls in 9% each of which meets [ in a single
unknotted spanning arc. Let Z be a regular neighbourhood in 82 — (X y-¥) of an arc

that joins a point of 2X to one in 8¥ but is otherwise disjoint from X y ¥ y k. This Z is
required to meet 4X and 8 ¥ each in a disc, to be disjoint from &, and to be such that the
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Fig. 2

3-ball X U Z U Y has the property (*) that there exists in its boundary a loop, essential
in 8% — k, but Jinking k with zero linking number. (Existence of such a Z follows immed-
iately by taking m,, and m,, to be meridians of £ contained in ¢X and 2Y and « to be an
arc so that amgo~lm, is the composite of two distinet elements in a Wirtinger presen-
tation of the knot-group.) Let N be a regular neighbourhood in Z, meeting 0Z regularly,
of a knotted spanning arc in Z, joining a point of 8X to a point of 2Y. Let 4 be

XuyNuY
and let B be S — 4 ,

Now (4, 4n k) is tr1v1a1 from the construction. To establish (1), note first that the
ball 4 inherits property (*) from Xy Zy ¥. Tf F is a 2-sphere in B meeting k in two
points, suppose that F bounds a ball #in B and (f, # n k) is knotted. Then, because k is
prime, (S¥— g, k— f) is an unknotted ball pair. But 4 = 83— 4, s0 any loop in A —k
with zero linking number with k is inessential. This contradicts (*) and so (8, £ n k) is
unknotted.

Lastly suppose that Disadise properly embedded in B, separating B into two balls,
each containing one of the arcs of B n k. Assume that D is transverse to the annulus
B 2Z. Suppose y is any curve encircling that annulus (ie. [y] is a generator of

H,(B n 82)). Tf y is in one of the components of B — D, then y cannot link the spanning
arcof B  k contained in the other component. But,in B, y has unit hnkmg number with
eacharcof Bnk,soyn D + ¢ for any such y. Hence D) contains ares running from one
boundary component of the annulus (B n dZ) to the other. Consider such an arc
extreme-most on D. Such an arc is contained in the boundary of a subdise & of D, the
remainder of whose boundary is an arc in 8B. However N is a neighbourhood of a
knotted arc spanning Z so that the boundary of § would have to be knotted in S5, This
contradiction establishes the lemma. '

Note that the lemma also holds for the trivial knot, the proof being amended by
letting o be an arbitrary are from X to ¥ and noting that (1) is tnvwl in this case.

The tangle shown in Fig. 2 will be called a clasp. :



Prime knots and concordance 439

LEMMA 2. A clasp is a prime tangle.

Proof. As each spanning arc of the clasp is unknotted, (1) is immediate. If there were
a properly embedded 2-disc separating the two arcs of the clasp then the clasp would
be the trivial tangle. However, a trivial tangle can be added to the clasp (on the outside
of the ball in Fig. 2) to create the square knot (or reef knot). The square knot would
thus be a 2-bridge (rational) knot; this is known to be false (see for example Theorem
2 of (2) or 4D15 of (5)).

THEOREM. Any knot is concordant to a prime knot,

Proof. Any knot is expressible as a sum of prime knots, and knot addition is com-
patible with concordance, so it is sufficient to show that the sum of just two prime
knots is concordant to a prime knot. Let %, and k&, be prime knots in 2. Now, Lemma, 1
provides a method of placing a prime knot & in §3 expressed as the union of two 3-balls
4 and B. Because (4, 4 n k) is the trivial tangle, 4 n k can be isotoped into 24 = 8B.
Then, k is entirely in B; it is the union of two ares in 8B and two spanning arcs with
properties (1) and (2). Let By, B, and C be disjoint 3-balls in S% connected by strips
(copies of I x I )8, 8, and 8, as shown in Fig. 3. Let k, be embedded in B, and &, in B,,
in the way described above, so that the ares of the k, in @B, coincide with the appro-
priate arcs at the ends of the strips. Let two arcs forming a clasp be embedded in C as
shown in Fig. 3. :

The union of the six spanning ares in B,, B, and C, and the six relevant arcs of the

3 . .
boundary of the strips (i.e. (3 U S,-) — (B UByU 0)) form a new knot £. This £ is con-
: =1

cordant to k, 4 k, by performing a band-move along the band & as shown. That
move immediately changes £ to %, 4 k, together with an unknot that does not
link it. - '

It remains to prove that the knot % is a prime knot. Suppose that F is a 2-sphere
embedded in 8% cutting £ in two points, splitting £ into two non-trivial knotted bail-
pairs. Suppose F is transverse to 8(B, U B,y C). Let y be a simple closed curve of this
intérsection, innermost on ¥, and let D be the innermost dise in F that it bounds.
Because F n k consists of only two points, y can be chosen so that D n £ consists of one
point or none at all. SR

(@) If Din k is empty proceed as follows: If D < B, u B,y €, then D splits one of
those balls into two components (each a ball) one of which is (by property (2)) disjoint
from k. There is thus an isotopy, supported on'a neighbourhood of that component,
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which keeps k fixed and moves D out of the ball in question. This reduces the number of
components of ¥ n (B, U By U 0). A similar argument covers the case when

D 83— (B,uB,u0).

(b} Suppose D n kis one point: If D = B, Y B, U C, suppose D < B, (the other cases
are exactly the same). Then y separates 8B, into two discs one of which, A, meets £ in
one point. By property (1), Dy A bounds in B, a 3-ball meeting £ in an unknotted
spanning arc. Hence D may be isotoped across this ball (to just the other side of A)
reducing the number of components of # n (B, U B, U (') without changing the types
of the knots into which -F separates £. (Note that the number of components of
Fné (ByuB,uC) may be reduced by more than one by such a manoeuvre.) If
Des—-(B 1 U By U C) a similar argument applies.

Tteration of the above technique leads to a situation where F n (B, u B, U C) = ¢.
If F.< (B, U B, U C) there is by property (1) an immediate contradiction to the suppo-
sition that F provides a non-trivial factorization of £. If F < §*—(B,uB,u (),

3
asgume that # is transverse to | S; and that (by the usual innermost curve argument)
i=1

F has been isotoped to remove closed curves of F n U 8;. Thus it can be assumed that
: i=1

Fn U 8§ is one single arc « spanning 8. If the’ eiid points of rxbelong to the same com-
i=1

ponent of 88, n f, then F factorises k trivially; this is not so. Thus one of the end points
of a belongs to each of the components of 88; n k.11 is a loop circling once around the

set (ByU B, U C)u U 8; (i.e. a spine of that set) { can be chosen to meet & in }ust one
) =1

point. This means that the loop / has non-zero intersection number with the 2-sphere
F in 83 this is never true.

This conecludes the proof of the theorem itself. It may well be that. the method used,
for proving the knot % is prime, is more interesting than the theorem itself. This £ was
constructed by inserting tangles, with two strings, that satisfy properties (1) and (2),
into balls banded together by strips into a cireuit as in Figure 3. Similarly, prime knots
can be created by taking n such tangles (n > 2) and inserting them into z balls banded
together in any way into a circuit. In fact, the pattern of strips and balls may be taken
to correspond to any graph in 83, with a ball at each vertex and a strip along each edge,
provided each vertex belongs to at least two edges and each edge has two distinct
vertices. In this case tangles with r strmgs must be used at vertices Where r edges meet,
each tangle must be prime. : - :

In practice the method of Lemma 1 may be unnecessarily complicated, for it is
sometimes easy to see how to place a given knot in a 3-ball with two arcs on the bound-
ary and a tangle in the interior with the two required properties. At the worst, Lemma
1 can be regarded as producing a presentation of a knot in a 3-ball with twelve more
crossings than the minimal number (and this is only necessary if the knot # a 2-bridge
knot). Thus if a knot % has prime factors k;,¢ = 1,2, ..., n, each with minimal crossing
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number 7;, then k is concordant to a knot with a presentation with 6+ 12n + p
crossings, _

It is interesting to note that in his search recorded in (1) for concordances amongst
knots with low numbers of crossings, Conway discovered one and only one example of a
composite knot being concordant to a prime knot; namely, the granny knot is concord-
ant to 10y, (in Tate’s notation). In Conway’s terminology this asserts that 34 8 is
concordant to .2.2.2.20, the latter being the same as (21, 21) (8, 21) in ‘algebraic’
formulation. The tangle (21, 21) is the clasp of Fig. 2, and the tangle (3, 21), with two
standard arcs added to make it a knot, is the granny placed in a ball so as to be a prime
tangle. Thus this most simple example discovered by Conway is a direct illustration of
the technique of this paper, using the graph consisting of a circuit with two vertices
and two edges.
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