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PREFACE

These are the proceedings of the conference on 4-manifolds held at
Durham, New Hampshire on 4-10 July 1982 under the auspices of the American
Mathematical Society and National Science Foundation. The organizing com-
mittee was Sylvain Cappell, Cameron Gordon, and Robion Kirby.

The conference was highlighted by the breakthroughs of Freedman and
Donaldson, and Quinn's completion at the conference of the proof of the annu-
lus conjecture (we commend the AMS committee, particularly Julius Shaneson,
who had the foresight in spring 1981 to choose the subject, 4-manifolds, in
which such remarkable activity was imminent). Freedman and several others
spoke on his work and some of their talks are represented by papers in this
volume. Donaldson and Taubes gave surveys of their work on gauge theory and
4-manifolds and their papers are here. There were a variety of other lectures,
including Quinn's surprise, and a couple of problem sessions which led to the
problem 1ist.

We would like to thank the contributors, almost all of whom submitted
their papers in very timely fashion, and Carole Kohanski from the AMS who ran
the nonmathematical side of things very smoothly, even through 100-degree tem-

peratures. Thanks also to Suzy Crumley for typing all the manuscripts.

Cameron Gordon Robion Kirby

Department of Mathematics Department of Mathematics
University of Texas University of California
Austin, Texas 78712 Berkeley, California 98720
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FIBERED KNOTS AND INVOLUTIONS ON HOMOTOPY SPHERES

I. R. Aitchison
J. H. Rubinstein

1. FIBERED KNOTS AND INVOLUTIONS ON HOMOTOPY 4-SPHERES

This paper arises from an attempt to understand and generalize the results
of Akbulut and Kirby (AK1). We modify their techniques to investigate the
structure of an infinite class of homotopy 4-spheres constructed by Cappell and
Shaneson (CS1), two of which are described in Akbulut and Kirby (AK1), and two
of which double cover manifolds known to be exotic. All these homotopy spheres
are either 54 or obtained from 84 by the Gluck construction on a knotted
2~sphere. All have an orientation reversing involution with circle of fixed
points, and thus lead to possibly interesting involutions on homotopy Szx Dz's.
The double covers of the exotic homotopy projective spaces are shown to be
2-fold covers of 84, branched over a knotted 2-sphere. All of the above invo-
lutions desuspend to Z-homology 3-spheres, and consequently the exotic nature
of Cappell and Shaneson's projective spaces is detected by the Fintushel-Stern
invariant (FS). We give some more examples of free involutions on homotopy
4-spheres.

The main technique is handle decompositions; we exploit Reidemeister-Singer
stabilization of Heegard decompositions of 3-manifolds to show that any 4-mani-
fold with fibered 2-~-knot splits naturally as the unioh of two submanifolds built
with 0-,1- and 2-handles, and such that the common boundary of these has an
induced open book decomposition with binding the equator of the fibered 2-knot.

Cappell and Shaneson's examples involve mapping tori with fiber the punc-
tured 3-torus TQ-int(B3), and thus we analyze the diffeotopy group of T3.
This requires some algebraic results on conjugacy in SL(3;2), details of
which we include in the appendix to preserve continuity of geometric arguments.
These results allow us to isotope diffeomorphisms so that they reflect the sym-
metry natural to T3.

Finally we consider Cappell and Shaneson's more general modifications of
smooth, closed and non-orientable 4-manifolds to obtain exotic homotopy equiv-
alences. In many situations we reduce questions to those concerning the modi-

fications on RP4 and RP2:<DZ. In this context we refer the reader to

© 1984 American Mathematical Society
0271-4132/84 $1.00 + $.25 per page



2 I. R. Aitchison and J. H. Rubinstein

Akbulut's paper in these proceedings.
We recall the construction in Cappell and Shaneson (CS1): Take

B e SL(3,%8), with det(B-1) = %1. The linear action of B on B3 induces a

diffeomorphism wB:T3* T3, where T3= S1x Slx S1 is the three dimensional

torus, the quotient of Ig under the action of (21)3. Isotope N to a

diffeomorphism WB' which is the identity on a ball R T3, and construct

the mapping torus Ew of WB by taking T3x [-1,1) and identifying the ends
B
by wB:
3
E - T x [-1,1]
WB (x,-1) ~ (WB(X),1)

o~

Remove int(R'x 51) = int(B3x S1 and replace by 82x D2 glued in by some
diffeomorphism of 32x s’, to obtain a homotopy 4-sphere. Note that the
isotopy of LN to WB induces an isotopy of ¢;1 to w;1 , which is also the
identity on R'.

If B is conjugate to A in SL(3,Z%) then the mapping tori of 95 and
¢, are diffeomorphic. So we can always replace B by a more convenient matrix
A in the same conjugacy class as B in SL(3,%).

If det(A-1) = -1, then det(A-1—1) = 1. Since the mapping torus of
ﬁri-I:T3* T3 is diffeomorphic to the mapping torus of Ppr it suffices to
consider only the case det(A-1)= 1. Any such matrix has characteristic poly-
nomial fa(x)= x3- ax2+ (a=1)x- 1, for some a ¢ Z.

We begin with a variation of Akbulut and Kirby's (AK1) technique, as gen-
eralized by Montesinos (Mo), for obtaining handle decompositions for 4-dimen-
sional mapping tori and 4-manifolds with fibered 2-knots. As regards the al-
gebraic structure of conjugacy in SL(3;%), we present the relevant results as

required deferring proofs to the final section of this paper.

2. OPEN BOOK DECOMPOSITIONS OF CLOSED 3- AND 4-MANIFOLDS
Let M' be a closed orientable n-manifold, V C M* an open ball neigh-

borhood of m € Mn, and h:M"+ Vi a diffeomorphism which restricts to the

identity on V. Construct the mapping torus En+1 of h restricted to

My 3 M- intv;  thus BEgH = ax sz " « s?. since 3(s" 'x p?) ="k d,

we may obtain a closed n+1-manifold En+1 = Eg+1LJ (sn-1x 02) by gluing to-

gether Sn—1x 02 and ~En+1 by some d?ffeomorphi:; wzsn-ix S1+ Sn_1x S1. The

image Kn_1 of Sn_1x {0} C E:+1 is thus a knotted (n-1)-sphere in E:+1.
DEFINITION. A closed manifold W™ is an open book with binding "

if it is diffeomorphic to some manifold E$+1 described as above. The mani-

fold M’ is called the page of the open book decomposition. Equivalently, we

0
say that g is a fibered (n-1)-knot. N
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It is well-known that every closed 3-manifold admits an open book decom-
position with binding 51.
THEOREM 2.1. Suppose w4 is a closed orientable 4-manifold admitting an

open book decomposition with binding s%. Then there exist orientable 4-mani-
4 - R

folds MB' MD such that W = MBLJg MD' where each of MB and MD is bujlt

with a O-handle, k 1-handles and k 2-handles, for some ke IN; the gluing

map g is some diffeomorphism of aMB = aMD, and_furt ther a nat

open book decomposition of aMB with binding S1 ndu by the decompos on

of w'.
s 4 . 4 2 2 4 .

PROOF. By assumption, W = EOLQ S8 x D where Eo is the mapping torus
of some diffeomorphism pO:Mg+ Mg which restricts to the identity on Mgﬁ Sz.
We begin by decomposing Eg.

Obtain a unique 3-manifold M3 by closing M3 with a 3-ball V, and ex-

0

tend »p to a diffeomorphism p=M3+ M3 by the identity on V. For some

0
ke N, M3 admits a genus k Heegard decomposition, i.e., there is a handle
presentation
3 0. ko ko2 .03
M™ =h U(Uhi)U(Uhi)Uh

i=1 i=1

with one handle each of index 0 and 3, and k handles each of index 1 and

2. We use sabscripts to label a handle, superscripts to indicate the index.

HB s ho u({uv hl) = #ks1x 02 is a genus k-handlebody, -~ the "base" handlebody,

i=1
and turning the 2- and 3-handles upside down, we obtain the "dual®” handlebody

H also of genus k. Clearly p(HB) ) p(HD) gives an alternative Heegard

DI
decomposition for M3 - it is not known whether we may carry out an ambient

isotopy of M3 carrying p(HB) onto HB

LEMMA 2.2. Given a diffeomorphism p:M3* M3, we may assume o ig iso-
topic to a diffeomorphism preserving some Heegard decompositjon of Ma.

PROOF. By the Reidemeister-Singer Theorem ~-- see for example Singer (S) =--

2 is isotopic to HBCSS1x D%

and p(BD) onto HD.

we may assume that for some se N, p(HB)Q8 S1 x D
We carry out this stabilization by adding s complementary 1~ and 2-handle

pairs to H_ UH_, giving a genus-(k+s) Heegard decomposition of M3. The

images unde? p Dof the new 1-handles h;, j= k+1,...,k+s are added to p(HB)
giving p(HB#ss1x Dz) = p(HB)#sslx Dz. Isotoping p(HB#ssix Dz) onto
HB#ss1x Dz, the Lemma follows.

Thus we may assume without loss of generality that p preserves some
genus k Heegard decomposition M3~ HB U BD. For later applications, we shall
be interested in whether certain diffeomorphisms actually preserve a given

Heegard decomposition -- there is a practical criterion for this.
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A t-spine C of HB consists of a bouquet of circles C1V"' VCk dis-

joint except for a common intersection point, the "base" 0O-spine Q. Similarly

a 1-spine C for H_ consists of a bouquet of circles ElVo-- VEk, disjoint

except for the poi:t Q. By a small isotopy, we may assume that p(C) N c=g,

and thus there is a neighborhood N of C disjoint from p(C). Isotoping N

onto HD, we see that we may always ass;me 3p(C) C HB
LEMMA 2.3. A diffeomorphism p: M + M may be isotoped to preserve any

given Heegard decomposition M3= HB v HD iff p(C), p(C) can be isotoped simul-

taneously into HB and HD' respectively.

PROOF. Let N, N be closed, disjoint neighborhoods of C, C in HB' HD
respectively, and Sk= HB n HD = tkslx S1 be the Heegard surface corresponding

to the genus k Heegard decomposition of M3, where we suppose p(N) N Sk= @

= p(N) N S, Hence

Sy c M - int p(NUN) = #ks1xs'x -1,11 .

If Sk is incompressible in M3— int p(N U ﬁ), then it is isotopic to the
standard section corresponding to #ks'x S1x {0}, by a result of Waldhausen
(Wd). Since Sk separates M3, we may thus assume that p(HB), o(HD) are

isotopic simultaneously to H HD respectively.

BI
The only alternative is Sk compressible in M3- int p(N U ﬁ). Compres-

sing Sk gives a separating incompressible surface Sj of strictly lower
genus than p(3N). Hence p (3N U aﬁ) lies on one side of Sj -- and one of
HB or HD must miss p(C) U p(C), a contradiction.

3

Now suppose p is a diffeomorphism of M =H_ U HD preserving the

B
Heegard decomposition. We may further assume after an appropriate isotopy that

there is an arc joining Q and Q. intersecting S in a single point g,

k
which is left fixed pointwise by p; and then that there is a ball neighbor-

hood R of this arc, meeting S, 1in a single disc D;' also left pointwise

k
fixed. Choose a ball neighborhood R' of q, with R'C R, missing Q and Q',

in a disc in Dz (Eigure 1). We may assume that R N HB,

respectively. Let

and intersecting Sk

R N H, are properly contained in the 0-handles of H_, H
L —_— 2 2 B D 2 2 1
= - R! ’ - R? = . = 1 =
HB HB R', HD= HD R', and D+ 3R' N HB, D_=3R' N HD where D+ [a] D_= a=8§
Clearly Hé, HB are each genus k handlebodies.

The mapping torus E4 of o:M3-> M3 is obtained by taking the product

M3x [-1,1} and identifying (x,-1) with (p(x),1). We have thus proved.
LEMMA 2.4. E4 splits as the union Eé= Eé U R' x S1 V) EB where Eé, EB

are the mapping tori corresponding to the restriction of p to Hé and HB re-

spectively.
It is clear that we may take Egs E‘- (intR') x S‘. Two closed orientable
4-manifolds w4, ﬁ4 containing fibered 2-knots arise naturally from Eg: By a

result of Gluck (G), up to isotopy there is only one diffeomorphism
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a:8 2x S‘-» s % 51, corresponding to the nontrivial element of 11(80(3)) = z, .
which does not extend to a diffeomorphism of 82x Dz. The diffeomorphism is

given by

2 1 0,2
g(p,9) = (TQ(P) ©) , pe S, e [0,27) , S = [0_:2:—]‘

where Ts is rotation of S2 through an angle © about the axis through the

North and South poles. W4 results by gluing Szx D2 onto E:
w by gluing in s2x p® with a "twist", corresponding to o .

by the identity,

REMARKS: Leaving the arc Q0 pointwise fixed, we can give the ball R
a full twist about. this axis (Figure 1). The mapping torus §4 corresponding

to this choice of isotopy of p differs from E4 - removing (intR') x S‘
from §4, W4 is obtained by gluing in Szx D2 by o, since the twist of
3(R' x S’) = 52x S1 induced by the alternative choice of isotopy may be pushed

off into Szx D2.

3

The choice of Heegard decomposition HBL)H of M, and the isotopy of o

so that p(HB)= H

8’ determine the splitting. DEven if HBLJHD is chosen as
a Heegard decomposition of minimal genus (which may be non-unique up to isotopy
-- see Birman, Gonzalez-Acufia and Montesinos (BGM)) there are still many differ-
ent ways of isotoping p so that p(HB)s HB. We shall have cause to illus-

trate this later.

Having chosen a handle-body preserving isotopy of p, we glue Szx 02

onto E: as follows: Since a(E4) = 3(R'x S‘) = (DfiJ Df)x SI, we split

32x D2 as (Di L'Df)x 02 Dfx D8 9] Dfx Dz, adding Hfs Dfx 02 as a 2-handle
2 2
1
on EB along D+x 3D

[ 24

sz S‘ -- with even framing to give w4, odd framing
to give ﬁ4. Similarly H% = Dfx D2 is added to EB as a 2-handle along
Dfx S1 with framing determined by that of Hf.

To conclude the proof of Theorem 2.1, we must first describe a handle-de-
composition for Eé and EB. The following procedure was introduced by Akbulut

and Kirby (AK1), and described explicitly by Montesinos (Mo). Take

h?= ho— intR' as 0-handle for Hé. Then
k
0 1
Héx -1,11 = Hy U(.U Hy)
i=1

where §=£xhhu,ﬂkhlu4JL As a model for g:wo we take

'
]R3Uw. 1Qx{-1} is taken as «, Qx {1} the origin of R3. 1'I'he 1-handle

Hl is attached to small balls Bi' a(Bi), neighborhoods of points bi ’ a(bi)
on the unit sphere, where a:lg + 13 is the antipodal map. After attaching
all 1-handles, 3(Hé x [=-1,1]) = #kSZx S1 is effectively modelled by removing
the interiors of the disjoint collection {Bi}§=1 U{a(Bi)}';',l , and identify-
ing aBi with a(aBi) by reflection in the plane through O0¢ IP , Pperpendicular

to the line segment bi 'a(bi). (Figure 2a)
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This construction arises as follows: Denote the ball of radius r cen-

tered at Oe¢ R3 by Br' and Sf= aBr. Decompose 33 as B US x [+1, 3]UB

3
where B = s3- intB . This gives s3- a(h x1) = (hox 3T) U (3h0 x1) - the
0-handles of H' x {-1}, H' x {1} are respecnvely B, and B

3 1°
For i= 1,...,k choose a point b € Sf and a 2-d1sc neighborhood D2 of
2

bi such that D nDJ = ¢ if i#3 and Dzﬁ a(D Y=@ i,j=1,...,k. Denoting

the cone through 02 v a(D ) with vertex 0 by C take as attaching tube

1 4
for h x {t} the dxsjoint 2-discs determined by ciﬂsg g Thus the 1-~handle
1

Hi of Hé x (-1,1] has attaching tube Ciﬁ( v s7), the disjoint union of
balls Bi and Bi= a(Bi). Consequently rell, 318(1-! UH ) is obtained by
removing the interiors of Bi and B{ and identifying theu boundaries by re-

flection in the hyperplane through 0 perpendicular to bi.a(b.). Note that

k
aa' x {t} 1is given by the induced identification on S§ Y mtc Smooth-
ing this construction gives the handle structure of Hé x [=1 1]
We take (RMH.) x{1} to be a ball heighborhood of 0 e®R  and
3

(Rﬂﬂé) x {-1} to be a ball neighborhood of « in R . Also

D+x {1} C a(Rf\Hé) x {1} can be assumed to be a disk with center on the line
t(s,%%) for €>0, with D _x{-1} equal to the intersection of the cone
through 0 and D, x {1} with a(RnHé) x {~1}.

To identify Hé" {-1} with Hl’ax {1}, begin by adding a 1-handle H:1 by

its ends to (Rnﬂé) x {1}V (RnHé) x {=1} (Figure 2b) -~ the boundary is modified

by removing the interiors of these balls and identifying their boundaries by
radial projection from Oe R3. To identify Hix {-1} with its image in
Hé" {1} we add a 2-handle Hii with attaching sphere (Ci- (R-intR')) x
{-1} Up(ci- (R- intR')) x {I}U).iu Wi for each i=1,...,k, where xi, g

are arcs running over the 1-handle H Framings are determined by the annuli

11°
Aix {-I}Uo(Ai)x {I}Uxix [-1,1]Uuix [-1,1], where Ai is a 2-disc neighbor-
hood of Ci- (R- intR') (Figure 2c). This completes the construction of Eé.

The manifold MB in Theotem 2.1 is obtained from E' by adding the

2-handle Hi along D x s i.e. with attaching sphere a c1rcle running around
H), and along the line t(s %) from Dx {1} to D-x {1} in the model,
and with zero framing (Figure 2d). Note that without loss of generality the

line t(%,%,%) can be assumed to miss the attaching balls Bi . B; .

El') is constructed in exactly the same way: Let h?= h3- intR'. Then
H") = 'f, hz V) h:: -= turning the 2- and 3-handles upside down, we take

i=1
E; = hf . B? h:: , and obtain as above

k k
=0 =1 -1 -2
L U
ED H1U( Hi)UHHU(U 11)

i=1 i=1
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where H) =R x (-1,11 , ﬁl=ﬁlx (-1,1], and ﬁ'J?j identifies E'fo {-1} with
2 1
p(ﬁg)x {1}. The manifold My is obtainedby adding HE along D xS, also
with zero framing, where the disks Dfx {1} have centers on the line
3

t(%,%,% with t<0 in R .
It is clear that W'

5 U W
=My Vg Mpe
spectively from Eé and EB by adding the 2-handles H

where ﬁB and ﬁD ;re obtained re-
" H™' with odd framing,
and ¢:aﬁB - aﬁD is some diffeomorphism.

aMB = aMD is obtained as follows: Construct the mapping torus of o
restricted to a(Hé) = #kslx S’, and perform O-framed surgery on the solid
torus Dix S1. aﬁB is constructed similarly, gut with the Dix.s1 sewn back
with a twist corresponding to the framing of H+. In both cases we have an
open book decomposition with connected binding, which we may take as the circle
o= aDi.

The proof of Theorem 2.1 is completed by noting that, in the terminology
of handle theory (see Rourke and Sanderson (RS)), the attaching spheres of the
2~handles Hf, HE intersect the belt spheres of the 1-handles H:1, §:1 re-
spectively, once geometrically, thus forming complementary handle pairs in each
case, which may be cancelled. In general, if a 2-handle § passes around a
1-handle 4 once geometrically, we may slide any other 2-handle 61, passing
around d, over & and thus off d, as indicated in Figure 3. Note that the
new attaching sphere for Gi becomes the connect-sum of the old one and a copy
of that of § for each slide performed.

Cancellation of complementary 2- and 3-handle pairs is achieved analogously
although by the result of Laudenbach and Poenaru (LP) the attaching spheres of
all 3- and 4-handles in a handle decomposition of a closed 4-manifold are
uniquely determined up to isotopy, and thus the sliding of 3-handles over each
other need not be described explicitly. However, it is of interest to keep
track of the geometric intersection of the attaching spheres of 3-handles, after
sliding, with the belt spheres of 2-handles which remain uncancelled.

It is mainly in this respect that our splitting technique differs from the
following construction of W4, Montesinos' generalization of that givén by

Akbulut and Kirby: Using the same model as before, construct

M x (-1,1) = B Vil 1 U (O ) u

i=t b g F !

where Hi- hfx [-1,1 , H?
are obtained by fattening the attaching tubes of hi.
Laudenbach and Poenaru, the attaching sphere of the 3-handle H?, need not
be drawn in. Add the handles H, , Hj, as before, and identify hx (-1}
with p(h?)x {1} by adding a 3-handle Hzi, i=1,...,k. h?x {-1} is identified
with o(h])x {1} by adding a 4-handle H‘}].
the latter 3- and 4-handles need not be drawn. This gives a complete

= h?x [-1,1]. The attaching tubes of the 2~handles
By the result of

Again, the attaching spheres of
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description of E4; to construct W4, remove int(R'x 81) as before --
equivalent to removing a 3- and 4-handle -- and sew in 82x D2 by turning a
handle decomposition upside down to give 82x D2= HzLJH4. The 2-handle is
again added along Df x S1 without a twist to give W4, with a twist to give
.

This construction takes h?-intR' as O-handle for M3, and R' as
3-handle, which is thus presumed pointwise fixed. So the handle structure in
this construction differs from our construction where we have effectively
introduced a cancelling 1- and 2-handle pair for R'. These require a 2- and
a 3-handle for identification in the mapping torus -- and all four of these
handles are then removed so that Szx D2 can be glued in.

3. DIFFEOMORPHISMS OF T3

In order to investigate Cappell and Shaneson's construction, an explicit
description of T3 is required: The vector space structure on IP defines
Fg as a Lie group, T3 being the homogeneous space arising as the quotient of
EP under the action of its discrete subgroup (22)3. Let n:R}* T denote
the quotient map. Taking the standard orthormal basis for 19 , a network L
of lines is obtained by taking the image of the coordinate axes under (22)3.
Two disjoint networks LB and LD arise by translating L by the vectors
(-5, -5, -%1" and [% % 41" respectively. Let N_ be a neighborhood of
LB' invariant under the action of (22)3, and such that ND= 13 - intNB is
the translate of NB by the vector {1, 1, 1]T.

Then n(NB) = n(ND) is diffeomorphic to #3S1x D2, giving rise to a
genus three Heegard decomposition of T3:

- HoUH = w® u3n') U @R und

where HB= n(NB) ’ HD= n(ND) and we have turned the 0~ and 1-handles of H

upside down to give 2- and 3-handles for T3.

D

A convenient model for T3 is provided by a fundamental domain in R3
for the action of (2Z)3: take the cube 9¢ of edge length two, centered at
the origin of 13 , with faces parallel to the coordinate planes. T3 may be
considered as W with opposite faces identified by reflection in the appro-
priate plane,.

A 1-spine C of HB is provided by u(LB), consisting of a bouquet of

circles, C1 v C2 v C3 disjoint except for the common intersection point

Q= u(-%, -%, -%) which we take as O-spine for HB' The circle Ci is the

image under w of the line through (-%, -%, -%) parallel to the xi—axis, and
oriented accordingly (Figure 4a). Similarly, a 1-spine C= 61 v 52 v 53 for

HD is given by n(LD), where again the circles Ci are disjoint but for their

common intersection point at the dual -spine Q= (%, %, %). Ci is the image
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of the line through (%, %, %) parallel to the x,-axis, but with opposite

orientation to that of Ci'

The model W easily provides the attaching spheres for the 1-~handles of

HD, viewed as 2-handles in T3 attached to HB: denote by hi the 2-handle
of T3 corresponding to the 1-handle hl of HD with core éi- 8. The

attaching sphere of hz is given by isotoping a small unknotted circle, ji'

linking éi once, onto dH_ (Figure 4). Denoting by ey the class in

B
"1(HB) represented by the circle Ci’ the attaching spheres are given by
2 -1 -1 2 -1 -1 2 -1 -1
h1. a, 03 a0 hz. ay @, aa, h3. e, @, a0, -

The family of lines in R3 parallel to the xi-axis gives a fibering of
T3 by circles -- by abuse of notation we shall refer to an isotopy of T3,
which preserves each such fiber setwise, as an isotopy in direction xi. We

shall also denote the 2-dimensional torus in 'I‘3 covered by the plane
3 2
xi =k CR by Txi-k

The choice of Heegard decomposition is motivated by the following observa-

tion: Parameterizing ™ as {(ele" , e1¢w ' elv")= (e, g, V) ¢ oy },  the

involution g of T3 is given by
g: (elen , e1¢n , elw") = eln(9,¢,w)

where a:R;4-R3 is the antipodal map. Hence g(HB)= HD, g(HD)= HB for the

chosen Heegard decomposition. Furthermore, the eight fixed points of g

>

e‘i“ (©,8,¥) s ei“a (0,8.:¥)

(e1m(81785083),

Gi=0 or 1}
= {q=eim(0,0,0) a1=e““'°'°), a2=e1"(0'1'0), a3=e1“(°’°'"’
in(1,1,0 ir(1,0,1 in(0,1,1 in(1,1,1
a4=em( 1.0 a5=e”( D a6=e”( D c‘7=ew( 1)

lie on the Heegard surface SH= H_ N HD which is also preserved by g (see

B
Figure 5). Note that g(Ci)= Ci, and g is orientation preserving on SH'
The restriction of g to SH is an involution, necessarily that shown in Figure
5, i.e. rotation about some axis. Now any diffeomorphism of T3 to itself is

uniquely determined by its action on n1(T3) = 23 , up to isotopy (see e.g.

(Wd)). Thus every such diffeomorphism arises from the linear action on R3 of
a matrix A e GL(3,Z) -- the corresponding diffeomorphism ¢A: '1‘3-va3 is de-
fined by

P (ei“‘e""“”) - iTA(O.4, )

A

and thus satisfies geog,=4d, e g.
DEFINITION. We shall call a diffeomorphism ¢:T3*-T3 symmetric if
(i) gog=geg
(ii) ¢(HB)=HB if ¢ preserves orientation

or ¢(HB)= Hy if ¢ reverses orientation
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(iii) .¢(ei"(t’t’t)) AR T [-%, %] i.e. ¢ preserves the
arc joining Q and § pointwise if ¢ preserves orientation,
or & Tt/ t,t) ittt E) gy [-%, %] if @ reverses

orientation.
To determine whether a given diffeomorphism is symmetric, we need a can-
onical form for matrices in SL(3;Z). Proofs of the following theorems can be
found in the final section:

THEOREM Al. Let X SL(3;z) ; if 1 4is an eigenvalue of X, then X

2 o 0f
is conjugate in GL(3:;2) to ‘j\ b cf. If *1 is not an eigenvalue, then
d e £ o o 11
X 1is conjugate to AI+u¥Y, where Y= Im 0 0} .
n p

COROLLARY A3. Suppose X satisfies fa(x)=0. Then X 1is conjugate to

a matrix of form

o o 17 n
m XA O | mp

Aa=2) - (a=1)
T+nx , 0<A<p

A =
a, AP
n p a-x

We shall refer to such matrices as "Cappell-Shaneson" matrices (CS matrices).

0 0 1
LEMMA 3.1. For each Cappell —— Shaneson matrix A = |m )\ OJ , M>0 ,
n p a=:

A>0, the diffeomorphism ¢A:T3-> ’1‘3 induced by the linear action of A on R3

is isotopic to a symmetric diffeomorphism wA:T3+ T3.

PROOF. It is clear that dA- g(x)=g °¢A(x)v Xe T3. We isotope ¢A by
moving the images of C, C into the respective handlebodies in such a way as
to satisfy (i) at all stages: Hence it suffices to describe the isotopy of C.
Notice that

¢A(C) =n *A(Ly) = n(WOA(LY)), ¢A(C) = w*A(Ly) = 7 (WOA(L,))

providing visual representation for the isotopy in the model W. We proceed in
stages, isotopies of T3 induced by isotopies of R3 commuting with the action
of (22)3 :

(a) Let ‘1;‘::'1‘3-»T3 , te [0,1}] denote the isotopy induced by isotoping

LB (3-¢) units in direction (1, 1, OlT, and LD (%-¢) units in direction
1

-1, - T 54 i - a-: € =t
{-1, -1, 0)° (Figure 6a). .Since A(0, 0, %)= (%, O, 3 }, choose YTy
-- thus the image neAe by (%, % %) = n(’s, ¥, _a_;_x_ + 2—':;-%‘-7) of Q lieson a

fiber through Q in direction x,. The images of (':1 , C, lie on the torus

3
Ti =% ! which is preserved setwise "’t' te(0,1].
1

(b) The image of C3 intersects the torus T)Z( = at one point: carry
out an isotopy of T3 whose support is a small neigll'nborhood of the tori

2



FIBERED KNOTS AND INVOLUTIONS OF HOMOTOPY SPHERES 11

Tz ’ i =k leaving the images of C3, 53 fixed except for in a neighbor-
ho$d of thex: respective intersections with these tori (Figures 6bc). This
isotopy rotates the torus Ti = in direction Xy through a distance
1
(a;x) + 5%3%%% - k) . This returns the arc Q, § to its original position,

henceforth kept fixed for a suitable choice of the isotopy. We parameterize

R O T T LT R R T N A A

1

Then the images after the isotopies (a) and (b) are

G, » 4 %+ms, %+ns)T , &, » (% %+At, %+ pt]T

1 2
C3 >[5 +u, %, %+ f(u)]T, where f is a function with £(0)=0.

(c) 1Isotope the intersection point of the image of 53 with the torus

Ti =% in direction -x3 until it lies on the torus '1‘2 33, keeping the
T
torus Ti =k fixed setwise. Now isotope the image of c3, lying on the torus
1
T: =y into the handlebody HD' in the essentially unique way forced by re-
2

quiring that the support of the isotopy misses the tori Ti = ! T: =) (Figure
1 1

6d).

(d) Leaving the images of C3, E3 pointwise fixed, isotope the images of
51, Cz on the torus Ti1’¥ into the handlebody HD -- again, this isotopy is
essentially unique (Figure 6e).

In order to construct the homotopy 4-spheres using these diffeomorphisms,
a characterization of the isotopy of a neighborhood of the fixed point

q= (0, 0, 0) 1is required: For convenience we shall work in 13 .

MINIMAL STRAIGHTENING

LEMMA 3.2. There is a canonical straightening to the identity for each
diffeomorphism ¢B:T3+ T3, B a_Cappell-Shaneson matrix, in_a neighborhood of

the fixed point (0, 0, 0). This is called minimal straightening.

0 0 1
PROOF. Begin with matrices of the form A = [% by g ] r P>2A21,
n p a-=

We describe the isotopy in three steps.

(1) Ao, 1, 0,17 = [0, A, pIT 1lies in the 15t

quadrant of the x2 3 plane.

The image of the x_-axis divides this plane into two open sets; A{1, 0, 0]

2
lies in the same component as the (-x )y-axis, since det A=l and the image of
the vector [0, O, 1] lies in the half space !& = {x, y, z): x>0}. Carry

out an isotopy given by

A = m=-ms A 0 v detAs = 1+s(A=1) #0 , se [0,1)
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leaving the images of [0, 1, 0]T , [0, O, 1]T fixed an& sending
(1, 0, 03T » [0, 0, -11".

(2) Now isotope the image-of [0, 1, o]T back to its original position,
and simultaneously straighten the image of [0, O, I]T so that it lies along

the +x1-axis. This may be described by

0 0 1
A1t = 0 A=Attt 0 , tel0,1] with determinant 1+ (A=1)(1-t)#0 .
-1 p-pt v-vt
(3) Finally, leaving the xz-axis fixed, rotate the images of {1, O, OJT
and [0, 0, 11T back to their initial positions, described by
r 0 1-r
2
A”r = 0 1 0 , det(A11r) =2r -2r+1 , re {0,1] .
r-1 0 r
0 0 1
We illustrate the procedure for the matrices 1 1 0 , ve Z , in Figure
0 1 \

7.

II. Since an arbitrary Cappell-Shaneson matrix is conjugate to one of this
form, minimal straightening of such a matrix is defined by conjugating the
isotopy at each state.

EXAMPLE. We illustrate in Figure 8 with a representative of the nontrivial

class when a=-5 i.e.,

1 0 1 -1 0 0 0 0 1 -1 (] 0
1 -1 -1} = -5 1 -1 -5 2 0 -6 L
2 -3 -5 1 0 -1 -8 3 -7 -1 0o -1
REMARKS

1. It is important to keep track of the image of [1, 1, !]T during this

isotopy. For the example above, the images are given by
(2, 2s-1, 7s- 6] , (2, 2t+1, 1-4t)° , [2-1, 3-2r, 4r-3]" .

2. There are several choices for A corresponding to a given conjugacy
class of matrices. We may remove this ambiguity by requiring that A>1 be
minimal, and similarly p. In case minimal straightening can be achieved by
one linear matrix isotopy, any conjugation has entries linear in the isotopy
parameter, and no ambiguity can arise.

3. An isotopy of the inverse of matrices of the type above is determined

by taking the inverses of the isotopy giving minimal straightening.



FIBERED KNOTS AND INVOLUTIONS ON HOMOTOPY SPHERES 13

4. CAPPELL AND SHANESON'S HOMOTOPY SPHERES

Extend the straightening of a ball neighborhood of q to a straightening
of a ball neighborhood of Qa, again g-symmetrically. Denote by ZA (re-
spectively EA) the3homotopy 4-sphere constructed by sewing in Szx D2 to the
mapping torus of (T - intV) , under this final diffeomorphism, with framing
0 (respectively framing +1).

THEOREM 4.1. (i) Por each A eSL(3,Z) , det{(A-1)=1, the homotopy

4-gphere 2A (resp. EA) decomposes as the union of two copies of a homology

ball MA (resp. MA). MA (resp. MA) has a handle-decomposition with a

0-handle, k 1-handles and k 2-handles, where Kk is at most 2.

(ii) The homology sphere aMA (resp. aﬁA) is a 2-fold branched cover

of 53, branched over a knot.

(iii) The two copies of MA are glued together by the 2-fold branched

covering transformation gA_gg aMA.

PROCF. (i) To decompose I, (resp. EA) as in Theorem 2.1, take the

symmetric diffeomorphism ¢A =4 in each case, with minimal straightening.

A

This gives HB= HD (resp. HB= HD), and hence we take MA= H (resp.

B
§A= EB). From Theorem 2.1, we may suppose that k is at most three. However,

the 2-handle H23 geometrically cancels the 1-handle H1 The homology type

3 1°
of the pair MA' aMA (resp. MA' aﬁA) is determined by a simple argument

using the Mayer-Vietoris and relative homology segquences.
(ii) The involution g:T3+ T3 induces an orientation reversing diffeo-

morphism G:I, > I, (resp. E:EA* fA) defined by

Glx,t) = (g(X),t)  W(x,t) € 5, -5 xD°

G(a,B) = (-a,B) Y(a,B) € Szx 02

(G defined similarly). Hence G (resp. G) interchanges the two copies of
A (resp. aMA) setwise fixed.

M (resp. ﬁA) leaving M
The fixed point set of G is {(x,t) ¢ D Szx D2: g(x) = x} which by

A

Smith Theory (see, e.g. Bredon (B)) consists of a circle CG'
CG consists of the arcs ajx IC T3x I,1<3<7, Jjoined end to end in
the mapping torus (T3-V) x I/(x,t) ~ (wA(x),t), i.e. ¢
tation of order seven on the set (aj};=1
The involution g:SH* SH expresses

A acts as a permu-

’

SH = #3S1x Sl as a 2-fold branched
cover of Sz, branched over 8 points (Figure 5). Hence the quotient of

(SH xw 51) under gx identity is Szx S’. Surgery along the standard gen-
eratoerf n1(52x Sl) = Z always gives S3, regardless of the framing. Hence

aMA is a 2~fold branched cover of 53, branched over the image 5G= oG(CG),

where pG:QMA* 53 is the quotient map.



14 I. R. Aitchison and J. H. Rubinstein

Since C lies in S x S, - Vx S1 , C lies in an unknotted solid
G H wA 1 G

torus TG C 53. In Figure 9a, we show the relation of TG to the surgery de-

scription of S3 obtained above. This enables us to view CG as a knot K

in S3, using "Kirby Calculus” (K2) to slide T, off the link which gives 53.

G
The construction of aﬁA is exactly the same, except that the relation of

TG to the link description of S3 is as indicated in Figure 9b. Hence slid-
ing TG as in Figure 9a, we obtain the knot K cC S3, differing from K by a

complete twist, due to the twist in TG.

That K 1is a 7-bridge knot may be seen as follows: G preserves each
2

(SH- V) x t ¢ aMA , te [0] and hence éG intersects D2x {t}C D x 815 TG in
seven points.

It is not clear whether MA is in fact contractible -- and if so, whether
the words describing the 2-handle attaching maps give a representation of the
trivial group, trivializable by Andrews-Curtis moves (AC).

However, we observe that

0 -1 1 1 0 0 0 0 1 1 0 0
A = m-X A=l 1 = |1 1 0 m A 0 -1 1 0
A,a,m
m+n-i-p  p+2i-a-1 a+1-) 1 1 1 n p (a=x) 0 -1 1
Hence if there is a symmetric isotopy of the diffeomorphism of '1'3
induced by AA am which is probable, although it would be more difficult
’ ’

to describe =-- then the homology ball resulting from the splitting as in the
Theorem 2.1 would in fact be a Mazur manifold: contractible, with one handle

each of index <2. (Mazur (M)). Writing A as a product of elementary

A,a,m
matrices will probably suffice.
Simpler symmetric isotopies are possible in specific cases. We illustrate

for the rational canonical forms:

0 0 1
Lemma 4.2. For Av =11 1 0o}, vez, there is a symmetric diffeo~
0 1 v

morphism v, isotopic to ¢v = ¢A , such that, taking o = [Ci]c n1(HB)§ Fiv
v

Poay T Oy 0 ¥y T 030, 4 V05 = gy

where wv*:"l(HD) - n'(HD), and the images of the Ci_;_ HD are determined
analoqgously.

PROOF. Observe g (%, % % = (4, 1, S0, 4 (5 % 0) = (0, 1, ¥). Thus
isotoping ¢v(k, %, %) along ¢v[0, 0, —1]T, and ¢v(-5, -%, -%) along
¢v[0, 0, 11T, carries the image of the arc QQ into the cube W, 1linearly.

Let wt:T3+ T3, te [0,1] be the isotopy depicted in Figure 10a. The point
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g=exp in(0, 0, 0) 1is kept fixed at each stage and

v, exp in(x, y, z) = exp in(x, y, z + t(4-¢€)) V(x, y, 2) ¢ Ly
¥, exp im(x', y', z') = exp in(x', y', 2' - t(4-¢)) V&', y', 2') e LD

for some small ¢€> 0.

We parametrize C = (%+ s, ;!l ;5) v a = (%, %+t, %, C = (% %, Y+u).

+1
Then the images g T = (4, 1+s, = ), ¢c 4, 1+t.v—+t),

8,Cy= (u+k, 1, vu+L), and ¢v\vl<‘.1 (e, 1+s, %+ ev}? g, = (e, 1+ ¢,
v+%+t),¢ ¥, 3s(e+u, , ¥+ ve+vu).

The images of C and T under év are depicted in Figure 10b, where we
specifically illustrate for v=8 =-- it will be clear that the choices of

isotopy apply to all v. After the isotopy & , te [0,1], the images of

C and T lie as in Figure 10c. The isotopy corres;onds to w1ndlng ¢ Q)
around the torus Ti - % times in direction A [0, O, -1] so that the
images of 51, 52 af each stage lie on some torus T2 =%’ ke(0, %]1. >0
is .chosen so that ¢v- w,(ﬁ) lies almost on the torus Ti =" Note that

¢v 'w1(6) = (e, 1, %+ ev). The isotopy of C is the imagé under g of that
of C.

Now isotope ¢ 0 Q) , d w (Q) in direction -xz, x2 respectively, so
that they lie on the tor1 T2 =y T2 ,=- -y respectively, simultaneocusly isotop-
27 62 as indicated in Figure 10d. This enables the image of QQ to be
eventually returned pointwise to its original position. However, we first

ing C

isotope the images of C ¢ onto the tori TZ , Ti respectively,

3’73 x, ==k =k

keeping the tori Ti =k setwise fixed at all stgges. (Figure 10e)

Isotope the imaées of Q, Q back to their original positions, keeping the

images of C1, c lying along some fiber in direction x at each stage. The

1 2
images of C and C may now be isotoped into the appropriate handlebodies, as

indicated in Figure 10f -- the images of C3 and 63 are kept on the tori

2 2
szs—!; ’ Tx2=15
It is clear that this procedure may be carried out for arbitrary v eZ.

at all stages.

For v<0, we obtain an isotopy as depicted in Figure 10g. The images of

C1, C2, C., represent the words in "1(HB) given by

3
[Cll = a,
[CZ] = g3,
[C3l u1ag .

wv is the symmetric diffeomorphism which follows by extending the
straightening of a ball neighborhood of g= (0, 0, 0) to a straightening of a
ball neighborhood R of QQ, again g-symmetrically.
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Denote by zv the homotopy 4-sphere constructed from the mapping torus
of ¢V, with minimal straightening and 82x 02 sewn in with O-framing.
Sewing in s2x p? with odd framing gives a homotopy 4-sphere Ev'

THEOREM 4.3. For each veZ, zv is diffeomorphic to S4.

PROOF. The symmetry of wv must first be broken: Returning to Figure
10c, instead of isotoping the image of 63 in direction —xz, carry out an

isotopy in direction +x as indicated in Figures 11a,b for v=0, and

2’
Figures 11¢,d for v# 0. Simultaneously isotope the image of Cys keeping it

on the torus Ti =y so that it feeds into Hy first in direction X,

then +x3. The images of C and C are then fed into the handlebodies. The
image of C in HB is depicted in Figures 1le,f, that of C in HD is shown in
Figures 11g,h. Mapping the latter image of C into HB by g, we obtain a
diagram more easily visualized for the construction of zv. (Figures 12a,b)

REMARK. It is clear that the diffeomorphism of T3 given above is
isotopic to wv' leaving R pointwise fixed at all stages: thus the homo-
topy 4-spheres, constructed by either choice of 1-spine feeding, are diffeo-
morphic.

Using the model of Theorem 2.1, we construct the manifolds MB, MD. The
attaching tubes for 1-handles are balls centered at points on the coordinate
axes -- and we thus use +Hi, -H; to indicate the 3-ball of Hi lying in
xiz_o, xif_o respectively (Figure 14a). Furthermore, we shall maintain the
same name for a 2-handle, even after it has been slid over another 2-handle and
thus has a new attaching sphere. It is also convenient to note that framings
of a 2-dimensional representation of a knot or link are changed if loops of a
component are turned over, as depicted in Figure 13. Prospective framing
changes about to arise in this way shall be placed in brackets next to the loop
crossover point in qguestion. Non zero framings are indicated where necessary
-- in general, we leave inessential framings to the reader for evaluation.

The convention we have used for describing framings of 2-handles is to
take as reference -- O-framing -- the annulus obtained from the attaching
sphere and a push-off parallel in the plane of representation. Hence a framing
annulus for a +1-framed 2-handle twists once clockwise.

Although framings determined by this convention are not invariant under
change of attaching sphere representation, they are convenient to use when
little rearrangement of a diagram is carried out.

In the diagrams we have used for representing the mapping tori of the dif-
feomorphisms ¢A:T3+ T3 , AeSL(3,Z) , det(A-1)=1, 2-handles obtained by fat-
tenning those of T3 are O-framed by the annuli of the latter used for gluing
onto the boundary of the 0- and 1-handles of T3.
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The framings for the 2-handles H%i used in identifying handlebodies in
’1‘3 with their images under ¢A are determined as follows: In the universal
cover R3 of T3, take the standard coordinate axes and push off parallel in
the direction (1, 1, I]T, to obtain three infinite strips intersecting
transversely in an arc along a ray through the origin. Linearity of the map
A:R?-»I? ensures that the images of the boundary components of any one of
these strips are parallel. Projecting to T3, the strips become annuli which
have parallel boundary components in the model we have used -- and we have
taken care in subsequent descriptions of isotopies to maintain this property

—- thus determining O-framing for H:i.

STRUCTURE OF MD' (i) v=0. The diagram is shown in Figure 14a after minimal

straightening and the addition of all handles in

=0 =1 =1 =1 =1 =2 =2 =2 =2
- U U .
Mp = HU U H) UHy UH Ul UHy, Yl VE
Framings for all 2-handles are zero. Slide ﬁfl' ﬁiz, 533 of f ﬁ:l using ﬁi

-- equivalent to band-connect-summing with 6 pushed off copies of the attaching
sphere of ﬁf (Figure 14b). The loops of attaching spheres protruding from

the ball at « to which 511 is attached pull through to give Figure 14c.
to obtain Figure 14d4. In Figure 14e,

Now cancel ﬁi and &' has been

=2
1 -2 5321
and the loop of H22 protruding from -Hz rearranged.

slid over at +H

H
1 17’
Pull the loop of ﬁ3 at +ﬁ; around this 1-handle and off -- Figure 14f. Can-

celling i with H and pulling the loop of 532

1 1’

Figure 14g, where the loop of §23 at +ﬁ; is about to slide through. This

gives Figure 14h, where ﬁ; and ﬁ33 cancel to give Figure 14i. Cancelling the

last complementary handle pair gives MD diffeomorphic to B4.

(ii) for v# 0, the procedure is much the same -- illustrated in Figure

through ﬁ; gives

15a fox v>0, Figure 15b for v<0, to verify that geometric linking does
not prevent any of the loops from sliding around the appropriate 1-handles.
Thus for all cases, we obtain MD = 34.

STRUCTURE OF MB. Again, a consistent procedure gives MB diffeomorphic to

2
22
Sliding this

B4 in all cases, with minimal straightening. After sliding. each of H$1, H

2 1 : 2 : 1
and H33 off H , there is a loop of 322 protruding from +H2.

around Hz and off allows Hf1 and Hl to cancel -- after which H§3 cancels
1

2
H1, and finally H22 cancels H3.

for the cases v<0,v=0, v>0 respectively.

Hence Zv is diffeomorphic to B4L’B4, which is necessarily S4 -— two

The procedure begins with Figures 16a,b,c

balls in dimension four are glued together in an essentially unique way.

From Table 1 we know there are many homotopy 4-spheres in the construction,
with minimal straightening, which correspond to classes of matrices not repre-
sented by the rational form (see Appendix). However, we conjecture that all

such are actually diffeomorphic to 54. As evidence for this we prove
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THEOREM 4.4. 84 may be constructed by Cappell and Shaneson's procedure
1 0 1

using minimal straightening of the matrix A = 1 -1 -1 representing

the non-trivial ideal class in C(z[e_sl).

PROOF. The reason for this choice of representative is the following:

2 -1 -3 -1 =5
3 represent the words a,0,05, a, oy and a,q, 05
respectively, with respect to the base point éA(Q) in n1(T) = # . Using

The images of Cl, C2, C

the abelian group structure, we isotope ¢ so that the new images represent

2 -1 -3 -1-3 -2 B
the words a1a3u2 , a2 a3 , “2 a3 u1a3 in n1(HB). Henc$ when ;e construct
MB’ H11 slides off H11, and then off H1, leaving H1 and H33 as a com-

plementary pair. Cancelling these, the diagram is easily recognized as B4 -

. 4
hence we may expect M to give B also.

For convenience, gake Q=1n(0, 0, 0), and Q=u(1, 1, 1). As before, we
isotope so that QQ 1is preserved -- the isotopy achieving this, and giving the
desired images for Cy c, and C3 is shown in Figures 17a,b. Thus with mini-
mal straightening, Figure 17b is obtained.

REMARK. As the dual spine T has been omitted from the diagrams, it must
be verified that Figure 17b actually corresponds to a diffeomorphism that pre-

serves the handlebodies. By fattening up the images of Cl' 02 and C we

’
may view the image as a genus 3-handlebody. Since diffeomorphisms of33uch are
generated by sliding and twisting handles, we proceed to slide these around,
until we obtain an obvious image of HB under some diffeomorphism. By staying
inside HB, while doing this, the image of the dual spine is fgrced into HD,
verifying that Figure 17b corresponds to a diffeomorphism of T~ that preserves
the splitting.

The diagram for MB is given in gigure 17¢c, after zliding 2—Handles off
and cancelling the latter with H_ . The loop of H

LA

leaving H: and H§3 complementary handles, which

H11 protruding from

+H} pulls off around H:,

we cancel. Sliding Hz off H

22 27 we obtainthat complementary
handles

H$1 and H; may be cancelled. That the remaining diagram represents
B4 is clear.
We leave to the reader the determination of the structure of MD!

THEOREM 4.5. For each veZ, ZV decomposes as the union of two copies

of Mazur manifold ﬁv' glued together by an involution G of aﬁv, repre-

senting 3ﬁv as a 2-fold branched cover of s3.

PROOF. Using the symmetric splitting wv of Lemma 4.2, the diagram for

ﬁvs ﬁB is shown in Figure 18a, where we have added Hi with framing +1, and
1

used this to slide other 2-handles off H11 -- thus introducing a full +1

twist in the 6 strands as shown.
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: 2 1 2 . 2 1 :
Now slide H33 off Hl using H11, and then slide H33 off H3 using

ng, to obtain Figure 18b, as Heegard diagram for ﬁv. Framings may be cal-
culated using the Kirby Calculus (K2).

REMARKS. 1. If G extends over intﬁv , then Ev is diffeomorphic to
S4. On the other hand, non-existence of an extension gives a counter-example
to the smooth s-cobordism theorem in dimension 5 -~ c.f. Akbulut and Kirby's
remarks in Kirby (K1).

2. We show in a subsequent chapter that 52, E6 double :over manifolds
known to be exotic; hence there is some chance they are not S . Certainly our
splitting method has not succeeded for them.

Using the non-symmetric diffeomorphism of T3, as in Figures 11, 12, we
again obtain Ev as the union of two (possibly distinct) Mazur ?anifolds ﬁB'
ﬁD' This enables us to describe aﬁB = aﬁD as obtained from S~ by surgery

on a knot: we illustrate for the case v=0.

A slice of 52x {0} C 52x D2 may be obtained by keeping sight of a
meridian of the attaching tube of Hf in the decomposition of Ev given in
Theorem 4.3 -- we obtain a knot in 53, after following the procedure indica-
ted in Figure 19 (suppressing the "framing" attached to the meridian).

Ev arises by removing Szx D2 from S4, and replacing with a twist; the
diagrams for ﬁB' ﬁD differ from M,, M) in that Hi, HE are added with
framing +1 (after inverting the diagram for MD). However, if we connect sum
ﬁB with ¢Pz, we do not change the boundary -- and choosing -1 intersection
form gives a new 4-manifold whose diagram is given in Figure 19b after sliding
Hf over the -1-framed 2-handle of ¢P2 (Figure 1%a). We can now slide and
cancel exactly as in obtaining a slice of Szx D2 in S4 -- thus it is clear that
3ﬁB = aﬁD is obtained from S° by surgery on the slice of s« p? (Figure
19¢). Furthermore, this implies that the procedure, carried out on aﬁD, gives
exactly the same knot (being the slice of 52x {0}) and thus cannot furnish
further examples of inequivalent knots producing the same 3-manifold, as in
Lickorish (L1). However, the ribbons naturally obtained may differ -- see (AK1)
in this regard.

Returning to the symmetric splitting, it is not too hard to obtain an ex-

plicit picture of aﬁv as an open book decomposition: we note that

v
o 0 1 1 0o o}fo 1 o0} f[o 1 o
1 1 o) =1]o 1 o 10 1 0 o0 1 = a'BD
0 1 v 10 1 1 0o ol b o o

It is not difficult to see that ¢A, ¢B' ¢D:T3+ T3 can be isotoped to sym-
metric diffeomorphisms -- allowing explicit calculation, by iteration, of the
handle structure and position of C in the mapping torus of vv , from

G
which aﬁv arises. 3ty
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CONJECTURE (Gluck). If we remove a neighborhood of a knotted 2-sphere

K in 54, and glue back in by the diffeomorphism of 82x S1 corresponding to

4

the non-trivial element of n1(SO(3)) =% then the resulting manifold X

2 ’
is diffeomorphic to S4.

The manifolds Ev , VE Z arise in this way: P. Melvin remarks in Kirby
(k1) that x* = s* e @*#e?, kieph) 2 (w?, oh), patrwise.

THEOREM 4.6. Let X4 be obtained from S4 by removing Szx D2 and sew-

ing in by a twist. Then x4#¢92 is diffeomorphic to ¢P2.

PROOF. Let NZ Szx 02 be a neighborhood of the knot KC:S4. Then

S4= Y4(J H2 v H4, where Y4= S4- intN, and H2 is a O-framed 2-handle.

4 02 20 4 4 2
Thus X #CP° can be viewed as the union of C€P - intB and Y UH1 ,
the 2-handle now has framing 1. There exists a O-framed 2-handle ﬁg in

x4#¢P2- intY4 with the same attaching sphere as H? in 3Y4. Adding this

where

2-handle to Y4 gives S4- intB4 =B4.

On the other hand, if Y4 is replaced by B3x S1 = hokJH1,

B3x SIUHf U(cpz— intB4) = HOUI-I'UHfU((tPZ- inth)
= 134 U{¢P2- int B4}
= mpz .

There is a diffeomorphism between X4#¢P2 and ¢P2, defined as follows:

4 =2 . _4
Y U HO =B
- 2 . L=
X4#¢P2 - int{Y4LJH§} = (CP" - 1ntB4) v Hf— 1ntH§
= (¢P2—intB4) U HfUB3x s1- int(B3x s‘uﬁg)
2 . 4
= P -1ntB0
where 84 = HZL)SIx B3 .
0 0
. 4 2 4 . 2 . 4 . . R .
We thus obtain X #CP - intB = CP - intB which gives the diffeomorphism

0 ’
desired.

CONCLUDING REMARKS. Suppose 24 is a homotopy 4-sphere with an open book

decomposition with 82 binding.
1. 1Is there a Heegard decomposition of the page and an isotopy of the

monodromy o so that 24 is split into E_UE_, with EB' E homology

B D D

balls -- or more preferable, contractible?

In the latter case, can one also obtain EB, E with fundamental group

D

presentation trivializable by Andrews-Curtis moves, so that EB v id EB =
~ 4
E = ?
p Yia Bp = 8
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2. Which 3-manifolds M3 have Heegard decompositions HBlJHD such that
the homeotopy group .x’(M3) contains a central element interchanging H.B and
HD? (In analyzing Cappell and Shaneson's constructions we use such an element
in J%(Slx Slx Sl)). Products of Sl and a surface certainly do -- and perhaps

some other Seifert fibre spaces.

5. INVOLUTIONS ON HOMOTOPY 4-SPHERES

We consider several constructions of closed non-orientable smooth 4-mani-
folds homotopy equivalent to RP4, real projective 4-space. Wall (Wa) has
shown there are two smooth s-cobordism classes of such manifolds, the first
example of a representative for the non-trivial class having been constructed

by Cappell and Shaneson (CS2).

CONSTRUCTION 1: The decomposition S4= sz SZU S‘x B3 induces a decompo-
sition RP4= DZY RszJS1§ B3. We remove Sli B3 and glue in its place
'.I.‘3 X Sl, where A:R3-r R3 has det(A)=-1 and det (Az- I)=1, and the dif-

0 ¢
feomo%phism dA:T3* T3 has been isotoped to the antipodal map in a neighbor-

hood R' of the fixed point g. The resulting 4-manifold represents the
non-trivial s-cobordism class of homotopy real projective spaces.

CONSTRUCTION 2: The decomposition S4= B4 LJa B4, where a is the anti-

podal map on S3, yields the decomposition RP4= B4lJN(RP3), where N(RP3)

is the twisted line bundle over RP3. Suppose now that N3 is a 2Z-homology
3-sphere with free involution 1, and that M3= aw4 where w4U‘r w4 is a
homotopy 4-sphere ET. Then 21 has free involution with gquotient Q4, whose
s-cobordism class is determined via

THEOREM (Fintushel-Stern (FS)): Let T be a free involution on the homo-

topy 4-sphere ZT which desuspends to an involution T on a Z-homology 3-sphere
M3. Then there is an almost framing % for M3/1 such that

p(T) = u( /T + 5 oM, 1) 21 @oA16) if I /T is s-cobordant to

4 —
a3 , ,

and o(T) = u(M /1) + % a(M , 1) = %9 (modi6) if ZT/T is s-cobordant to

an exotic homotopy projective space. Hence in this case ET/T is exotic.

Here a(M3,t) is the Browder-Livesay invariant for the free involution
t. For dectails, see Lopez de Medrano (LM). As stated, this theorem is not as
it appears in (FS), but the details may be filled in easily by the reader,
bearing in mind that Yoshida (Y) has shown that a(M3,t) = u(M3)(mod 16) ,
Fintushel and Stern show that the Brieskorn sphere :(3,5,19) bounds a con-
tractible manifold built with a single 1- and 2-handle, and has a free involu-
tion which is part of a circle action. It follows that there is an exotic in-
volution on S4.

We shall show that Cappell and Shaneson's construction is a special case

of this construction:
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THEOREM 5.1. The Cappell-Shaneson involutuions on homotopy 4-spheres de-

suspend to involutions on Z-homology 3-spheres. Hence the exotic nature of the

quotient is detected by the Fintushel-Stern invariant op.

PROOF. We continue with previously established notation.

(a) Algebraic preliminaries: If A GL(3;Z) has det(A)=-1 and

det(Az- I)=1, then A has characteristic polynomial either ho(x)= x3— x+1
or h'(x)= x3- 2x2- x+1. A2 then has characteristic polynomial fz(x) or
fs(x) resp;ctively. Conversely, if B has characteristic polynomial fz(x),
then ho(-B +B)=0, and if B has characteristic polynomial fS(X)' then
h1(Bz- 5B+ 2I) = 0. It follows that there is a unique conjugacy class in
GL(3;2) for matrices with characteristic polynomials ho(x) and h1(x). Thus

LEMMA 5.2. Any matrix A as_above is conjugate_in GL(3;2) to one of

0 -1 0 0 -1 0
By= |0 0 - o B =0 0 -1
-1 -1 0 -1 -1 2

Hence there are only two mapping tori to consider, and we use the tech-
niques of the previous section to describe a canonical isotopy to a symmetric
diffeomorphism in each case. Isotopy of the 1-spine is illustrated in Figure
20. To straighten to the antipodal map in a neighborhood of the fixed point,
Observe that the matrices DO= (-Bo) and Dl= (-81)_, have characteristic
polynomials fo(x) and f_1(x) respectively, and thus we may use minimal
straightening as defined previously. Carrying this out we obtain the symmetric
diffeomorphism illustrated in Figure 21. Let ¢ij denote the diffeomorphism

which differs from this by j complete twists about the fixed point, and denote
by Mij the corresponding mapping tori, Mij= Tg x¢ SI. Here i=0,1 and
je 2. 1
2 . 2 21
To glue Mij to RP” X D7, we note that the boundary S XS has group
of diffeomorphisms, modulo those isotopic to the identity, given by z2 ® 22.

. : 2 X .
Let denote the diffeomorphism which rotates the S~ factor k times in

"
going around S‘, and let

Qi.kSTgx¢ s' U Re® % D% .
J ij Px

Then the twisting in the gluing map and in the mapping torus may be absorbed
together and reduced mod 2, leaving us with 4 possibilities 'Qij' i,j=o0,1,
with Qij H Qijo'

The double cover Qi‘ of Qi' has corresponding decomposition
~ 3 1

2 1 . . . . 2

- U -

Qij T0 x ?' ] P S x 8'., The spine-feeding and straightening for ¢1j
1]

are illustrated in Figure 22 in the case j=0, obtained by iterating the
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diffeomorphism ¢ij' This differs from minimal straightening by a full twist,

and we see that on - 22 and 513 = EG' Hence we have proved.

THEOREM 5.3: Let 04 be a homotopy projective space arising from Cappell

and Shaneson's construction. Then the double cover 5‘ is obtained from S4

by the Gluck construction on a knot. Moreover, 6‘- 32 or fs in the nota-

tion of Section 4.

NOTE: The twist corresponding to j=1 1lifts to two full twists in the
boundary of Szx D2 and thus gives a gluing map which extends over Szx Dz.
Thus Qio = Qi1 , i=0,1. )

Since ¢ij is symmetric, so is ¢ij' and thus we have a decomposition

for Q.. as in the previous section: §.. =W, . UW,.. Here W,. is a con-
ij 1] ij 1] 1]
tractible 4-manifold, and the gluing map is the restriction to Nij = awij of
the involution G:Q.. » Q.. defined by
ij ij
3 1
G(x,t) = (g9(x).,t) (x,£) ¢ Tyx, S
¢ij
= (~x,t) (x,t) ¢ 8% xD?.

G has a circle CG of fixed points in Nij' and the restriction of G to

Nij represents Nij as a 2-fold cover of S3 branched over the image éG of
C..
G

Furthermore, the decomposition described is also preserved under the cover-

ing transformation H:Eij > aij , which is defined by

3
H(x,t) = (¢ij(x),-t)) (x,t) e T0 x¢ij s
= (=X,-t) (x,t) ¢ s? x p? .

Hence we may equally well describe aij as the union of two copies of W..

i5° Hence Q. =W, JLJ N(N /H)

where N(Nij/H) is a twisted line bundle over Nij/ﬂ, and the proof of the

glued together by the restriction of H to N

theorem is complete.

We now observe that the involutions G,H in fact commute, and thus we
have a third involution GH. This has fixed point set SGH= Szx {0} C Szx Dz,

which is the binding of the open book decomposition of aij' We thus have
further counterexamples to the higher dimensional Smith Conjecture. The quo-
tient of 5.. by GH is Tg x ¢ S,Llszx Dz, and since g¢ is a symmetric
dlffeomorphlsm isotopic to ¢ zlth minimal straightening when =0, and a
full twist when j=1, we see tﬁat Q /GH- 84 when 3j=0, and Qij/GH = Ei
when Jj=1. Consider the case j=0. As remarked the commuting involutions G,H

and GH all preserve CG’ cGH and SGH, and choosing any one involution,



24 I. R. Aitchison and J. H. Rubinstein

the remaining two pass to the quotient to define the same induced involution:

we obtain .
4 ~ 4 . : .
(i) Ho- GO'S = Qio/GH+ S . The fixed point set is @G- CG/GH, and thus
the quotient is not a manifold. However, restricting G0 to Nio= Nio/GH'
we see N;o as a 2-fold cover of S3 with branch set eG. Hence NiO is a
4-fold cover of 53 with branch set C_ucC__.
G GH 2

(ii) H1= (GH)1:Qio/Ge~Qi0/G§ with fixed po1gt set SGH/G= RP”. Re- ,
stricting to Nio/G (which is S7), we obtain S as a 2-fold cover of S
. = _ . . 3
with branch set CGH- CGH/G' Thus CGH is unknotted in §S7.
(iii) G2= (GH)zzoio* Qio' with fixed p01n§ set SGH/HlJCG/H. This ex-
Presses NiO/H as a 2-fold branched cover of S with branch set the link

CG/HlJCGH/H.

For the case Qi1' the only difference is that 611/GH = E-i rather than

As the smooth Poincare conjecture remains unresolved, it is possible that

Q..
1]
then have a counterexample to Gluck's conjecture, the smooth s-cobordism

is an example of a non-standard differential structure on S4. We would

theorem in dimension 4 (by removing two disjoint 4-balls in Qij to obtain a
homotopy S3x 11), and also the smooth 5-dimensional relative s-cobordism
theorem -- cf. Kirby (K!). To determine which of these alternatives holds, it
would be fruitful to investigate the extension problem: do either of the in-
volutions G or H, restricted to Nij' ex:end to a diffeomorphism of wik?
Since the double of any Mazur manifold is S -- we offer an alternative proof
of this later -- an affirmative answer would give 6ij diffeomorphic to S4.

We remark that Matumoto and Siebenmann (MS) have shown that the TOP s-bo-
bordism theorem fails in at least one of dimensions 4 or 5.

Identification of Nij would be useful in resolving this question: our
investigations offer several alternative descriptions.

(ii a surgery description on a 2-component link in S3, one of whose
components is unknotted and O-framed.

(ii) an open book decomposition, obtainable by constructing the mapping
torus of ¢ij restricted to aHB = aHDt:TB, as in the grevious chapter.

(iii) a description as 2-fold branched cover of S~.

(iv) a description as 4-fold branched cover of 83, branched over
oy the image of EGLJEGH: If we branch over EG: EGH separately the
other curve lifts to a connected component. Hence CG' CGH
odd number of times algebraically. Furthermore, C_  and eGH are unknotted,

GH

and EG is a bridge knot -- in fact, EG, 6GH have linking number *7.

We remark that given such a link, we can always construct a diagram as in

& Ua
CG C

link each other an

Figure 23: Since H1(S3— GGLJG ) = Z xZ, we can take the 4-fold cover

GH
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corresponding to the epimorphism n1(s3— eG\JGGH) - zz x '2 « This 4-fold
cover has covering transformation group [ generated by two commuting involu-
tions. Two of the involutions in I have a circle of fixed points, and the
third is free.

In view of the structure obtained for Qik -- the union of a Mazur mani-
fold and the mapping cylinder of a free involution on its boundary -- it is of
interest whether RP4 can be similarly decomposed. To resolve this we pre-
sent a new proof of the well known .

4 4

LEMMA 5.4. Let M4 be a Mazur manifold. Then M Uid M Es.

PROOF. M4 has a handle decomposition

M4=H0U H’UH

where H2 is attached to Szx S1 = 3(H0+'H1) along a solid torus Cx D2 with

2

C a knotted circle homotopic to the generator of "1(S1x Sz). The complement
of Cx D2 in S3= aH2 is another unknotted solid torus sz Sl. Thus gluing
the two copies of M4 together by the identity, we obtain a homotopy 4-sphere
24 with handle decomposition

4 0

: =H UV H 4

1 2 2 3

U  URS UE U ¢

The involution 0:24 -+ 24, which interchanges the two copies of M4, also in-
terchanges the two 2-handles H2 and ﬁz. Hence these 4-balls H2 and ﬁz are

glued together in 24 by identifying the solid tori complementary in their

boundaries to the attaching tubes which glue them onto HUH1 , H3UH4 re-

spectively -- Hzt)ﬁz thus gives 82x Dz. Remove SZX D2 from 24, and replace

1.3

1, .3
with 57X B” — theresult being §7X S” as this procedure effectively collapses the

boundaries of HOL)H1 , H3L)H4 onto each other. As s1x B3 unknots in

slx S3, the complement is again Slx B3. Now remove S‘x B3 and replace with

the original Szx D2, to obtain

4

s 1 3 4 1

(wlur'urdurtus'«sd) - s
1 2

'x 83) U HzUﬁz

2

n

Vi
4

xB3) UH

s' xBPus?xp? = s

(S‘x 53 -8

n

by Laudenbach and Poenaru.

THEOREM 5.5. There are infinitely many distinct Mazur manifolds which

are characteristic submanifolds for the antipodal map a:S4+ 34.

PROOF. Let C be an arbitrary embedded circle in SIx S2, homotopic to

the generator of n1(Slx Sz). Slx 82 is the quotient of S1x S2 under the
covering projection p:S1x 32 + S1x 32 defined by the covering transformation
glx,y) = (a(x),y) ¥(x,y) €8s x s

where a:s1» 51 is the antipodal map.
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Thus 9-1 (C) has one component c, homotopic to the generator of
m (S.I x Sz). We illustrate in Figure 24 with C given by Mazur's original ex-

ample (Mazur (M)).

Let M4 be the Mazur manifold obtained by adding a 2-handle HZ to

s'x 8 with attaching circle C. M is thus obtained by doing (1,n) sur-

gery on the solid torus Cx p% cs'x 32, where n is the framing of 2.
Take C'C3(Cx Dz) a framing curve for Hz. In order to extend

g:82x51 - (-:xD2->Ssz.I - (’.’xD2

to a free involution g: aM4 - 3M4, we require neZ for Hz to be odd,

since g(C')Nn C' = ¢ iff C' 1is the lift of a curve in 23(Cx Dz), which

must be a (2,n) curve. The extension to 52 is then uniquely determined.
Now take two copies of M‘, M: = 1%v HIUHz, M; - R2urdu 1714, where we

have turned the handle decomposition of M, upside down. Gluing these to-

2
gether by § on the boundary, we obtain S'l -- since the diffeomorphism g

may be extended to

P':Mq-“t'/l4
by putting
P(x,y) = (a(x),y) ¥(x,y) € 51 xB3 = HOUH’
P(a,8) = (a,a(B}) ¥(a,8) ¢ D°xD° = H .

There is thus a free involution on

4 0 1 2

S = H UH UH°UR 3

2yadui?

4
determined by Po = ¢P where o interchanges M1' and M; as in Lemma 5.4. As

P preserves the handle decomposition of M4, Po preserves HZU ﬁz = 52x Dz,
and restricts to
2 1 2 2
(x,y) + (a{x),a(y)) (x,y) e 8 xS = 3(8° x D7) .

As in lLemma 5.4, we remove Szx 02 and replace by B3x 81, extending the in-

volution on a(szx Dz) in the obvious manner to obtain a free involution x

on S3x S1.

Thus B3x S1/x = B33_<_ 51 C S3 x S‘/x = S3,>_<,S1 .

1

Again as in Lemma 5.4 we may remove 835 S from 835 S1 by isotopic unknot-
ting to obtain 335 s = (aouu'u & Fl4)/x = (HOU a'u U R “)/po,

Hence s4/Pa = B3 x 51 V] RP2 x 02

s mret .
COROLLARY 5.6. Let M3 be the homology RP3 obtained by (2,n) surgery

on an arbitrary embedded circle C C 52x S', with C homotopic to the gener-

ator of Ty (Slxsz) and n odd. _Then M3 embeds one-sidedly in RP4.
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This follows immediately, since M3 is the quotient of M4 by oP ==
hence RP4 is the union of M4 and N(M3).

If we double #ks1x D2, we obtain #ks1x 82 with orientation reversing
involution T interchangingthe handlebodiesand restrictingto theidentity onthe

2 is a diffeomorphism

boundaryof each. Supposenow that ¢: # slx p? » # slx p

which is the identity in a neighborhood of a fixed point q € 3(# six p? ).
Then there is an induced diffeomorphism, also denoted ¢, on #ks'x S2

by doing ¢ on each handlebody, which restricts to the identity in a neighbor-~

hood R of the fixed point . Forming the mapping torus of dz and surger-

ing Rx s! we obtain a manifold M¢2 with involution T, defined as follows:

1

1 2
T(x,Yy) (t8(x),-y)), (x,¥) € (#ks x S )o %42 s

(r(x),-y)) , (x,¥) = 32 x D2

where r is reflection of S2 in the equator. There is thus a circle of
fixed points. If M is a homotopy sphere we obtain examples of homotopy
RP2 X Dz's.

On the other hand, doing the Gluck construction on the knotted 2-sphere
will give a 4-manifold with involution which is now free. This corresponds to
replacing ¢ in the above -construction of M by the diffeomorphism @ which
differs from @ by a rotation of = in a neighborhood of the fixed point q.
Hence if MB is a homotopy sphere we obtain some more potentially exotic
homotopy RP4 's.

However, we can readily see that the quotient is s-cobordant to RP4 as
follows:

Thicken the construction of the mapping torus by taking the product with
I to obtain a homology circle. Let R n&s x S1 = D. By adding a 2-handle

Bzx B3 along (S x D) x I we obtain a homotopy 5-ball with involution

T(x,y,2) = (#(x),-y,-z)) on the mapping torus
= (-X,~y,~2Z) on the 2-handle .

Flipping the I-factor...z+ -z...corresponds on the boundary to interchanging
the handlebodies of #kszx S‘, i.e. T. Hence we obtain the required extension
over a homotopy 5-ball, which clearly has a unique fixed point (0,0) in the
2-handle, and about which it is the antipodal map.

Removing an open neighborhood of (0,0) and taking the quotient we obtain
the desired s-cobordism to RP4.

Clearly there are many possible choices for the diffeomorphism &, but we
have not determined which gives the standard RP4 as quotient. The construct-
ion works because the involution 1t and # commute. If we take some other com-

muting involution 1t', then M3 = #kslx 02 LQ, #k(s1x D2 gives a 3-manifold
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with involution, and the above construction goes through. The Cappell and
Shaneson examples are exactly of this kind, and it is clear that the techniques
of the previous sections enable us to determine whether or not the quotients

are s-cobordant to RP‘.

6. THE GENERAL CONSTRUCTION

Let x4 be a nonorientable 4-manifold, with embedded circle C repre-
senting an orientation-reversing element of order two in n1(x4). Denote by
%' the orientable double cover of X4, p:)?4 + %' the projection, and
0:24 »> X4 the covering transformation which restricts to the antipodal map on
the circle C=p ' (C).

1. There is a tubular neighborhood N(C) of € invariant under o, and
on which the restriction of ¢ is given by

olx,y) = (ax),uly)) Wy €8 x B 2 NE

. . . . 2 . .
where u:B3+ B3 is orientation reversing, u =1, and a is the antipodal

~ ol

map. Thus S1x B3/o 5 X B3. Since the diffeomorphism type of a bundle over
S1 depends only on the isotopy class of the monodromy, we may replace u by
the more convenient orientation-reversing involution a on B3, which is iso-
topic to u. Hence without loss of generality we may assume that c!:§4-b ?4
restricts to

3

[}

olx,y) = (a(x),a(u)) W(xy) eS xB N(©)

2. There is an unknotted embedded solid torus TCp(aN(C)) = s? x S‘,
whose core is a circle C' such that [C'] = [C]2 € n])x4). Thus p_1(C')
has two components E; , Ei C aN(C), with Ci bounding a disc D in g -
intN(C) which by Norman's argument (No) may be assumed to be locally flatly

embedded. A neighborhood of D in % intN(C) is a 4-ball Hi which may be
considered as a 2-handle attached to N(C), along the component of p-1(T)
containing C!, with framing some integer m. This gives

¥ - (Hi v N(S)) - gt

n

2

since adding a 2-handle along S‘x {x}C S1x S 3(S1x B3) always gives B4,

regardless of the framing.

4 4 . ~ , 4 .
3. Let Xik = (X intN(C)) Upo Mik (X int N(C) Upn Mik+n .
4. X:k is obtained from 24 by removing ﬁ(E) and gluing in
Mik = (T" - R') x¢2 S1 by the identity on the boundary Szx 51. Hence
ik
4 ~4 2 oo~ 2~
Xik = X - (H+U N(C)) Uid (H+ UMik)
~4 4 2y~
= - U V) .
X =B Fia T M)
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THEOREM 6.1. If m is even, i:kzz"c‘#ﬁik for i=0,1 and k=0,1.
!

If m is odd X, = §4, where m is the framing of the 2-handle.

ik
PROOF. 1. We first observe that ﬁik differs from M, . by 2k twists
_— ’
in the boundary 9R'x S1 = Szx S’. Again because "1(50(3)) B Zz , it is the
. . 2 1
case that the group of orientation-preserving diffeomorphisms from S x S to
. - s . =4 . =4
itself, modulo isotopy, is z2 x z2 (see (G)). Hence xik Xi,o'

2. From the previous chapter, there are two possibilities for
2 2 4 :

M,  us‘xbp“;s or Q..
1,0 2 2 9 o ~ 2

Adding S8"x D" = HUH to MiO with H  attached by odd framing gives
54 -- whereas even framing gives Q. by Theorem 5.3. Thus

io0

()”(4-134) Uiy (s4—34) if m is odd

~4 4 ~ 4 .
(X =B) Lgd (Qio_ B') if m is even

completing the proof.

If C' bounds a locally flat embedded disc Dz, p-1(D2) consists of dis-

joint discs 5?, 52 in ?4, which may be taken as the cores of 2-handles

Hf, HE attached ti N(C) along C;, Eé -- with Hi having framing m e Z
as before. Hence N(C)U Hik) H® is diffeomorphic with s2x p%, since HE
is attached with framing -m. We may assume that Hi, HE are interchanged by
the covering transformation of §4, thus projecting to a 2-handle Hz attached
to N(C) with core D2. The "framing" for HZ is only defined mod2 , and is
given partly by m.

There is a locally flat embedded IPZ in x4 -~ the union of 02 and a

Mobius band M2 in N(C) bounded by C'. Now there are only two non-orientable

S1-bundles over I@z - S1x I&z and 525 SI; in fact removing on S1

bundle over Dz, i.e. a solid torus, S1x Dz, leaves an S1 bundle over Mz,

with boundary S1x S'. This latter bundle is obtained by identifying the ends

of S1x IxI, i.e. 81x Ix{~1} with S1x Ix {1}, by some orientation-revers-

ing diffeomorphism of S’x I, and is thus a twisted line bundle over a torus
T (as the boundary is connected). If a,b are generators of n1(T), then

ﬁ1(8(S1x DZ)) can be assumed to have generators a,bz. The boundary of the

2

meridian disk of S'x D" must be of the form bzam, since a is the homotopy

class of the fiber. Therefore for the bundle, "= Z x Zy with generators

m/2 ba(m-1)/2

a,ba if m is even, 1 if m is odd. Note

1
that to obtain 825 S1 = 3N(C), we must take m odd.

We illustrate with the manifold sz x D2= begin with Szx D2, obtained

by adding 2-handles Hf, Hf to S1x B3 along curves C;, Cé in (Slx Bs)
isotopic to the generator S’x {x} of n1(51x Sz). Hf is added with framing

+1, HE with framing -1. We may assume that the attaching tubes of Hi, HE

= Z with generator
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are interchanged by the involution n:S1x BB+ S1x B3

1 3
nix,y) = (=x,-y) ¥i(x,y) € S xB .
: . 2 2 . . 2 2
n extends to an involution of S X D", interchanging H+ and H_ , and
whose quotient is the union of B3,>_<, '51 and a 2-handle H2 attached along the

curve C'c2825 S1 with odd framing (needed to change from m odd initially to

m even). The disc bundle over RP2 so obtained may be identified by reduc-

ing the structure group to the orthogonal group -- equivalently, by identifica-

tion of the boundary, an S1 bundle over E&z. We obtain I@z x 51 in this
case, by taking (szx S1 - cix 02 - Cix Dz)/n = Slx S1x I/n, and gluing on a
solid torus with meridian identified with the curve C' in Figure 25a.

if Hi, HE are each attached with O-framing, extending n in the essen-

tially unique way gives EPZE D2 as quotient -- hence 325 S1 is obtained

by gluing a solid torus onto S’x S‘x I/n with meridian along the curve C"
in Figure 25b.

For an arbitrary such non-orientable 4-manifold X4, it is interesting to

CONJECTURE. The curve C'C'Szﬁ S1C x4 always bounds a locally flat em-

bedded disc in xq_ intN(C) -- equivalently, C 1lies on a locally flat em-

bedded nwz C x4, where [C] gives an orientation-reversing element of order

2 in 7 (X).
= 4 22 2 2
If our conjecture is true, X contains either RP x D° or RP x D
as an embedded submanifold, according to Hz is attached with odd or even

framing. We have thus proved

THEOREM 6.2. 1. If C CRP x p2cx?, then
4 4 2 2 2. .2 7 R
X, = (X - R xDp)u, (R xD), and X X .
2. 1f ccme? x p’cx’, then
4 4 2 2 2. 2 R
X, = (X -R“x0D%) U, (R“xD"), and X =X40,, .

Akbulut (A1) has shown that the construction on E@Z x D2 gives E@Z x D2

back again. Hence

COROLLARY 6.3. E»CCW2x¥Cﬁ,tMnX;5X{
REMARK. Changing the framing of the 2-handle H2 in X by +1 affects a

change in the framings of the 2-handles HE and Hf in X by +2. We therefore

require a diffeomorphism from X to X which commutes with the covering trans-
formation and achieves this change in framing. The map of STx 82 = aﬁik to

itself, which is two complete rotations of S2 in traversing the 51 factor,
gives tiie result of framing but it is difficult and probably impossible in gen-

eral to extend this to an equivariant diffeomorphism of X.
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2 3

ikLJﬁikL!H ur? s completely determined
By codimension 3 isotopic unknotting, re-

~ 1
The structure of Qio = HOLJH UH

0o .1 2 2
((Mo)) by Ui = H HUHi UHi

k k*
3
moving H UHk = S1x B3 from Qio is eguivalent to removing CGx B™, a tubu-

lar neighborhood of CG. Hence there are three commuting involutions on U

ik
(a homotopy Szx Dz), obtained by restricting each of G,H and HG. The re-
strictions of G and H are free, whereas GH has SGH as a knotted 2-sphere
of fixed points. On CGx B3, the involutions are
G:(x,y) — (x,-y) ¥ (x,y) ¢ S1 x B3 = CG x B3

H: (x,y) — (-%,-y)
GH: (x,y)— (-X,¥) .

~ o2 2
The situation is depicted in Figure 26: UiO/GH =8"xD", UiI/GH =
~ = 1 3
s%x 0’43, T,, = U, /G is a homotopy Re’x 0°, and U, =0, -5 xB =
2 2 - = 2
* i D,
(RP” x D )ik'Uik Uik/Hl = Uik/Gz is a hoTotopy RP™ x
PROBLEM. How are the manifolds , U

o

i Uik ik’ U;k and 32: 02 related? 1In
particular, (i) Is Uik standard? This wou1d4give 6i0 £ 8 i=0,1, and
thus there would be an exotic involution of S (which is known to be possible
(FS)).

(ii) 1Is Gik diffeomorphic with RP2 x Dz? -- in which case we again
obtain 610= S4. If not, we obtain an exotic FPz x Dz, which is not con-
structed by Cappell and Shaneson's methods.

Fukuhara (F) has investigated involutions on homotopy 4-spheres with a
circle of fixed points. His examples arise by gluing together two contractible
4-manifolds by an involution on the boundary, which represents the boundary as
the 2-fold cover of S3 branched over a knot K. Removing the circle of fixed
points gives a free involution on a homotopy Szx Dz, with a natural homotopy
equivalence of the quotient to Fsz D2. Fukuhara shows that an obstruction
to homotoping this homotopy equivalence to a diffeomorphism is given by the
signature of the knot K.

Hence we have obtained many more examples of such involutions, and moreover
on the standard 4-sphere. Fukuhara constructs an exotic homotopy equivalence to
RP2x 02 using the Brieskorn sphere (2,3,13), but does not prove that the
homotopy sphere constructed is S4. This can be shown to be the case using the
link calculus, an exercise we leave to the reader.

The signatures of the knots in our examples are computable, but we have
not carried out the computation. Recall that Rsz D2 does admit exotic
self-homotopy equivalences (see Akbulut's paper in these proceedings).

Cappell and Shaneson's construction may also be applied to 4-manifolds W4
such that “1(W4) contains an element x of order 2, which is orientation-pre-

serving in w4. Let C be an embedded circle such that [C}=x =-- then
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N(C) = s’ x B3, and there is an embedded circle C'C3N(C) = s1x 32 bounding
a Mobius band in N(C), and such that [C']= x2= 1. Remove N(C) and replace
with a punctured 3-torus bundle, the mapping torus corresponding to any matrix
A e SL(3,%) such that det(A-1) = %1, and det(A+1) = %f1: the only possi-

1

bilities for A are D, or D_1 and D, or D—I. Gluing T3- R' x S into
0 0 1 1 g¢ik

w4— intN(C), there are four possible outcomes as before, denoted w:k,ia 0,1,
k=0,1. Assume now that x induces a non-zero element in Hl(w4)' If
p:ﬁ44-w4 is a double covering projection, with p-1(C) connected and null

homotopic in ﬁ4, then as before 9-1(C') has two connected components, each

of which bounds a pl-locally flat embedded disc D> in W' - intp (N(C)) =

ﬁ4— ints1x B3. D2 may be considered the core of a 2-handle attached to

p_1(N(C)) with some framing me Z. We again obtain ﬁgk; # or ﬁ4#Qio re-

spectively as m is odd or m ic even -- and again it is interesting to con-
2 4

jecture that C 1lies in a p.l. locally-flat embedded RP CW .

Examples for such a w4 are all the orientable 02 bundles over I&z, of
which there are infinitely many.

Exotic behavior may also arise from this alternative construction.

Cappell and Shaneson have been considering their modification on Q3x I, where

03 is quaternionic space (arising for example as the boundary of a neighbor-

hood of an embedded I@z in S4). Note that the center of n1(Q3) is an
element of order 2.

The 4-fold cover of Q3x I, corresponding to the epimorphism

3
111(0 x I) ~— ﬂz x %2

is IEP x I. As RP3 contains a 1-sided nwz, there are four intersecting
copies of RPz in 1w3 x {%} permuted by the action of Zz x Zz as covering

transformation group, and whose orientation-reversing curves are projected to
a single embedded curve C(:Q3x {%}. Using C to modify Q3x I by Cappell and

Shaneson's technique, any manifold x:k
space the manifold obtained from 1&3 x I by carrying out the modification on

the four curves in the pre-image of C. However, a neighborhood of l@z in

so constructed has a 4-fold covering

I@3 is a twisted line bundle, whose product with the unit interval is an

orientable 32 bundle over I@z with boundary RP3 #IP. The double cover
of the boundary is thus S'x 52, and thus is obtained from Slx 83 by adding
two 2-handles along curves S]x {x}, S1x {y} with framing m=0. (Note that
here the 2-handles both have the same framing m, since the covering trans-

formation is orientation-preserving.)
3

4 . ~ : ~ :
So the 8-fold cover of xik is S x I#4 Qi0 , i.e. #AQiO with two open

4-cells removed. Hence if 5i0 is not diffeomorphic to S4, we [ind that

x:k is another counterexample to the 4-dimensional s-cobordism theorem. Note
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that the Cappell-Shaneson construction applied to IRP3 xI will also give such
a counterexample in this case.

On the other hand, if §,, is diffeomorphic to s* but x‘i‘j is not aif-
feomorphic to Q3x I, then there is an exotic free action of n‘(Q3) on
S3x I, i.e. which is not smoothly equivalent to the standard orthogonal action.

This can be extended to an action of L (Q3) on 54 with two fixed points.

CHARACTERISTIC SUBMANIFOLDS

. . . 4 s s
Given a free involution ¢ on a closed 4-manifold V , a characteristic

submanifold for o is a submanifold M4C V4 with 3M4 connected, such that

M4 no(M4)= 8M4 (hence o aM4
V4= M4 Uo o(MA). The free involutions on the homotopy 4-spheres considered

s . . 4
is a free involution on 3M') and

in the construction of Qik and m4 all have characteristic submanifolds
M4 built with handles of index <2. This decomposes the quotient as the union
of M4 and he mapping cylinder of the involution restricted to 3M4.

Let W4 be any closed 4-manifold with H1 (W4 . zz) #0 =-- for example, any

non-or ientable closed 4-manifold.

THEOREM 6.4. w4= M4UN(M3), where M4 has a handle decomposition con-

sisting entirely of 0-,1- and 2-handles, and N(M3) is a neighborhood of M3,

a closed connected 3-manifold t-sided in W4. (N(M3) is the mapping cylinder

of a free involution o: 3M4 —_ 3M4, and M3~ 8M4/o).

COROLLARY 6.5. If V4 is a closed 4-manifold with free involution o,

then V4= M‘l Uo M4, where M4 has handles of index <2 9only, and ¢ induces

. X . . 4 s
a free involution on 3M4 which is connected. M is a characteristic sub-

manifold for o.

PROOF OF THEOREM. 1. If H1 (w4 , zz) #{0}, there is a continuous map

f:w4-> RPS such that f*:l-l1 (w4 , zz) > H1 (I!P5 B zz) is onto. This follows

from obstruction theory, since ni(]RP ) =0,2 5‘1 <4. There ii thus no obstruc-
tion to extending an appropriate map of the 1-skeleton of W , skeleton by
skeleton.

We may suppose that £ is_ transverse to RP4 CRS, in which case
f"1 CIRP4) is the union of closed 3-manifolds in W4. If there is more than one
component in f"1 (]RP4), let M'?, Mg be two such, and join these in w4 by
an arc A with inta ﬁf-1(RP4) =¢. The ends of £(x) lie in RP‘, and
thus f£(\) may be homotoped into lRP4. Surgery on a neighborhood of A en-

ables this homotopy to be realized, i.e. M3UM3Cf—1 (RP4) is replaced by

M?'aN(x)Mg' Thus by suitably homotoping f;: w; may assume that f..1 (RP‘) -M3
is connected.

2. M3 is one-sided in w4: for suppose M3 is two sided. Then any
loop in N(M3) meets M3 an even number of times. However, N(M3) = f-’(N(RPA))

since f, is onto we may assume without loss of generality that some loop in
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W4 is mapped to a loop in N(]RP4) meeting ]RP4 an odd number of times.
This is a contradiction.

3. Let 04-w4- intN(M3), and suppose H3 is a 3-handle of Q4. Then

H3 naN(M3) = B?l L)BZ1 , where 3?1 and B3 may be assumed disjoint and project

respectively to disjoint balls p(B”) = B? ’ p(B 1) = Ez S -H aN(M )+ M3 being the

projection map. Hence p (E )= B3 UB12 (33) = Bg1 UB;Z whence 31 ’ B?Z ’
831 , B;Z are mutually dis;omt 3-balls in 3N(M3) (Figure 27a).
Thus there are embeddings ¢ .B x [=1,1] *w“, i=1,2 such that
3 3 3
¢i(B x {-1}) = Biz ’ ¢i(B x {0}) = ﬁi'¢i(B x {1}) = Bi1 .
et H=M U@ US (B x (0, 11)u¢ (8> 10,11)) - int B} - int B = wl4s?x s’
since H, = H30¢ (B3x [o,11) U¢ (B x [0,1]) 1is an embedded 4-ball with boundary
B::L)Bguszx I. Now let U4 be a neighborhood in Q of (3H3-1ntB?1 mtB?z)
= szx I, and let V= H3- int U4 (Figure 27c). Thus V n'<)N(M )= E3 U E12 where
3 3 3 3 3 3
C intBl, > Epy C intB, and Ej, , E], are embedded 3 balls. We may

assume wlthout loss of generality that there is a 3-ball ﬁ Cint B3 such that

6. Box (1) =E,, g (Bx (1N=E,.
l 3 11 2 _3 21
H =VU¢1(B x [=1,11) U¢2(B x [-1,1]), and let

Finally, take

o' = Q*un'y - intv? - inew?nagt) . (Figure 27d)

Clearly N(ﬁ3) -wt- int64 is a neighborhood of the 1-sided 3-manifold ﬁ3,

and 64 has exactly the handle decomposition of 04 except that the 3-handle
H3 has been removed and replaced with the 1-handle H‘. Continuing in this
way, we arrive at a decomposition of W4 satisfying the properties desired for
the theorem.

Similarly, one can prove the following.

THEOREM. Suppose M4 is a smooth closed 4-manifold, and P3CM4 is a

smoothly embedded two-sided submanifold which is non-separating. Let

Q4=M4-intN(P3). Then we can modify 23 to 133, Q4 to 64 such that §4

has a handle decomposition with 0-, 1-, and 2-handles only.

APPENDIX
Conjugacy in SL(3,%Z)

1. Let X = d y ¢ € SL(3,%)

Det (tI-X) = to- At2 + Bt-1

Cx(t)

g.c.d. {a, b, c, d, e, £, x-y, y-2z} .

h =
]



FIBERED KNOTS AND INVOLUTIONS ON HOMOTOPY SPHERES 35

THEOREM (A1): 1. If *1 is an eigenvalue of X, then X is conjugate

to
1 0 0
d' yl cl
e' £ z*
2. If %1 is not an eigenvalue of X then X 1is conjugate to AI+ pY
where
0 0 1
Y = m 0 0 .
n P q
- - 3 L. R _ 2 _
Hence Cx(t) = cxl‘t) z (t-2) " modu . This implies 3A=A, 31" =B,
3

A"z 1mod y, and in particular Aza 3Bmody , i.e. p divides A2~ 3B. Therefore
there are only finitely many choices for u, relative to Cx(t) fixed.
PROOF: Case 1. Assume a,b # 0 and let A=g.c.d. {a,b}, with

sa+ eb = y.
a b a b * %
0 ” Y X a b 0 0 1 0 T ¥ Yy 0 x *
0 -¢ §tld vy ¢ 6<-$ 0l = 0 -e § * *x x| = * * x
100efze-:-0 1.0 of]* * = Yy 0 x
0 0 -1 * ok 0 0 -t x 0 v
Now 0 -1 0 * k% 0 -1 0 = LA I
-1 0 o y 0 x -1 0 0 L

Case 2, a=0=b. Then x=1*1 since detX=1 and %1 is an eigenvalue
of X.
Case 3. b=0 , a#0.

-1 1] 0 X a 0 -1 0 0 X 0 z
0 0 -1 4 c 0o 0 -1 = z f .
0 -1 0 £ z 0 -1 0 d c Y

So in all cases we are reduced to

Case 4. a=0 , b#0. If b does not divide ¢, then g.c.d {b,c}< |b|.
Exactly as in Case 1 we can replace b by g.c.d. {b,c}. Eventually we ob-
tain that b divides ¢ (e.g. if b= %1). 1In this case
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1 0 X b 1 o 0 x 0 b
< < - '
5 1 0 a vy o 1 0 a' y o .
0 1] 1 e £ z 0 0 1 e' £ z
So we can assume that a=c=0. Next
F1 0 o] x o b 1 0 x b b
0 1 a y © 0 1 0 = s y 0
Lo 1 1J Le £ 2 0 -1 1 d+e f+y-z z
1 071 [ x -b b 1 0 X b b
and 0 0 1 4 y 0 0 0 -1 = d+e z z-f~-y
|_0 -1 0] Ld+e f+y-z z 0 1 0 -a 0 y

By the usual argument we can replace b by g.c.d. {b,z-f-y} unless b

divides z- f-y. Similarly

1 0o o x 0 b 1 0 o0 X 0 b

()
-
-
=
o
)
-
t
hA
n

e+td f+y z-f-y
0 1] 1 e £ z 1] 0 1 e £ 2-£

1 o o x 0 b 1 0 o
Stzfty) 1 0 etd f-y z-f-y E:E:z 1 0
4] 0 1 e £ 2-f 0 0 1
X 0 b
= |erar LE2 'x::‘z'f' L f+y 0 (+)
et -‘—zlf);ﬂ £ £ z-f

By the argument above, we can replace b by g.c.d. {b,(z-f)-£f- (f+y)} =
g.c.d. {b,z- 3f-y}. So without loss of generality, b|z-3f-y and b|z-f-y
Therefore b|2f, b|2(z-y) follows. Dually, using x,d,y instead of z,f,y
with the matrix X in the form with a=c=0, we obtain that bjl2d, b|2(x-y)
without loss of generality. Finally using (+), we obtain that b can be re-

placed by g.c.d.

{b,x~ (e+ a+ & -xt:z-f- )) - (f+y)}. So without loss of generality,
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b| (x-f-y) - e-d- (£ 'x)b(z'f' L . But b|2f, 2(x-y), 2d, z- £-y. Hence bj2e
follows.

Case 5. Suppose we eventually obtain %1 -- then we may assume b=1,

since
-1 o0 o? [ b] [-1 o 0] 0 b
0 -1 o a y o0 0 -1 o = a y o .
Lo o 1) Le £ zJ L o o 1] -e -f z
1 0 o" ES q 10 ﬂ y 0 1
Then 0 1 0 d Yy 0 1] 1 0 = d Yy 1]
lx-y 0 1] le £ =z] Ly=x o 1. e' £ zix-y

= AI + uY¥Y as desired, with A=y, u=1.

Case 6. Assume b>1 and b|2(x-y), 2(y-2), 24, 2f, 2. If b is odd,
then b](x-y), (y-z), 4, £, e. Hence

X 0 b y+rb 0 b
d vy = mb y ©0
e £ z mb pb y+gb
1 1] 1] y+rb 0 b 1 1] 0 Y 0 b
0 1 0 mb Yy 0 "] 1 0 = mb Yy 0
r 0 1 n'b pb ytgb] |-r 0 1 n'b pb y+(g-r)b

AI + yY where A=y and up=b.

if b is even and b} (x-y), (y-2), &, £, e, we also obtain the result. So we
can assume bjf(x-y) or bjfd say. Since b|(x-y+d), if bf(x-y)} then bjd.
So without loss of generality, either bjd, e, or £. Suppose say bfd. We now

use g.c.d. {d,e} to find a new value of b and a new matrix.

x* 0 b'
Eventually we reach a' y' 0 where b' d, and b'|2d', 2e', 2f!
e' £ z'

2(x'-y'), 2(y'-2'). Again we can suppose b' 1is even, say b'= 2b". Then

x' 0 b* x' 0 0
a* y* o

e' £ 2z 0 0 x'

n
o
x

(=]

mod b"
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0 b x' 0 0
Therefore d y o0 ] x' 0 modb" = b"|b. But
£ z 0 0 x'
2b"|d and (b,d) = %. We conclude that b"l%" 2b"|b. As 2b"|d, 2b"# b and
so b'< b. Eventually the procedure must terminate -- in fact, reversing the

argument shows -g-lb' = 2b" and so b'--g- must be true. Hence b'|d', e', £f',
Xx'-y', y'-2' follows immediately.

REMARKS. 1. Since X is conjugate to AI+ pY, X= AI moduy and so
wla, b, ¢, 4, e, £, x-y, y=-z. On the other hand, if v|a, b, ¢, 4, e, £,
X-y, Y-z, then X=yI modv. Hence AI+ pY = yImodv, i.e. uY¥= (y-1)I.
Hence u=0 modv=>vju. So u=g.c.d. {a, b, ¢, 4, e, £, x-y, y-z}.

A 0 M
We now set X=AI + uY = mu A 0 |. Note that u and A (modu)

ny  pu At+qu

are invariants of the conjugacy class of X.
2., If p=1, then

A 0 u A 0 u
my A 0 ~ (m+n)u  A4u (q-1)u
np u A¥qu | v u At (g-Ne
Adu 0 M
~ (mén+g-1)u  A+u (q=1)u
L (n+q-2)u U A+(a-2)u
At+u 0 M
~ m'py  Atu 0
Ln'u b A+ (g-2)y

Hence we can obtain 0<A<u-1. In this case q,m,n are completely de-
termined by the characteristic polynomial, and so all such matrices are con-

jugate, with possibly a finite number of choices for A with 0<A<u-1.

3. Cx(t) = det (tI-X) = det “mu  t-A 0
-ny =-py  t-A-qu

= (=0 = quie-0 2 = mpy® - mud(e-n)
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e - at? vt -1 .

a = 3\ + qu

b = 3A2 + 2quA - nuz

1 = )‘3 + quxz - npzl + mpl.l3 .

NOTE. Given A,y then q,n and mp are determined in terms of a,b.
The difficulty is that m,p are only given as a factorization of the numbers
mp, not explicitly.

If A SL(3;Z) has characteristic polynomial fa(x) = x3- ax2+ (a=1)x =1,
we can proceed further:

By Theorem Al, we may assume A is conjugate in SL(3,%Z) to a matrix

of the form

A 0 M
A' = mu A 0 , u>0 .
nu pu A+g

LEMMA A2: In A', we may assume u=1l,

PROOF:
A3 + Azqu + mpu3 - nu2 = 1 (1)
3\ + gqu = a (ii)
2 2 cas
32" + 20qu - np” = a-1 (iii)

Suppose u 1is even. Then A3§ t(mod 2) =\ = 1(mod 2) from (i)
=»>a =z 32 2 1(mod2) from (ii)
=2a -1z 3\" =z 1(mod2) from (iii)

which is a contradiction. Thus u is odd. Taking congruences modp gives

)\3 = 1{modyu) , 32 = a(modyu) , 3A2 £ (a=1) (mod u)
=322 2 3\ - 1(modn)
3233 2 G- = 32 - A mody)
+>32 230 -123+ )(modu)
= 2)x £ 4(mody)

=2 = 2A3 H 12 ¢ 2\ = 4)&2 H (27&)2 = 16 (mod u)

214 = 0modp, and u=1 or 7.

If u=7, Az2(modu) »> ) = T7s+2 for some s € Z,
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Then
a=3(7s+2) + 79 =21s+ 6 + 79
a-1= 3(7s+2)2 + 2°*7q(7s+ 2) - 72n
1 = (7s+ 2)3 + (7s+ 2)2' 79 + 73mp - 72n(7s+ 2)
=2>a = 21s + 6 + 7q(mod 49)
a -1 = 84s + 12 + 28g(mod 49)
1 = 84s + 8 + 28g(mod49)
= a -~ 23 4(mod4%) by (b)- (c)
= 3a+1 = 12(mod49) by 4(a)- (b)

=19

12{mod 49), a contradiction .

Thus u=1, giving the following possible representatives of a given class:

0 0 1 1 0 0 A 0 1 1 0 0

u, m A 0 = 0 1 0 m A 0 0 1 0
naZaa2aq) p o 2a+g A0 1 n p qtr L—x o 1]

L L Jd L

- - ~4 r - -

0 0 1 1 0 0 [V} 0 1 1 0 0

a2 m+n  A+p (a=-A)-(A+p) = 1 1 0 m A 0 -1 1 0

L n p (a-1)-p 0 0 1 Ln p a-x 0 0 1

NOTE. We have replaced q by a=q - 3\ so trace =a.

0 0 1
a3 (m+n)+ (a=2x+p) (A+p) A+p 0
n+ (a-2\+p) p a-(A+p)
1 0 o 0 0 1 1 0 0
= -(a=2)x+p) 1 0 m+n Mp  (a=-2A+p) (a=2x+p) 1 0 .
0 1] 1 n p a=-(A+p) 0 0 1

THEOREM A3. Suppose A SL(3,Z) has characteristic polynomial

fa(x) = x3 - ax2 + (a=1)x~-1. Then A is conjugate to a matrix of form
0 0 1 n = x(a=-x) - (a-1)
A = 0
a,\,p »
n p a-=x mp =1 + n)

Further, by ey we may assume O0<A<p (it is easy to obtain p>0).
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REMARK. We could alternatively arrange 0<a<m. That m# 0#p follows
from

LEMMA A4, £(x)= x3- ax2+ bx-1, a,b e Z, 1is irreducible over @ if
(a-b) = 1 (mod2).

PROOF: Define ¢g:Z x Z~+» Z by ¢&(p,q) = p3- apzq + qup- q3. Then

é(p,q) = 0 (mod2) iff p=0=qg (mod2). Suppose p,q are nonzero integers
satisfying f(%) = 0 =-- without loss of generality we may assume p and q are
coprime. Thus ¢g(p,q) = q3f(%) = 0, a contradiction.

COROLLARY A5. m# O0#p in Theorem A3.

PROOF':
nx+ 1 =0-= x(x(a=-)) - (a=-1)) + 1 =0
=> —x3 +a)\2 - (a=1)x + 1 =0

and thus A £ Z by the Lemma, a contradiction.

By the remark above, if |m| =1 or |p| =1, we may assume A=0, and
0 0 1
we obtain 1 0 0 . Alternatively, if A=1, then n=0, and
-(a=1) 1 a
we have
0 0 1 1 0 0 0 0 1 1 0 0
1 1 0 = 1-a 1 1 1 0 0 a=-1 1 -1 *1
0 1 a-1 0 0 1 -(a=1) 1 a 0 0 1
0 -1 0 0 1 "] 1-a =1 1
= -1 a=-1 =1 0 0 1 -1 1] 0 *2
0 0 -1 1 =-(a=1) a 0 0 -1
3 s
1 0 0 0 0 1 1 0 0
= 0 1 1 1 0 =-(a-1) 0 1 -1 *3
0 1 0 1 a 0 1] 1
L

The conjugation *1 shows that considerable degeneracy occurs in this

characterization of matrices in SL(3,%Z). Matrices explicitly given in

Cappell and Shaneson (CS1) are those conjugated in *2. The last equation
shows that the choice A= 1 is equivalent to the rational canonical form for

the characteristic polynomial fa(x). We chose A=1 in the topological con-

struction previously.
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The class number of fa(x) is the number of distinct conjugacy classes
of matrices in SL(3,2Z) with fa(x) as characteristic polynomial. We may
compute these class numbers using standard technigues of algebraic number
theory; as for example in Janusz (J), Borevich and Shafarevich (BS).

We may define an equivalence relation on ideals S,T of a commutative
ring R by [S} = [T} <> Ja,B € R such that aS= gT. Clearly any two prin-
cipal ideals are equivalent. The ideal class group C(R) of R is the
abelian group generated by the ideal classes, with composition given by (ST} =
[S1(T}, and identity the class of principal ideals. The following theorem is
taken from Newman (Ne).

THEOREM. There is a 1:1 correspondence between similarity classes in

GL(n,Z) of matrices A such that E(A) = 0, and the elements of the ideal

class group C(R) of the ring R=Z(®), where f(x) is a monic polynomial

with integer coefficients irreducible over @ and © is a root of f£(x)=0.

In the particular case n=3, the correspondence is obtained by taking
the basis {1,9,92} for @[©], and considering A as the matrix of a
@-linear transformation Q[©] + @[9]. We may thus choose an eigenvector
[x,, x2, x3]T € (Q(e))3 corresponding to the eigenvalue © of A, such that
xi e Z[e},i=1,...,3. As representative for the ideal class corresponding to

A we take the ideal QIA= <x1 P Xyu X >C z(e).

3
Given x € @Q[®], there is a well-defined Q-linear transformation

r ¢ Qle} + alel , rx(y) =Xy Yy € @@©) .
The discriminant A(a,, az, a3) of {a,, a2, a3) C @(9) 1is defined by

def

A(aj, a2, a3) z det (trace (raiaj)) .

For f£(x) = a x3 + a,x2 +ax +a,, ai ¢ Z i=0,...,3, and f(x) irreduc-

0 2 3
ible over @, the discriminant A(f) of the field @{8]) is defined to be

A(f) = A(1,Q,92), where © 1is a root of f(x)=0. By van der Waerden (V)

2,2 4a a3 - 4a3a - 27a2a2 + 18a_a.a.a .

L(E) = aja, - 43z, 123 03 0213223

Now let R' denote the integral closure of Z in Qf®], 1i.e. the sub-
ring of Q@[©] consisting of all elements which are roots of monic polynomials
with integral coefficients. The class number |C(R')] of R' may be calcu-
lated fairly easily in some cases, and related to |C(R)| by the following
considerations:

If {yl, Yy y3} is an integral basis for R', a free rank 3 Z-module,
we may define AR' H A(y,, Yy y3) which is independent of the basis chosen.

Necessarily IAR,I # 1. Now for some m, 0<me Z, 8(f) = m2a and we have

R'’
the important result that R'=R if m=1.
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When f(x) 1is totally real, i.e. has three real roots, we may read off
the class number |[C(R')| from Table 7, p. 428 of Borevich and Shafarevich
(BS), in case |A(f)]| < 20,000. f£(x) is totally real iff A(f)>0.

For the polynomial fa (x), irreducible over @ by Lemma A4, we obtain

A(fa) = a(f-2) (a=3) (a=5) - 23 = A(ES-a)

and thus values for the discriminant occur in pairs. fa(x) is totally real
when a<0 , a>6. This may be seen directly: Note that fa(1) = -1, and
thus fa(x) is totally real if gy ¢ R such that y < 1 and fa(y) > 0.
Obgerve that

1 a a 1

£, = g-grz-cl o= g 2anih
1 a a 1

fo) =~g-g-z*th-1 = gea-5 .

We may thus £ill in the last column of the following Table 1 directly from
Table 7, p. 428 of Borevich and Shafarevich:

43

TABLE 1
a A(fa) Prime factors R=R'? JC(R*) ]
6, -1 49 7, 7 YES 1
7, -2 257 257 YES 1
8, -3 697 17, 41 YES 1
9, -4 1489 1489 YES 1
10, -5 2777 2777 YES 2
11, -6 4729 4729 YES 1
12, -7 7537 7537 YES 2
13, -8 11417 7, 7, 233 ? 3
14, -9 16609 17,977 YES 2
0, 5 -23 23 YES (1)
1, 4 -31 31 YES (1)
2, 3 =23 23 YES (1)

The last three entries in the last column must be calculated directly.

The norm N(x) of xe @[8] is defined to be the determinant of L
Siven an ideald/ ¢ R', the norm N@®) of 4% is the ideal in Z generated
v all N(x), xe9/. Since Z 1is principal, we may define the absolute norm
A%WA of @4 by H4@)|=m>0, where N@)=mZ. The absolute norm is mul-
tiplicative on ideals, i.e. M) = NHNDH for ideals R ,P¥CR'.
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An ideal B of R' is prime if ab e B=>a e¢ B, or be B. For some prime
peZ, BNZ =pZ, and ./V(B)=pk for some ke IN. Every ideal in R' has
a unique factorization as a product of prime ideals, and thus the ideal class
group C(R') is generated by classes of prime ideals.

The Minkowski Bound states that C(R') 1is generated by classes of ideals

31 4.8
] i —— i
@ C R w:.tlf: M(Q{)l < 33 <) IAR.I . where 2s is the number of complex

roots of f£(x)=0.
Let ea be a root of fa (x)=0, R; denote the integral closure of 2Z
in Q[ea]. For 0<a<5, 8(f)) is prime, and |A(£a)| < 36. Thus
AR' = A(fa) B R; = z[eal and since s=1 the Minkowski Bound gives C(R;)
a
generated by classes [Q[i] with

32

) | <-3--(i)-/36' <2.
23 .

Hence C(R;) is trivial in each of these cases, i.e. |C(R;)| = 1.

Suppose R; = Ra = z[ea] : Any element @4 of C(Ra) is represented by
27 x3> where [x1 " Xy x3]T is an eigenvector with eigen-
value ea of a matrix A representing the similarity class corresponding to

an ideal g = <x1 , X

WA. We take A of the form given in Theorem A3; thus

0 0 1 x1 x,l

m 0 x2 = Ga x2

p a-i x3 x3

=2 x3 = eax] ’ xz(ea- A) = mx’ ,

T T
and thus we may take [x1 s Xy x3] = [ea— A, m, ea(ea- A}l . Hence

2

- - > = -A> . *
XU = <e, x,m,ea(ea x) <m,ea A (*)

is a representative of the ideal class corresponding to the conjugacy class of
A.

Since ea satisfies fa(ea)-o y (ea-A) satisfies f((ea-x) + 1),
giving

N(_- 1) = £(A) 2 o-anZ s (a-nyr -1

= -(1+x2(a-x) - A(a=-1))
= -(1+n)

= -mp .
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In particular, if (m,p)=1 ,m<9a— A,m>) divides m. If <m, ea- A>  is
orime, pw<9a- A, m>) =>pjm.

To apply this to the simplest case of non-trivial ideal class group cor=-
responding to a= -5, we require some more results from algebraic number
theory. By Janusz (J), factorization of the principal ideal pR', p any
orime number, is achieved by reducing the coefficients of f(x) modulo p,
and factorizing the resulting polynomial over 2Z/p%Z. To each irreducible
Zactor hi (x) of degree k there corresponds a prime ideal Bi. with
-.f’(Bi) = pk. We may thus obtain all generating classes for C(R') by factori-
zation of all ideals pR', p<é§, where & is the maximum value for absolute
norms allowed by the Minkowski Bound.

EXAMPLE. =-5. Let © be a root of x3+ 5x2— 6x-1=0. We determine
the structure of the ideal class group C(Z[®]). Since A(fa) = 2777, which
is a prime, R'=R=2Z[9), and C(R) is generated by classes of ideals Bi
with

3 o

bme) | < ——;/2777 < 2.

w

Factorizing the ideals 2R, 3R, 5R, 7R, 11R, we obtain

o= 2: (x3+ 5x2- 6x~ 1) (mod 2) Ex3 +x2 -1 (mod 2) is irreducible
= 2R= Bz’ a prime, principal ideal with .A’(Bz) = 23.
2= 3: x3+ 5x2- 6x-1 = x3+ 2x-1 = (x=2) (x2+ 2x = 1) (mod 3)
2
= ' = V=
3R B3B3, where ./1’(83) 3 ’MBB) 3

-1
1 = (3R] = [B,] (B3] = [Bj] = -B,] .

Since we know |C(R)]|=2 by Table 1, [B:"] = [33].

o= 51 x3+ 5x2-6x-1 = xs—x—1 = (x—2)(x2+ 2x - 2) (mod>5)
2
= ' = ') =
=> 5R BSBS ,./7(35) 5 “A’(Bs) 57>12

o 2
and 1= [5R] = [le [le = lle .

x3+ 5x2-6x-—1 £ (x-4)(x2+ 2x=5) (mod7)

‘ 2
= = ' = 'y =
7R B7B7. ./f’(B7) 7..MB7) 7°>12

'
[]
~

vl 2
and 1= [7R] = (Bl (B3] = [B,1° .

p=11: x3+ 5x2- 6x~ 1 is irreducible (mod11)

= 11R = B11 , principal, and .A’(B”) = 113> 12

Hence C(R) = <[B3] R [B5] ’ [B7]> .
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A | -3 -2 -1 0 1 2

£()) I 35 = 5,7 23 9 = 3.3 -1 -1 15 = 3.5
Thus (€-2)R is divisible by B3, and since 53 divides 3R, B
divides (6+1)R = ((©-2)+ 3)R. Hence (6+1)R=B2, and (6-2)R=B._B.,

3 3°5
(8+3)R= BB, giving ([B;] = [B) = [B,].

We thus consider the ideals <3, €-2> , <5, 0+ 3> , <7, €+ 3> .,

3

I. <3, 9+ 1><3, 6+ 1> = <9, 3(6+1) , (o+1)2>
= <9, 3(e+1) , 8%+ 20+ 1> .
Now 6(6+1)2 = @3+ 20°+ @ = 60-50%+1+20%°+0 = 76-36%+1

(76-30%+ 1) + 3(0+1)2 = 130+ 4 = (6+1) + 4(30+3) -9

= (6+1) € <3, O+ 1>%. But ©°+ 6> = 66-50%+ 1+ 0°
= 60-40%+1 = 6% (0+1)
and 9=6(0+1) - (66-3) = 6(0+1) - {66~ 40°+ 1)

+ 4(6-1)(6+1)} € <0+ 1> |

II. <5, €+ 3><3, 8~-2> = <5, 9-2><3, - 2>
= <15, 5(e-2), 3(e-2), (9-2)2> = <15, @~ 2>

02(0-2) = ©° - 20 = 66-56% + 1 - 26° = 68 - 702+ 1 .

Further, ©(0-2)2 = °- 4062+ 40 = 60- 502+ 1 - 40°+ 46
= 100-96%+ 1
2 2 2
= (100- 962+ 1) - (60-70%+1) = 40- 20> ¢ <o- 2>

> 0(40- 26%) = 40°- 120 + 106%-2 = 146- 120- 2 € <@- 2>

= 0(40~ 292) = 492- 120+ 1092- 2 = 1492- 120~ 2 ¢ <0- 2>
=> (1462- 128-2) + (100- 992+ 1 = 592— 28~ 1 ¢ <0~ 2>
’92(592-29—1) = 1092-49-2 € <9~ 2>

(1002 40-2) + (10%0-90+ 1) = 6% + 60 - 1

©®+60-1) - (8-2)% = 100 - 5
(106-5) - 10(6-2) = 15 ¢ <@~ 2>
Hence <O~ 2> = <15, 6- 2> = <5, ©+ 3><3, - 2> ,

Thus we must have 83 = <3, -2> , 35 = <5, 0+ 3> .
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III. <5, O+ 3><7, O+ 3> = <35, 5(6+3), 7(e+3), (9+3)2> = <35, (6+3)>

0 + 60%+ 90 = 60-50%+1 + 60°+ 90 = 0%+ 150+ 1

02(0+3) = 67+ 30% = 66- 502+ 1+ 30° = 60- 20%+ 1

0(60- 202+ 1) = 60°- 207+ 6 = 66°- 120+ 106°-2+ 0 = 160°- 116- 2

160 (6+3) - (1692- 116+ 2) = 590+ 2

9(6+3)2

16 (62 + 150+ 1) - (166~ 116~ 2) = 2510+ 18
(2510+ 18) - 4(590+ 2) = 150 + 100 = 35 = 15(0+3) - (156+ 10) ¢ <@+ 3>
=<0+ 3> = <35, 0+ 3> = <5, O+ 3><7, O+ 3> .

By uniqueness of prime factorization and multiplicativity of the absolute

norm,
A(<3, 8+ 1>) =3 , H(<5, 6+3>) =5 ,H(<7, 6+ 3>) =7

and so B, = <3, 6+ 1>, B

3 =<5, 6+3>, B

=<7, 8+ 3> .,

5 7

As a representative matrix for the similarity class corresponding to
[93] = [le = [B7], we take

since by (*) the ideal class generated by this matrix is [<-5, 8-2>] =
[<5, e+ 3>].
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A FAKE 4-MANIFOLD
Selman Akbulut!

In this paper we study 4-dimensional fake manifolds; mainly the fake RP4
which was constructed hy Cappell and Shaneson [CS]). This is a smooth closed
manifold Q4 which is simple homotopy equivalent to RP4 but not diffeo-
morphic to RP4. From Q4 we construct a new 4-manifold:

THEOREM 1: There exists a closed smooth manifold M4 which is simple

homotopy equivalent to S3 x S‘;ﬁés2 x 52 but not diffeomorphic to it.

Here S3i‘ S1 denotes the twisted S3 bundle over S'. Figure 4.6 is a

handlebody of M4. This handlebody is surprisingly simple, namely: M4 =B3 §<'S1

o C

(two 2-handles) LaJ B3>"<' Sl. Fromthis, iteasily follows that if

M4=M4-int(B33‘<'S1) then Mg is a fake B3';<'S1 #Szx S2 and furthermore:

° COROLLARY : Mg x I =(83’>'( S1 # 52x Sz) x I

where =~ denotesa differmorphism. Along theway weprove that Q4 isstably trivial.
THEOREM 2: 04 # er? ~ we? # <I:P2
This is interesting because the connected sum of Q4 with arbitrarily

many copies of 82x 52 is not diffeomorphic to the connected sum of RP4 with

arbitrarily many copies of 82x 82 {Cs].

In Section 2 we prove a structure theorem for Q4 similar to the 2-fold
cover of Q4 [AK4] , namely we demonstrate a properly imbedded 2-disk
A2C sz RP2 (in fact a ribbon disk) with 3A2 = S1 x (a point) such that Q4
is obtained by twisting sz RP2 along A2 (Gluck construction) and taking
a union with B3'§S1. Figure 2.11 is the picture of Az. From this we obtain
a solution to a problem of Cappell and Shaneson ([K]] , problem 4.214-8)2; namely
removing the tubular neighborhood of the nontrivial circle in D x RP and
replacing with acertain (T3—B3)—bundle over S1 does not yield a fake
sz RPz but it gives a fake self homotopy equivalence of D2x RPZ. In [AK3]
the structure of the 2-fold cover O of Q was studied and it was shown that
Q0 is an invertible homotopy sphere (in particular it is homeomorphic to 84),
and Q 1is obtained from 84 by removing a tubular neighborhood of a knotted

S2 and sewing it back (Gluck construction). Therefore comparing this paper to

1
Supported in part by N.S.F. grant MCS-8116915
© 1984 American Mathematical Society
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[AK3] and [AK4] at times could be useful. We would like to thank Larry Taylor
for many helpful discussions on 4-manifold surgery. We also want to thank

R. Kirby for a happy collaboration in [AK3] and [AK4] which led to this paper.

0. PRELIMINARIES

Throughout the paper we use =~ to denote a diffeomorphism. In this sec-
tion we discuss handlebodies of 4-manifolds. This presentation is similar to
that of [AK,] and [AK2], except here 4-manifolds can benonorientable. Recall
that we can present any 2-manifold as a line (a local view of the boundary of
the 0-handle) along with the attaching arcs of 1-handles and attaching circles

of 2-handles. For example T2 is

> - - >
>

which is a shorthand for:

union the 2-handle

Similarly any 3-manifold can be represented by a plane (a local view of the
boundary of the 0-handle) along with attaching discs of 1-handles and attaching
circles of 2-handles and a 3-handle. This corresponds to the Heegaard presen-

tation. For example the punctured 3-torus is:




A FAKE 4-MANIFOLD kK4

For a given 4-manifold M4 we draw the handlebody picture of M4 in the
similar way. Namely we will view M4 from the boundary of the O-handle (=83)
and draw the attaching balls of the 1-handles and the attaching circles of the
2-handles in S3. We will not indicate three and four handles in our pictures.

A pair of balls indicate an attaching Sox B3 of an oriented 1-handle.

If we imagine coordinate axes in the centers of these balls the 1-handle iden-

tifies the boundaries of these balls by the map (x,y,z)~~ (x,-y,2)

This is well defined because the axis, which is reflected, is the axis given
by connecting the centers of these balls. In case of orientation reversing

handles we put an arc on the centers of these balls which indicates the identi-

fication (x,y,2) ~— (x,-y,~-2)

These arcs indicate the normal direction to the plane where the reflection is

serformed to the oriented 1-handle to get this handle. We can put one of the

oalls Bf of the 1-handle at the point of «, in which case we just draw the

other ball Bi

\_

In the case of oriented 1-handle the boundary of Bz is identified with the

boundary of Bi by identity (i.e. the radial map taking aBi to 333" In
the case of nonoriented 1-handle we either draw Bi as

N2
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which means aBi is first reflected across the plane perpendicular to the arc

then identified with 353 by identity; or we draw:

'

which means we first perform the antipodal map to 3Bi before identifying

with 333 by identity. We also denote an oriented 1-handle by an unknotted
circle with a dot on it (see [A] and also [AK1]). The dotted circle means that
we delete the thickened unknotted disc the unknot bounds in B4 obtaining
S1:<B3. In other words anything that goes through the dotted circle is going

over the 1-handle.

is the same as @j}

L ©

Replacing dot by a zero on the dotted circle corresponds surgering S1x B3 to

Szx Bz; and the vice-versa. We also use dotted ribbon knots which means that
we delete the thickened ribbon disc from B4 (also see [AK2]). Since a ribbon
knot may not bound a unique ribbon disc in B4 we shade the particular ribbon
to indicate the deleted ribbon disc.

If we don't specify the framing on the attaching knot of a two handle, it
is the one coming from the normal vector field on the surface of the paper. If
we put integers on the knot such as ...,.f~(:)—~—~-- it means that we add
n=-full twist to the above framing. This makes the framings well defined even

in the presence of orientation reversing 1-handles. For example
[ (o /)
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is the same as:

@

Because 2 twist becomes -2 twist having gone across the orientation reversing
1-handle.

Here is an example of a 4-manifold Mé(n,m):

) < 7 A4

First of all by rotation of the ball Bz 360 0 around the y-axis we get

M(n,m) =~ M(n+1,m-1), and by transferring twists across the 1-handle we get
M(n,m) =~ M(n-m,0).

M(0,0) if n+m even
Hence M(n,m) =

M(1,0) if n+m odd

H4(0,0) is just D2x RP2 because it is the 4-dimensional trivial thickening
of the handlebody of RPZ which is

& A
T~ Pl

(the other attaching arc of the 1-handle is at «). Hence M4(1,0) is
Dz; RPZ (the nontrivial Dz—bundle over RPZ) which is the nontrivial thick-
ening of the handlebody of RPZ.

Recall RP4=D2'>‘£RP2 ¥} B3?<'S1 hence 8(D23'<' RPZ) ~ 3(833?51). For a

3 ~
given 4-manifold M4 containing sz ZRP2 we call the operation:
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blowing down the RP2 . This is similar to the "blowihg down EPZ' oper-

ation of [Kzl. In practice we perform this operation as follows: We slide
the attaching circles of the other 2-handles over the 2-handle h of D2§:RP2
until they don't link h anymore and then we simply erase the two handle of
DZB}"RP2 as in the following figure:

other 2-handles

M=
)
5, //
slide
® JUSTE h
erase
M ;i

L

We leave the verification, that this process corresponds to the blowing down
operation, as an exercise to the reader. We call the inverse of this operation

blowing up an RP2.

If in a given 4-manifold an attaching circle of a two handle goes through
an oriented 1-handle geometrically once we can cancel this pair of 1 and 2
handles by simply erasing them from the picture. The attaching circles of

other two handles which go through the 1-handle has to be modified as follows
(see [AK3])
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-— " -
;-; (j\/the other 2-handles
. ~

~
Se

cancel a and o

s
-

Also if we have a trivial 2-handle O° and a 3-handle attached onto this in

2,8 = 3(0%) we can cancel them by simply

the obvious way (i.e. along S2 C s
erasing 0° and forgetting the 3-handle.

In our figures we use arrows such as

’
s
s
“-
-
-
-
-
~
~
~
’
.
’
7

we ignored them, unless it indicated that we do a handle slide as shown by the

arrow in which case it means slide two handles over each other i.e.

.

/
’
’
.. %
<
<~
~

—

~
~
~
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Sometimes 1-handles can be slid over 2-handles such as:

— <

.
P ' .
. ' .
. .

.
a piece of

a 2-handle
1-handle

This is easily checked by reflecting on the definition of a dotted circle (B4
minus a thickened disc this circle bounds).

Finally we will use (in Section 4) the following diffeomorphism

-
~ .

A
/) \\

some 2-handles E

A Y
N
. ~
This is because: R . .o

{5 il

.
.

SN

e

’
4
4
.

R

pair of 1 and 2 handles.”

sliding 1-handles
over each other
AN -

iy

< N

// \\ cancelling a pair

of 1 and 2 handles // \\
l, \
N

4
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1. STRUCTURE OF 04

0 1 0
Let A==( 0 0 1 then A induces an orientation reversing linear map
-1 1 0
3

A: R ~» R3. Since A preserves the integral lattice in R3 it induces a

self diffeomorphism of T3 where T3= R3/Z3. Since A(0)= 0, A in fact in-

duces a diffeomorphism A: Tg + Tg where Tg = T3 - interionD3) and D3 is

an imbedded disc in T3. Then since XlaTg is an orientation reversing dif-

feomorphism of 82 after a small isotopy we can assume that. 518T3 is the

0
antipodal map of Sz. Let C==Tg x I/(x,0) ~ (A(x),1) be the mapping torus of
A. Then clearly 3C is the twisted 52 bundle over S1 which we denote by

2~ 1 2

S"xS . Let D2§ RP be the twisted D2 bundle over RP2 (it is the tub-

. s ~ 2 2~ 1
ular neighborhood of RP2 in RP4). Since a(sz RP) =8 xS we can con-

struct: Q4= cu (DZ;IRPz). This is the Cappell and Shaneson's construction of
a fake RP4 [ég]. We draw a handlebody picture of Q4 by the method of
(AKy): Figure 1.1 is the handlebody picture of Tgx I. We isotop A so that
(i) X is the antipodal map on the small ball centered at the origin.
(ii) A takes the 1-handles of Tg to itself.
Figure 1.2 indicates this isotopy. The first picture in this figure is the
images of the coordinates axis under A. Since the opposite faces of the cube
is identified the coordinate axes are the cores of the 1-handles. So the
isotopy moves the end points of the arcs to the centers of the sides of the
cube (hence into the 1-handles).

So the handlebody of C is obtained from the handlebody of T3x I by

0
identifying with A. This identification adds a k+ 1 handle to Tgx I for
every k handle of T3x I. Hence we add one 1-handle three 2-handles and

0
three 3-handles to get C. Figure 1.3 is the handlebody picture of C except

the three handles are not drawn even though they are there. Thenew 1-handle is
a nonoriented 1-handle (because of (i)) attached along the ball at the origin
(as indicated in the figure) and the ball at = (hence not seen in the figure).

Figure 1.4 is the same as Figure 1.3 except the two handles are

@yey
is cancelled by the 2-handles which goes over

by the 2-handle

not drawn, and the 1-handle a1

a once. We get Figure 1.5 by cancelling the 1-handle a

1 3
which goes over a; once. Figure 1.6 is the same as Figure 1.5 except the
1-handle a, is indicated as a dotted circle. By further isotopies we get
3

Figures 1.7 and 1.8. By rotating the B~ at « (where the one end of the
1-handle attached) by 180 degrees we get Figure 1.9. Hence the notation on the
t-handle in Figure 1.9 is changed. We claim that the boundary of the manifold
in Figure 1.9 is 82§ S1 # 52x SI. To see this surger the 1-handle (i.e. re-
place the dot with a zero), and then surger the two handle (i.e. put a dot on

the attaching circle of this handle) as in Figure 1.10. A further isotopygives
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Figure 1.11. 1If we now cancel the new 1-handle with the obvious 2-handle (the

one corresponding to the circle going throuyh the 1-handle once) we get Figure
1.12. The boundary is obviously S°xs' # s'xsZ2.

Now here comes an important point! Recall starting with Figure 1.4 we ig-
nored to draw the 2-handles @,r0g. If we draw these handles and carry them

along the processes of Figure 1.4 through Figure 1.12 oy @ will end up being

3

two unknotted circles in Figure 1.12 (check). This means that a2,a3 are

attached to trivial circles on the boundary of the Figure 1.4 and therefore two

of the three 3-handles of Figure 1.3 must be cancelling the 2-handles Py I

%093

In other words we are justified in ignoring from the picture along with

a,,Q
2’73
two 3-handles. So Figure 1.9 along with one three handle is the picture of C4.

2 to C4. Hence to get 04 we must

Q4 is obtained by gluing p’% RP
add a 2-handle, a 3-handle and a 4-handle (upside down D2§ RP2) to C4 along
ac4. Since we don't draw 3 and 4-handles we only indicate the attaching circle
of the 2-handle y. y is attached along the standard circle which goes twice

around 523? S1 = 3C (see Section 0). 1In fact <y is attached as in Figure

1.13. To check this we apply the diffeomorphism a(c4) =~ sz?é S1 of Figures
1.9-1.12 to Figure 1.13; and we see that this diffeomorphism takes y to the
‘right' circle in Figure 1.12. The framing on vy 1is any odd number; so we
assign +1 framing as indicated in the figure. Hence Figure 1.13 along with
two 3-handles and a 4-handle is the handlebody of 04.

By doing the indicated handle slides to Figures 1.13 and 1.14 we get
Figures 1.14 and 1.15 respectively. Notice the 2-handle § in Figure 1.15
goes over the 1-handle a2 geometrically once (after an isotopy), hence it
cancels it. After this cancellation we will have one i1-handle, two 2-handles

(¢, and y) along with two 3-handles and a four handle left. We want to turn

1
this handlebody upside down; i.e. we want to draw it as two 1-handles, two

2-handles and one 3-handle and a 4-handle. To do this we draw the dual

2-handles o and 1, then we change the interior of the handlebody to

B3§<‘S1 # B3 x S1 via surgeries and handle slides, while carrying o and 1.

Then B3'>‘<‘S1 # B3x S1 and the 2-handles o,t (and a three and a four handle)
will be what we want.

To do this we go back to Figure 1.14 carrying along o and 1. We then re-
place the dots on the handles @, and a2 (i.e. surgery) and by an isotopy we
get Figure 1.16 (this is similar to going from Figure 1.9 to Figure 1.11).

After performing the obvious handle cancellation as in Figure 1.17 we arrive

at Figure 1.18. Then by doing the indicated handle slides to this figure we

get Figure 1.19. If we ignore o,t Figure 1.19 becomes just D2'§ RPz#Szx 02.

3 1

Hence in order to change the interior to B '§S1# B3 x S we have to
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(1) Surger the imbedded 32

(2) Blow down the RPZ
We surger 52 by putting dot on the unknotted 2-handle as in Figure 1.19. We
will blow down RP2 a little later (Figure 1.23 and Figure 1.24). By sliding
o over T twice in the obvious way we get Figure 1.20. We continue to call
the slid 2-handle by o. By isotopies we get to Figures 1.21, 1.22, By a
further isotopy (this time pulling the 1-handle around) we get Figure 1.23.
By blowing down RPZ (i.e. y) in Figure 1.23 we get Figure 1.24. After per-
forming the indicated handle slides and pulling the 1-handle to the standard
position we get Figure 1.25. After isotoping the ball at o into the picture
we get Figure 1.26 which is Q4 - int(B3§E SI).

Figures 1.27 through 1.33 give even a simpler handlebody for 04- int(B3§
S'). We go to Figure 1.27 from Figure 1.24 by an isotopy, then by the indicated
handle slides we get Figure 1.28 and then Figure 1.29. After isotopies and the
indicated handle slides we get Figures 1.30 through 1.33. Figure 1.33 is
Q4- int(B3’£ 31).
2. THE RIBBON IN D2x RP2

Let N4 = Q4 - int(B3'§ S1); N

4 is a fake Dzi' RPz. Figure 1.14 with one

3-handle is the handlebody of N4. This is because Figure 1.14 along with two
3-handles and a 4-handle is 04. Figure 2.1 is N4. This is because if wecan-
cel b with & we get Figure 1.14 back.

Let V4=N4 minus the handles by $§, then V4=C4 \J the 2-handle vy
attached by 0-framing, but sz RPZ=B3 3?31 \y the 2-handle vy attached by
0-framing (Section 0). Hence V4 is obtained from sz RPZ by replacing a
tubular neighborhood of the orientation reversing circle with C4. We will
show that V4 is diffeomorphic to sz RPZ. This answers a question of
Cappell and Shaneson ([K1] , problem 4.14-B).

To get V4 we ignore b and & from Figure 2.1 and add one 3-handle.
Then we do a handle slide (as indicated in Figure 2.1) to get Figure 2.2. By
another handle slide we get Figure 2.3. By cancelling the obvious pair of

handles from Figure 2.3 we get Figure 2.4 which is sz RP2~# Szx Dz. The three

handle cancels Szx D2 (check) and we end up with D2 x RPZ. Hence we have

shown that V4: D2x RPZ.

Now we go back to N4; i.e. we add back the handles b,$ to Figure 2.1,
If we carry along the handles b,$ during the diffeomorphism V4~D2x RP2 (as
in Figures 2.1-2.4) we get Figures 2.5-2.8. Along the way we slide the 1-han-
dle b over a 2-handle as indicated in Figure 2.5. By isotoping the 33 at
= into the picture we get Figure 2.9. After a handle slide and an isotopy we
get Figures 2.10 and 2.11. In Figure 2.11 the shaded ribbon disc is the ribbon
1-handle which D2x RP2 is twisted along to get N4. Reader can verify that

the 2-fold cover of Figure 2.11 gives the ribbon 2-sphere in 84 which is
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discussed in [AK4].

3. o # op? ~ wo? # op?

Recall Figure 1.19 after blowing ‘down RP2 (i.e. vY) gives N4=Q4-

83

x S]. Because in Section 1 we have seen that the blown down Figure 1.19 along

with a 3-handle and a 4-handle gives 04. To prove Q4 # (l:P2 ~ RP4 # 0:P2 it

suffices to show that N4 # ¢P2 ~ (D232 sz) # G:Pz.

We claim the loop p in Figure 3.1 is the trivial loop on the boundary.
This can be seen by going back to Figure 1.18 and sliding p over 1t and then
going back to Figure 1.15 and carrying p along. In Figure 1.15 p becomes
the trivial dual circle to &§. Since ¢ and Tt have zero framings we turn them
into 1-handles; they then cancel o, and y. After cancelling § with a2 p
becomes an unknot in 3(1333? 31).

Hence if we add a 2-handle to Figure 3.1 along p with +! framing it
corresponds connected summing with (I:Pz. We do this; and then by sliding o
over p we get Figure 3.2. An isotopy gives Figure 3.3. By a handle slide we
obtain Figure 3.4. After cancelling the obvious pair of one and two handles we
get Figure 3.5. We slide +1 framed handle over the O-framed handle it be-
comes free. Then we blow down RP2 and obtain Figure 3.6 which is (D2§ RPZ)
# ¢P2 we are done.

4. A FAKE sazs # 32x52

Recall Figure 1.24 is N4= Q4- int(33§ SI). By performing only one of the
indicated handle slides (the arrow pointing up) to Figure 1.24 we get Figure4.1l

By a diffeomorphism (see end of Section O) we get Figure 4.2. By surgering
Figure 4.2 (i.e. removing the dot) and then blowing down the cbvious RP2 we
get Figure 4.3. By isotopies we get Figures 4.4 and 4.5. By isotoping the

1-handle we get Figure 4.6 which we call M4. Since the surgery (removing the

0
dot) to Figure 4.2 is performed to a null homotopic loop, it corresponds to

taking connected sum with Szx Sz. Therefore N4# Szx 52= (Dz; RPZ) v} Mg

Since Q4 # Szx s2 is fake [CS] so is N# Szx S2. This implies that Mg

has to be a fake 33; S # Szx Sz, since any self-diffeomorphism of 82 S1

extends to B3; S # Szx Sz.

a(MOx I) 1is the double of Mg. This is standard because it is obtained
from Figure 4.6 by attaching two trivial (dual) 2-handles with O-framings (i.e.
an unknotted circle for each 2-handle which links it geometrically once). By

sliding the 2-handles of M4 over the new 2-handles we get

& & e e
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~ 2
which is (along with a 3-handle and a 4-handle) s3x S1 3‘ S x Sz.

~ 1 2
The fact that nglﬁs (B3xs # S

surgery exact sequence:

x Sz) x I follows from 5-dimensional

Lg (Z,-) + P(Xx1,3) » [Xx1/3;G/PL] ~ Ly (Z,~)

Q

where )(=33'>'ES1 # szx Sz. The first map is zero map (check) and [Xx I/3;

G/PL] =0 so #(Xx1,3)=0 and the claim follows (see [W]).
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Figure 1.3
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Figure 1.12
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Figure 1.26
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APPROXIMATING CELL-LIKE MAPS OF S4 BY HOMEOMORPHISMS

Fredric D. Ancel

ABSTRACT. We present a proof of FREEDMAN'S APPROXIMATION THEOREM:
A surjective map f£:S"+ 8" can be approximated by homeomorphisms
if (1) S(f) = {ye s"; diamf~ (y) >0} is a nowhere dense subset of
Sn, and (2) {f"1 (y) : ye S(f)} 1is a null collection (for every
€>0, {yeS(f) : diamf~(y) >¢} is a finite set). We then show
that these hypotheses can be weakened as follows. A suggestionof
R. D. Edwards allows us to replace (1) by: £ has a bald spot
(there is a non-empty open subset U of s™ such that

fFl£7U: £ lg » v is a homeomorphism). (2) can be replaced by:
S(f) 1is a tame zero-dimensional subset of s® (each point of
S(f) has arbitrarily small collared n-cell neighborhoods whose
boundaries miss S(f)).

1. INTRODUCTION
Let X and Y be compact metric spaces, and let £:X+Y be a map. For
€e>0, amap g:X+Y is within e of f if d(f(x),g(x))<e for every

xeX. f can be approximated by homeomorphisms if for every €>0, there is a

homeomorphism from X to Y which is within € of £. 1If the space Y is lo-
cally contractible (for instance, if Y is a manifold), then an easily veri-
fied necessary condition for f to be approximable by homeomorphisms is that
for each yeyYy, f-1 (y) contracts to a point in each of its neighborhoods in
X. This leads us to the following definition. A subset of X is cell-like if
it contracts to a point in each of its neighborhoods in X. The Whitehead con-
tinuum is a cell-like (but not contractible) subset of S3 of great renown.
The map f:X+Y is cell-like if f-1 (y) 1is a cell-like subset of X for each
ye Y. We shall consider the question of whether a given cell-like map between
spheres can be approximated by homeomorphisms.

For n#4, the approximation theorems of [A] and [S] imply that any
cell-like map £:5"+s" can be approximated by homeomorphisms. The proofs of
these results depend on techniques which are specific to dimension 3 or to high
dimensions, and which until recently had no analogues in dimension 4. M.
Freedman's August, 1981 construction of topological 2-handles in 4-manifilds
[F] changed this situation dramatically. Indeed, in July, 1982 (during the
conference whose Proceedings these are), F. Quinn used Freedman's work to obtain
a general theorem [Q] which has as a corollary that any cell-like map between
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4-spheres can be approximated by homeomorphisms. Freedman's construction de-
pends crucially on the fact that certain special types of cell-like maps be-
tween spheres can be approximated by homeomorphisms. We call this fact
Freedman's Approximation Theorem. Its ingenious proof (which works in all di-
mensions) is expounded below, along with proofs of several extensions. Thus
the general result that any cell-like map between 4-spheres can be approximated
by homeomorphisms follows from Quinn's work which in turn depends on the
special case established by Freedman's Approximation Theorem.

To state Freedman's Approximation Theorem and its extensions, we require
the following definitions. Again let X and Y be compact metric spaces, and
let f:X+Y be a map. The singular set of f, denoted S(f), is the set
{ye Y:f-1(y) contains more than one point}. Observe that for every ¢>0,
the set {ye Y:dian\f-1(y)'z €} is compact. Since
S(f)=tJi=:’{ye Y:diamf-1(y) > 1/i}, we conclude that S(f) is o-compact. A
subset of Y is nowhere dense if its closure has empty interior. A collection

€ of subsets of X is a null collection if for every e>0, {C €@:diamC > e}

is a finite set. Thus, if {f-1(y):ye S(f)} is a null collection of subsets
of X, then S(f) is a countable set. f has a bald spot if there is a
non-empty open subset U of Y such that flf-1U:f-1U*vU is a homeomorphism.
Thus, f has a bald spot if it is surjective and if cf® (f) # Y.

Let M be an n-manifold. An n-cell C in intM is collared if there is
an embedding of 3C x{0,1] in M~ intC which takes 23Cx {0} onto 3aC. AA

o-compact subset S of intM is tame zero-dimensional in M if each point of

S has arbitrarily small collared n-cell neighborhoods whose boundaries miss S
(in other words, for every ye S and every neighborhood U of y in M, there
is a collared n—cell C in M such that yeintC, CCU and (3C) NS = g).
We shall present proofs of the following theorems.
THEOREM 1: FREEDMAN'S APPROXIMATION THEOREM, A suriective map f:S"+s”
can be approximated by homeomorphisms if (1) S(f) is a nowhere dense subset of
s" and (2) e”! (y) * yeS(f)} is a null collection.

A suggestion of R. D. Edwards for reorganizing Freedman's proof of Theorem

1 leads to a proof of:

THEOREM 2. A map f:sne-sn can be approximated by homeomorphisms if

(1) £ has a bald spot and (2) S(f) 1is a countable subset of sm,

Finally an "amalgamation procedure” combines with a shrinking principle
due to R. H. Bing to yield:

THEOREM 3. A map £:5"+ 5" can be approximated by homeomorphisms if

(1) £ has a bald spot and S(f) is a tame zero-dimensional subset of st.

Before embarking on the proofs of these theorems, we make several remarks.

First, we note that the surjectivity hypothesis in Theorem 1 would be
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redundant in Theorems 2 and 3, because the bald spot hypothesis implies that
f is degree 1 and, thus, surjective.

Second, we note that although the hypotheses of these three theorems do
not explicitly state that f 1is a cell-like map, they easily imply that it is.
For let ye S(f). The tame zero-dimensionality of S(f) implies that £-1(y)
has arbitrarily tight closed neighborhoods whose frontiers are (n-1)-spheres.
These neighborhoods must be contractible. Hence 5_1(y) is cell-like.

In his construction of topological 2-handles in 4-manifolds, Freedman ap-
plies Theorem 1 at a crucial point to a map f£: 84*'84. The validity of this
application depends on S(f) being nowhere dense in 54. In Freedman's con-
text, S(f) is nowhere dense because its closure is a 1-dimensional subset of
54.

We close this section with some comments about the proof of Theorem 1,
including a comparison to M. Brown's proof of the Generalized Schoenflies
Theorem.

Freedman's Approximation Theorem might be regarded as a generalization of
{Br], because Brown's method of proof implicitly establishes the following:

THEOREM 0. A surjective map f:Sn¢ Sn can be approximated by homeomor-

phisms if S(f) is a finite set.

There is a superficial resemblance between the techniques used by Brown to
prove Theorem 0 and those used by Freedman for Theorem 1. We find it instruct-
ive to review the outline of Brown's argument for Theorem 0, to contrast the
two methods of proof, and to focus on the difficulties that must be overcome by
any proof of Theorem 1 which don't arise in the proof of Theorem 0.

To review Brown's proof of Theorem 0, consider a surjective map £:8" > "
with a finite singular set. First, one argues by induction on the number of
points in S(f) that for each ye S(f), f-1(y) is a cellular subset of Sn
(f—1(y) has arbitrarily tight n-cell neighborhoods in Sn). (This is a slight
oversimplification; in the actual proof, one must work with a map f:Bn->Sn
such that S(f) is finite and disjoint from f(aBn).) Second, one uses the
cellularity of the preimages of the points of S(f) to "shrink" these sets
independently to produce a homeomorphism approximating £. Neither of these
steps is possible under the hypotheses of Freedman's Approximation Theorem.
First, since S(f) may be countably infinite, no induction argument will es-
tablish the cellularity of the preimages of the points of S(f). Second, even
if the cellularity of the preimages of the points in S(f) is given in advance,
they cannot be shrunk independently. The problem is that a motion which
shrinks the larger preimage sets small may necessarily stretch some of the
smaller sets. The classic example of this phenomenon is Bing's null cellular

decomposition of 83 (B2] whose quotient map is not approximable by
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homeomorphisms because its quotient space is not S3.

In Freedman's proof of Theorem 1, the cellularity of the preimages of the
points of S(f) is never established in the course of the argument. It fol-
lows only after the proof is finished as a consequence of the conclusion of the
theorem.

Freedman's proof is not a traditional "shrinking argument" in the sense of
decomposition space theory. It has a more complex logical structure. Instead
of shrinking the large point inverses of £, it uses a replication device
which makes the large point images of f disappear at the cost of complicating
the logical framework of the argument. Specifically, the replication device
forces the use of relations which are neither maps nor their inverses. In
fact, the approximating homeomorphism which is the goal of the proof arises as
the limit of such relations. For this reason, simple techniques for manipu-

lating relations appear.

2. TWO LEMMAS

We introduce some terminology and establish two lemmas which find use in
the proofs of Theorems 1 and 2.

The first lemma 1s a general position property of countable subsets of
manifolds. The following remarks about the homeomorphism group of a compactum
are included to simplify its proof.

Suppose X is a compact space with metric p. Let J#(X) denote the
space of homeomorphisms of X with the compact-open topology. (One basis for
the compact-open topology on #(X) consists of all sets of the form
{he?X):hC 0} where 0 varies over the open subsets of Xx X.) The com-
pact-open topology on H(X) 1is induced by the "supremum metric" o¢ which is
defined by o(g,h) = sup{p(g(x),h(x)):xe X}. Although o is generally not a
complete metric on H(X), a complete metric T onHYX) 1is easily produced in
terms of o by the formula Tt(g,h) = o(g,h) + 0(9-1,h_1). For a subset A of
X, define J(X,A) = {hedAX):h|A=1|A}. If A CX, then H(X,A) 1is a closed
subset of H#(X); hence, the complete metric 1 on H(X) restricts to a com-
plete metric on H(X,A).

Two subsets S and T of a metric space X are separated in X if
(c28)NT=g=5 N (AT) (or equivalently if there are disjoint open subsets U
and Vof X such that SC U and T C V).

LEMMA 1. Let M be a compact manifold.

(1) 1f S 1is_a countable subset of intM and T is the union of a

countable number of nowhere dense subsets of M, then 1|M can be approximated

by homeomorphisms h of M such that h(S) N T=g and h|aM = 1|3M.

(2) If S and T are countable nowhere dense subsets of intM, then

1|M can be approximated by homeomorphisms h of M such that h(S) and T are
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separated in M and h|aM = 1|3M.
PROOF OF (1). Let S={s }, and let T=U;=1Tj where each T, isa

nowhere dense subset of M. For each i>1, let Ui i
!

{he oM, 3M): h(si) 4 cl’l‘j}. It is easily seen that each Ui P
Hl
subset of H(H,9M). Since H(M,3M) has a complete metric, we conclude via the

is a dense open

Baire Category Theorem that ni:; j:]. Ui,j is a dense subset of .}?’(bl,f:’M)o.o
Statement (1) nowfollows because 1|M can be approximated byelementsof ni=lj=l Ui,j'
PROOF OF (2). Assume S= {si} and T={t.} are countable nowhere dense
subsets of intM. For each i>1, let Ui- {hedM, M) : h(si) ¢ c2T} and let
Vi= {h e¥M, M) : ti £ hic S)}. It is easily seen that each Ui and each Vi
are dense open subsets of #(M,3M). As above, since (M,3M) has a complete

metric, the Baire Category Theorems implies that ﬂi=w(Ui N Vi) is a dense

subset of S¥M,3M). Statement (2) now follows becausl. 1|{M can be approximated
by elements of ﬁi;:(Ui N Vi)'

The second lemma concerns relations. It is used in the proofs of Theorems
1 and 2 to guarantee that the sequences ofrelations which are produced in these
proofs converge to homeomorphisms. In order to streamline the next lemma and
the proofs of Theorems 1 and 2, we now establish some notation for relations
which generalizes theusual functional notation.

Let RC XxY; i.e., R 1is a relation from the set X to the set VY.

Define
R - {(y,X) € Yx X: (x,y) € R} .
If sCyx2, define
SeR = {(x,z) € Xx2: (x,y)eR and (y,2)eS for some yeY} .

If xeX, define R(x)={ye Y: (x,y)eR}. Thus for vyeyY, R-l(y) =

{xe X: (x,y)eR}. If xeX, then R(x) is called a point image of R; and
if yeY, then R-l(y) is called a point inverse of R. If A C X, define
R(A)=U{R(x): x ¢ A} and define R|A=R N (AxY).

LEMMA 2. Let R be a closed subset of XxY where X and Y are compact

metric spaces. Suppose T 1is a closed subset of X, €>0 and diamR(x) <e

for every xe¢ X-T. Then there is a closed subset N of XxY such that

R|X-T CintN, diamN(x)<e¢ for every x¢e X-T, and N|T = R|T.
PROOF. Let M] 2 M2 o) M3 D <+« be a decreasing sequence of closed
neighborhoods of R in Xx Y such that ni

L3

=1Mi= R. We assert that if A is a
compact subset of X-T, then for some i>1, diam Mi (x) <e for every xceA.

For otherwise, there are sequences {(xi,yi)} and {(xi’zi” in AX Y such that
£ P> s . . .

or each i>1, (xi,yi) and (xi,zi) lie in Mi and d1am{yi,zi}3e. Since A
and Y are compact, then by passing to subsequences, we can assume that the

sequence {xi} converges to a point x in A, and that the sequences {yi}
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and {zi} converge to points y and z, respectively, in Y. Consequently,

diam{y,z} >e. Also since R=ni=n;Mi, it follows that (x,y) and (x,z) belong

to R. Hence y and z belong to R(x). Since diamR(x) <e, we have a con-
tradiction. Our assertion follows.

Let {Ai} be a sequence of compact subsets of X-T such that
Ai C int Ai+

for each i>1, and U = X-T. Set A0=¢. The above

«©
1 i=18i
assertion implies that by passing to an appropriate subsequence of {Mi}, we

obtain a decreasing sequence N1 D N2 D N3 D +++ of closed neighborhoods of

R such that ni___:’Ni = R and for each 1i>1, diam Ni (x)<e for every xe Ai'
Set N= (121 NiIAi) U (R|T). We find it convenient to define, for each i>1,

a closed neigl:borhood Pi of R in XxY by setting Pi= (Uj:’ulej) U Ni'

Then N = ﬁi=1Pi; so N is a closed subset of Xx Y. For each i>1, since
P |A, = N|A;, then R|intA, CintP [intA, C intN; it follows that

R[x—T C intN. For each i>1, if xe Ai —Ai then diamN(x) =diam Ni (x) <e;

-1’
hence diamN(x) <e¢ for every xe X-T. Clearly N|T = R|T.

3. FREEDMAN'S APPROXIMATION THEOREM

A map f: B"+B" is admissible if flaBn = 1|aBn, S(f) 1is a nowhere
dense subset of B", cgS(f) C intB", and (f-i(y): ye S(f)} is a null col-
lection.

We shall now argue that Freedman's Approximation Theorem reduces to:

THEOREM 1A. Every admissible map f£: B" » " can be approximated by

homeomorphisms.

PROOF OF FREEDMAN'S APPROXIMATION THEOREM FROM THEOREM 1A. Assume Theorem
1A. Suppose f: Sn» s" is a map with a nowhere dense singular set whose point
inverses form a null collection. Let €>0. Since S(f) is nowhere dense,
there is acollared n-cell C in Sn-czS(f) of diameter < e. The Generalized
Schoenflies Theorem [Br] produces homeomorphisms ¢: Bn*clusn-qu) and
™A Bn+csl(sn- C); furthermore ¢ can be adjusted so that wlaan £ o<p]aBn.
Then wq. fog: 8"+ B" is an admissible map. The uniform continuity of ¢
provides a §>0 so that ¢ carries any set of diameter <§ to a set of
diameter <e. Theorem 1A gives us a homeomorphism g: B"+ 8" which is within
§ of v 'e feg. It follows that wegoe¢ ':c¥s"-£7'¢C) »cs"-C) is a
homeomorphism which is within e of flcz(sn- f-1C). Since ye ge (p-‘ maps
£ (ac) homeomorphically onto 3C, and since diamC<e, then yego q)_1
extends to a homeomorphism of Sn which is within e of f£.

The geometric idea lying at the heart of the proof of Freedman's
Approximation Theorem is a very simple replication device which is crystallized
in the following lemma. In this lemma, the pre-image pattern of the given ad-
missible map ¢ on cp-1D is replicated by a new admissible map ¢ on w-1D; and

: . . . . -1 -1
the replication is witnessed by a homemorphism X: ¢ D=+ ¢ D such that
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Yoy = Q|¢-1D. We foreshadow the proof of the theorem to the extent of re-
marking that this replication allows us to replace the map ¢ by a relation
R which equals x on q>-1D and which equals \l'-lo 9 on 8" - ¢-1D. R rep-
resents an improvement over ¢ in that it has no non-trivial point inverses in
¢-1D. The apparent disadvantage of this procedure is that it exchanges a map
for a relation.

We need the following terminology for the lemma. ILet | | denote the

n 2%

Euclidean norm on R ; i.e., x| = (Ei-lxi )* for x= (x ""'xn) e R.

1
An n-cell C in Rn is round if there is a point x in R" called the

center of C and a positive number r called the radius of C such that
C={ye R : |x=-y|< r}. Note that if C is a round n-cell in B" and D is a
compactum in intC, then a homeomorphism o: C+ B" such that o|D = 1|D 1is
easily obtained by sliding along the radial structure emanating from the center
of C.

LEMMA 3 (THE REPLICATION DEVICE). Suppose ¢: Bn-> Bn is an admissible

map, C and D are each the union of a finite number of disjoint round n-cells

in intB", D CintCc and S(p) N 3D=¢g. Then there is an admissible map

n n . -1 -1 -1
$: B +B and a_homeomorphism x: ¢ D+y D such that vex = ¢lp D,

¥ (intC) = intC, ¢ restricts to the identity on B" - intC, S(v) N3D=g, and
S(¢)-D and S(¢)- D are separated.

¢ \
6

N N
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PROOF. c=ui=':ci where each Ci is a round n=-cell in intBn. We shall

define Y so that for each i, 1<i<k, \l)IC: Ci+ Ci is a minaturized replica

of ¢.
Let 1<i<k. Let D, = D nCi' We shall construct a homeomorphism

n -1
T Ci*B such that tiIDi— 1|Di, and S(tp)—Di and T, (S(w))-l)i are

separated. To begin, there is a homeomorphism oi: Ci->Bn such that c!i|Di =
1|Di. Since S(¢) and a (S(tp)) are countable and nowhere dense, then we can
apply Lemma 1 in Ci- int Di to obtain a homeomorphism k of C1 which re-

stricts to the identity on Di U (aci) such that 7\ (c (S((P)) - . and

S(¢) N (th -D;) are separated. Since cfS(¢) C 1ntB , then
m 00 (S(rp)) C int C . It follows that A ° c (S(tp)) -D and S(¢) -Di

are separated. The desn:ed homeomorphism Ti is obtamed by setting ‘ti
= 0,0 x 1
i

Defme the map : 13"-»13n by

e ge on C. for 1<ic<k
1 1 1 -_— -

1 on Bn- intC

Since S(V) = Ui=]; 1;1(S(q))), it is easily verified that ¢ is an admissible

map, S(v) N3b=g, and S(¢)~-D and S(¢)-D are separated.

- -1 -1
Since ¥ 1Di = Ti] (¢ D y for 1<i <k, then a homeomorphism

X: ¢-1D->‘1)-ID is defined by setting x|¢ D =r;1|¢-1Di for 1<iek.

Clearly VeXx = o|9 o m

PROOF OF THEOREM 1A. The proof is inductive. The induction step, which
has a rather technical statement, is isolated in Lemma 4 below.

We begin by describing the strategy of the proof. Let f: B"+B" be an
admissible map. Let ¢€>0. Set No= {(x,y) ¢ B x B™: [£(x) -y| < e}, No is
a closed neighborhood of f in an Bn. Our goal is to produce a homeomorphism
h: B" + 8" such that h C NO' This will be accomplished by constructing a de-

creasing sequence N0 DN, D N2 D ++* of closed subsets of B" x B” with the

1
property that for each 1i>1 and every xce Bn, Ni (x) and N;I(x) are non-empty

sets of diameter < 1/i. Upon setting h=N, we see that h: Bn-v Bn is

"N
i=0i '
a bijection which is, in fact, a homeomorphism because it is a closed subset of
Brl x Bn.

Before we give more details, we find it convenient to introduce one more

bit of terminology. A relation R C 8" x 8" is admissible if
R=h Ug e £]£ (8" - inta)

where
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(1) f: 'Bn* 8" and g: Bn-» B" are admissible maps,
(2) A is the union of a finite number of disjoint round n-cells in
intB" such that (S(f) US(g)) N 3A=g and S(f)-A and

S(g) - A are separated, and

(3) h: f-1A - g-1A is a homeomorphism such that geh = f|f-1A.
f-'IA h g-IA
N N
Bn R l3n
N 4
g"

1

- Let R=h U 9- . flf_l(Bn- intA) be an admissible relation in an Bn,

where £,g9,h and A are as prescribed above. We observe that R is a closed
subset of B" x B". This is a consequence of two statements. First £,g and h
are compact because each is a continuous function with compact domain and
range. Second, the operations of inversion, composition and restriction over
a closed set all transform compact relations into compact relations. We also
observe that the inverse of an admissible relation is admissible.

We now give the details of the proof of Theorem 4. Set R0= f; then R0
is an admissible relation (with g= 1|Bn, A=g and h=g). The closed neigh-
borhood N0 of RO has already been defined. We shall construct a sequence
{Ri} of admissible relations in B"xB" and a sequence {Ni} of closed sub-

sets of B" x Bn such that for each i>1 the following conditions hold.

(11) R cintNi_ ’ diamR?(y) < 1/i+1 for every ye Bn when i is

i 1
odd, and diamRi(x) < 1/i+1 for every xe€ B” when i is even.

(21) N, 1is a closed neighborhood of Ri in B" x B" such that NiC Ni-l ,

diamN?(y) < 1/i+1 for every ye Bn when i 1is odd, and
diamNi (x) < 1/i+1 for every xce¢ Bn when 1 is even.
R. and N, are already in hand. We proceed inductively. Let i>1 and

0 0
assume we have an admissible relation Ri- and a closed neighborhood Ni-

1 1

of Ri-‘l in B" x B". We obtain Ri satisfying (1i) via Lemma 4 below. When i

is odd: we apply Lemma 4 by substituting (Ri_1 , 1/7i+1, Ni-1) for (R,e,N);

then Lemma 4 produces R and we set R, =R,. When i is even: we apply

% *

_1) for (R,e,N); then Lemma 4 pro-

* ’
Lemma 4 by substituting (R:1 , Vi1, Ni-
duces R,, and we set R, = R:1.

Next we use Lemma 2 to obtain Ni satisfying (21). When i 1is odd: we

apply Lemma 2 by substituting (Bn,Bn,R;1,¢,1/i+1) for (X,Y,R,T,e); then

Lemma 2 produces N, and we set Ni=N-1n Ni— . When i is even: we apply

1
Lemma 2 by substituting (Bn,Bn,Ri,¢,1/i+‘l) for (X,Y,R,T,e); then Lemma 2
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produces N, and we set Ni=NnNi_1.
Let i>2. Since Ri is admissible, then Ri(x) and R?(x) are

non-empty for every xe B". Since Ri C Ni C Ni-1 ’

ply that Ni (x) and N?(x) are non-empty sets of diameter < 1/i for every

n
xeB .

then (zi_1) and (2i) im-

LEMMA 4. If R cB"xB" is_an admissible relation, €>0, and N is a

closed neighborhood of R in B" x B", then there is an admissible relation

R*CanBn such_that diamR:1(y) < e for every ve " and R, C intN.
PROOF. Since R is admissible, then R=h U g-1° flf_1 (Bn— inta),
where f,g,A and h are as prescribed in the definition of "admissible rela-
tion". Let Z={zeS(f): diamf—](z) >e}l -A,Z 1is a finite subset of int Bn
because £ is an admissible map. The significance of 2 1is that
(f-’(z): ze 2} = {R_1(y): ye Bn and diam R-I(y) > €}, and the latter set is
precisely the set of point inverses of R whose diameters must be reduced.
Here is a rough idea of how we proceed. We enclose 2Z in the union D
of a finite number of small disjoint round n-cells in intBn. Then we use the
Replication Device (Lemma 3) to modify the map g so that the preimage pattern
of f on E—ID is replicated by g on g-1D. This allows us to redefine R on

f_1D so that it carries E-1D homeomorphically onto g_1D. In this way, the

large point inverses of R simply vanish at the expense of complicating the
structure of the map g.

There is a finite collection C1,<:2,...,Ck
intB"  such that if c=ui=';c. , then zCintC, C N(AU cyS(g))) =4, and
f_lci x 9-10i CintN for 1<

of disjoint round n-cells in
1 .
i<k. The second condition can be achieved be-
cause S(f)-A and S(g)~A are separated, and 2 is a finite subset of
S(f) - A. The third condition holds automatically for Ci's of sufficiently
small diameter because for each z¢ 2, f-1(z) x 9-1(2) = R]f-l(z) C int N.

(The third condition will be used to insure that R, C intN.) Since S(f) is
a countable set, then for each i, 1<i<k, there is a round n-cell Di such
1

We now apply Lemma 3 with £ in the role of ¢, to obtain an admissible
1

that D, CintC, and if D=U D, then 2z CintD and S(f) N aD=g.

map Y 13"->Bn and a homeomorphism x: f-1D - -l:- D such that Ye x= flf-1D,
p(intC) =intC, ¢=1 on B"-intC, S(y) N 3D=g, and S(f)-D and S(y)-D
are separated.

We define the map g,: B" - B" by g,=V g. Since S(y) C C and
C Ncfs(g) =@, then evidently S(g,) = S(y) U S(g) and g, is an admissible
map.

We set A ,=A UD. Then A, is the union of a finite number of disjoint
round n-cells in intB". It is easily verified that (S(f) U S(g,)) N 3A,=0

and that S(f)-A and S(g,)-A are separated.

* *
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Since C N(AUCcHS(g))) =¢ and v 'bCc, then g;lA*=g-1A U g"1 w ')
and g_] I'qu is a homeomorphism. Hence a homeomorphism h,: f-1A* + g:lA*
is defined by setting h*lf—1A=h and h*lf-jD = g-lo X. It follows easily
that g,eh, = £1£ 'a,.

Finally, an admissible relation R, C B" x 8" is defined by setting
R =h, Ugl's £/ (B"-inta,).

Note that R, =h,' U g

- - . -1 -1
diamR*1(y) >0 then ye:g*1 (Bn-lntA*) and R, (y) = £ ( g*(y)). Z,D and A,

° g*IgII(Bn-—intA*). Hence, if yr»:Bn and

are chosen to guarantee that {ze S(f): diam f-T(z) > e}CintA,. sSince

g,ly) £ inta,, it follows that dimnf-ug*(y)) < e. Thus dimmR:uy) < e.
Lastly, we demonstrate that R, C intN. First, since g:1~ = g-1 on

B"-intC and h,=h on £ 'A, it follows that

R*lf-1 (8" - int ©) =R|f-l(Bn— intC) C intN. Second, we use the equation

g,eh, = fif-1A* to deduce that h,C 9:10 £; therefore, R, C g:10 f. For

1<i<k, since W¥(C;) =C,, then 9:1(Ci) = Q-I(Ci)- Therefore, for

1< i< k,

1

-1 -1 - -1 -1 - -1 .
R JE'C; Cg e £]f c, C£ (C)xg, (C)) = £ () xg (C;) CintN.

Consequently, R*lf-1c C intN. It is now evident that R, CintN. #

4. MAPS WITH A BALD SPOT

The proofs of Theorems 1 and 2 are quite similar, and we rely on the
reader's familiarity with the proof of Theorem 1 at several points in the proof
of Theorem 2. We feel the reader may be aided, if we pause here to draw some
comparisons between the two proofs.

The proof of Theorem 1 produces a homeomorphism by an infinite process
which alternates between excising point images and point inverses of an admis-
sible relation. Successive steps in this process apply the replication device
to "opposite sides" of the relation. The ability to "switch sides" repeatedly
depends on the point images and point inverses of the relation being separated
(when viewed in the appropriate space). Disjointness alcone is. not sufficient.
This separation can be achieved only because the singular set of the original
map is nowhere dense.

When the singular set of the original map is countable but not necessarily
nowhere dense (as in Theorem 2), then the replication device yields relations
whose point images and point inverses can be made disjoint but can't necessarily
be separated. This injects serious complications into the plan to produce a
homeomorphism by a process which deals alternatively with point images and
point inverses. Fortuitously, we find that we need not focus on approximating
the original map by a homeomorphism. Instead, as is shown below, in the re-

duction of Theorem 2 to Theorem 2B, it suffices to approximate the inverse of
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the original map by a special kind of map, called an "acceptable" map. As a
result, we can concentrate on eliminating point inverses, and we can ignore
point images. Our inability to separate point images and point inverses will
not hamper us, because we shall apply the replication device (repeatedly) on
"one side" only. (Since we wish to excise point inverses, we apply the repli-
cation device on the left or domain-side of the relation.) (We shall find it
necessary to preserve the disjointness of the point images and point inverses
for technical reasons, to insure that the map which is the limit of infinitely
many left-sided applications of the replication device is acceptable.) Thus,
at the expense of adding another reduction step to the proof, we are able to
get by with repeated applications of the replication device on one side only,
and we avoid having to separate point images and point inverses. The observa-
tion that infinitely many left-sided applicationsof the replication device lead
to a map approximating the inverse of the original map is due to R. D. Edwards.
It is this observation which makes it possible to replace the hypothesis that
the singular set of the original map is nowhere dense by the bald spot hypothe-
sis.

In Theorem 2, we have replaced the hypothesis that {5_1(y): ye S(f)} be
a null collection by the weaker hypothesis that S(f) be countable. This is
an advantage, because the countability of S(f) 1is the easier of the two hy-
pothesis to detect and to preserve throughout the inductive process of the
proof. Furthermore, the weaker hypothesis poses no additional difficulty in
the proof for the following reason. Let £f: X+Y be a map between compact
spaces, let €>0, and consider the compact set {ye S(f): diamf-1(y) > el
Under the stronger hypothesis, this set is finite; while under the weaker hy-
pothesis, this set is compact and countable. We must deal with such a set in
the proof of the Replication Lemma, where we must enclose it in the union of a
finite number of small disjoint round n-cells. Fortunately, this can be ac-
complished for a compact countable set almost as easily as it can for a finite
set.

The notions of "acceptable map" and "acceptable relation®" appear in the
proof of Theorem 2 in roles corresponding to those played by "admissible map"
and "admissible relation" in the proof of Theorem 1. A map £: B" -+ g" is ac-
ceptable if f[aBn = 1|aB" and S(f) 1is a countable subset of intBn.

Theorem 2 reduces to:

THEOREM 2A. Every acceptable map f: 8"+ 8" can be approximated by hom-

eomorphisms.
PROOF THAT THEOREM 2A IMPLIES THEOREM 2. This proof is essentially the same
as the proof that Theorem 1A implies Theorem 1. In this case, to locate a

small collared n-cell C in the complement of the closure of the singular set,
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one uses the bald spot hypothesis rather than the nowhere density of the singu-
lar set.

Theorem 2A, in turn, reduces to:

THEOREM 2B. If f£: B"+B" is an acceptable map and N is a neighborhood

; n__n
of f in 8" x B", then there is an acceptable map g: B »B  such that

gn1 C N.

Theorem 2A is proved by repeated application of Theorem 2B, the output of

Theorem 2B at one stage being used as the input at the next. Thus, the essen-
tial property of the map g produced by Theorem 2B is that it is acceptable.
Indeed, general principles tell us that since the acceptable map f: B" » Bn is
cell-like, it is a fine homotopy equivalence [H] and automatically gives rise
to a map g: 8"+ 8" such that g_1 C N. However, this information is of no
use in proving Theorem 2A unless g is known to be acceptable.

PROOF OF THEOREM 2A FROM THEOREM 2B. Assume Theorem 2B. Let £: Bn-*Bn
be an acceptable map. Let ¢€>0. Set f0= f and No-
{(x,y) ¢ B"xB": [£(x) -y| < e}. N, is a‘closed heighborhood of £, in
B" x Bn. We seek a homeomorphism h: Bn+Bn such that h C No. To this end,
we shall construct a seqguence {fi} of acceptable maps from B" to itself,
and a sequence {Ni} of closed subsets of an Bn such that the following
conditions hold.

() £;1C intnN, .
(2;) N, is a closed neighborhood of £, in B"xB" such that N, C N;_‘_‘

and diamN, (x) <1/i+l for every x ¢ 8.

We already have fo and No. We proceed inductively. Let i>1 and assume
we have an acceptable map fi-1: Bn-'-Bn and a closed neighborhood Ni-l of
fi-l in B"xB". we apply Theorem 2B to obtain an acceptable map fi: B" -+ 8"

such that le Cint Ni— Since diam fi(x) =0 for every xc¢ Bn, then Lemma 2

1
provides a closed neighborhood N of fi in B"x 8" such that diamN(x) < 1/4A+1

-1 ). Then fi and N

for every xe Bn. Set Ni =N r\(Ni_1

(2;).

i satisfy (11) and

Clearly N_ D N2 D N4 D +++ is a decreasing sequence of closed subsets

0
of B"xB". Also for every 1i>2 and every xe Bn, since fi(x) and f;’(x)

are non-empty, then (2i) implies that Ni(x) and N;I(x) are non-empty subsets

of diameter < 1/i. It follows that h=nN .

. . = n
1=0N2i is a homeomorphism of B

which lies in NO.

As the discussion at the beginning of this section suggests, the central

geometric idea of the proof of Theorem 2 is, as before, a replication device.
This device is codified by the following lemma. Notice that the direction of

the homeomorphism x 1is the opposite of its direction in Lemma 3.



156 FREDRIC D. ANCEL

LEMMA 5 (THE REPLICATION DEVICE). Suppose ¢: B" +B" is an acceptable

map, C and D are each the union of a finite number of disjoint round n-cells

in intBn, and T is a countable subset of intC such that D CintC and

S(¢) N 3aD=g. Then there is an acceptable map ¢: B"+8" and a homeomorphism
X2 w—iD-np—'D such that ¢@ex = -l:lxv_iD, Y(int C) =int C, ¢ restricts to the
identity on B -intC, and [S(¥) U ¢(T)] N [3D U (S(g) - D)] = &.

PROOF. C = Ui=1 Ci where each Ci is a round n-cell in intB". As in
the proof of Lemma 3, for each i, 1<i<k, wlciz Ci-> Ci will be a miniatur-
ized replica of .

Let 1<i<k. Let Di=D ﬁCi and Ti=T ﬂci. We begin with a homeo-
morphsim oi: Ci->Bn such that oiIDi = 1|Di. Since S(¢) and o?(s(«g))
are countable, then we can apply Lemma 1 in Ci- int Di to obtain a homeomor -
phism )‘i of Ci which restricts to the identity on Di ) (aci) such that
Ai(o;I(S(cp))) N (S(¢) - D) = g. Then ).i(o;1 (S(e))) N 3D = 4, because
S(¢) N3ID =g and o, and )‘i fix 3D. We now define the homeomorphism
T Ci*Bn by T =050 x?. Then 'rilDi = 1|Di and
1;1(8“’))_10 [3D U-(f(cp) - D] = 4. Since S(r?o @ o'ri) = t;](S(q;)), it follows
that (1i o qo ri) [a3D U (S(9) - D)] 1is the union of a finite number of
(n-1)-spheres and a countable set. Hence we can apply Lemma 1 in C, to ob-
tain a homeomorphism My of Ci whic:h restris:s to the identity on aci such
that ui(Ti) is disjoint from (ri ° @ ori) [aD U (S(¢) - D]. Consequently,
(Ti oot e ui)(Ti) N (3D U (S(¢) - D)] = &.

Define the map ¢: Bn-» 13n by

T,000T, u, on C for 1<i<k
i i i -

1 on Bn— intC

Since S(y) = Ui=1 1;1 (S(¢)), it is easily verified that ¢ is an acceptable

map, and that [S(y) U y(T)] N [3D U (S(¢) - D] = 4.

Since T e ui(w_1Di) = :p-IDi for 1<i<k, then a homeomorphism

x:v " 'D>¢ "D is defined by setting xlw"vi =1 "i"”-lDi for 1<ic<k.
Clearly g¢geyx = Mw_1D.

PROOF OF THEOREM 2B. The proof is inductive, and the induction step is
isolated in Lemma 6 below.

We first describe the strategy of the proof. Let £:8"+ B" be an ac-

ceptable map, and let N be a closed neighborhood of £ in B” x Bn. We seek

0

n . . . . .
an acceptable map ¢:B +B" whose inverse lies in NO' To obtain g, we first

construct a decreasing sequence No o N1 D N2 D .+« of closed subsets of

an B" such that for each i> 1:
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(1) Ni|a13n = 1]98",

(2) N'i_‘(y) is a non-empty set of diameter <1/i for every y € Bn,

and

(3) {xe B": diamNi(x) > 1/i} is a countable set.
Then we set g= (UizoNi)_" Condition (2) forces g to be a function from
8" to itself. g is continuous because it is a closed subset of an Bn.

Condition (1) implies that glaBn = IISBn and S(g) C intB". Since

s(g)C v ixe B": diamNi(x) > 1/i}, then condition (3) forces S(g) to be a

i=

countable set. We conclude that g is an acceptable map. Obviously g-1C N

Before proceeding with the details of the proof we establish the defini-
tion of "acceptable relation” and several other convenient bits of notation.
Notice that in passing from admissible relations to acceptable relations, h
changes from a homeomorphism to a map and its direction is reversed. A re-
lation RCB"xB" is acceptable if

1

R=n'U g e ££7 (8" - inta)

where
(1) f:B“-»Bn and g:Bn->Bn are acceptable maps,
(2) A 1is the union of a finite number of disjoint round n-cells in
intB" such that (S(f) U S(g)) N 3A=¢ and

(S(£) -A) N (s(g) -A)=¢, and
1

(3) h:ig A- £'a is a map such that f0h=g|g_1A and S(h) is a
countable subset of f-l(int A).
- h -
£ ¢ g7
n N

Bn R Bn
;\\\\\ ////::
Bn
Let R CXxY be a relation. Define
o(R) = UR ' (y): yeY and R '(y) contains more than one point}
and define

T(R) = {xe X: R(Xx) contains more than one point}.

Now let R CB"xB" bean atceptable relation. Then R =
ntlu g—lo f{f-l(Bn - int A) where f,g,h and A are as prescribed in the
direction of "acceptable relation'. We make four observations.

(1) R 1is a closed subset of 8" x B”

(2) RJaB" = 1]a8"

(3) o(R), T(R) and 3B" are all disjoint.

0"
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(4) For each €>0, {xe¢ Bn: diamR(x) > ¢} 1is a compact countable set.

The first observation is valid for the same reason that an admissible relation
is a closed set. Observation (2) is clear. The third observation follows
from the equations: o(R) = f-1(S(f) -A) and 7t(R)=S(h) U f_1(S(g) -A). It
follows that o(R) U t(R) C int Bn. Also since (S(f)-A) N (S(g)-A)=¢g and
sthy C£ '(A), it is clear that o(R) N T(R) =g. To prove observation
(4), note that ({xe B": diam R(x) > €} is the union of the two sets
{xe S(h): diamh(x) > e} and f-1 ({ze S(g): diamg-1(z)_>_e) - intA). These two
sets are compact and countable because S(h) and S(g) are countable and
(S(f) -A) N (s(g) - A) =4.

We now give the details of the proof. Set R _=f; then R is an ac-

0 0

ceptable relation (with g-= 1|Bn, A=¢g and h=g). The closed neighborhood N0

of R0 is given. We shall construct a sequence (Ri} of acceptable relations

in B"xB" and a sequence {Ni} of closed subsets of B"xB" such that for
each i>1, the following conditions hold.

=1
. . < 1/i
(1i) Ri C Ni—1' Rilo(Ri) () thi_ and chamRi (y) 1/i for every

1

yeB .

s n n . -1 :
= <

(21) Ri ( Ni c Ni—1'nRil°(Ri) Cmt;Ni, Ni|3B 1138, dlamNi (y) 1/1

for every yeB ', and {xeB: diamNi(x)_>_l/i} is a countable set.
RO and N0 are given. We proceed inductively. Let i>1 and assume we
have an acceptable relation Ri-l and a closed subset Ni-1 of B"x B" such
that Ri-1 CNi-l and Ri—1|°(Ri-l) C int Ni-1' We apply Lemma 6 below to ob-
tain Ri satisfying “i)' by substituting (Ri-1 , /1, Ni—1) for (R,e,N).

Then Lemma 6 produces R*,

and we set Ri= R,.
To obtain Ni satisfying (Zi), we must apply Lemma 2 twice. First, since
diam R-; (y) < /i for every ye Bn, Lemma 2 provides a closed neighborhood

1

L of Ri_ in B"xB" such that diam L(y) < 1/i for every vye Bn. For the

second application of Lemma 2, we set
n_ .. . n
T = {XxeB :d1amRi(x) >1/it U .

Since {xeB":diam Ri {x) > 1/i} is compact, then T is a closed subset of
B". Also a(Ri) C B%-1T because T Ct(Ri) U 3", Lemma 2 now provides a
closed subset M of an Bn such that Ri|Bn- TC int M, diamM(x) < 1/i for
every xeB -T, and M|T = R,|T. It follows that R, |o(R,) CintM because
o(R)) C B"- T, and that M|3B" = 1|3B" because 98" C T and R, 28" = 1]28".
Thus {xe an diam M(x) > 1/i} coincides with the countable set

{xeB"1diamR, (x) > 1/i}. We conclude that (2,) is satisfied if we set
Ni=L-1ﬂ MON_ . . )
Let i>1. Note that Ri (y) # 4 for every yeB because R is ac-

i
ceptable. Thus, (Zi) implies that Ni-.I (y) is non-empty and of diameter < 1/i
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n n
for every ye B". Also NiCN. ,NiIaB =1|3B , and

i-1
{xe B": diam Ni (x) > 1/i} is a countable set. Now, as we argued earlier, an

- . s e o -1,
acceptable map g:Bn-»Bn such that g 1C No is specified by g= (ni=0Ni) P

LEMMA 6. If RC B"xB" is an acceptable relation, e€>0 and N is a

closed subset of B" xB" such that RCN and R|o(R) CintN, then there is

. -1
an_acceptable relation R, C B” x p" such that diam R, (y) <e for every

ye 8", R,C N and R,|0(R,) CintN.

o £1£7 (8" - inta)

PROOF. Since R 1is acceptable then R=h-.I U g-
where f£,g,h and A are as prescribed in the definition of "acceptable rela-
tion". Iet 2 = {ze S(f): diam f_1(z) > e}-A. Z 1is a compact countable subset
of intB"™ -A because S(f) is a countable subset of intB"- 3A. The signifi-
cance of Z isthat {fﬁl(z) tzell = {R-l(y): y e B" and diamR_l(Y) > e}, and the
latter set is precisely the setof point inverses of R whose diameter must be reduced.

We proceed as we did in the proof of Lemma 4. We enclose 2 in the
union D of a finite number of small disjoint round n-cells in int B”. Then
we use the Replication Device (Lemma 5) to modify g so that there is a
natural map from g-lD to f—1D. We can then alter R on f-1D so that le-1D
is the inverse of this map, thereby eliminating all the non-trivial point in-
verses of R arising from points of g_1D. In particular, this eliminates all
point inverses of R of diameter >e.

For each ze Z, since f_1(z) x g_1 (z) = le_1(z) C R|o(R) CintN, then
z has a neighborhood Uz in intB" -A such that f_1szg“1UzCint N. We
now begin choosing a sequence C1 B C2 ' C3 goee
intB”  such that for each i>1, aci N zZ=g and ze intCiC Ci C Uz for some

of disjoint round n-cells in

ze 2. Since 2Z 1is countable, we can continue to choose Ci's for as long as
some points of Z remain uncovered. However, since 2 is compact, this
process must terminate after a finite number of choices, yielding a finite

prreeiCy
C;» then 2 CintC, CNA=g and f"cixg"cicmtn for 1<ic<k.

collection C1 , C of disjoint round n-cells in int B" such that if
€=U
(The third condition will be used to insure that R, CN and R,|o(R,) C intN.)
Since S(f) is a countable set, then for each i, 1<i<k, there is a round
n-cell Di such that DiC int Ci' and if D= Ui-IDi’ then 2z CintD and
S(f)N 3D=¢g.

We now apply Lemma 5 with £ in the role of ¢ and S(g) Nint C in the
role of T. We obtain an acceptable map w:Bn* 8" and a homeomorphism
xiv" 1D » £7'D such that fe x = v]v" D, v(intC) =intcC, v=1 on B"-intc,
and [S(V)Ub(S(g) NintC)] U [3D U(S(f) -D)] =4. At this point, it is con-
venient to observe that since ¢(S(g)-intC) =S(g) -~intC, and the latter set
is disjoint from both 3A and S(f) -~ A, then S(¥)U ¥(5(g)) is disjoint from

both 3(AUD) and S(f) - (AUD). Also note that S(f) N 3(AUD) =g.
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We define the map g,:B"+B" by g,=veg. Since S(g,)=S(WIUV(S()),
then g, is evidently an acceptable map.

We set A, =AUD. Then A, is the union of a finite number of disjoint
round n—cells in intB". It follows from our observations above that

(S(£) U S(g,)) N3, =g and (S(f)-A,) N (S(g,) -2, =4.

Since g:‘A* = g_1A qu (w-lD), then a map h*:g;1A* - f_1A* is defined
ol -1, -1 -1 2

g A=h and h, g (¥ D) = xeg|g '(v D). It is easy to

1

. Since S(h,) = S(h) U x(S(glg” (¥ 'D) and

by setting h |
check that feh, = g*lg:1A

9(S(9)) M aD=g, then S(h,) is a countable subset of £ ' (inta,).

*

Now we can define an acceptable relation R,C 8" x B by the formula

R,=h]' U g et 8" - inta,).

It follows that R:1 =h, U f—10 gi,‘lg:‘I (Bn- intA,). Now suppose y € 8"
and diam R, (y)>0. Then ve g, (B"-intA,) and R (y) = £ (g,(y)). Z,D
and A, are chosen so that {ze S(f):diam g1 (z) >e} CintA,. Since
g,(y) ¢ intA,, it follows that diam f_i(g*(y)) <e. Thus diam R:’ (y) <e.

Lastly, we demonstrate that R, ,CN and R_|o(R,) C int N. Since g:1 = g-1
on B"-intC and h:1==l1'-1 on £ 'a, it follows that R*lf_1(Bn—intC) =
RI£ ' (B"- intC) CN. Also the equation feh, = g9,l97'A, implies that
' g7t
v(c,)=C;, then gy (ci)s---g'1 (C;). Therefore, for 1<i<k,
1

o f, from which we deduce that R,C g:1¢ f. For 1<i<k, since

- -1 -1 -1 -1 -1 -1 .

R, Cng*tflf Cin Cixg*Ci—f Cixg CiCth.
Consequently, R*If-1c CintN. It is now evident that R ,C N. Since o(R) =
£ 1(s(£)-A) and o(R,) =f '(S(E)-A,), then o(R,) Co(R). Thus,

-1 -1 .
R,Jo(R,)-f C=R|Jo(R,)-f CC R[o(R) CintN.

Since R,|o(R,) nt o c R*If—1 (C) C int N, we conclude that R,|o(R,) CintN,.

5. TAME ZERO-DIMENSIONAL SINGULAR SETS

We shall deduce Theorem 3 from Theorem 2 by passing from a map with a tame
zero~dimensional singular set to a map with a countable singular set. This
transformation requires two propositions. The first is that any o-compact tame
zero-dimensional set can be enclosed in a null collection of small disjoint
collared n-cells. This fact is established below in Lemma 7. The second is a
fundamental decomposition shrinking principle which originates in the work of
R. H. Bing, and is known as "the Null Star-like Equivalent Shrinking Principle".
It applies here to show that a decomposition of an n-manifold determined by a
null collection of disjoint collared n-cells is shrinkable. We describe this

principle in more detail below.
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Lemma 7 captures the fundamental properties of tame zero-dimensional sets.
Before presenting this lemma, we feel it appropriate to comment on the defini-
tion of "tame zero-dimensionality”. Let M be a compact n-manifold. One of
the classical definitions of zero-dimensionality implies that a subset S of M
is zero-dimensional if every point of S has arbitrarily small neighborhoods
in M whose frontiers miss S. The definition of tame zero-dimensionality ap-
plies only to o-compact subsets of intM; recall that it states that a
o-compact subset S of intM is tame zero-dimensional if each point of S has
arbitrarily small collared n-cell neighborhoods in M whose boundaries miss
S. Clearly, the definition of tame zero-dimensionality makes sense for arbi-
trary (not just o-compact) subsets of intM, and comparison with the above
classical definition of zero-dimensionality tempts us to drop the restriction
to o-compacta. We resist this temptation for the following reason. Originally
a subset of manifold was called "tame" if it behaved like a piecewise linearly
embedded polyhedron of the same dimension. Thus, a tame zero-dimensional sub-
set should behave in some sense like a finite set of points. As the level of
understanding of tame sets rose, it was recognized that the specific properties
which tame sets share with piecewise linearly embedded polyhedra of the same
dimension are their general position properties. For a tame zero-dimensional
set, the appropriate general position property is expressed below in statement
(2) of Lemma 7. This general position property can be proved for tame
zero-dimensional o-compacta. However, it is not necessarily valid for arbi-
trary subsets of intM which satisfy the definition of tame zero-dimension-
ality. An illustration of this phenomenon is given in the next paragraph.

For this reason, we do not use the term "tame zero-dimensional” outside the
class of o-compacta.

Let J={(x,y,2)¢ R3=x,yand z are irrational}. J 1is not o-compact.
However J satisfies the definition of tame zero-dimensionality, because any
prism of the form [a,b] x [c,d] x [e,f] where a,b,c,d,e and £ are rational,
is a collared 3-cell whose boundary misses J. Let A be the Cantor set in
R3 known as Antoine's necklace. A is a compact wild (= not tame) zero-dimen-
sional nowhere dense subset of R3 with the following property. Every
non-empty open subset of A contains a wild Cantor set - in fact, a smaller
copy of A. We assert that no homeomorphism of R3 carries J off A. ‘Thus
J does not possess the general position property which characterizes tame
zero-dimensional o-compacta. For a simple proof by contradiction, suppose h
is a homeomorphism of R> such that h(J)NA=g. Then h'a CR’-J. since
R3— J is the union of countably many flat 2-dimensional planes, the Baire
Category Theorem implies that some non-empty open subset U of h~1A must lie

in one of these planes. Since any Cantor set which lies in a flat 2-dimensional
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plane is tame in R3, then U contains no wild Cantor sets. Hence, hU is
a non-empty open subset of A which contains no wild Cantor sets.

LEMMA 7. Let S be a o-compact subset of the interior of a compact mani-

fold M. The following three statements are equivalent.

(1) S is tame zero~dimensional.

(2) I_t; T is the union of a countable number of nowhere dense subsets of

M, then 1|M can be approximated by homeomorphisms h of M such
that h(S)N T=¢g and h|3M = 1|3M.

(3) For every ¢€>0, there is a null collection {Ci} of disjoint col-

lared n-cells of diameter < e in intM such that SC Ui=lint ci .

PROOF. (1) implies (2). Assume statement (1). We first establish
statement (2) in the special case that S is compact and T is nowhere dense.

Let €>0. Since S 1is compact, it is covered by a finite collection
{Kiﬂ <i<p} of collared n-cells of diameter <e in intM such that

= <i<p. <i< . = .
Sﬁaxi g for 1<i<p. For 1<i<p, let L, =K, S<i 1ntKJ Then
{intLi: 1<i<p} is a cover of S by disjoint open sets of diameter <e.

Let 1<i<p. Set Si=S ﬂLi. Si is a compact subset of int Li' Hence,
S, 1is covered by a finite collection {Ci j:1_<_j_<_q(i)} of collared n-cells

14
in intL, such that S . N3C, .=¢4g for 1<j<q(i), and {C, .:1<j<qg(i)}
i i i,3 - = i, =J=
is irreducible in the sense that no proper subcollection covers Si' For each
j» 1<j<da(i), there are collared n—cells D, . and Ei i and a homeomorphism
’

i,J
h, 5 of M such that

’

(@) B, .CintDp, .CpD, . Cintc, .,
i3 i3 i, i3
(b) Sin(Ci’jvlntDi'j)=¢,
(c) Ei j is disjoint from Ci K whenever k#3j for 1<k<q(i), and
’ ’
E, .NT=4g. .
1’]ﬁ I
(d) h, . (D, .) =E . and h, .|M-intC, .= 1|M-intC, ..
1, 1,) 1,) 1,] 1,] 1,3
Define the homeomorphism hi of M by hi=hi,q(i) LR °hi,2°hi,1' Then
hi|M-intL. = lIM-intLi: so hi is within ¢ of 1|M. Also we assert that

h, (S,)C u:?u)E. .. To prove this, let xeS,. Choose j, 1<j<q(i), so
it j=1 i,J i - -
that xeC, ., and x4§C, for 1<k<j. Then h fixes x for 1<k<j.
i,3 i,k - i,k -
Also xe Di,j , so that hi,j (x) e Ei,j' Consequently, hi,k fixes hi j(x)

’
for j<k<q(i). It follows that h,(x)=h, .(x)e E, .. Since each E, .
- i i,j i,3 i,5

misses T, we have that hi (Si) NT=¢g.
Now we define the homeomorphism h of M by setting h[Li = hilLi for

i<i<p and setting h|M - Y int Li = 1M - Yoy

=1 int Li' Then h is within
e of 1|[M, h(S)NT=¢g and h|3M = 1}3M. This finishes the proof of statement
(2) in the special case.

To prove statement (2) in the general case, we write S= U:=1 Si and

T= -U;=1 '1‘j where each Si is compact and each Tj is nowhere dense.
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For each i>1and j21, let U; = {h €M, M) : h(S;)NcaTy =g} . Since S
is tame zero-dimensional, so is each Si; hence h(Si) is tame zero-dimen-
sional for each i>1 and every hedM,3M). Since each Tj is nowhere dense,
so is each cR.Tj. Therefore, we can deduce from the special case of statement

(2) proved above, that each U is a dense subset of #(M,3M). Also each

i,J
Ui 3 is evidently an open subset of #(M,3M). Since ¥(M,9M) has a complete
’
metric, we conclude via the Baire Category Theorem that n°.° ” U is a

i=t j=1 "i,j
dense subset of H(M,3M). Statement (2) now follows because 1|M can be ap-
@

proximated by elements of 0;1 3=1 Ui,j'

(2) implies (3). Assume statement (2). One can easily choose a null col-
lection {Ci} of disjoint collared n-cells of diameter <e/3 in intM such
that LJi

int:ci is a dense subset of M. Then M-Ui_ int Ci is nowhere

dense in 1M. Statement (2) provides a homeomorphism h <1>f M within ¢/3 of
1|M such that h(S) f'\(M-Ui“1 int Ci) =¢g and h|3M = 1}3M. It follows that
{h-1ci} is a null collection of disjoint collared n-cells of diameter <e in
intM whose interiors cover S.

(3) implies (1). Assume statement (3). Let xeS and let U be an open
neighborhood of x in M. Choose €>0 so that ¢ is less than the distance
from x to M-U. Statement (3) provides a null collection {Ci} of disjoint
collared n-cells of diameter <e¢ in intM whose interiors cover S.  Hence,
X€ intci for some i>1. Also acins=¢. Since diamci<e , then CiC u.
This proves S is tame zero-dimensional. i

Perhaps the fundamental geometric tool of decomposition space theory is
the Null Star-like Equivalent Shrinking Principle. A compact subset F of Rr"
is star-like if there is a point p in F such that every ray in R emanating
from p intersects F in a connected set. A compact subset F of the in-

terior of an n-manifold M is star-like equivalent if there is a neighborhood

Uof F in M and an embedding e:U~» Rr" such that e(F) is star-like. Observe
that any collared n-~cell in an n-manifold is star-like equivalent.
THE NULL STAR-LIKE EQUIVALENT SHRINKING PRINCIPLE. Suppose f:M+X is a

surjective map from a compact boundaryless manifold M to a compact metric

space X. If {f-.I (y): ye S(f)} is a null collection of star-like equivalent

sets, then f can be approximated by homeomorphisms.

This principle has manifested itself in many forms, apparently originating
in [B!], and playing major roles in a number of significant results including
[C], [E] and [F].

PROOF OF THEOREM 3. Let f:Sn+ s® bea map with a bald spot and a tame
zero-dimensional singular set. Let ¢>0. Then there is a collared n-cell
D in s" disjoint from S(f), and Lemma 7 provides a null collection {Ci} of

disjoint collared n-cells of diameter <e¢ in Sn- D such that S(f)C Ui=1 int Ci.
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Let X= {Ci:i_>_1}U{{y}: ye Sn-ui=1ci}; i.e., X is the quotient space
obtained from Sn by identifying each Ci to a point. Let n:Sn‘ X denote
the quotient map; thus ye n(y) for every ye Sn. We endow X with the quo-
tient topology. This makes 7:S"+ X continuous and makes X a compact metric
space. Notice that since {n-1(x):xe S(u)} = {Ci: i>1}, then the Null
Star-like BEquivalent Shrinking Principle asserts that u:Sn* X can be approxi-
mated by homeomorphisms. Consequently, X is homeomorphic to Sn.

Consider the map ¢ £:5" > X. Its singular set is the countable set
{"‘Ci)=131}- Also it has a bald spot because flf-1(intD) and wlintD are
homeomorphisms. Since X is homeomorphic to Sn, Theorem 2 implies that
nef:s"+X can be approximated by homeomorphisms. (This procedure, which en-
closes S(f) in the null collection {Ci} to yield amap nef with a count-
able singular set, is called "amalgamation”.)

Let d denote the given metric on Sn, and let d4' be a metric on X.
Since diam Ci <e for each i>1, then there is a §>0 such that for all
Y2 € Sn, if d'(n(y),n(z)) < &, then d(y,z)<e. Let g:Sn+x and
h:sn* X be homeomorphisms such that g is within §/2 of =, and h |is

19 h:s"+ Sn is

within §&8/2 of nef. We assert that the homeomorphism g-

within € of £. To see this, let yeS'. Then d'(nef(y), h(y)) < 6/2 and
-1 -1 -1

d'(n(g ® h(y)), g(g ®h(y))) < §/2. Hence d'(m(f(y)), n(g e h(y)) < &.

Therefore, the choice of & insures that d(f(y), g—’O h(y)) < e. #
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LINKING NUMBERS IN BRANCHED COVERS

Sylvain E. Cappell* and Julius L. Shaneson¥

INTRODUCTION

Let O Sl"N3 be a knot in a 3-dimensional manifold and let f: NN
denote a branched covering space of N branched along o. This note sketches
a method based on a 4-dimensional construction for studying invariants of N
and of the branch set f_l(a) C N. Our method gives a way of relating a
noncyclic branched cover of o to a branched cyclic cover of a different
associated knot B, which we call a characteristic knot for o. Here our re-
sults will be discussed only for N =S3 and f an (irregular) dihedral branched
covering set; the invariant studied in the present note will be the linking
numbers of the components of the branch set f-l(a). The method can be used to
study other invariants, or other branched covers, as well. The 4-dimensional
construction itself was announced and described some 10 years ago in [CS2].

The particular interest of dihedral covering space lies in their extra-
ordinary simplicity and generality. Classically, it was studied as the simplest
"non-abelian" cover of a knot and thus gave rise to the simplest 'non-abelian"
(i.e. not obtained from the cyclic covers) invariants of knots [Re]. More re-
cently, M. Hilden and J. Montesinos showed that every oriented 3-manifold is
such a 3-fold dihedral branched covering space of S3 branched along a knot
[Hi], [Mo]. 1In [CS2] we announced a formula for the Rohlin p-invariant of any
mod2 3~dimensional homology sphere presented as a 3-fold dihedral covering
space. That formula, in terms of various linking numbers, could be extended
to all dihedral covers, provided that a certain conjecture on the linking
numbers of the components of branch sets, a conjecture apparently long familiar
to students of this subject, were verified. That conjecture is the theorem of
the present note.

Our study of Rohlin p-invariants of dihedral branched covers will be pre-

sented elsewhere. For certain special classes of knots, e.g. ribbon knots,

*Work supported by NSF Grants
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this formula simplifies. As we noted in [CS2] this can be used to show that
various (algebraically slice) knots are not ribbon. As noted in [CS2] these
methods can also be used to compute Atiyah-Singer invariants used by Casson
and Gordon [CG] in their study of ribbon and slice knots. An extensive study
of that has been made by Litherland [Li].
Precisely, let a: S]‘-*S3 be a knot and op: G-’sz a homomorphism

of the knot group G=1r1(S3-0t(Sl)) onto the dihedral group of order 2p, p
odd. The p-fold irregular (respectively: regular) dihedral cover of o is
the branched cover of S3, branched along &, associated to the subgroup
p-l(zz) (resp., p-l(e)) of G, for ec€Z, CD

2 2p

. Let f: Mu-> S3 (resp.,
£: ﬁa -*S3) denote this covering space of degree p (resp. 2p). Consideration of

the diamond of subgroups of sz

{e}
/N
z, z,
\,”
2p

gives a corresponding diamond of covering spaces,

M degree h=2
o .
A j\\_ degree f=p
Ma Ma degree j=
N4 °
3 degree g=2
S E=f h

where ﬁa-* 83 is the 2-fold cyclic cover of S3 branched along o, ﬁa_’ﬁa

is a p-fold cyclic unbranched covering space, Ma is the quotient of a lift

to ﬁa of the covering translation of period 2 of ﬁal.

1Classically, one sees from this that dihedral covers of S3 branched along o
correspond to elements of order_p in Hl(Ma;l ) producing T (My) * Z

and the associated cover M + M. Recall that the order of H Py Z) i¥ just
A(-1), for A(t) the Al2xander polynomial of a. (A conceptual explanation
of |H,(M,;2) | = |A(-1)| was provided using 4-manifolds in [CS1].) Thus one
conclu%es classically that for p odd and square-free, o has a p-fold
dihedral covering space if and only if Ay(~1) = 0 _<(modp); for p prime
there is a unique such cover if Aa(-l) £0 (modpz) (cf. [F1]).
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From this, we read off easily a description of the branch set, the inverse
image of a, in each of these covers. Clearly g-l(a) is a single circle of
branching index 2. Hence, f—l(a) = j-lg-l(a) consists of p circles

O,al,...,ap_l each of branching index 2; here these circles are indexed by
the convention Tia =ay for T a fixed choice of a generator of the covering
translation group Z of the map j: Ma~+ Ma' The covering translation of
period 2, ¢: ﬁa -> ﬁa, is associated to the 2-fold covering space h: ﬁﬁ-*Ma
Notice that ¢ and T are just generators for the dihedral group sz acting
as covering translation on M s the action of sz on the components of

(a) is equivalent to that of sz on the p -Xerticies of a polygon with
p sides. As Ma = Ma/action of ¢, in Ma’ f “(a) consists of one circle
% of branching index 1, and (p-1)/2 circles of branching index 2,
%10 (p-1y/2°
branched along a4 with h™ (a ) = a Ua p-1° 1 <1< (p-1)/2.

Fixing an orientation for 33 and a, the covers M and M are corres-

PN | thus, ﬁa can be viewed as a 2-fold covering space of M

pondingly oriented, as are the branch curves oy and ai. When Ma is a

rational homology sphere, let \ j denote the linking number of ay with aj,
’

i#3, 0 <1i,j < (p-1)/2; when Ma is a mod 2 homology sphere these v are

rational numbers with odd denominator. +
The study of the behavior of these numbers is one of the oldest topics in
topology. This is partially because these are the simplest "non-abelian in-
variants" that can be used to distinguish knots. Calculations of them for this
purpose were used by Reidemeister [Re]. An early paper of Bankwitz and Schumann

[BS] stated that if & is a 2-bridge knot, then = %23 their proof is

Vo .
0,i
difficult to reconstruct; clear and more precise modern proofs of this were
given by Perko [Pel] and by Burde [Bl]. Note that if o is a 2-bridge knot,
by considering its Heegard genus it is easy to show that then Ma is actually

S3 [B2]. While it is not hard to develop methods for calculating the v

(cf. [Rel, [F3])really efficient general algorithms were developed by K. ;éiko
[Pe2] and further studied by Hartley and Murasugi [HM].

The following was perhaps conjectured by everyone who has thought about
linking numbers in branched covers; it generalizes to all knots the classical
result for 2-bridge knots and is suggested by calculating examples. It is,
moreover, needed in understanding other invariants (e.g. p-invariants) of
branched covers.

THEOREM I. If the p-fold dihedral branched covering space Ma is a mod 2
homology sphere, then the linking numbers of the branch curves satisfy

22 (mod4), 1 <1< (p-1)/2 and \ 3 =20 (mod2),1 < 1,j < (p-1)/2, 1#].

Yi,0
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Counterexamples to the converse of this theorem are provided, according to
calculations of Ken Perko, by some 1l0-crossing knots with p=3 [Pel].
Actually, as noted by Perko, the numbers Vio® 1<1i< (p-1)/2 determine
’
all the v, ..
i, .

First of all, note that as ﬂa is a 2-fold branched cyclic cover of Ma’ Ma

This follows readily from the following transfer argument.

is a mod2 homology sphere if and only if Ma is. (The homology of a 2-fold
cyclic branched cover is given by the Alexander polynomial at (-1); cf.[CS1].)
i+ 1<j<p-1l; this is

are permuted by the covering trans-

Let uy denote the linking number of &, with &

1

i
lations. For the same reason, u, = up-i'

~

independent of i, 0<i<p-l, as the a

Standard transfer considerations show, as noted by Perko [Pel] that:

= p-l
vi,j ui‘l‘j + uli"j' » 01,3 < 2 i#]
and, in particular, Vio ™ Zui , So that
’
1 p-1
= + 3 < < .
Vi, =7 Onincaeg,p-i-1),0 T V[1-3],0) 3 121325
Hence the numbers Vi 0 determine all the A i and the main theorem of this
Hl H]

note will follow from:
THEOREM II. If the 2p-fold (regular) dihedral branched covering space

Ma is a mod2 homology sphere, then the linking numbers of the branch curves

satisfy

u =1 (mod2) , 1<1< (p-1) .
Outline of Method

Here is a summary of our approach to this and related problems on branch

covers.

Step 1. An effective method for studying 3-manifolds M described as branched
covers of 83 along a knot o 1is to utilize a 4-manifold w“, with 3W=M
obtained by letting W be a branched cover of D4 along Kz, where

KN 83 = a(Sl). It is easy to do this for cyclic covers; just let K be a
Seifert surface of o pushed into D4; this method of studying cyclic covers
was introduced by us in [CS2] and independently by L. Kauffman. However, it
will not work for more ganeral branched covers as the fundamental group of
Da-{pushed in Seifert surfacel 1is Z and thus has no nonabelian covers.

For noncylcic covers, we employ instead for K a certain (non-manifold)
2-complex. This works at least for all metacyclic covers; in particular, for
dihedral covers the resulting WA is a manifold even though K? is not. (In
other settings, the singularity which arises is readily understood and can be

resolved.)
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Step 2. We relate questions about linking numbers of branch curves in
M3 = aw“ to intersection numbers of parts of 2-dimensional surfaces in the
4

branch set of W .

Step 3. We get information on these intersection numbers by relating these
2-dimensional surfaces to a kind of equivariant second Stiefel-~Whitney class
of W4 and then get our result from an equivariant version of the standard
fact that in an oriented 4-manifold, wg
mod2.

Of course, this method can be used to study many other invariants of such

is8 just the Euler characteristic

branched covers. An interesting way to view the geometrical procedure out-
lined in Step 1, and carried out in Section 1 below for dihedral covers, is
that it reveals a close relationship between a dihedral (or metacyclic) cover
of S3 branched along o« and a cyclic cover of a characteristic knot B8 as-

sociated below to «a.

1. Characteristic knots and a cobordism construction.
Fix an orientation of 53 and adopt the unique conventions so that the

circles in Figure 1 have linking number +1.

Fig. 1

If o is a (smooth or P.L. locally flat) knot in 83, let Aa(t) denote its

Alexander polynomial.

Definition. Let o and B be (oriented) knots in 83. Then B 1is called a

mod p characteristic knot for o 1if there exists an oriented Seifert surface

(-]
of a, V, 3V = a, so that B C V represents a nonzero (primitive) class [B]
of HI(V) and so that

(LV + LG)B =0 (modp) .

L the linking pairing of V in S3. More precisely, Lv(x,y) = 2(f+x,y),
where f+ is induced by pushing V off itself using a positive normal, and
£ denotes linking numbers and LV(x,B) + LV(B,x) = 0 (modp), all xe:Hl(V).
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Note: If a is a nontrivial knot with Seifert surface V with p square-free,
and if p[Aa(—l), then o has a mod p characteristic knot embedded in V.

(Proof: Note that Aa(-l) = tdet (Lv+ L\',) and use the well-known fact that a
primitive class in Hl(V) i8 represented by an embedded ci:‘cle.)

Suppose o 1s a knot with Seifert surface V and BC V 1is a mod p charac-
teristic knot of a. We proceed to construct a cobordism relating the dihedral
covering spaces of S3 with branch sets a to the cylcic cover of S3 with
branch set 8.

Let w: IZ(B,p) * S3 be the p-fold cyclic branched cover of S3, branched

along B. If x ¢ Hl(V—B), then the intersection number on V, x*B = 0; hence
- = 3 ~-1' =
Ly(x.8) = Ly(B,x) = x(Ly-Ly)B =0 .

Since (L+L')B = 0 (modp), it follows that 2LV(B,x) =0 (modp). Since
det (L+L;) = det(L-L') (mod2), and since det(L-L') = *1 by Poincare duality,
p 1s odd. Hence LV(B,x) = 0 (modp). Therefore

-1
(V) =V Uy, UL uvp_1 ,
Tr|Vi: Vi + V a P.L. homeomorphism and
-1
vinvj ™o (®) , 1#3.

Let T: L~>I be a generator of the group of covering translations corresponding
to a positively oriented meridional circle of B in S3 (i.e. T]fiber of a
neighborhood of 718 is rotation by 2n/p). Assume the indices have been
chosen so that 'l’Vi = Vi+1 » 0 <4 _<_p-2,. and Tvp-l = VO'

Let Vx[-1,1] C 83 be a neighborhood of V = Vx0, and let h(x,t) =
(x,-t) for xeV and te[-1,1]. Then

LU 1,1 =3 U T, =T

0 p-1
with 'nIJi: Jy » Vx [-1,1] a P.L. homeomorphism and with V, C J;. Clearly,
w-l(Vx [-1,1])=J is the p-fold branched cyclic cover of Vx[-1,1] along 8.
Let

h: J+J

be a lift of h, i.e. mh=h (v]3), with R(V)) CV5. Then h(J;) C o1

1<1i<p-1, E(JO) =J , and h fixes precisely Vo
Let I = I(B,p) and let

Y=2:x [0,1] / {(x,1)=(h(x),1) for x e J}

the space obtained by identifying (x,1) and (h(x),1) in Ix I. let

m Y+S3x I/{(x,t) = (x,t) = (x,~t), xeV} & S3XI be induced by 1 x 1[0 1
tl

Y 1is evidently an orientable (smooth) cobordism of I to a closed manifold,

Ma g » 53, and 7' is a branched covering projection with branching set B the
bl
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image of V0O UBXxI in s3x I/{(x,t) = (x,~t), xecV}, which is canonically

P.L. homeomorphic to V. Orient Y so that w' has positive degree. (Usual

convention: 8[S xI] = [S°x1] - [S2x0], and thus 3Y = [M] - [I].)
Clearly the tuple

(83 - Int(vx [‘131])’8(‘,)‘ [_1)1])3(!)/{ (x’t) = (X,t)l (x,tea(vx [-191])

is canonically P.L. homeomorphic to (S3,V,a). Hence the restriction w of '

to Ma 8 is a branched covering of S3 along «. Note that w-l(a) has
bl

(p+1)/2 components, with branching index 2 on (p-1)/2 of them. In fact, if

Vi denotes the image of Vix linY (so Vi =V
=1 = ] ' M

w (o) avo U...U V(p-l)/Z’ -ind BVO
- L E

g =9V ,0<1<5H=

Proposition 1.1. M 2 33 is a dihedral metacylcic, branched covering space

3 a,B
of § along a.
P

Proof: let D = {u,'c]'rz-l; u

1;‘1 , 1<4<p-1), then
is the component with branching index

1. Write o

=1, Tu= u_lr}. The group nl(S3-a) has the

form (Higman-Neumann-Neumann construction)
zZ * G/{ti_’_(x)t-l =1 (x), x € H}

where G 1is the fundamental group of S3—V, H that of V, t is a generator
of the infinite cyclic group, represented by a meridian m of a, and i+ and
i_  are induced by pushing V 1into its complement along positive and negative
normal vectors, respectively.

Define p: G Dp by

p(g) = u’t(E,B) ’

and let p(t) = t. Since Lv(x,B) = -LV(B,x) (modp), these definitions deter-
mine a homeomorphism
3
p: 1r1(S -a) > Dp .
Assuming M

N
Ma g o l(a) also has an (HNN)-representation. In particular, using Van

Kampen's theorem (and a base point near ao), wl(Ma B-w—l(a)) is generated by
s

is connected, the fundamental group of the unbranched covering

a meridian m, of a with w(mo) = m and elements in the image of
171(1'10"B -w -l(V)). Let o' = wlMa’B—m-l(a). Since, by construction,
m]M(1 B-w—lv is the cylcic cover n]Z-n-l(Inth [-1,1]), of

s7 - Int([-1,1]) = §°-V, it follows that M .

s
L(win,B) = 0 (modp) for n e nl(Ma’B-w"l(V)), and so p(wyn) 1is the trivial

-w"l(a) is connected and that

element. Clearly p(w;[mO]) =p([m]) = p(t) = 1. Thus the image of pouw; is
{t,1}, which proves the result; in particular we have the following:
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Proposition 1.2. Dihedral p-fold branched covers of o are in 1 to 1 cor-

respondence to equivalence classes of characteristic knots viewed as represent-

ing elements of order p in the kernel of the mod p reduction of (LV+L\';7)’

modulo the action of z;. ,

Let FO be a stable framing of the tangent bundle of S, compatible
with the oriemntation. Let Nl N(V' U...U V(p 1)/2 urm_ (B) x I) be a
regular neighborhood of (n' )’l(B), meeting the boundary regularly. Clearly

Nl may be chosen so that the restriction of =#' to a neighborhood

V(') - Vé N Nl is a homeomorphism. Therefore the stable framing of Y—l?ll in-
o

duced from F,x 1 via the unbranched covering ﬁ'IY—Nl extends to a framing

0
' _. ' _1
F' of Y N, N, a regular neighborhood of viu...u V(p 1)/2 (B) x I.

Recall that given a q-fold covering map Sl > S1 and a stable framing of

Sl that extends over D2, the induced framing extends over D2 iff q 1is

o
odd. Therefore F'I(Z—Nl
hood Nl NZ of Bin Z; 1i.e. to the complement of a cell in EI. Hence, as

1r2(SO) =0, it extends to all of I. It follows easily (recall

' = nXidIO ¢) mear ) that F' extends to a stable framing F of
s

N L) extends to a fiber of the tubular neighbor-

_ oyt '
Y Vl U...u V(p—l)/Z' The sole obstruction to extending F|Z to all of Y
1s an element

8(F|I) ¢ HZ(Y;Z;ZZ)
Proposition 1.3. Let D: HZ(Y;E;ZZ) - HZ(Y,M;ZZ) be the Poincare duality

isomorphism. Then

DOF[D)) = [Vily + «oo + [V 1y 0]y
where [Vj'_]2 is the element of HZ(Y,M;ZZ) represented by (V! , BVi).
. N 2 vy y-v! ' .
Proof: 6(F|Z) is the restriction of 6(F) e H'(Y;Y-Vj U... U Vip-1y/2 % %20+

Hence, by Poincare duality, D(9 (FIZ)) is the image of

D(8(F)) € l-lz(Vi U... UV’(p-—l)/Z U MM;Z,)

= 1 1t .
HZ(vl U Uv(p—l)/Z ey U Ua (p-1)/2 H 2) .
(r-1)/2
Using Meyer-Vietoris, the right side is of course just 121 H (V';a ).

Hence D(B(Flz)) is a linear combination of the classes [V! ],...,[V(p 1)/2]2.
Now let (Di,s ), i*l,...,P-il'- be the disjoint fibers of the normal tubes
of Vl,...,V (p-1)/2 * respectively. Clearly n'ls is a two-fold covering
map; hence, as noted above, F]Si‘ does not extend to Di. It follows (e.g.
represent any element of HZ(Y;ZZ) by a 2-manifold transverse to all Vi and
consider the obstruction to framing a neighborhood of this 2-manifold that

D(8(F)) is as stated.
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Remark. This argument could be reformulated as an instance of the general
principle that if Pa 5 Qa is a branched covering space of orientable 4-mani-
folds, then D(w,(P)) = D(£'w,(Q)) + [s°], where S’ is the subset of the
branching set in Y consisting of points of even bramching degree. (This
follows from the familiar simplicial formula for Stiefel-Whitney classes.)

Corollary 1.4. The image of [Vll2 cer + [V(p 1)/2]2 in H,(Y,3Y;Z,) is
precisely Dw (Y), w 2(Y) € H (Y; 22) the second Stiefel Whitney class of Y.

Now having constructed a cobordism Y4 of MtoI it is easy to further
produce a compact manifold with I on the boundary. In fact, we just observe
that I = aP“ where ¢: Pa - DA is obtained as in [CS1] as the branched
cyclic cover of DA along E2, a Seifert surface, of the characteristic knot
B, whose interior has been pushed into the interior of D4. See [CS1] for
details. Then set W =Y L’Z W; clearly oW = (3Y) -M.

This 4-manifold WA can be described directly as a branched covering

space as follows. The maps constructed above 7': Y > S3x I and 4: P4 > D4

can be glued together to get amap ¢: W=1Y Us P4 > S3X j V] 3 D4 = D4. This
map ¢ 1is then seen to be a branched dihedral covering space. The total
branching set in D4 is a 2-complex K2 obtained by attaching to V2 a

Seifert surface E2 of B glued to V along 8 X % .

\L/Bxlz. 1] / \
;’Bx%‘- —T T s3><1u3 p* = p
V-Seifert "___j *2 ! &Seifert s7x1
surface a ) Lxi K surface
of a 2 ’ of B

A

Fig. 2

This branching set in D4 = S3x v 3 D4 fails to be a manifold around the

circle B x % .  Nevertheless, as wg ﬁ%ve seen w“, the corresponding branched
dihedral covering space is a manifold.

Remark. As the branching set in D4 is not a manifold, it may seem surprising

that the branched cover W4 if a manifold; we explain this directly from
another perspective. Consider again the branched dihedral cover W of D4 along
KZ. This is clearly a manifold except in a neighborhood of the inverse of the
singularity circle B x % lying on K2. See Figure 2. Now in a neighborhood
of B x % the pair (D4,K2) looks like S1 x (D3,Q) where Q denotes a
"figure Y", as can be seen near B8 X i in Figure 2. The dihedral cover of

12
this neighborhood of the circle B %*x 7 would then be just S1 x {a dihedral
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cover of 03 branched along Ql. As D3 = cone on Sz, this cover will be

just ! x {cone on the branched cover of s? along s? N Q}. Now 82 nQs=

3 points.

Fig. 3

Last, note that the branched dihedral cover of 82 along these three points
is again Sz. This follows by calculating its Euler characteristic using the
fact that there the meridian about each point represents an element of order 2
in the dihedral group. Hence W has no singularity and is a P.L. manifold.

The same geometrical methods used above can be used to extend Proposition
1.4 to the following:

Proposition 1.5. Let D: HZ(W;ZZ) > HZ(W’M;ZZ) be the Poincare duality

isomorphism. Then

Vily + oo 4 [VZp-l)/Z]Z = D(w,(W)), where w,(W) is

the second Stiefel-Whitney class of W.

Also, we can repeat all these arguments used above for the irregular p-fold
dihedral cover for the full regular 2p-fold dihedral cover. In fact this 2p
covering space of W~ D4 is also a 2-fold covering space of W4 branched
along Vé; in particular, oW =M > M is a 2-fold covering space of M
branched along ay- Thus, the branch set in M (resp., W) is the union of
p circles (resp., 2-manifolds) &0,...,&p (tefp., 90,...,Vp) which are dis-
joint (resp., intersect in one common circle B8). Here the circles are in-
dexed by the convention Tiao = &i , where T is the generator of Zp C sz
regarded as the group of covering translations.

~

Remark 1.6. Notice that in the regular 2p-fold dihedral covering space W has
wz(ﬁ) = 0; for, it is a p~fold cyclic (branched) cover of a manifold with zero
second Stiefel-Whitney class, the 2-fold cyclic cover of D4 branched along
the Seifert surface V (see [CS1]). On the other hand arguments similar to

those used above show that the Poincare dual of wz(QA) is given by

p-1l | . A

ZO [Vi] € HZ(W,8W;ZZ) which hence equals zero. (This can be checked in
i

other ways.)
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2. Llinking numbers and characteristic classes

Note that for Ma = aw“ (resp. ﬂa = 8&4) the irregular (resp., regular)
p-fold (resp., 2p-fold) dihedral cover of 83 as above, as ﬁa:» ﬁa is a 2-fold
cyclic branched cover [CS1], Hla%;zz) = Q0 if and only if Hl(Ma;ZZ) =0, In

this section, we assume Hl(Ma;zZ) = 0; hence the intersection form

Hz(w;zz) x Hz(w;zz) > 22
(x, y) - I[x,y]
is, by standard Poincare duality, a nonsingular symmetric bilinear pairing.
Letting T (resp. ¢) denote, as before, an element of order p (resp., 2)

in D the covering translation group of M- S3, we introduce a new bi-

2p’ z
linear pairing on nz(w;zz) with values in ZZ[ZP]:
pzl
<y = 1 [T ik dyirt
i=0

Lemma 2.1. This pairing is bilinear over ZZ[ZP] and symmetric over ZZ[zp]

and nondegenerate.

Proof: To see that it is symmetric (not Hermitian) note that
[T x,6y] = oy, T 'x]
= [y,éT 'x]
= ly,Téx)
= [Ty, éx]
To check bilinarity note that
<txy> = TN, dyiT
y (A, goqrt

= ) ([T-jX,¢y]Tj)T

= <x,y>T
The nondegeneracy of this pairing follows from that of the intersection pair-
ing.

Now we need some facts about symmetric forms over ZZ[ZP], p odd.

Proposition 2.2. let pxp S SN Zz[lp] be a nonsingular symmetric bi-

linear pairing on the finitely generated ZZ[ZP] module P. Then there is a
unique element aeP satisfying

2
<x,a>” = <x,x> , xeP .

Notation. & 1is called the characteristic element of P.



176 Sylvain E. Cappell and Julius L. Shaneson
Proof: Consider L(x) = <x,x>1/2
a product of finite fields of characteristic 2. Moreover, as L: P » Zz[lpl

is easily seen to be linear, there is a unique aeP with

, xeP, This is well-defined as zz[z ] 1is

L(x) = <x,a> , XxXeP .,

Recall that Zz[lp] = OFJ. where each Fj is a field of characteristic

2and F, = Z,.
0 1% 2 -1
eg = L+T +T + *-¢ + P in zz[zp]. Correspondingly, a ZZ[ZP] module

P decomposes naturally as

Let e, denote the multiplication identity of Fj; note that

P = o(P ez.z[zp‘] F)

Proposition 2.3 For o € P, the characteristic element of a symmetric bi-

linear form on the finitely generated Zz[lp] module P

3

<0 ,0> = z e, rank (P ® F,) .
F. z [z
5 AERR

This follows immediately from the corresponding fact over each field Fj s
which is easy as such forms decompose into l-dimensional forms.
We use this to study 614. Let A= ["}O] € Hz(fl,f{;zz) z Hz(@';zz).

Proposition 2.4. A e nz(ﬁr;zz) is the characteristic element of the pairing

<X,¥>.

Lemma 2.5.

[x,600x] = [1/%x,a] .
Proof of Proposition 2.4:
2
<A,x>2 - Z[T-ilzx,A]Ti/Z)

2
= (Z[XMT-iX]Ti/z) , by the lemma
= Jixér it in 2,z ]
= X[Tix,éx]Ti
= <K,X>

Proof of Lemma 2.5: Consider the 2-fold covering maps 8yt W w/¢$1'1 for
i=0, write g = g: W~ (W/eST ) = W. As in the dihedral group D
¢T1/2 T1/2¢T there is a commutative diagram:

/2

2p °

/2

o
=]
-
T e—3>
£ >
A=




LINKING NUMBERS IN BRANCHED COVERS 177

From this there is a homeomorphism h,: §/6T1-+ W/é and a commutative diagram

i

Now, as noted above, wz(ﬁ) = 0 and hence,
[x,x] =0
and thus
[x,T'x] = [x,(d + ¢T)x]

and using transfers,

i
[x,4T x] [gi*(X),gi(X)]
= g, (%0, gm0
(p-1)/2
- gt ) v,
i=1
(p-1)/2
as wz(w) = [Vi] by Proposition 1.6. Thus,
i=1
(p-1)/2
[x,60x) = (T2, a+)  § [V.1]
1=1 i
(ri/2x, Y 1ia
i=1
p=1 i
But as noted in Remark 1.7, z T A =0. Hence,
i=0

[x, dT x] = [Ti/2 Al .

For P a module over Z [Z ], let [P] denote the class represented by
P in R(z ), the representation ring of Z over the field 22. Notice that
G = W U {cone on aw} has a natural action of sz with one fixed point,
the cone point, and satisfies, as M 1is a mod 2-homology sphere, mod 2

Poincare duality. 4

Hence, [Hz(el;zz)] = ‘Zo [Hi(G;zz)] in R(lp) ] zz . Moreover
4 4 *
120 [H (G:Zz,))] = o [c;(6;Z))] 1in R(Z)® Z, for C(G;Z)) the cellular
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chain groups of a cellular decomposition of G. However, the action of Z_on

G 1is free outside a 2-manifold Y

R(Zp) ® 22

in W and the cone point. Hence in

[Hz(v?];z )] = k[zz[zp]] ® [Z,], some k .

Moreover, as W is a 2-fold branched cover of W along VO’ X (W) = 2X (W) -
x(V) 1s odd, and hence x(G) = 0 (mod2) . Hence, [Hz(ﬁ;zz)] - [z,(z]]  [Z,]
in R(zp) ® 22 . Thus, from Propositions 2.4 and 2.3 we conclude that

<A,A> = 1 + e,

1+ +T+ - +7h

T+ T + o 4+ P71

Going back to the definition of the pairing <A,A> this says:

Corollary 2.7. In Hz(ﬁ,aﬁ;zz) the intersection number of [GO] with [611
is odd.

Proof of Theorem II: As 01 and 90 intersect just in the circle B, and this

circle of intersections can be removed by pushing one class away from the other,

the intersection of [Vi] and [%0] is evidently given by the linking numbers
of 361 = &i and 800 = &0 in W. Thus Theorem II, and also Theorem I, follow
from Corollary 2.7.
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ATOMIC SURGERY PROBLEMS
Andrew Casson and Michael Freedman"

ABSTRACT. The surgery sequence is the central theorem in manifold
theory. In dimension four it is a giant, if improbably, conjecture
which would imply almost everything from the four dimensional
Poincar€ conjecture to "knots with Alexander polynomial equal one
are slice". We have reduced the conjecture to an investigation of
certain "atomic" surgery problems. This leads to an equivalent re-
formulation of the conjecture in terms of the classical theory of
links in the three sphere.

REVIEW

This is a preliminary draft, written and abandoned in 1976 (or 1977).
Andrew had come to visit me; I put him to work on the non-simply-connected ver-
sion of his theory of flexible handle-bodies. This writeup explores the finite
version, though we considered, but could find no use for the non-compact limit
(recently considered in Dimonski's Ph.D. thesis). This paper is included in
the proceedings at the request of the editors, as an historical relic. 1Two re-
cent ideas which we suffered in ignorance of were: 1. It is possible (even
when nl# 0) to concentrate on complexes which serve as substitutes for a disk
rather than ones substituting for a wedge of 2-spheres. And the related obser-
vation - 2. The more symmetrical grope construction cam replace the "1/2-towers"
created here. (Bob Edwards was influential in the development of both these
ideas - a fact, I am glad to record.) The second defi¢cit greatly complicates
our discussion of the s-cobordism theorem. This draft was never proofed by

Andrew, has not been updated, and is probably replete with speling erors!
Michael H. Freedman August 1983

0. INTRODUCTION AND PRELIMINARIES

Most efforts to construct smooth four dimensional manifolds can be regarded
as an attempt to solve some particular surgery problem with vanishing obstruc-
tion. No general theory exists for compact four dimensjional surgery problems

(although progress has recently been made in the non-compact case, see [F1],
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[F2], [FQ], and [S]) and the history of effort expended on special cases is dis-
couraging. The only notable success, here, is a technique (See [CS1]) for al-
tering the normal invariants of certain non-orientable 4-manifolds such as RP4.

One is lead to suspect that many of these surgery problems do not in fact
have solutions; for if they did admit solutions why should these always be so
difficult to find? However, it is noteworthy that no counterexample is known
to the all-encompassing conjecture A(A+): The surgery-exact-sequence for
(oriented) simple Poincaré pairs (X,?) is exact when dim[X,3] > 4. It is
our purpose to shed some light on this conjecture by reducing the vast diversity
of unobstructed four dimensional problems to a smaller collection of "atomic"
surgery problems.

In the orientable case a close relationship is developed between atomic
problems and certain link slicing problems. This leads to Theorem 2, an equiva-
lent reformulation of conjecture A+ purely in terms of the classical theory
of links in S3.

In the cases we will consider, the Wall group surgery obstruction vanishes.
So, for us, a problem will be a degree one normal map f:(M4,3) + (X,3) from a
smooth 4-manifold to simple Poincare space with o(f)=0 ¢ Li(an). In the case
that the boundaries are non-empty £[3:3M + 3X may not be a homotopy equival-
ence but is required to induce an isomorphism on H_( ;z[n]x]) the homology
induced from the universal cover X. This requirement implies that the inter-
section pairing on the kernel KZ(M4) [*] KZ(M4) + Z[an] is nonsingular, the
necessary condition to define o(f). A solution will mean a normal bordism
(reld) to a simple homotopy equivalence.

The choice of generality in this definition has been carefully made. We
remark that the problem of h-slicing a knot with Alexander polynomials A(t)=1
(so that w1(homotopy D4— slice) = Z) gives rise to a bounded problem f where
fla is a %(n1X]= Z[Z] equivalence but not, usually, a homotopy equivalence.
Also this is the generality in which the stable (#n(szx 82» theory of Shaneson
and Cappell ([CS2] applies. On the other hand, if £]3 were required only to
be an integral homology equivalence it is known ([CG}) through the study of
dihedral signatures that the vanishing of the appropriate "surgery obstruction"
(this time lying in a I'-group [CS3]) is not sufficient to complete surgery up
to integral equivalence.

Unless specified to the contrary, constructions are to be carried out in
the smooth category; when corners arise they are understood to be rounded in
the usual way.

An important notion for us will be: a problem f ‘“reduces to" a problem
g, written £ »g, this corresponds to finding g inside f, more precisely:

We write f£-+g iff f£f:(M,2) » (X,3) 1is normally coborant (rel. 3) to an
f':(M;3) » (X,9) such that:
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1) There is a (not necessarily connected) codimension-0 smooth submanifold
(N,3) C interior (M), and a simple relative homotopy equivalence:
h:(X,9X) + (X',3X) such that g=ho f'| (X,3): (N,3) » hof'(N,3) = (Y,3) 1is
a problem whose target is a collared Poincare imbedding (Y,3) CX'.

2) hef' is a map of quadruples:
he £'(M',N,M'-N, 3M') + (X,Y,X-Y, 3X)

3) The surgery kernel is concentrated in N, i.e. hoe f'IM'—N: M'-N + X-Y
is a simple absolute homotopy equivalence.
We say f' contains g and use script letters to denote sets of problems.
We will write HF - @ if for each f €4 there exist 9qreeer9y such that
+ . s
£~ 9, Ll - | | 9, Set 3?127 ) = the collection of all (orientable) prob-

lems. d(d+) will be the atomic problems (oriented atomic problems). We have

+ +
given a recipe for constructing a general a € f(or a € . ).

Consider the four ways of constructing self-plumbings of 52x D2. if i0
and 11 are two disjoint product-preserving imbeddings (D2x D2)¢—>82x D2 we

may identify: 1) ij(a,b) ~ i, (b,a), 2) ig(a,b) ~ 11(6,5), 3) ij(a/b) ~
11(5,a), or 4) io(a,b) ~i1(b,§) to allow (io,i1) to determine a self-

plumbing in one of four possible ways. The first two are oriented self-plumb-
Jo ’ J1 3 ko v k‘]

ings. Let N or just N2, denote the 4-manifold with boundary
obtained by taking two copies of Szx 02 B (52x D2)0 and (Szx Dz)1 , and per-

forming (je R je s kg and ke) self-plumbing of types (1,2,3 and 4) czm (82>< DZ)C,

e=0 or 1, and then joining the two copies by a single self-plumbing of type 1.

If both k_,.=k,=0 we denote the manifold by N;. N_ collapses to a wedge of

0o 1 2
2
singular (immersed) 2-spheres, N_\,AvB = (S" x 0) _ . v
(S2 x 0) 2 OAelf plumbings
1 /self-plumbings’

Suppose that (i0 , i1) and (j0 . j1) determine self-plumbings of type
1 and 2 respectively (or 3 and 4 respectively). This pair of self-plumbings

determines an imbedded loop Y C %)N2 as follows: Let Y(') and y; be disjointly

R . 2 . 2 . 2 . 2 . 2
imbedded arcs in ({8 - 1nt(10(D x0) || 11(0 x 0) _U_ JO(D x0) || 31(D x 0))]
with the endpoints y6(0) = 10(1,0), ya(w) = 3,00,0), v;(O) = j1(1,0), and
y;(‘l) = i1(1,0). Y 1is defined by y = (y('), 1) U (y; , 1) C aNZ. Evidently there
are different choices possible for y(') and y; and therefore vy. Let

f s . 2
- ' .
‘11,...,on+ j1 + k0+ k1 Y be a disjoint collection of such y's for N7; call

this a standard basis.

Here a Kinky handle (oriented kinky handle) will be a 2-handle sz D2

with interior self-plumbings (of types 1 and 2) with an equal number of types 1
and 2 and of types 3 and 4. (When both numbers are zero we will not call this

a kinky handle.)
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The symbol N4 i °r N4 will be reserved to denote any 4-manifold with
’

boundary obtained by attaching kinky handles to any N_ along an appropriately

2
framed standard basis.

The framing is to be determined as follows. Let Y be the image of v

under the collapse Nz\, AvB. Let .# be a closed regular neighborhood of ?
in N2 containing Y in its boundary. 3.#(= s1x 82 since both self-plumb-

ings have the same orientation) meets AVB in a pair of circles <, il c, as

shown in diagram 1.

Diagram 1

The circle bearing the dot represents the t-handle in Slx Sz. The number
of half twists is even because the sum of the signs of the two self-plumbs are

opposite. The appropriate framing for vy is -k. N4 will denote the result

of attaching (with O-framing) oriented kinky handles to an N along an appro-

2
priately framed standard basis.

Let s be the total number of type 1 self-plumbings and t be the total

number of type 3 self-plumbing in the kinky handles attached to N2 to form
N4.
CLAIM 1: There is a degree 1-normal map a:(N4,a) + ((BU s (oriented

1-handles) U t(unorientable 1-handles), 3) = (Y,3).

PROOF: This claim corresponds to Lemma 3 [F]; the proof there applies

1

with little modification. i
N4 is simple homotopy equivalent to 32 52 S1's. The inclusion map of
kernel modules KZ(N4; z[n1Y]) > Kz(N4, 3;z[n1Y]) is given by the intersection
pairing A on KZ(N4; %[n‘Y]). It is easy to see geometrically the two free

generators and check that A 1is represented by a[; ?] (the kinky handles can-
glL1 0
cel all self-intersections over the group ring). "1(N4) -+ "I(Y) is an iso~

morphism so KI(N4; Z[n,Y]) £ 0; from the long exact sequence of kernel modules
K1(3N4; Z[n1Y]) = 0., It follows from a standard duality argument that:

CLAIM 2: a|3:3N4 > 3Y is a simple z[n1Y] - equivalence,
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Furthermore the self-intersection pairing u is also made standard
(ula) = p(B) =0) by kinky handles. Thus the surgery obstruction
o(f) e L4(111Y) = L4(Free group) = Z vanishes so a is a problem.

We define o to be the set of all the a's we have just constructed and
A" to be the set of all orientable a's, a': (N, r3) + (¥,8).

1. THE REDUCTION TO ATOMIC PROBLEMS

THEOREM 1: 3 +. and 3’+ +

PROOF: Let (f:(M,3) + (X,3)) :-:3' . Preliminary 0 and l1-surgeries may be
made to normally cobord f (rel 3) to f£*:(M;3) - (X,d) with €£! an iso-

#

morphism on LN and K*(M’,z[u‘x]) =K, =0 for *#2.

We would like to represent a preferred basis for K2 by an imbedding of

1L N2's C M. This may be done as follows: Let (al,...,an, 31,...,Bn) be a
symplectic basis for Kz. Represent e, by a normal framed immersion
a1-82—>M with u(a1)- 0. Using Casson's Lemma ({F1]) we may arrange that
" (M—a (S )) i_fu_, m (M) is an isomorphism. Now we can represent B‘ by a

meeting a in

normal framed immersion b :Sz—> M with u(b1)= 0 and b 1

one (transverse) point. A;ain Casson's Lemma allows us to ;rrange

n, = (a, (%) U b, (57 ) inc.#

nelghborhood .A’(a (S Y U b (S ))- .A’CM is an imbedded Nz. Proceeding by
induction we can represent the hyperbolic pairs (a1,81),...,(an,8n) by dis=-

LB (M) to be an isomorphism. A closed regular

n
joint imbeddings || ./l/1 C M with the additional property:

inc. #

n
111 (M- J_I_ ,/Vi) Lo (M) 1is an isomorphism.

i=1
Givenan (C M and a ; C 4 as above we must find an apptopriately

framed v, with y \ Y to which a kinky handle (k,3) C (M- _|_j_m r __|_ Ay
=1 i=1
ambiently attaches.

Recall that h~NAYB and assume that it is self-plumbings of A (say)
which are paired by ; let B' be a framed immersed 2-sphere which meets
(AiVBi) only in a single transverse point pe A. Consider two «v's, 71 and
Y2 as constructed in Section 0 (with Y1\; and 72\.;) whlch d:.ffer by one
full turn around i0(1,0) in the choice of 76. If d (D ,3)+ (M- .U. dy '

3 _|_|_ ./y) is a normally immersed null homotopy of y' there is a nhrmally
immierlsed null homotopy d of yz of the form dz-d1 # B . Since 131 is framed
d] and d2 induce the same framing on I (). Since y’ and 72 differ by a
full twist if (a.,((:c1,cz) is put by a diffeomorphism in the form of diagram
2, k will be even in one case and odd in the other. However the framings in-

1
duced on vy and yz by d1 and d2 are equal, so by selecting the correct

curve, say 71, we ensure that when the framing induced on 71 by d1 is

used to trivialize 3(#) the number of full twists K becomes even. Adding
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trivial self-intersection in a chart enables us to change the framing d1 in-
duces on y by any even number, thus we may assume that k= 0.

A neighborhood of d1 cannot yet be used as the desired kinky handle
since the number of self-plumbing of types 1 and 2 (and types 3 and 4) may not
be equal. A relative Wall form p(d') ¢ z(nlM)/I is defined; it would be
sufficient to alter dl (without altering the induced framing on 71) so that
u(dl) = 0. To do this it is sufficient to find an immersed framed sphere
s C (M--._l_l_n1 in) with p(S) = A(S)=0 and S meeting d] in a single trans-

i=

1 1 1 s
verse point; for then one could set dnew = dold # -n (dold) (S). Thertle is a
distinguished torus (see [F] for definitions) nT C 3.4 which meets d. trans-

versely in a single point. L8 (T) inc.§ L8 (M--Ll-‘/ri) is the zero map. It

n i=1
follows immediately that ([T] ¢ H2 (M_iu'q‘j‘g-;z["]x” and that A(T,T)=0.
Geometrically T may be converted into an immersed 2-sphere S by an ambient
surger along an immersed 2-disk whose boundary is the meridian (or longitude)of
T. As before, A(S,S)=0; also counting up self-crossings over Z[w.IX] (see

Diagram 2) shows u(S)=0

immersed disk

Diagram 2.

Again after a regular homotopy of d1 we haye m (M- (E]_,/ri Ud1)) > (M)
is an isomorphism. i=1

We can describe a regular neighborhood of (AU d]) as .4 union a kinky
handle attached to an appropriately framed y. Proceeding by induction we are
able to prove:

LEMMA 1: The hyperbolic pairs (ai , b1) in the kernel group of f£°',

Kz(M"m"ax”' are represented by disjointly imbedded 4-manifolds N4 i with
n 1
LA (M-i|=|1 N4,i) -, (M) an_isomorphism.

Let ai: (N4 i ) )—*(Yi , 3) be the atomic problems with domr?ins
’
: ; - . 1l
N4,1 N4,n which we constructed in Section 0. Set (a:N=+Y) = ai. By
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Lemma 1 N is a codimension 0 submanifold of M. Lemma 2.8 of [W] and the
remark which follows it allows us to find a manifold 1-skeleton for X, that
is a simple homotopy equivalence: h:(X,3X) = (X',63X) where

X' = (83X U 1-cells U 2-cells U 3-cells) U (H) where H is a smooth manifold
. aH
with boundary obtained by attaching 1-handles (possibly unoriented) to the

4-ball; n1(H) generates “I(X')'

An imbedding: Yi N H, unique up to isotopy, is determined by the map
-1
a,

14 hef]
m (¥;) ——=— 7 (N,) ———— 7 (X'). After a homotopy of hoefiN+X is

merely the composition isa:N» Y-+ X. By alignment (Lemma 4'[F) with the state-
ment generalized slightly to permit nonorientable 1-handles) h f is homotopic
(rel d) to a map of quadruples: hef:(M, M-N, N, 3M) —= (X', X'-Y, Y, 3X).
Since KZ(N;Z[H‘X] = KZ(M;Z(n1X]) a Mayer-Vietoris argument shows that
hof]ﬁ:ﬁ' is a simple z[njxl—equivalence. Furthermore

n1(ﬁ:ﬁ)-—1224i+n1(M) ———Ei—» n1(X) _EES:Ji w1(§7:§) are all isomorphisms so
h £ M-N ——X'~Y 1is actually a simple homotopy equivalence. Thus £+ a.

If £ is an orientable problem f+ then the a we have constructed is
a , also orientable. So we have also shown that f+ — a+.

COROLLARY 1: 1If the problems in duf) all admit solutions then all

problems (problems in 37+) admit solutions.

PROOF. Let fe 5{. By the theorem there is a normal bordism (rel. 3) B
from f to £' with £' containing some acsf. If B' be some solution to

a then it is easily checked that B U B' is a solution to f. #
domain a

REMARK 1: Theorem 1 shows that problems over free groups are sufficiently
general to capture any surgical phenomena that may be peculiar to dimension
four.

REMARK 2: Since there are few people who believe that all problems admit
solutions it is worth noting that the implication in Corollary 1 holds for the
weaker notion of A-solution. Let A be a functor from groups with an augmen-
tation into 22 to algebras with augmentation. A A-solution to a problem is
just a normal bordism (rel. 3) to a simple A-homology isomorphism.

REMARK 3: There is some arbitrariness in our choice of . and ' . A
little of the work of theorem one would be saved if we had settled for larger
class in which we abandon the framing assumption on the attached kinky handles
and the requirement that the self-plumbings of a kinky handle be paired. Our
choice of & and gt s motivated by the simplicity of the corresponding
link-diagrams (see [F1]). Another potentially useful feature of the N4's as
we have constructed them is that they are amenable to a continued extension to

N6‘s, Na's etc... analogous to the M4, M6' ... of [Fil]).
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REMARK 4: A smaller (but still countably infinite) sub class of
d(d+), oA (.)lt) can be used in place of .,d(d+) . A typical problem

a_eqf_ has its domain an N4 constructed as follows: Begin with either
Olj-II]lK] I'jI'O'kl

N2 or N2 . Form N4 by attaching kinky handles whigh

have only a single pair of self-plumbings to a standard basis

Yqreoers Y,
1 1+J1+k1

We outline this reduction.

As in the proof of Theorem 1 bord £ to £' and represent K_ by arbitrary

2

N,'s. In a given N, as long as some kinky handle has more than a single

4 4
pair of double points, a pair of double points on either A or B can be
created in sucha way that one sees a new collection of kinky handles on a new

standard basis with the total number of self-plumbings in the kinky handle un-

changed. Diagram 3 illustrates this "un-Whitney move ".

“core" of kinky handle with
two pairs of self plumbings

path along which a sheet of A is
to be moved

Before

new kinky handles with one
pair of self plumbings apiece

Diagram 3
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By induction we end with an N, in which all kinky handles have a single

[}
pair of self-plumbings.

To achieve j. =0, and k,=1 (or j.=1 and k.=0) it is necessary
0 0 1] 0

to further bord £' by additional 1-surgeries. A representative surgery and

its effect on K2 is illustrated in Diagram 4.

Bl
surgery to be done on this curve

Before

B, (=B' # transverse sphere
to surgery)

After

Diagram 4
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2. THE LINK SLICING PROBLEMS ASSOCIATED TO J+

Henceforth N4,a (or just Na) denotes the domain of a problem ae.41+.
To understand the relation between a and link slicing problems it will be
necessary to produce a handle decomposition for N4 analogous to the handle
decomposition of M4 given in Section 1 of [F1]. The situations are quite

similar so the handle diagram for N is given below without further justifi-

4
cation.
0
(&
B
] £
& | &
= B
:i:gies — kinky handles

o

5
%)

Handle Diagram for N4

Diagram 5

Henceforth the possible repititions (represented by dots in Diagram 5)
will be omitted from the illustrations. Two diagrams, or the links which con-
stitute them will be called similar if they differ only by the admission or

omission of such repititions. Using this conversion and after passing 1-handles
Diagram 5 becomes Diagram 6.
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5 \@ %

Diagram 6

Changing t-handles to 2-handles and then manipulating 2-handles (see [K])

: the rules of handle calculus) we get Diagram 7 representing aNa.

0-framed surgery on L _,{L ]= 3N
(all up to similarity) a

Diagram 7
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Let La be the O-framed link (similar to Diagram 7) which gives rise to
3(domain (a)) = aNa after surgery. We write: [I..a]-= aua.
In an algebraic sense La is very close to being a trivial link, La is
a bound?r link, i.e. it is spanned by a Siefert surface Sa with
inc.

wo(La) ————i xo(sa) an isomorphism. A particular Sa is readily visible

(half of it is lightly shaded) in Diagram 7. The Siefert matrix for sa is
trivial, i.e. it takes the form @ |:8 a:l .

Thus La is "algebraically slice"™ in the strong sense; in the higher

L
sdk+1 a S4k+3

dimensions (]| + k> 1) this data would imply that there was

a slice sa, i.e. a commutative diagram:

ll s4k+1 a s4k+3
——

| )

s
lL D4k+2 a D4k+4

+ -
with [D4k 4. sa(ll D4k+2)] ~ V'S’. We will consider the consequences of

three progressively stronger assumptions, each a variant of: "There exists an
s slicing L_".
a a .

ASSUMPTION 1 (homology-slice): For each aecf there exists an inte-

gral homology 4-ball Dg with aD; = 53 and a commutative diagram
L
ll.sl a S3

g d

s
2 a 4
|| D DH

ASSUMPTION 2 (Algebraically.ribbon)z In addition to Assumption 1, we re-
quire that the inclusion map [L,] = (ams® U s, (L %)) — (D:I— s, (L %))
induces an epimorphism on fundamental groups.

ASSUMPTION 3 (strongly slice): In addition to Assumption 2, we require
that D; is diffeomorphic to D4 and that s, restricts to the standard
slice on the unknotted and unlinked collection of components ({x,y,x',y', and

all similar components} as shown in Diagram 7.
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PROPOSITION 1: Assumption ! implies every oriented problem has a

A-solution where A(G) is the integers with the trivial action of G.
PROOF: This follows from Remark 2 once (D:l—./f’(S3USa (1l Dz)),
3 = [La] = 3Na) = (Q,3) is identified as the upper boundary of some B', a

A = Z-solution of a. Given a framing & for Q. The obstruction € to con-
structing a B' with 23B' = NaN'gaQ Q, the isomorphism being the canonical
one given by the passage from Diagram 5 to Diagram 7, lies in the 4-dimensional
; . n 1, ~ B stable
framed bordism of a wedge of circles F4(1¥1 s;) % .8 7, .
arrange @ =0 by rechoosing & near an imbedded wedge of circles in Q. This

We may

constructs B' and completes the proof. i
PROPOSITION 2: Assumption 2 implies every oriented problem has a solution.

PROOF: First construct a degree one normal map from (Q,3N), a':
(Q, 3N) —(Y,3), normally bordant (rel 3) to a. It follows from Claim 2
(Section 0) that the kernel k3 = kernel (n1(aN) —-v1r1(aY)) is perfect.

Assumption 2 gives commutative diagram

——————
ke (3N) LB (?Y)
epi 2

"1(Y) .

Q) ——————

From this we see that k= kernel (1r1 (Q) ——-—>1r1 (Y)) is a quotient of ka and

therefore a perfect group. Thus K1 (Q;Z{‘NIY]); 0. Set I(zs K2(Q;Z[n1\l]).
K2 is the first nonvanishing kernel group and is therefore stably-free.

According to a calculation of Bass [B] K, (% [free groupl) = @ R (z{zD=0
0 copies ©

P
so K is actually free. If rank >0 there would be a generator x

2

and an element y, X,y € K

z(n,v1%2
2’ with A(x,y)=1 (by nonsingularity of A). But
all intersection numbers must be zero when reduced to Z since HZ(Q;Z) = 0;
so K2 2 0.

By duality all the kernel groups vanish; a' 1is a A-solution to a where
A(G) = Z([G). Remark 2 may now be used to find a A-solution
£7: (M'-N U Q),3) — (X,3) to any fe y+. The following Van Kampen diagram

computes kernel [f;zﬂ1 (M") -——»111()()]:
ker:(u1 aN) ——— ker(n1Q)

l |

0= ken:(ﬂ1 (M'-N) ————r ket(n,M“)
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Part 3 in the definition of f+g yields ker(ﬂI(M‘-N) £ 0; Assumption
2 forces the top arrow to be an epimorphism. The pushout ker (M") is neces-

sarily trivial. It follows that f" is actually a solution to f. H#

3. THE EQUIVALENCE OF ASSUMPTION 3 AND CONJECTURE A+

It is an open question of some interest whether there is a smooth knot
k:S2 — homotopy(54)=3:
(k) =1 ¢ Zz .

OBSERVATION 1: Assumption 2 implies the existence of a knot k with the

~

with ﬂ1(3:‘ k(Sz)) = Z and Rochlin invariant

above properties.

PROOF: Proposition 2 allows us to solve the surgery problem (see [F1})
which constructs a simply connected homology H-cobordism C with 23C= 2311723
where 23 is the Poincare homology sphere. Let C be C with ends identi-
fied. Let C be the result of a framed 1-surgery on the generator of

ﬂl(E) 2 %Z. C 1is a homotopy 4-sphere. If the surgered circle is arranged to
meet 23 in a single point then its linking 2-sphere is clearly a knot of
Rochlin invariant=1 in C. Furthermore n1(5-1inking sphere) = n1(§-circle)
g ﬂ1(C) = z. i

PROPOSITION 3: Assumption 3 implies conjecture A+: The surgery-exact

sequence:

Lg (r,X) =250 9% (x,0) MK, 3) —— L] (1, X)

is exact for oriented simple Poincare pairs (X,3) when dim(X,3] =4,

It is only necessary to verify exactness at &, the smooth structures
(rel. 3) on X, since Proposition 2 already implies exactness at the normal
maps A.

In the proof of Proposition 1, a bordism B' is constructed. With a

little care, B' can be constructed to be the domain of a surgery problem:
- 3.2 a4
g:(B',NUQ) —/8—— (D"x S |:\ (D xS)i,a) with g restricted to one
i=1
singular sphere g|A null homotopic.

By a splitting argument the surgery obstruction o(g) 1is a collection of
signatures. Without changing 3B'= 9N U 3Q we are free to vary these signa-
tures by an even integer. If some of these signatures are odd we can change
Q(rel 3) to make o(g)=0. This is done by altering the slice Sa where
4, k(Sz) where k is

8.

necessary by a connected sum of pairs (D;, sa(llDZ) # (s
the knot constructed in Observation 1. Since ﬂ1(8ﬁ- k(S7)) = Z our assump-
tion 2, that n1(aQ) + n1(Q) is an epimorphism, is preserved. Thus g has
vanishing obstruction. By high dimensional surgery B' 1is normally bordant

(rel 3) to a simple homotopy equivalence:
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3 2.2 4
g':(BY.NuUQ — (D°’xs“ BB (p°xs )
i=1

The proof of Proposition 2 (Section 1) enables us to represent any kernel
by

(a1,...,a , bl""'bn>

n

an imbedded J_LN. Attaching B' to B (as in the proof of Corollary 1) along
1N will kill the subkernel basis {a,,...,an} and do nothing else on homol~

ogy with coefficients Z[n X]. The usual argument (see Ch. 10 [W]) that

L4k+1 acts on .9’(X4k,a) 1now applies., Thus it follows from Assumption 2
alone implies that the surgery exact sequence is exact if .9’5(}(4,3) is in-
terpreted as relative s-cobordism classes of simple homotopy equivalences to
X (rel 3). To complete the proof of Proposition 3 we must prove:

PROPOSITION 3': Assumption 3 implies the 5-dimensional relative (oriented)

s-cobordism theorem.

The proof of the s-cobordism theorem in higher dimensions may be followed
until the following difficulty on a mid-level 4-manifold is reached.

PROBLEM: Let M be an oriented 4-manifold (possibly with boundary) and
k an integer > 0. Let (a,,...,ak) and <b1""'bk> be two disjointly im-
bedded collections of spheres (the ascending and descending spheres) with the

intersections over ZMIM] given by )‘(ai , bi) = §,.. We know

ij
k k
Lo (M-iLL’] ai) — T, (M) and LS (M= _1]__|_1 bi) — (M) are isomorphisms. The

: . . . . b o .
problem is to find an isotopy of ]_.I;-]_1 bi to i]__|___.1 bi with a; N bj ¢ for
i#3j and a, and bi meeting transversely in one point for all 1<i<k.

In the presence of Assumption 3 we will solve this problem, completing the
proof of Proposition 3'. The strategy is to solve the problem in a manifold
M arrived at by cutting and pasting M# k(Szx Sz), in the end M is identi-
fied as the original M. For convenience we have outlined the steps as if
k=1.
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Step 1: Add a copy of Szx 52 to M. Let p,q be the new transverse
spheres in M# Szx Sz. Corollary 2.5 [Q] and the following remark provides an
isotopy of M# Szx S2 which carries b to a sphere b' with a N b'=one
transverse point. The cost is that b now intersect pvVvgq.

Step 2: A homological calculation (using z[nlM] coefficients) shows
that L8 (M- (avb UpVq)) is perfect. "Casson moves" (see added in proof

[F1]) creating pairs of double points in anNnp and a Ng make

Ll (M- (avb UpVqg)) £ 0. We show how to eliminate one pair of double points
of aNP (or anNg, b Np, b Ng) without introducing new intersections
into these sets.

Step 3: Let d be an immersed (framed) Whitney disk [FQ] pairing an
algebraically cancelling pair of intersection in a N p. Assuming
int(d) C M- (avb UpVqg) and (after Casson moves) that its deletion does not
change L (complement). Make d imbedded by pushing out self-intersections
of d to form pairs of intersections in 4 Np. Add a new layer of immersed
whitney disks pairing algebraically cancelling pairs of intersections of 4
and p. Again to simplify notation, we consider the case of one disk e. As
with d we arrange e to be imbedded, e N (aVb UQ))=#, e Np consists of
cancelling pairs. Also int(e) Nd=¢g and L3 (M-aVb UpVqud ye) 0.
Now make e Np=@ by pushing sheets of p off the part of 23e 1lying on p.
p is now only immersed; call it p°'.

Step 4: Push p' by the "Whitney trick" across e. p' will now "link"
d in the following sense. The natural Whitney disks (call one £) for kil-

ling the double point pairs introduced into p (when it became p') will

intersect d.

Diagram 9
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Step 5: Push pé across d by the "Whitney trick". The interior of £
lies in (M- aVb UQqg).

The intersection p' N int(f) may be arranged in pairs that cancel in the
group ring. In fact there is an f£' which differs from £ only by Casson
moves and an isotopy of its interior so that p'MN int(f')=@. f' is found
by doing a "singular Whitney trick"™ along an immersed disk. (Each double point
of the immersed Whitney disk corresponds to four Casson moves.)

Step 6: A regular neighborhood of (p'Vvgqg Uf') is an N+ manifold,

4
N CM-aVb with 1r1(M- (avb UN)) =+ LH (M) an isomorphism). Furthermore we

.
may assume N C (Szx 52— D'4) ':] S‘ x D3=w, the original Szx Sz- 4

copies
summand union thickened arcs. To see this note that p' is made from p by

Casson moves, i.e. pushing along an arc, £' is made from the newly created
Whitney disk f by more pushing along arcs. W is merely a reqular neighbor-

hood of (Szx SZ— D4U arcs). Assume, for the sake of a canonical form, that

each arc minus Szx 52- D4 is a (nonempty) closed interval.
Step 7: Retrace steps 1 through 6 in the proper generality; pair
N N <i, j< J
aiﬁpj,ai qj, binpj’ and bi qj, 1<i, j<k, with d's and dﬁpi

and dﬁqi with e's. The result will be a regular neighborhood,

k
priv q; Uf' 's) C M- || (avb). Furthermore we will have an inclusion
i=1
k k k
N= ]| Ni cll [(Szx 82— D4) h S1 x D3]. = W. =W analogous to the one
i=1 i=t1 copies R

constructed above.
Starting with Diagram 7 one may arrive at the following handle-body de-
scription of any component of W-N wi- N, = [ # (s1 x sz) x [0,1}] U 2-handles
copies a+

The index set counts the total number of above mentioned arcs or equivalently,
I contains an index for each curve of type x, y, x', or y' 1in Diagram 7. If

1 2
[cogies(s x5l x 1
then the 2-handles are attached with O-framing to the 1-level along the curves

we let the x, y, x', y', represent the 1-handles of

of type 2z and z' in Diagram 7.

Assumption 3 provides standard slices for the x, y, x', and y'. So Q

is actually the closed complement of slices for the 2z and z' in # S1 x D3.

copies

i can.
aN, =3Q,
= # S1 x D3. 1 1
copies

so H=(®-MUo= (M -W UGN UQ = - U (cogies(sl x D

= (M.k-k(Szx 52

The 2-handles of wi- Ni fit into the missing slices so wi- N, U Qi

3

- D4)) U kD4 = M. We have written Mk for M# k(Szx Sz) and
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k
Q for 1J_Qi. This completes the proof of Propositions 3' and 3. i i
i=1
THEOREM 2: The surgery exact sequence of Proposition 3 is exact if and

only if Assumption 3 is true.

PROOF: By Proposition 3 it is only necessary to assume exactness and then
construct for each a the desired slices sa] (Components similar to z and z')
in h S‘| x D3.

copies
The slice sa will be found by constructing its closed complement Q.

Exactness at .#(Y,3) guarantees a solution to a:(N,3) + (¥,3). Let

h:(Q,3) + (¥,d) be the resulting simple homotopy equivalence. Let T=Q U
2-handles be obtained by attaching 2-handles to Q along small O-framed link-
ing circles to the components of types 2z and z' in Diagram 7. 3T is now &if-

feomorphic to tq (S1x sz) and the co-cores of the newly attached handles
copies 2
constitute slice sJ(lL D)

2
on 3T, “1(T'Sa(ll.D )) !
standard 2-handles to T to a slice s = of La(: s” which is "algebraically
ribbon".

To verify Assumption 3 we must show that (T,3) can be chosen to be dif-

in T for the curves of types 2z and z' lying

~

"I(Q) = Free group so sal extends by adding

feomorphic to ¢ tq (STx D3),3) = (U,?3). h may be extended (by attaching
copies
2-handles to both sides) to a simple homotopy equivalence relative the identity

map on 3, h':(T,3) - ( U,3). The normal invariant

h(h)3) € (3] n3(G/0) ® n4(G/O) is signature(T)=0 so h' is normally
copies

cobordant relative boundary to the identity. We have

h:(B;T,U) > (Ux [0,1], Ux0, Ux1), hf = h*' x0, HU = id; x1. The surgery

obstruction o(h) € L: (free group) on the normal bordism belongs to

Hl( tq (S1 xD3); Z) and is determined by the signatures of B{H*x D3 x [0,1]).
iel
Let C be the manifold in Observation 1. Let C= E8 #; c u - E8 be
3'C 3~ C
C with a copy of the Es—plumbing glued to its upper and lower boundaries. Let

é be an s-framed 5-manifold a6= . set H= @/EBE —E8. A new normal bordism

B' can be formed with o(ﬁ)= 0 by adding copies of H to B. A copy of H |is
added to B by identifying a framed normal bundle of a circle vy in a°B= T
with the framed normal bundle of a generator of H1(E;Z). This changes
a(E)[Y] by *1. aoB'= T' 1is no longer equal T but results from changing T
near a collection of circles. By general position these circles do not meet
the slices sakll Dz) and change does not affect any fundamental groups. So
assume our slices sJ(lL DZ) lie in T'. Let h" be the new simple homotopy
equivalence.

Since o(h") 1is now zero, surgery on h"(rel 3) produces a relative

s-cobordism of h':(T}3) - ( U,3) to the identity. An application of the



ATOMIC SURGERY PROBLEMS 199

s-cobordism theorem completes the proof of Theorem 2.

REMARK 5: A nonorientable version of Theorem 2 may be proved. However,
we would lose the close relationship to links in S3; the corresponding
Assumption 3 would involve the slicing of certain links in nonorientable handle
bodies.

This close relationship between surgery and link theory should provide
moral support to those who study 4-manifolds through link-diagrams. It might
be hoped that information can be recovered in either field by going forward
and then backwards along the equivalence. We close with such an example.

EXAMPLE: Suppose that for all a aNa = BQa for some Qa with
"1(306) + "1(Qa) an epimorphism and Qa Z[n1Y] - equivalent to a wedge of
circles (i.e. all a are algebraically ribbon). Then all a satisfy
aQa = aQ; with Q; homotopy equivalent to a wedge of circles. The assumption, by
Proposition 2 yields exactness at #(Y,3); exactness at 4#(Y,3) provides
Q;.
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SMOOTH 4-MANIFOLDS WITH DEFINITE INTERSECTION FORM

S. K. Donaldson

This is a summary of the lectures at the Durham conference that were de-
voted to the application of gauge theory to 4-manifold topology, in the form of
the following result:

THEOREM. If X is a smooth, compact, simply connected, oriented 4-mani-

fold with positive definite intersection form, then that form is equivalent

over the integers to the standard diagonal form.

A detailed account of the proof is now in preparation so I shall attempt
here to give an easily accessible presentation of the ideas used. The first
six sections give the definitions and basic properties of self-dual connections,

and these are used in Section Seven to prove the theorem.

SECTION ONE. SELF-DUALITY

There is a local isomorphism of Lie Groups:
SO(4) =~ SO(3) x SO(3)

which gives 4-dimensional Riemannian geometry certain special features. The
isomorphism can be realized by the natural decomposition:

Azll'(4 = Af_R4 ] AEIR4 .

into the 3-dimensional eigenspaces of the *-operator, the "self-dual" and

"anti self-dual" parts, so that for ace AE:
u'\a=t(a"*a)=i|a|2'vol. (1

If Y is any compact oriented Riemannian 4-manifold this decomposition

applies to each of the cotangent spaces to decompose the space of 2-forms:
o2 (Y) = nf(Y) ® ﬂf(Y)-

The Laplacian A=dd*+d*d commutes with * so we get a similar decomposition

of the harmonic 2-forms:

2% 0) = (e 2’ |a=0) =g o .

which, by the defining property (1) and the Hodge Theory (see [8), for this)

reflects the signature of the intersection form:
© 1984 American Mathematical Society
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o (G R) S () = dim,ygf - dim.yg_;_ = b; - b;
So if in particular Y=X 1is the manifold of the theorem, given some metric,

then.;rf(X)= 0. Similarly the first order operator
- 1 0 2
(d*+d ): Q@ (Y) - 2 (Y) @ 9_(Y)
(d*adjoint to 4, d~ the anti self-dual part of d) has

index (d*+d ) = b, —1-b; . (2)

SECTION TWO. CONNECTIONS AND CURVATURE
If V is a complex vector bundle over Y, a connection A on V can be

defined to be a family of "horizontal subspaces" in the total space, or dually

by the associated differential operator
d,:0 O(Y;V) g (Y;V)

(3)
dA(f's) =df @ s + fdAs .

So in any local frame S= (s’,...,sn) for V, A is represented by a matrix of

1-forms As: dAs

n
=1 Afj © s, (This definition follows [3] Appendix C).

j=1
If V has extra structure we can define connections that respect that structure
For any two connections A,B on V the defining property (3) implies that
dAA-dB is an algebraic operator, so A-B is naturally defined as an element
of n'(Y;End\U. Similarly the curvature F(A) of a connection is an element
of QZ(Y;End\n given in the local frame S by the matrix of 2-forms:

S

F° = aa° - a% ~ a (4)

There is an obvious notion of isomorphism for connections and we shall
eventually be interested in connections up to this equivalence or, more for-
mally, in the quotient of the affine space & of all connections on V by the
"gauge group" ¥ of automorphisms of V.

The self-dual decomposition extends to bundle valued forms and combines
very naturally with the geometry of connections. If A is a connection on a

unitary bundle V the "Yang-Mills action" of A is defined to be:
2 2 2 2
ey = [m au = f!F+l + |F_|“au
Y Y

(Here F(A) = F = F+ + F)
(This was first defined in Mathematical Physics, the associated variational

equations are the Yang-Mills equations). Whereas the integral

f|F+|2 - 1F_an = fTr(F ~ *F)
Y Y

is a characteristic number, a topological invariant of the bundle V. We say
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that a connection A is self-dual if it has self-dual curvature:
F () =0 (5)

and so for such connections the two integrands above are identical. Henceforth
we will be concerned only with bundles of rank 2 and with structure group
SU(2). The topological classification of such bundles over the 4-manifold Y

is by the integer c2==c2(V)[Y], and for a self-dual connection on V we have:

1/78x° |IF)|%==c, > 0 .

if c,= 0 then any self-dual connection must be a flat connection with

vanishing curvature, such are in (1-1) correspondence with their holonomy

representation
n1(Y) + SU(2)

In particular if Y=X 1is the simply connected 4-manifold of the theorem then

any self-dual connection with c, = 0 is trivial. We shall study the first

interesting case c,= -1 from now on.

SECTION THREE. THE SPACE OF 1-INSTANTONS

The self-dual connections on a bundle with group SU(2) and c2= -1 over
the standard Riemannian S4 are all explicitly known and play an important role
in the general theory. They illustrate the fact that the self-duality equation
(5) is conformally invariant; that is, a conformal transformation f:S4 > S4
pulls one self-dual connection back to another. Similarly since 54-{pt.} is
conformally equivalent to Ié these solutions may also be regarded as self-dual
connections or "instantons" on I&. There is a natural SO(5)-invariant
self-dual connection coming from the "quaternionic Hopf fibration":

7
3

v 87 2 8sU(2)

S4

and the conformal group of S4 generates all possible solutions from this
basic one. Thus the set of equivalence classes of self-dual connections with

c,= -1 on S4 is parametrized by a moduli space:

947(84)-'Conforma1 Group of S4/SO(5) = BS. Under the standard conformal
chart R4"S4—{—p} the conformal transformations corresponding to the segment
— o*p
op in B~ are represented by dilations:

X + A°*°X 0<A<1 , xe Rﬁ

And on R4 the instantons represented by this segment in the moduli space,

A say, have curvature densities:

)\ ’
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2
2, .2 2
IFAY )| = AT/ %]
+ 0 as A-+0 for x#0

+ @ as A+0 for x=0

Thus we may compactify the moduli space VII(S4) intrinsically by adding on S4
as boundary and saying that a point pe S4 is the limit of a sequence Ai in

M if ——1—2- |F(Ai) |2 tends to the §-function at p.
8w
The next three sections explain why an analogous moduli space .#(X) for

the manifold of the theorem (with some fixed metric) exists. From these we

shall deduce the proof of the theorem.

SECTION FOUR. ANALYTICAL PROPERTIES OF SELF-DUAL CONNECTIONS.

A linear elliptic differential operator D defined on some open set
v cr has the standard property (see [8] for example) that if C<0 and if
{fi} is a sequence with Dfi=0, "fi I < C then some sub-sequence of the fi
converge to a limiting £ with DE=0, ||f|] < C. (For example, if UC € and
if D=3 is the Cauchy-Riemann operator then this is the classical theorem of
Montel). An immediate consequence is that if D 1is defined instead on a com-
pact manifold then KerD is finite dimensional, or equivalently the unit ball
in Ker D is compact.

The theorems of K. Uhlenbeck ((6],{7]) extend this standard linear theory
to the non-linear self-duality equations, with bounds on the action ||F||2.
Two main differences appear in the local theory for a sequence Ai of
self-dual connections defined over B4 C R4, with HF(Ai) |]2 < C:

(a) Gauge invariance.

In a fixed frame S the Af need have no convergent sub-sequences. For
example even if C=0 the Ai could be an infinite sequence of flat con-
nections. This corresponds to the fact that the self-duality equation:

a 2%~ (a%.a%)_ = 0 (cf.(4)) is not elliptic. One can only hope to find B,
isomorphic to the Ai converging, by fixing the constraint d*B§= 0 to give
an elliptic system.

(b) Non-Linearity.

One will not achieve convergence for all values of the constant C. For
less than some fixed C0 the linear theory extends and the Bi exist and have
a convergent sub-sequence. The limit is also a self-dual connection. The
Yang-Mills action is conformally invariant in dimension 4 (cf. Section 3) so the

same conclusion, with the same constant C applies to balls of arbitrary size

ol
If now Ai e is a sequence of self-dual connections on the bundle V

over the compact manifold Y, so that:
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le(Ai)lzdu = —ancz(V) = 812
¥

One may apply the local result near to any point yeY about which there is a
ball B Y with for large i:

2
[reapifan < ¢
B

On passing to a suitable sub-sequence this is always possible for all but
finitely many points in Y (in fact, at most 81r2/C0 points) and away from
these points the local result gives convergence to a limiting connection A
which is self-dual. By another theorem of Uhlenbeck ({7} A°° extends over all
of Y, but to a connection on a bundle possibly not isomorphic to V: however
we can only "lose" curvature in the limiting process, so the only possibility
for a new bundle is the trivial one (c2= 0) and in this case, by the remarks
above in Section 2, if Y is simply connected, for example if Y=X, A is
isomorphic to the standard flat connection. Moreover for any ball B C Y the
value of

1

—15 fIF(A,)Izdu = fTr(FAF)
8n . 8n2
B B

is modulo Z an invariant of Ail (this is a basic property of characteristic
3B
class integrands for manifolds with boundary), so one easily sees that there is
at most one point yeY over which the curvature of the Ai may gather, and
either:
(a) cz(Am) = -1 and Ai+-A°° over all of Y.

1
2

8n"
point ye Y. (Thus the point appears as the Poincaré dual of -CZ(Y)')

or (b) A_ is the trivial flat connection, and IF(Ai)l2 + 5y for some

SECTION FIVE. THE EXISTENCE OF SELF-DUAL CONNECTIONS

Self-dual connections were first studied [1] under the restriction that
the Riemannian base manifold was of a very special type. C. H. Taubes then
showed that they exist under more general hypotheses, ({5). His construction
may be roughly described thus: given a point yeY and a scale A>0, use
geodesic co-ordinates to identify a small ball around y with a similar ball in
R4 . Under this identification the instanton AA goes over to a connection
defined in a neighborhood of y which can be extended over all of Y by glu-
ing on to the flat connection. This gives a connection on a bundle over Y
with c,=-1 and with || F_{ 2 small. Taubes showed that if one took the

scale A very small, so the connection constructed had most of its curvature



206 S. K. DONALDSON

concentrated around the point y, and if one tried to modify this connection
to find a nearby self-dual connection one encountered obstructions in the
space .9?2 (Y) of anti self-dual harmonic 2-forms. By the discussion of
Section 1 this space vanishes precisely when the intersection form is positive

definite; in particular from Taubes theorem [5] self-dual connections with

cz- -1 exist over the manifold X of the theorem.

This condition on the intersection form for the existence of self-dual
connections is definitely necessary in some cases; for example, with suitable
Riemannian metrics, self-dual connections exist on a bundle over =@ P2 with
c2= -2 but not with c2= -1. In general one would hope for a precise result
along the lines of the Riemann-Roch theorem for meromorphic functions on a

Riemann surface.

SECTION SIX. THE MODULI SPACE OF SELF-DUAL CONNECTIONS

The equivalence classes of self-dual connections on the given bundle V
over the manifold Y will be parametrized by a moduli space #=#(Y), Jjust as
we saw in Section 3 for the case Y=S4. It is easiest to define this ab-
stractly in terms of calculus in Banach spaces.

The infinite dimensional gauge group ¢ of automorphisms of V acts on
¢ by conjugation, and by definition the set of equivalence classes of connec-

tions is the quotient B =f/@. Let us, for simplicity, assume for the moment

that @/*1 acts freely on .«; then @B is an infinite dimensional manifold

with charts defined by transversals in . to the ®-orbits:

= *q= <
Tp,e {A+a | dxa=0, [la]|l < e}

(This is the global version of the constraint d*BS=0 in Section 4.) The
sub-set MHC P of equivalence classes of self-dual connections is cut out by

equations: explicitly in the chart above about a self-dual A these are:

dga=0 (fixing A+a e T

A,e)

(6)
dAa - (a~a)_=0

&
More formally there is an infinite dimensional vector bundle é with a canon-

ical section s cutting out 4;

M= 72(s) = {[A] e B| s[A} =0}

E
Suppose, for purposes of comparison, that J,)s, M= Z(s) were analogous

finite dimensional objects, then one would have the standard properties:
(a) For generic perturbations s+o of s, M°=Z(s+o) is a smooth sub-

manifold.



SMOOTH 4-MANIFOLDS WITH DEFINITE INTERSECTION FORM 207

(b) In KO(MG) 'I’M0= E- TB, hence taking 0 and }-dimensional components

in cohomology: Dim (Ma) = Dim (E - TB), v, (MU) =w, (E - TB) M So the dimension
c
of Mo is fixed by the data and if H.I (B;zz) =0 then MU is orientable.

Both (a) and (b) extend to our infinite dimensional case. This is because
the linearization of the local representation (6) of the equations is the el-

liptic equation:
* =
(a* + dA)a 0

and it is a standard fact that elliptic differential operators over compact
manifolds give rise to "Fredholm" operators on Hilbert spaces (cf. Section 4).
The usual finite dimensional argument that is used to prove property (a) extends
to such Fredholm equations [4] so without loss of generality, we may suppose
that .4 is a smooth submanifold of 98 by making a small perturbation if nec-
essary. (It seems very likely that one can always make this perturbation by
varying the metric on the base space Y).

Similarly there is a well defined element in KO(@ which is formally
the difference of infinite dimensional spaces &- T#: the situation is com-
plicated by the @ action, but abusing notation it is the index of the family
of operators (dg+ d;) in the sense of (2]. The Atiyah-Singer index theorem

computes the dimension of this in terms of the original data V,Y: [1}

Dim.#(Y) = index(d*+d,) 8/c, (V)| + 3 index(d*+d)

8-3(1-b1+b2) cf. (2)
In particular for the manifold X of the theorem, b_=b_=0, so
Dim#M(X) =5 .

And a straightforward homotopy calculation shows that, again for our par-
ticular X,V, the group ®/*1 is connected so, since it acts freely on the
contractible space . the guotient 9 1is simply connected and 4(X) orienta-
ble by the generalization of property (b) above. (I am grateful to Cliff
Taubes for a correction on this point.)

Now we see from Section 4 that a sequence in .4(X) can only fail to have
convergent sub-sequences if the curvature densities become concentrated over a
point of X, and from Section 5 that Taubes constructs solutions of this type
depending upon 5 parameters, a point in X and a scale A>0. Thus with a
certain amount of effort one proves that there is a collar % C.# with
RYE X x (O,AO) and M -9 compact, so we may compactify .#(X) to a manifold
with boundary X just as in Section 3.

Throughout this section we have assumed that ®/*1 acts freely on .,
and we should now return and briefly describe the modifications required when

this is not the case.
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If a connection Aec.f is fixed by a non-trivial ge® then g is a co-
variant constant dAg= 0. The eio_;jnspaces of geaAutV split V into a di-
rect sum of line bundles V=L®L in such a way that the connection A is
induced from a connection on L, in the obvious sense.

It is very easy to check that on a simply connected manifold there is a
unique connection on a line bundle (up to equivalence) having any prescribed
curvature form within the set of representatives of 2ri c1 (L), soon X
there is for any line bundle L Jjust one self-dual connection with curvature
the harmonic form in xf. Then the condition for such a line bundle L to

appear in a splitting of V is:
2
-1 = c2(V) = -c1 (L)

Thus the number n of such Abelian reducible connections in the moduli space

M (X) is determined by the intersection form Q:
n=n(Q) = %4 {GGHZ(X:Z) | Qa) =1} .

(the % coming from the choice of factor L,L-1). The stabilizer in % of one
of these reducible connections is a copy of S’, corresponding to a constant
rotation of each factor, and this gives .4 a quotient singularity; a neighbor

hood in # of any such point has generically the form 41:3/81 = cone on ltP2 .

SECTION SEVEN. PROOF OF THE THEOREM
By using the Gram-Schmidt diagonalization procedure one easily sees that

for any positive definite unimodular form Q:
n(Q) < rank(Q) (7

with equality if and only if Q 1is equivalent to the standard diagonal form.
But the moduli space .#(X) of Section 6, with its singular points removed,

gives an oriented cobordism between X and n(Q) copies of ¢P2; hence
Rank (Q) = t(X) < n(Q)

so combining this information with (7) we have n(Q) =rank(Q) and Q is the

standard form.
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THE SOLUTION OF THE 4-DIMENSIONAL ANNULUS CONJECTURE (AFTER FRANK QUINN)
Robert D. Edwards

After Freedman made his startling breakthrough in August-September 1981,
establishing that 6-stage Casson towers contain flat spanning discs, it quickly
became clear that in order to derive the most significant consequences using
this technique, one should go back to Casson's original tower construction and
attempt to refine it a bit, in order to achieve some control on the size of
towers. For example, Freedman himself toiled ceaselessly throughout that
September, seeking enough control to be able to prove the proper h-cobordism
theorem and hence the topological 4~dimensional Poincaré conjecture. He finally
succeeded by means of a fairly intricate adaptation of Siebenmann's method for
proper h-cobordisms (see [FZ’ Sec. 10]).

The sort of control that Freedman achieved can be regarded as 1l-dimensional
- one merely had to control the wandering of points out toward infinity, or in
from infinity. There remained an entirely new layer of results to be estab-
lished, using techniques already successful in higher dimensions,ifonly one could
impose additional degrees (dimensions) of control. Such control finally was
achieved almost a year later by Frank Quinn, who made his clinching discovery
and dramatic announcement of success at this conference.

This article is a discussion of that work. In its proper generalized set-
ting, Quinn's work is a maze of e's, 8's, homotopies, intersection patterns,
et cetera, which is as difficult for a novice to wade through as Freedman's
original work. But when stripped to its core, Quinn's work becomes much more
tractable (but still far from easy). In this article we present this core,
using as a target the theorem that is probably the best known corollary of
Quinn's work, the 4-dimensional Annulus Theorem. Alternatively, and a bit
easier perhaps, one could keep in mind as the target theorem the 5-dimensional
proper h-cobordism theorem (say the finite ended case), which originally was

proved in [F2, Sec. 10] by the somewhat specialized argument mentioned above.
*Supported in part by NSF grant MCS80-03571
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At its heart, Quinn's work amounts to an ingenious reorganization of
Casson's construction, making full use of the great triumvirate of moves in
this subject, namely Whitney's, Casson's and Norman's moves. It is remarkable
how careful one has to be to achieve even the slenderest amount of control, but
once achieved, the payoff is substantial.

This article is written so that a fledgling student of geometric topology
should be able to follow most of it. To this end, we have included in Sections
2 and 3 a summary of the more important, previously used constructions that will
come up. Hence, anyone already comfortable with Casson's work can proceed im-
mediately to where Quinn's work begins, in Section 4.

There is nothing new in this paper itself, in the sense of new theorems or
new constructions that haven't already appeared. However, there is some novelty
here in the presentation of this work, primarily Quinn's but also Freedman's,
and with this different perspective we achieve some modest economy and (hope-
fully) clarity.

The sections of this article are:

Preliminary matters and ever present hypotheses.

Whitney moves, Casson moves and Casson's Surface Separation Lemma.

A few words on towers and their framings.
Quinn's Transverse Sphere Lemma.
Multi-applications of Quinn's Lemma.

A preliminary Separation Proposition.

Quinn's construction.

W N VW N

The proof of the 4-dimensional Annulus Theorem.

Appendix 1. Casson's Imbedding Theorem via Quinn's Lemma.
Appendix 2. Freedman's Big Reimbedding Theorem via Quinn's Lemma.
Appendix 3. Quinn's Disc Deployment Lemma.

Appendix 4. Some remarks on non-s imply comnected developments.

1. PRELIMINARY MATTERS AND EVER PRESENT HYPOTHESES

All surfaces and manifolds in this article are always assumed to be
oriented, and everything is smooth, except where Freedman's work is applied at
the end. Since we work in noncompact manifolds, we often deal with infinite
collections of data (usually surfaces), but we will always assume that all such

data are locally finite. Surfaces are not necessarily comnected. but all com~
ponents are always compact (or perhaps relatively compact), unless clearly in-

dicated otherwise. By component of an immersed surface we mean component in
the manifold sense, and so components may intersect. We write S+ T to denote
the homological intersection number ¢ Z between two compact (oriented) sur-
faces S and T immersed in a 4-manifold. Reference to S- T presumes that

(38 NT) =4 =(SN3IT), or else that there is a preferred way of achieving
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this. If we write S+ T = 0 for noncompact surfaces S and T, this meansthat
Sa° TB =0 for all components Su of S and TB of T.

All intersections/meetings of arcs, surfaces, etc. in the ambient 4-mani-
fold are assumed to be generically positioned, subject to the constraints im-
posed by the hypotheses. For example, if a disc is attached to a surface, then
near the attaching curve their union locally looks like
R2x 0x0 LJR;X 0 x [0,») x 0O din Rﬁ, unless the curve has self-intersections,
in which case at such points their umion locally looks like
R%x 0x 0 U R x 0x [0,#) x 0 UOx RIx (==,0] x 0 in R%.

Invariably the union of a collection such as {CY} is denoted by 1its
Roman letter C, and we will abusively make statememts like "the collection
cC=U CY," confusing the collection {Cy} with its union C. This seems to
make statements more readable. A similar abuse occurs when we speak of a
"regular homotopy of Cj;" by this we mean a regular homotopy of the (abstract
manifold) components of C, and not of the set C itself (so e.g. crossings
in € may disappear). Finally, we are constantly moving sets like A,B,C,
etc., without renaming them, to keep the notation simple.

The operation of piping is used repeatedly in the subject, to de-

singularize immersed arcs in surfaces and immersed discs in 4-manifolds:

piping along piping alotg
one branch the other branch

We note that there is always a choice involved in piping, namely the choice of
which sheet or branch to pipe. Furthermore, in the case of a disc, there is
the choice of which boundary point to pipe toward. In what follows these
choices are immaterial, unless explicitly specified. Also, one can often re-
place piping with its inverse motion, which desingularizes the arc or disc by
shrinking it smaller:

\‘\\ ’/l
shrinking shrinking tge
one side other side

However, for custom's and consistency's sake, we maintain the language of the
former point of view.

At various points in ensuing discussions, careful attention must be paid
to certain framings. However, these discussions are invariably technical, and
are definitely peripheral to the central issues; the first-time reader in

particular should not dwell on these points.
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Definitions in the paper are made where they are first needed. For con-
venience, we list the major ones, and where they occur:

Section 2: Whitney move, Casson move (= finger move = anti-Whitney move),
pre-Whitney loop, pre-Whitney disc, correct framing (as a Whitney disc).

Section 3: tower, correct framing (as the base of a tower).

Section 4: transverse sphere, Norman move (= Norman trick), double sur-
gery.

Section 5: transverse collection of spheres.

2. WHITNEY MOVES, CASSON MOVES AND CASSON'S SURFACE SEPARATION LEMMA

In this section we recall the basic facts about Whitney moves and Casson
moves. A convenient model for these moves is as follows. In the 2-cell D2,
consider the intersecting arcs o and B together with the spanning 2-disc W

in intD2 shown below in Figure 2.la.

A 38
S e
G

The vorious },S W )D"

Figure 2.1

In the 4-cell D4 = sz IxI, where I = [-1,1], let A=ax Ix 0 and

B=g8x0x I. Then A and B are unknotted 2-cells in D4 which intersect

transversely in two points. They can be isotoped to be disjoint, moving only
points close to W (= W x 0 x 0) in intD 4, by the familiar Whitney move
which uses W as a guideway.

Suppose there are additional 2-cells C ...,Ck present of the form

1’
Ci =p; xIxI, where p; € intW . (In the model k=1 case, the boundary
circles JA, 3B and 301 comprise the familiar Borromeanrings in 3D4; see
Figure 2.1b). Initially the Ci

Whitney move there will be intersections. The Casson finger move (or anti-

's are disjoint from A U B, but after the

Whitney move) can be described as follows: for each 1, before moving A U B,

1 off of W Dby piping P, = Ci N W off of either of the two

edges 9W NA or 3W NB of W (which edge depends upon the context),

we 1sotope C

dragging the rest of Ci along, so that it looks as if a finger has been poked

into Ci' This makes Ci disjoint from y Dbefore A UB is moved, at the
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expense of creating two points of intersection between Ci and either A or B
(depending upon the choice of edge above).
This motion of C

move between A and C

i toward A say, can be regarded as an inverse Whitney

i t
ling them. 1Indeed, one can see appear a Whitney disc wi for the two newly

for one is creating intersections instead of cancel-
created intersection points between A and Ci , with Blii CAU C1 and
W i N W= 23w 1 N 3W = one point. (We note for future use that if B 1s now
Whitney-moved across W to free it from A, it will wind up intersecting
int Wy in one point; alternatively, if wi is first moved off of W by
piping the arc 3W, N A along and off the end of the arc 3w NA in A,
i and B.) 1In

case the reader has not yet done so, he might find it worthwhile to play with

i
then this motion creates an intersection point between int W

the simple, model Borromean ring situation where there are three discs A, B
and C=C1 as described above. The point is, using Whitney moves and Casson
moves, any two of these three discs can be made disjoint, but the third disc
will always intersect one of the other two.

It was Casson who first showed how to profitably exploit Whitney moves
and Casson (finger) moves in combination [C]. These moves occur over and over
again in the subsequent work of Freedman and Quinn.

We now describe how the above process typically is applied in the interior
of a 4-manifold M. Suppose in M one has surfaces A and B which are con-
nected and imbedded (or, for example, one has imbedded portions of immersed
surfaces), having two (transversal) intersection points of opposite sign, p
and q say (recall everything is assumed oriented). Let o and B be paths in
A and B, respectively, joining p to q, and suppose W 1is an immersed disc
in M whose boundary is attached to a U B. Assuming everything is gener-
ically positioned, then W may have self-intersections in its interior and
also in its boundary, but not between them. Such a W is called a
pre-Whitney disc, and « UB (= 3W) 1is a pre-Whitney loop.

We wish to use W as a Whitney disc to separate A and B. But first we
must rectify its possible shortcomings. They are, in the order that they will
be dealt with: (1) « and B may have self-intersections, (2) the "framing" of
W may be wrong, (3) int W may have self-intersections, and (4) intW may
intersect A UB (and also intW may have unwanted intersections with some
other surface C).

To deal with (1), we simply pipe the self-intersections of a and B off
of their respective ends (either ones), keeping o in A and B in B, dragging
W along as we do so. This will create additional intersections between
intW and A (if B 1s not embedded) or between intW and B (if o is
not imbedded), but they will be dealt with in time (see (4)).
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To deal with (2), we first explain what we mean by the framing of W .
Since W is immersed, there is an immersion w:ﬁQ+M of our model 4-ball D4
(described above) onto a neighborhood of W, ‘carrying the model W onto W
(We will for the moment use "1s over the model discs.) Then W has the
correct framing (as a Whitney disc) if in addition we can make m carry A

into A and B into B. Either one or the other of these containments is
easily arranged, but there is a potential obstruction to achieving both simul-
taneously. For example, if we look at the pre-image circles ﬂ_l(A) N aD4 and
n_l(B) N an‘, their union may look twisted in 3D4, even though both of
these circles are unknotted there, and their algebraic linking number is O
(see Figure 2.2; for future use, we let te Z denote the number of apparent
full twists in these pre-image circles).

t full tuwists
N } (here ©=2)
. {A5 n}DJ -1(8) N )D"

Figure 2.2

To remedy this "framing mismatch", we are forced to alter something. The
most convenient change to make is to spin W at (some arbitrary point of)
W - {p,q}: as suggested by the familiar sequence of pictures in Figure 2.3
(here we are working near an arbitrary point a e inta; we could just as

easily work instead near b ¢ intB).

W

)Wh\.ﬁ\l Lef"‘e
SV.‘ _,\ —< 4_\ ————-\ ; Sf\\vuh\
A

v*e\m\.el W
\ea.ve A Q.\Ohl

- A ! Elc)—Q\ \:‘;:f::“

—

Figure 2.3
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This spinning operation is to be regarded as a reimbedding (via isotopy, if you
wish) of W rel 3W, during which A and B are left fixed. Each single spin
has the effect of changing the above twisting number t by +1, at the
expense of introducing a new intersection point between int W and A (or,
alternatively, B). Having done such spins we can assume that there is no
twisting, and hence that the above immersion =7 now carries A into A and

8 into B, as desired.

To deal with (3), we simply pipe the self-intersection of int W off of
its boundary, either at the A side or the B side, at the expense of creating
two additional intersection points of int W with A (or B) for each initial
self-intersection point of int W. This operation, achieved by~regular homo-
topy of W, does not affect the framing coherence established in (2).
(Actually, for many purposes this step (3) is unnecessary, but there is no harm
in doing it.)

To deal with (4), we again use piping, this time to move A and B off
of int W. Depending upon the particular context at hand, we will either pipe
the A intersection points off of the A-edge of W, and the B intersection
points off of the B-edge of W, or vice versa. In the former option, which
is used most often, we create self-intersections in A and in B, but no
intersections between them, whereas in the latter option the reverse is true.
As for getting rid of possible unwanted intersections of int W with some
other surface C, they can in similar fashion be piped off of either edge of
W, at the expense of making C intersect either A or B.

Finally, having rectified (1)-(4) as above as best we can, we can use our
newly imbedded Whitney disc W to get rid of the two original intersection
points p and q between A and B by moving either A or B across W in
the usual manner.

Since the above operation is used so often, we make a formal statement of
it, in the generality that we need. The data in the following lemma may well
be unbounded, and are subject only to the ever present hypotheses listed in §1.

CASSON'S SURFACE SEPARATION LEMMA. Suppose A and B are surfaces (not
necessarily compact or connected) immersed in a 4-manifold, with A.B = 0, and
suppose W 1is a union of pre-Whitney discs for all of the intersections be-
tween A and B. (As usual, we suppose each disc contains just two points of
A N B, and these points are disjoint from the other discs.) Then there is a
regular homotopy of A y B, supported arbitrarily close to W, which makes
A and B disjoint. (However, new self-intersections may be introduced in A
and also in B.) Furthermore, if C 1is any other surface intersecting int W,
then C can be kept free of A or B (but not both).
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ADDENDUM. The regular homotopy can be bounded (in the distahce it moves
any point) by the maximum diameter of any individual pre-Whitney disc, plus
€, for some arbitrary e > 0.

Proof. The proof is just as described above for the single disc case,
except that additional care should be taken to make all of the resultant
Whitney discs disjoint, which is easily arranged using piping as in operations
(1) and (3) above. To achieve the Addendum as stated, strictly speaking one
should think in terms of inverse piping instead of piping, as described in

Section 1.

3. A FEW WORDS ON TOWERS AND THEIR FRAMINGS

The goal of this article is to construct towers, just as in Casson's work,
but this time with control on their ultimate size.

Recall that a (finite) tower is a finite union C y Dy E y .-+ of
stages of discs immersed in a 4-manifold, where the first stage C 1is a single
disc, the second stage D 1is a collection of disjoint discs attached to C
to kill its fundamental group (which arises from its self-intersections),
with each disc of D going through just one crossing point of C; the third
stage E 1is a collection of disjoint discs attached to the discs of D to
kill their fundamental groups, etc. See [C] or [FZ] or [G-S]. In this paper,
the first stage C will be attached to a union A U B of two imbedded
surfaces, just as a Whitney disc would be attached, so that C N (A U B) = 3C.
At this point the question of framing arises again, and it is worth a few
words, for there is a subtle distinction, often misunderstood, between the
situation in the previous section and the situation here.

We wish to describe what it means for C to have the correct framing as

the base of a tower. In short, this means that it is possible to attach 2-

handles (abstractly) to a regular neighborhood of C to make it into a 4-ball

so that in its boundary 3-sphere, the two circles arising from its intersection
with A U B are geometrically unlinked, i.e., they span disjoint discs there.
In terms of framings, this can be described formally as follows.

Let N be a regular neighborhood of C rel 3C; we think of N as an
immersed normal disc bundle over C. Let Na’ NB and Na = Na U NB denote
the induced subbundles over a =A N C, 8 =B N C and 3C =a U B. We
can assume that A N N 1is an interval subbundle of Na’ and similarly for

B N N. These subbundles induce a natural framing on N i.e., they provide

a’
a natural product structure, which we denote by N8 = 3C x Dz. The question

of framings here concerns the linking number, call it &, of the circles
3C x 0 and 3C x *, * ¢ D2 - 0, as subsets of 9N. (Recall that 3N is
homeomorphic to n copies of S1 X S2 connect-summed together, where n is

the number of self-crossings of C. Both 3C x Q0 and 3C X * are null-
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AICx % (J&s‘\d)

curve

R AN (= redang\e) \CxO (:e\ié

Cur ve

AnN (= v-eckom&\e)

N, = so\id tube N= 4-dinl selid handlebody here w=2.
.\v\ BN ((’ngi\‘ $\Wo\3 \'\Q‘\g\\ooV\\oo& e* C. oand 1‘ 17
Figure 3.1

homotopic in 3N.) If & # 0, then no matter how 2-handles are attached to
N to make it into a 4-ball, the circles 3(A N N) and 3(B N N) will be
geometrically linked in its boundary (even though algebraically unlinked).
It turns out that £ must be O before we can even hope that the tower
construction will eventually lead to producing a Whitney disc.

This number £ is not to be confused with the twisting number ¢t
encountered earlier; t is measuring whether the above product structure on
N3 = 9C x D2 extends to a product structure C X D2 on N. In fact, we
have in effect here an example of the well-known relationship between the
euler number t, the homological self-intersection number ¢ and the al-
gebraic number (call it i) of transverse self-intersection points of a
closed 2m-dimensional immersed submanifold of an ambient 4m-manifold (every-
thing oriented): & =t + 2i. We can change t by multiples of 2 by

Ay S ; this

’

inserting little kinds in int C (pictorially:

is not a regular homotopy operation), but this does not change 2. (Neverthe-
less, it is sometimes convenient to arrange that t = 2 by arranging that
i = 0 by inserting such kinks; this is a comforting assumptioq to make
throughout all constructions.) On the other hand, the piping operation
described earlier, where self-intersections of int C are piped off of the
edge of C, changes both & and i, but not t, whereas the spinning
operation described earlier changes both & and t, but not i. It is
this latter operation, followed by some clean-up motions, which will be used
to make £ = Q0 during the heart of the proof (Sec. 7).

There is a similar discussion for later stages of the tower, i.e. one
must arrange that £ = 0 for each of the immersed discs, collectively called
D, that will be attached to C to kill its kinks, and likewise for the

layers of discs E, F etc. The only minor difference is that now the framing
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over each component of 3D (3E, etc.) 1is determined by a single immersed
disc coming from C (D, etc.), rather than two intersecting imbedded
discs coming from A and B. (Actually, it has been pointed out by Quinn
that framing considerations for later stages can be relaxed, but this is too
subtle a point for consideration here.)

To close this discussion, we make a parenthetical remark about another
method that one might be tempted to use to change framings (called to my
attention by Ric Ancel). Returning to Step 2 of the W, A, B discussion in
Section 2, one could alternatively change t by putting a kink in A say (or,

alternatively, B), leaving W fixed, as shown below:

o
~
NN A N N N N

DS =N

Figure 3.2 (compare to Figure 2.3)

Although this method can sometimes be used, it has the disadvantage of putting
a possibly undesirable self-intersection point in A, and also it changes the
euler number of the normal bundle of A. One can correct the latter by insert-
ing nearby a kink in A of opposite sign, and then one can go one step further
and try to cancel these kinks of A by regular homotopy. Interestingly, if

one does so, making A imbedded again, then one is forced to make A inter-

sect 1intW, and the whole process reduces to the spinning operation described

earlier.

4. QUINN'S TRANSVERSE SPHERE LEMMA

In this section, the most basic of the article, we discuss Quinn's funda-
mental construction. It was first presented in [Qz, Lemma 3], and a bit more
explicitly in [Q3, Section 3.1]. Our description is intended to be complemen-
tary to Quinn's; it will be presented in a symmetrized fashion. In this form
Quinn's move bears a striking resemblance to a move used by Stanko twelve years
ago in his fundamental taming theorem [St]. As noted at the end of this sec-
tion, Quinn's construction can be regarded as a variation of Casson's basic
m.-Lemma.

1
Before beginning, we need the notion of transverse sphere. Suppose C 1is

a connected surface immersed in a 4-manifold. A transverse sphere for C 1is

an immersed sphere Cl which intersects C transversely in a single point.
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It is occasionally required (in Sections 6 and 7; not in Sections 4 and 5) that
such a cl have homological self-intersection number 0. This is equivalent to

its normal bundle being framed (i.e., a product; perhaps we should really say

"framable"), provided that the number of self-intersection points of Cl is
algebraically O, a feature which can easily be arranged by adding little kinks
in CL. On the other hand, every Cl produced in this article has homological
self-intersection number O. Hence, for simplicity of exposition we will al-
ways assume that transverse spheres have this property (and leave it to aficio-
nados to detect where this hypothesis can be relaxed). We note that Quinn, in

his references to "framed immersed 82' ",

is tacitly assuming only that such
2-spheres have even homological self-intersection number. Allowing additional
kinks, these two hypotheses (framed; even self-intersection) become equivalent,
and are really all that is necessary for many applications.
Transverse spheres are useful for getting rid of unwanted intersectionms.

Suppose C 1is some connected immersed surface in M having a transverse sphere

, and suppose some surface A intersects C transversely (in severalpoints,
perhaps). To get rid of these intersections we can pipe them along C over to

, and then connect-sum these resulting fingers of A with copies of Cl,
changing A to A=A #an#'C-L, which misses C (where n = the number of

intersection points of A with C; see Figure 4.1).

Az A% twe copies of C-L,\en

L
A c \)

A\NNH
C:’T. P*O""\AJ\ (:

move

Figure 4.1

This connect-summing operation has come to be known as the Norman trick or
Norman move [N]; it is used repeatedly in upcoming sections. Note however that
if is not imbedded, then the new A picks up self-intersections from

The following lemma presents the fundamental construction of this article.

QUINN'S TRANSVERSE SPHERE LEMMA. Suppose in the interior of a 4-manifold
M one has immersed connected surfaces 1 and C2 which meet only transversely,
equipped with transverse (immersed) spheres Cl and C'L such that
C n Cl C N Cl (hence C n Cl 5 p01nts). Suppose at one of the
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intersection points p ¢ C1 N C2 one has an imbedded disc W which is

attached to C, U C, in standard fashion like part of a Whitney disc, with

1 2

9W changing sheets from C1 to C2 at p. Suppose that for i = 1,2, Fi

is a surface, perhaps disconnected, which meets G% transversely in some

finite number of points. For i = 1,2, let Ai be an arc in Ci joining

p to q = Ci n Gﬁ. Then, after making finger moves between F; and F2,
which are supported arbitrarily close to X = G% V) xl U Az U C%, but are
disjoint from Cl U CZ’ one can find a transverse 2-sphere wk lying

arbitrarily close to X, with W W-L = 0, such that w N (C1 U Cc, V

F1 V] Fz) = ¢. (Recall our convention that Fl and F

2
denote the

2

repositioned surfaces here.)

The data for the Transverse Sphere Lemma
Figure 4.2

There are several important technical addenda to this lemma, but they
are perhaps best disregarded until the construction has been digested.

ADDENDUM 1. To be precise, we should assume that Fi consists of a

finite number of small discs which are normal to G%. Furthermore, we wish

; L . L
j to lie in Ci (and also Cj)’

in case OL has self-intersections (or intersections with G#), so that we

to allow some (or all) of these discs of F
i

can produce WL so that W N (G% U G%) = ¢ if we wish, at the expense

of doing finger moves to G% W] G%. (Indeed, the most powerful applications of
the Lemma are obtained this way; however, this is definitely not the case to
ponder first.) In a similar vein, if W N G% # ¢, we should require that Fi
contains W N N(G&), where N(C%) is some small neighborhood of OL, in
order to be able to produce a WL which really does intersect W in only one

point. See the remarks on all this at the end of the proof.
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ADDENDUM 2. As a special case, one can in fact assume that C1 = C2

(= C, say), in which case p 1is a self-intersection point of C, and also

one can further assume that Ci = Cé (= Cl). In this case, then, assuming that

Fl and F2 each contain discs of U W as in Addendum 1, one can conclude
that misses C U Cl.
ADDENDUM 3. The finger moves between Fl and F2 are in fact supported

arbitrarily close to El U

1
Ci, one for each point of Ci

seems most natural, and symmetrical, to make the finger moves of Fi be sup-

V) kz U 62, where Ei is a union of arcs in
fa) Fi’ joining these points to 9 (indeed it

ported arbitrarily close to Ei U Ai’ as is done below.) The total number of
these double-finger moves performed is the product |F1 N CJiI'IF2 8] C;I, each
move resulting in the creation of two new intersection points between Fl and
F2. Furthermore, these are the only new intersections created among the given
data in the proof, so that for example the intersection (C1 U CZ) n (Ci V] C;)
Clluclz 1

Proof of the Lemma. Perhaps one should first note that if either F

remains two points, even 1if is moved as part of F

1= ¢

or F2- ¢ (say for concreteness that F1==6), then the proof of the Lemma is

easily accomplished, without moving F2, as follows (see Figure 4.3). One
starts with a small "characteristic torus"” T for the surfaces C1 and C2
lying near p. (Recall that T is the natural torus in dN = 83 separating

the linked circles C, N 3N and C, N 3N, where N 1is some small 4-ball

1 2
neighborhood of p; if we write N as N = B1 x BZ’ where Bi is a small 2-
cell in Ci centered at p, then T = aBl X 3B2 C 3N.) Let E1 be a natural
spanning disc for T in 3N on the C., side.of T, such that E, N T = 3E

1 1 1
(hence E1 N C2 =4, but El N C1 = one point; in the above model, we can

= % * i .
take E1 as El 1% BZ’ where 1 is some point in anl C-Cl). Let

4 points )he\re)

Constructing WL if Fl =¢
Figure 4.3
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A

El = El # G% denote a disc gotten from E1 by applying the Norman trick to

El, using G%; That is, E. is gotten from E., by tubing E. over to G%

1 1
following along the route of Al, and then connect-summing E

1
1 to C% via this
tube, so that ﬁl N C1 = ¢§. (Technical note: strictly speaking, for future

considerations, we should connect-sum E, to a parallel copy of C see

1 13
the technical point near the end of the proof.) Finally, let be gotten

from T by doing surgery on T using E In other words, Wl consists of

T minus a small band about 8E1(=3§1), :lus two parallel copies of %1 whose
boundary circles are glued to the two boundary circles resulting from this dis-
carded band. This sphere Wl is immersed, and has 4k self-intersection
points arising from the k self-intersection points of Ci. Also, Wl . Wl =
T+T = 0. This completes the trivial case.

The simplest nontrivial case of the Lemma is the case where all of the
individual surfaces Cl’ CZ’ Ci and Cé are imbedded (actually, one always
has without loss that C1 and C2 are imbedded, since one only needs subsur-
faces of them containing the arecs Al and Az),~ and furthermore Ci N C; =6,
and each Fi is a single disc meeting 1 transversally. Schematically, these

data are summarized:

L L
C:i K”C:Z
F

L=
Fi 2

A
C_]‘ C').

The data for the simplest nontrivial case of the Lemma
Figure 4.4

Understanding this case represents at least 90% of the proof, so we will concen-
trate on it.

To begin, we describe the immersed sphere which will serve as wl in this
model setting. This Wl is somewhat similar to the Wl constructed above for
the trivial F1= ¢ case of the Lemma. However, here we are going to symmetrize
the construction, so that instead of obtaining wh by doing a single surgery
along the curve 3E1 in T, now we will obtain by doing a sort of double
surgery to T, simultaneously along the intersecting curves 3E1 and BEZ in
T, where E2 (and likewise ﬁz = E2 # C%) denote discs constructed exactly

as E1 and ﬁl were constructed earlier, replacing the subscript 1 by 2
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everywhere. Note that El and E2 lie on opposite sides of T in 0ON. If

Wl were conmstructed by using El and E2 to surger T, instead of él and

ﬁz, it would look as in Figure 4.5. After doing these intersecting surgeries,
the part of T which remains to become part of w oisa union P = Pa V) Pb

of two squares glued together at their corners, where Pa = Al N A, and

2

Pb = 'I‘2 - :lnt:(A1 V) Az), and where in turn Ai is an annular (band) neighbor-

hood of aEi in T. As far as T {itself goes, we think of the first

surgery (along 3E. say) as removing int A, from T, and the second surgery

(along 3E2) as r;moving int A2, but reglicing the surgery overlap Al N A2'
(In our model, where N = Bl x BZ’ we can let A1 = Il X aBZ and

A2 = anl x 12, where Ii is a small interval meighborhood of *i in BBi.
Then Pa = I1 x 12 and Pb = (313l - intAIl) x (?B2 - inE'Iz).) So we can
write‘\ w oas wl= Pa U Pb v El,l V) E1,2 v E2,1 v E2,2’ where ﬁi,l

and Ei,Z denote two parallel copies of ﬁi whose boundaries coincide with

aAi. Note that wh can be constructed arbitrarily close to
ckua U, U ch, and thar wlon (c, U C,) = 4. (Also note that

under our present trivializing assumptions on C, and CZ’ wh is imbedded.)

1
El (* E1 N \e»e)
T:Tz\ EZ. (= EZ ‘\Q.Pe)

Surqer T £
Using ‘éz T /E!.,i.

E
2/ o Ehen
a vertical Surqer” Using ®
cross section ygina © 2 a horipental
\eek¢  \ike: 3 T cross ection

\eoks Wke®

G

Doing double surgery on the torus T to get the 2-sphere wh
Figure 4.5
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We now consider how to move F., UF, off of Wl by finger moves of F

1 2 1
and F2. These moves can most easily be described using a 3-dimensional slice
H of M, chosen to contain almost all of the relevant data, but disjoint from
C, uC,. This slice H, obtained from a neighborhood of T2 U E1 UE, in 29N

1 2

by rerouting it to follow ﬁl and E, instead of E, and E2 (so H=8" -two

2 1 ©
points, say), is shown in Figure 4.6a; it contains all of T, E;,Ep and W{
and it contains l-dimensional slices of Fl’ F2 and W, denoted Fi ,Fé and W'.
Producting H with an interval (-€,e) produces an open subset of M, with

each subproduct F' x (-e,e) becoming an open subset of Fi’ and likewise for

i
W' x (-e,e) CW.

/
5= ak>

o

ANANNASY
do 9(\3@»
wmoves to,

’ ’
£y and Y,
~T? ’F‘/ /

IR

(we see Four
coeners 43'F

tt here

The final positions ﬁi and ﬁé of the

1-dimensional slices Fi and Fé

The slice H3 of M4 containing

the data shown

Figure 4.6

In this 3-dimensional model H the finger moves of F1 and F2 show up as

finger moves of the intervals Fi and Fé (see Figure 4.6b). Each Fi is

moved (by isotopy) in the plane of the disc éj (in which it is natural to

assume that Fi originally lies; here j=2 if i=1, and vice versa). At

some intermediate time, just before these moves end, we can assume that Fi

and Fé intersect in a single point, say (for symmetry) the point
= (*1 ,*2) = J3E, NJE, ¢ T. The moves of F. and F2 arise from this

1 2 1
3-dimensional model by damping these moves of Fi and F' back to the identity
in the transverse direction, i.e. in the fourth coordinate. That is, if F' N
’

denotes the image of F; at time t, where say starting time =0 < t < ¢/2 =

i -
finishing time, then the final position F, of Fi in the 4-dimensional model

i
Hx (-e,e) 1s the set Fy = U {F] tl-e < t<e, s=e/2- t} CHx (-¢,¢),

i
where it is understood that F; F’ = F}
i,s i,0 i R
introduced points of intersection between F. and F2 are the points (*,%§),

if s<0. Hence the two newly

[

for some &, 0 < 8 < e/2.
To ensure that, after these moves, we have W'L N (F U F) = ¢, we must

require a certain modest compatibility relation between the construction of Wl
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and the construction of %1 and %2. Namely, we must assume that the bands A
and A

1

2 in T (in the construction of Wl) have been chosen sufficiently thin,

or reciprocally we must assume that the final l1-dimensional fingers ﬁi
(= Fl 5/2) and F (= F 2/2) have been chosen sufficlently thick, i.e. wide
(as opposed to long), so that F' NAa; = ¢ (see Figure 4.6b). Hence

F'l NT (= two points) C intA,- 4, and similarly i‘é nT

(= two points) C intAl-Az. Consequently (?i V] %é) n (Pa V] Pb) = @4, and so
(%1 U ?2) n Wl = ¢. This completes the discussion of this most elementary non-
trivial case.

In one sense, the above operation is an elaboration of the following fam-
iliar process. Let G be a small 2-cell neighborhood in T of the point
TNW, and let Q be a 4-cell regular neighborhood of the contractible set
(T- intG) U ﬁl U ﬁz UF) UF, rel 3G U3JF, UJF,, thinking of the F 's as
discs. Then in the 3-sphere 0Q, the three boundary circles look like:

()- G

Before finger move; Fl a) F2 =4 After finger move; F1 N F2 = 2 points
Fl ] F2 in the 4-cell Q
Figure 4.7
That is, 090G 1is a commutator in the complement of the unlink BFl u 8F2. In
order to be able to span 9G with a disc in Q which misses F UF we do

2,

finger moves to F. U F2 to make them intersect so that the fundamental group

1
of their complement becomes abelian. This disc spanning 068G, wunioned with G
itself, becomes the 2-sphere wl,

For the general case of the proof, where Ci and C;

1 and %2) have self-intersections and mutual intersections, we still have a

(and hence the discs
E

model slice H and product H x (-e,e) as above, but these sets are no longer
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imbedded in our 4-manifold, only immersed. Nevertheless, the motions described
above still make sense, because they can be transferred from the model to its
immersed image; in fact, the finger motions of F1 and F2 can each be iso-
topies, since the path of each finger move can be chosen to avoid the
double-point patches in the immersed 4-dimensional model. (Aside: the para-
graph after next is relevant to this assertion.)

In the case where each Fi consists of several disjoint discs (recall
that in effect this is the most general Fi)’ we choose the model slice H so
that F1 N H shows up as several parallel copies of our originally described
interval Fi, all lying without loss in the plane of Ej (see Figure 4.8;

§ = i1).

The picture when F1 and F2 have several sheets.

Figure 4.8 (compare to Figure 4.6)

The motions originally done to Fi are now done to all of these parallel copies
as a bunch, making sure as before that when done the resultant parallel copies

of %i miss Ai’ ensuring thereby that all components of the newly positioned
F

n miss Wl. Note that all of the components of F1 have been made to inter-
sect all of the components of FZ'
Before we finish, there is an important technical point to be made about

positioning ﬁl and ﬁz above, and how this relates to Addenda 1 and 2, in which

we allow Fi to contain subdiscs of Ci U Cé in order that Ci ] Cé winds

up disjoint from Wl. Actually, to properly deal with this situation, one

should in the construction above, take each ﬁ to be Ei # Ei instead of

=l
Ei # Ci, where Ci

which has been general positioned with respect to

i

denotes a parallel copy of Ci, meaning a copy of 1

1" Hence, this new Ei

meets Ci transversally (as well as Fi)’ so it makes sense to allow that
some of the discs in Fi be subdiscs of Ci U Cé. We note that the finger
moves of Fi are a result of intersections of Fi with E: (not with Ci), and

that these moves take place arbitrarily close to arcs lying in E, (not arcs

i
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in Ci V) Ci). Hence, for example, if none of the discs of Fi lie in Ci v C;
for both 1=1,2, then in fact all finger motion during the comstruction is
bounded away from Ci U Cé (but of course it takes place nearby).

In closing, here are two simple illuminating cases to ponder, in which one

wants to construct W- so that W A (G{ Vv Cé) = 4.

Two simple cases to ponder
Figure 4.9

Case 1 (see Figure 4.9a): Suppose each C% is imbedded, but C% ry C% =

one point. Let each Fi be a disc in 0t+1 containing the intersection

point. Here the resultant finger moves of O% and C% will leave them each
imbedded, but will create two additional intersection points between them. The

resultant WL will have four self-intersection points.

Case 2 (see Figure 4.9b): Suppose Ci N Cé = ¢, but suppose each Ci‘ has
a single self-intersection point. Let each Fi consist of two subdiscs of Ci
centered at the crossing point, lying in the different sheets (c.f. the pre-
ceding technical point). Here the resultant Ci and C; will each be left with
a single self-intersection point (the original ones), but the finger moves done
on Ci U Cl , namely two fingers being pushed from each, will create eight
intersection points between Ci and Cé, situated near the point Cl N C2. The
resultant wl will have eight self-intersection points, in two groups of four,
each group lying near one of the self-intersection points of Ci or C;.

This completes the proof of the Lemma.
Wistful note: One could get carried away with Addenda 1 and 2, and ask why in
fact could one not allow Ct to have additional intersections with Ci’ hoping
nevertheless to construct wl missing Ci’ by making C1 part of Fi‘ But
this seems to lead nowhere useful. For example, if one lets

c, =R2x0 CcR*>0xR2 =¢C,, and W=0x[0,2)>x0, and one lets ci be a

1 2’
small 2-sphere intersecting Ci in two points, then the construction leads to
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o IR

pownts \cve)

1. The initial setup with the dual 2. Let ﬁl = E1 # i% and
torus T and spanning discs E1 and w5 # El.

2 2 2
E2'

AN

3. Do double surgery to ‘T to get wh, 4. Do finger moves to F, and F

1

2
to get them off of wl.

Schematic summary of the proof of the
Transverse Sphere Lemma

Figure 4.10

the following unproductive situation, in which one has constructed an imbedded
transverse sphere wl at the expense of making two additional points of inter-

section between C. and C2 (see Figure 4.11).

1
To close this section, we note that Quinn's Lemma above can be regarded

as a geometrized version of Casson's original wl—Lemma, applied in a special
context. Recall that Casson's nl-Lemma ([c, p. 3]; see [G-S, Lemma 2.1.1])

asserts that if S is a surface immersed in a l-connected 4-manifold M0 and

if 8 has an algebraicly dual class, i.e., there is a surface Sd such that

S‘-Sd = 1, then one can do finger moves to S to make MO - S8 1l-connected.
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VOIS )«w*
ﬁ apply the
construction

2

Figure 4.11
The main point is, if some “1 element ®w in MO - S (in this case a
meridian p of S) can be expressed as a product of commutators of conjugates
of meridians of surfaces (in this case the meridians are all the same u),
then, ® can be killed by doing finger moves to the surfaces (in this case S).
Now in Quinn's setup (above), letting the ambient manifold be MO =M - C1 V] 02
and letting S be W U Fl Y Fz, then the linking circle w of W is the
commutator of the linking circles of C1 and C2 (that is evidenced by the
torus T), which in turn are products of (conjugates of) the meridians of Fl
and F2

by doing finger moves between F1 and Fz, one can make u null-homotopic

(evidenced by G% and G%). Hence, Casson's nl-Lemma asserts that

in Mo - S, which immediately provides the desired complementary sphere wh,

5. MULTI-APPLICATIONS OF QUINN'S LEMMA.

In this section we state the Transverse Sphere Lemma in the actual form
that 1t will be used. Since we no longer wish to distinguish the separate sur-
faces C1 and Cz, or Cl and Cl or F and F we are combining them to be-
come C,Cl and F. Hence, C may be an umbounded (but locally finite) im-
mersed surface of many (manifold) components (for us the components will al-
ways be compact, of uniformly bounded size, either cells or spheres). The col-
lection ck will always be understood to be a transverse collection of spheres

for C, which means that for each component C_ of C there is an (immersed)
sphere component Cl of Cl whose intersection zith all of C 1is just a single
point q € C. Thes ¢ N cb = v, n c-L) {a 3.

QUINN'S TRANSVERSE SPHERES LQ&MA. Suppose c, GL and F are surfaces (not
necessarily connected) immersed in a 4-manifold M, where © 1is a transverse
collection of (immersed) 2-spheres for C, and F 1is a collection of discs
normal to Cl. Suppose W 1is a union of Whitney-like discs attached to C,
each disc wu associated to (at least) one distinct crossing point of C, say
P at which aw changes sheets of C, with no other disc of W passing
through pu. Suppose A 1UA , where each AY is a union of paths in CY
joining the point CY N CY to all of the points of {pu} which 1lie in CY.

Then, after doing finger moves to F (to create self-intersections), which are
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supported arbitrarily close to A U Cl, one can find a transverse collection
of immersed 2-spheres for W, lying arbitrarily close to A U Cl, with
WL°WL=O, such that Wln(CUF)=¢.

ADDENDUM. As in our earlier Addendum 1, in order to be more exact, we
should say that the discs of F may include subdiscs of Cl in case that C'L
has self-intersections, to ensure that Wl N Cl = ¢ if desired. Also, F
should include subdiscs of W 1in case that W N CL # 4, to ensure that
has no unwanted extra intersections with W. The other comments of the pre-
vious Addenda 1,2 and 3 also apply here, suitably adapted.

Note: It is possible, and indeed likely, that the different components of

will intersect each other. However, 1f we iterate the Lemma, to produce a

sequence PERED of transverse collections of spheres, then this sequence

will be dis;oint, provided that with each iteration F 1is chosen appropriately.
Namely, with each application F should contain subdiscs of (both sheets of)
containing the self-intersection points of Cl, so that Wi will miss CL,
and also as usual F should contain subdiscs of W containing its intersection
points with Cl. (Aside: If the reader is perplexed by the choice of the
words "containing" here, he should ponder the technical point near the end of
the proof in Section 4.) Hence, under this iteration, Cl and W are constantly
being moved, but each Wi so produced is disjoint from C U Cl, and Wi need

not be moved when the subsequent '

Wﬁ s are produced.

The most powerful applications of the Lemma are obtained in this manner.

Proof of Lemma. The proof is the same as before, except that now one works
on all of the discs in W simultaneously, keeping all of the data generically
positioned as much as possible. The only motions required in the construction
are the finger moves, which are supported arbitrarily close to l-dimensional
sets which can be chosen disjoint from each other and from other 2-dimensional
data. Hence the finger moves can be done disjointly, without disturbing other
data. As noted above, the resultant spheres of Wl certainly may intersect

each other.

6. A PRELIMINARY SEPARATION PROPOSITION

The basic problem which confronted Quinn was to find a way to maintain
bounded control in Casson's construction when working in a noncompact manifold.
As part of his analysis, Quinn had to determine exactly what sort of geometric
input was required to accomplish a certain separation step in Casson's work.
One result was the following Proposition (implicit in [Q3,Section 3.2], and
referred to there as the Group Separation Statement). Although it is finite in
nature, it plays a key role in the noncompact main construction in the next

section.
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SEPARATION PROPOSITION. Suppose C = C1 U...U Cn is a union of compact
connected surfaces immersed in a 4-manifold M such that Ci' C, =0 for
hj

i#3j, and suppose that CL = Ci U... U Cﬁ is a transverse collection of
(immersed) 2-spheres for C (as in Section 5). Suppose W 1s a union of
pre-Whitney discs for all of the intersections between all pairs Ci,ngl#j
(i.e. the intersection points are paired, and there is one disc for each pair).
Then the C,'s can be made disjoint, by regulag homotopies which are supported

i
arbitrarily close to WUA U Cl, where A= U A and Ai is any union of

paths in Ci joining the point Ci N Ci to aillthi points of Ci N && Cj'
ADDENDUM. Furthermore, the newly positioned C can be provided with a
(newly positioned) transverse collection C1 which lies arbitrarily close to
the original union A U Cl.
We note that the discs of W initially may intersect C U Cl and each
other in many unspecified points. Dealing with these unwanted intersections is
the core of the Proposition.

Proof of Proposition. Let W 1< j, denote the union of the discs in

s
W which are associated to interseiiions between Ci and Cj'
First note that if n=2, the proof is easy; it is a direct application
of the Surface Separation Lemma (Section 2), and we don't even need Ci and C;.
If n>3, the goal in effect is to reduce this general situation to a
collection of disjoint n=2 situations, which then can be separately finished
off as above. That is, our primary aim is to achieve the following
Goal: For each 1,j(i<j), we wish to arrange that
Wijﬁck-d unless k=1 or k=3j, and also that
wij NW, =¢ unless (1,j) = (k,2).
In other words, we want each W

to intersect only C, and C; among all of

ij i h|
the Ck's, and we want all n(n-1)/2 of the Wij's to be disjoint. One might

observe that the second condition is easy to arrange at the expense of the

first by means of piping intersections among the W off of the edges of

138
the wij's, but this turns out to be the wrong way to proceed.

Instead, as a preliminary step toward the Goal we first use the Norman
trick to get rid of all intersections between intW and C, wusing Cl to re-
route the various discs of W. Thus, we can assume that intW NC = ¢. Also,
we assume that the Wij's have been repositioned (via piping along 3W C C as
in Section 2) so that their boundaries are all disjoint.

The remainder of the Goal, namely getting the intwij's disjoint, is
achieved using the Transverse Spheres Lemma in Section 5. By means of
n(n-1)/2 successive applications of it (see the Note there), each time letting
F be all of (the possibly repositioned) C'L U W, say, we can find a sequence

Wi’z , Wi’3 yeens Wi’n , Wt’3 sesss Wt,n yeeas Wi—l,n of n(n-1)/2 disjoint
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transverse collections of spheres for W. (Actually, each collection Wij

need only be a transverse collection for W consisting therefore only of

i3’

one sphere for each disc in W But there is no profit in trying to be eco-

i3°

nomical here.) The spheres in each collection may intersect each other,

iy
but no Wij intersects (the finally positioned) C U Cl. Note that during the
finger moves required for all of this, new self-intersections are created in

U W, but no new intersections are created between Cl UW and C, and

also C 1is not moved. (For a mild variation here, see (2) below.)

Now we use the Wij's to achieve the Goal (we no longer need Cl). For
each distinct pair (i,j) < (k,2) (lexicographic order, say), we use the
Norman trick to reposition sz to miss Wij , by using i3 to reroute wkl'

The newly positioned may have additional self-intersections, but they

wkz's
no longer intersect each other. Hence we have achieved the Goal (and in fact
we also have that intW’ij 8l (Ci U Cj) = ¢, but this has no significance).

At this point, the discussion in the first two paragraphs of the proof
applies to finish the proof.

As for the Addendum, we note that it was not automatically ‘achieved by
the above construction; it may well be that the (finally positioned) wi
intersect CL and hence that when the C,'s are separated, they are made to

intersect CL in additional points. Ther: are two natural ways to remedy this
both involving constructing one additional layer Wl-

1) One could carry the construction of the Hl 's one step further, pro-
ducing a last collection W'L which is transverse to all of W, and then at
the end of the proof one could use this final collection to get rid of inter-
sections of Cl with W by means of the Norman trick.

2) Alternatively, at the start of the proof, right after the preliminary
step, one could make a preliminary application of the Transverse Spheres Lemma
(Section 5) to produce an initial transverse collection Wi, finger-moving
Cl UW to do so, and then one could use wﬁ to get rid of the intersections
of Cl with W via the Norman trick. Now when the subsequent collections
{le} are produced, they do not require moving W, and so W remains dis-
joint from Cl and so Cl remains geometrically complementary to C.

This method (2) is used at several points in Section 7.

It is interesting to note that, although the preceding Proposition will
be instrumental in achieving control of motions in the next section, neverthe-
less during the proof above a point may wind up being moved the full diameter
of CU C'L U W.
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7. QUINN'S CONSTRUCTION

In this section we will present Quinn's full construction in a specific
context, to make it more concrete and more digestible. It will be the situation
that arises, for example, in the proof of the 4-dimensional Annulus Conjecture,
as explained in the next section. Or, changing a phrase here and there, it is
the situation that arises in showing that a manifold proper homotopy equivalent
to R4 is in fact homeomorphic to R4 (which in turn trivially yields the
topological 4-dimensional Poincaré conjecture). As for the appropriate gen-
eralized setting for this section, which is more complicated only in appearance,
we refer the reader to the relevant parts of [Q3] and [Q1].

Everything in this section is smooth, except for the brief discussion sur-
rounding (*1) and (*2) below, where we invoke Freedman's work.

We assume in this section that we are presented with a certain smooth non-
compact 4-manifold M = R4 g (S2 x Sz)a, that is, M is gotten from Ra by connect-

summing Ra with some locally finite collection of S2x Sz’s.

Given in M are
four distinguished locally finite, transversally intersecting collections of
disjoint imbedded 2-spheres (A}, {a%}, (B} and {B%}. This Mwill be like the
middle level of a 5-dimensional proper h-cobordism built on R4, in which there
are only handles of index 2 and 3, which have been paired in some appropriate,
controlled manner, with the Qa's (respectively, the %1’5) representing the belt,
i.e. ascending 2-spheres of the 2-handles (respectively, the attaching, i.e.
descending 2-spheres of the 3-handles), and with the %S's and %:’s being re-
spective duals for them. In Section 8 we describe exactly how such an M arises
in the proof of the 4-dimensional Annulus Conjecture.

Presenting our hypotheses on M more carefully, let {DA} be a locally
finite collection of small round balls in R4 each of diamettr < 1, say, and
let M be gotten from R4 by connect-summing R4 with a collection KSZ><SZ)Q}

of Szx Sz’s at the q;’s (for purposes below, we regard that Da C (Szx Sz)OL

o
also). Since we will want to talk about boundedness in M, which ultimately

is to be related to boundedness in RA, we assume that M 1is provided with a
(topological) metric which on R4— U int D: C M agrees with the euclidean
a

metric, and such that under this metric each subset (Sz><82)a - int D4 of M
a

has uniformly bounded diameter, say < 2. (For example, one could build M

from R4 = R4><0 working in R5, and take the inherited metric.)

The collections of spheres listed above are as follows. For each o,
A U Ad is a spine of (S2 xSz) - 1ntD4 . So A and Ad intersect once,
o o a a a a
transversally, and each has a product normal bundle neighborhood. Similarly,
for each o we assume that the spheres Ba and B: intersect once, transvers-
ally, and each has a product normal bundle neighborhood. In addition, we

assume that the Ba's and Ba s have uniformly bounded diameter (but the bound



Robert D. Edwards

may be huge), and that for each pair «,8, we have Ad. BB = saB (kronecker
§). Consequently, each pair Ba v Bg lies within some uniformly bounded
distance of Ausl Ag (although it does not necessarily lie in (S2x 82%1- D:).
The model situation is that each Ba~ng is a "parallel" copy of A v Ag s

but with the order of the factors reversed, as in Figure 7.1.

»

4 4
2 AL} )8
<, NV W2

Figure 7.1

As noted already, we explain in Section 8 how such an M might arise im
practice; suffice it to say here that 1f we take the union along M of the two
surgery traces (i.e., the 5~dimensional cobordisms gotten by doing two sets of
surgeries to M, one set of suxgeriles on the Au's ("to one side of M"), and
the other set on the Bafs ("to the other side of M"; see Figure 7.2), then
this 5-dimensional union is a proper h-cobordism having only 2 and 3-handles,
with its middle level being M, one end being R4, and the other end being a
proper-homotopy R4 (in fact it can be any preassigned, possibly exotic, smooth
proper-homotopy R4).

\‘OPQV"
\\ovno'teeus K"“’
3‘\\.\\“& S'—‘l {w‘e“s“o““\
PW‘—» Prnvev
2-handles - codor A\SM

R

Figure 7.2

It will turn out that this cobordism is topologically a product, based on the
work to be done in this section.
The goal of this section is to establish:
(*1): There is a (uniformly) bounded (topological) ambient isotopy of M,
which remains the identity on some open subset of M, and which re-
positions B = U Ba so as to remove all excess intersections between it
and A= U Ahl (i.e. it achieves Aa N BB = saB points).
The isotopy which gets rid of these excess intersections will be gotten
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by means of the usual Whitney process, once suitable Whitney discs have been
found. Recall that Freedman has shown that 6-stage towers are as good as
Whitney discs, in that neighborhoods of such towers contain topologically flat
spanning discs. Hence, it suffices to establish:

(*2): There is a locally finite, disjoint collection of (smooth) 6-stage

towers in M, of uniformly bounded size, their bases attached to A y B

in Whitney-like fashion, one tower for each pair of excess intersections

between A and B.

(Actually, before achieving (*2), a preliminary isotopy of B may be required,
which creates additional pairs of intersections with A, but it is understood
that (*2) is providing towers for these, too.)

The remainder of this section is devoted to Quinn's proof of (*2). From
this point on, everything is smooth. Furthermore, all isotopies and regular
homotopies of M and its subsets will be assumed bounded, even if not
explicitly so stated. Of course, as usual all maps, subsets, etc. will be
assumed to be generically positioned, subject to the restrictions at hand.

For convenience at this point, we list all of the intersection properties
(algebraic and geometric) of the four locally finite collections of imbedded
spheres that we will use.

1) For each pair a,8, Aa n AB =4 = Ba NB

Aa° An =0 = Ba‘ Ba and Aa' BB = 6&3.

8 (if o#B8), and

2) For each pair a,B, As n AB = 6&8 points, and similarly

d
Ba N BB = Gae points.

However, we note that for all «,8, the intersection numbers Ag . Ag ,
d d d d d d
Ba BB . Ad BB . Aa BB and Ah BB are immaterial.

Several of the steps which follow are, as one might expect, similar to
those used by Casson and Freedman in their analyses of h-cobordisms. Among
these is the

Preliminary Setup. In this step, after perhaps isotoping the Ba's , we

find new transverse collections Ai =U Au and B'L =y Bi of immersed spheres

of uniformly bounded size, such that the combined collection Al U B is

transverse to the combined collection A UB (i.e., for each «a,

Ai Nn(AUB) = Ai N Aa = one point, and similarly for each Bi ; see Section
5), and such that for each a we have Ai . Ai =0 = Bﬁ . Bt . (In fact, we
get Al . A'L =0 = B'L . Bl, but that is not needed.)

We show how to produce Al. (Technical note: the construction which fol-

lows is a mild variation on the one used in [F,, Lemma 10.1] (derived in turn

2’
from [C, III, Lemma 1]), for we make Ai from a parallel copy of Ba , not

from Ad .)
a



238 Robert D. Edwards

The construction which follows amounts to an application of Casson's
Surface Separation Lemma (Section 2). let P be a parallel copy of B, so
that PNB=¢ (recall B+*B =0; here then P = U Pa is a locally finite
union of disjoint imbedded spheres). Since Ru. AB = 6&6 , we can pair off
the excess intersection points between P and A and choose for them a union
W of pre-Whitney discs of uniformly bounded size. After getting oW imbedded,
we can arrange that intWN A = ¢4 by doing the Norman trick to intW , using

Ad. Still, intW may intersect B (but its other intersections, for example

those with P, Ad, Bd and itself, we don't care about). These points of
intWN B are piped off of the A-edge of W by isotopy of B (creating new
pairs of intersections between A and B, but that is acceptable). Now we can
use W as in the Surface Separation Lemma to regularly homotope P to get rid
of its excess intersections with A (making sure that if we spin W to correct
framings, we do so at its P edge; here intersections of intW with P and
with itself lead only to self-intersections in P). The newly positioned P is
our desired AL. Note that Al . Al =Pe+P =0, since Al has been obtained
from P (hence B) by regular homotopy.

In a similar fashion, starting with a parallel copy Q of A, and inter-
changing the roles of A,B, etc. above, one produces the desired Bl. (Actually,
one can get Bl more quickly simply by starting with Bd and getting rid of
its intersections with A by means of the Norman trick, using for this the
new collection Al. This requires appealing to some of the "immaterial"
intersection properties of Bd mentioned after (2) above.) 11/

At this point, having completed the preliminary setup, we are ready to be-
gin what amounts to an induction, which we will cycle through six times, con-
structing one tower layer each time (more on this later). Before beginning, how-
ever, we wish to relabel our new collections of spheres, and make some of them
discs, to make this first quasi-induction step more like the later ones. So,
for each @, choose a distinguished point P, € Aa n Ba’ and remove a small
open round ball from M centered at P, Calling the resultant manifold Mo, we
henceforth denote by {Aa} the entire resultant collection of (properly im-
bedded) discs in M, i.e. the holfd Aa'f and Ba's, and we denote by {Ai} the
entire transverse collection {Aa} U {Ba} of (immersed) spheres in M, pro-
duced in the Preliminary Setup (thus the indexing set for ¢ is two copies of
the index set for o). Now the goal (*2) can be restated thus:

(*3) There 1s a locally finite disjoint collection of

(smooth) 6-stage towers in Mo, of uniformly bounded size,

one tower for each pair of intersections between the Ac’s.

For convenience, we list the intersection properties of the imbedded discs
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A= UAO and the immersed spheres Al = UAt which are used henceforth.

(1A) For each pair 0,7, with O#7, we have
Ao 'AT = 0, and also Ai . AL = 0 (even here would do,

o
instead of Q).

(ZA) The collections are complementary (transverse), i.e.,

i 1
for each o, A0 Nna= Ao n Ao = 1 point.

In particular, then, the intersection numbers Aé . Aﬁ are immaterial for
C#T.

We break the inductive part of the proof (i.e. achieving (*3)) into eight
bite~sized steps, which we will cycle through a total of six times. We call
attention to the summary table which appears later in this section.

The overall purpose of this first induction round (= the first eight steps)
is to construct a collection C = U CY of immersed discs attached to A which
will serve as the bases of our desired towers. Thus, the CY's are to be dis-
joint, with int C (= U int Cy) disjoint from A (which, incidentally, is

never moved here) and with 23C (= U acy) imbedded and properly framed.

Step 1. Selecting and initializing the CY's. Here we find a collection

C= UCY of (immersed) pre-Whitney discs of uniformly bounded size, for all of

's will become the bases

the (paired) intersections among the AU'S' These CY
of our towers. We want the CY's to have the following properties (for now):
(i) the boundaries of the Cy’s are imbedded and disjoint,
(ii) the framings of the Cy's are correct as bases of towers
(relative to the way they are attached to A), as ex-—
plained in Section 3,

(iii) for each v, 1nth NA=¢, and

(iv) for each pair Y,5, Y#3S, we have CY . CG =0
(one can interpret (il) as saying that CY . CY = 0).

To begin the construction, suppose the intersections among the Ao’s have
been paired, and let C = LJCY be any collection of pre-Whitney discs for
these pairs. The discs may be assumed to be of uniformly bounded diameter,
from the geometry of MO and the boundedness of the components of A. This
property will be maintained throughout, and nothing further will be said about
it. As we modify these discs to produce the desired collection of Step 1, we
will continue to denote them by C = ucy, to minimize notational prolifera-
tion.

The Cy's initially may have none of the desired properties (i)-(iv)
above. We will work to correct these defects, much as in the proof of the
Casson Lemma (Section 2), but here we must work a bit harder, since the desired

repositioning is a bit more delicate. The method to be followed here is basi-
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cally Casson's (from [C, Lecture I]), with some minor variations to make it
more geometric, as presented for example in [FZ, Section 3].

To arrange property (i), one works just as in Section 2, desingularizing
the various attaching paths by piping their intérsections off of their ends.

Regarding property (ii), initially we arrange it to hold only modulo 2.
That is, we arrange that

(iie) the framings of the Cy’s are correct modulo 2, i.e.,

the framing mismatch is even.

This is achieved as usual by spinning CY at BCY, as explained in Sections 2,3
(as earlier, we may spin at either arc of ch; it doesn't matter which. Of
course, at most one spin is required).

Next, property (iii) is arranged, by means of the Norman trick, using
Ai to get intC off of A. 1In effect each CY is replaced by some linear
combination CY # Zny’o Aé. The self-intersections Oflthesf new CY's agree
mod 2 with the original self-intersectiong, because AU . Ao = 0 (of course

even would do here), and so property (iie) is maintained.

Before achieving property (iv), and property (ii) on the nose, we note the

existence of a certain collection Cd = LJC$ of immersed spheres, with
Cd °Cd = 0, which are algebraically dual to the collection C (i.e.
Cs *Cs = 676) and are disjoint from A. To get them, start with a collection

of (small imbedded disjoirnt framed) tori Td = UTg dual to C, as explained

at the start of the proof in Section 4 (the distinguished tori, in the language
of [FZJ). Do (single) surgery to each T$ to turn it into a homologous im-
mersed sphere C$, using Al and the Norman trick to avert intersections with
A, As Td had the desired algebraic properties, so does Cd. (However, we
note that C$ N CG may have extra pairs of points. One could use Section 5
here to construct Ci's, but they would be of no additional help at this
point.)

Now, returning to properties (ii) and (iv), observe that they can be
achieved by connect-summing each CY with appropriately many copies of the
various Cé's. For example, assuming the subscripts {Y} are ordered in some
sequence, We can replace each CY by the multifold connect-sum

d ) d .
CY # 6§Y(-C6 CY)CG # (-CY CY/Z)CY. This completes Step 1. ///

We pause a moment here to remark on how Quinn's construction is about to
depart from Casson's. The goal for Casson/Quinn at this point is to get the
Cy's disjoint from each other. For Casson, everything was finite, and so he
was able to proceed one CY at a time, making it disjoint from all of the pre-
vious ones, before proceeding to the next CY' In the infinite case, however,

this process breaks down, for the usual reason that a point may wind up getting
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moved an infinite number of times, right out to infinity. Thus the natural
question was, how could one reorganize Casson's procedure for the infinite case
into infinitely many disjoint collections of finite procedures. This is what
Quinn is doing in the steps which follow.

Quinn's idea at this point is to partition the CY's into finitely many
groups, each group itself consisting of infinitely many disjoint finite sub-
groups of CY's. Within any given group, the subgroups are to be quite
isolated, separated from each other by some distance much larger than the size
of any disc or sphere yet encountered in the proof. The motivating analogy is,
if we think of the Cy's as tiny, microscopic cells in 4-space, then we want
to take a medium-sized handle decomposition of 4-space, and let all of the
CY's which intersect the O-handles comprise one group, with the subgroups
being engendered by the individual O-handles; let all of the remaining CY's
which intersect the (disjoint) 1l-handles comprise the next group, etc. In the
next step, this is formalized (and should be skipped by those familiar with

such details).

Step 2. Partitioning the Cy's into groups. To begin, we need a covering of
1,...,Kp (thinking of

each Ki as an infinite, disjoint union of cubes), where the components of

R4 by some finite number, p say, of closed subsets K

each Ki are uniformly bounded in size, and yet the distance between any two
components of any single Ki is at least &, where £ is some number much
larger than the size of any sphere or disc yet encountered in the proof. (The
smallest possible choice for p is 5. However, for p=24 one has the
natural checkerboard collection of cubes obtained by letting, for each subset
¢ C {1,2,3,4}, &p be the union of cubes in R’ with edges parallel to the
axes, of edge length £>> 0, centered at points of the form (Ezl,...,lz

where 2

)
4 E 2Z or z ¢ Z-2Z according as ie€y¢ or if¢ .) These sub:ets
{Ki} of Ra give rise to a collection of subsets of M, still denoted {Ki}’
having the same sort of properties, say by assigning each (SZX Sz)a in the
definition of M to the lowest indexed Ki that D: intersects. Using
these Ki's we can partition the CY's. Let C1 be the union of those CY'S
which intersect Kl’ and in general, let C, be the union of those C_'s

i
which intersect K, but not any earlier Kj's. /77

The individuai CY's are going to be separated in two steps. First the
different groups produced in Step 2 will be separated (Steps 3 and 4). The
motion here will be small compared to the large distance between individual
subgroups of any given group, and so these subgroups will remain bounded far
apart. Next, one prepares to separate the Cy's within the individual groups.
This requires some auxiliary data, namely some pre-Whitney discs W and some

transverse spheres Cl, which are to be constructed for each subgroup (Steps
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5-7). Finally, in Step 8 the individual disjoint groups-plus-auxiliary-data
can be worked on separately, and the ind%ridual CY'S made disjoint.

As we will see in upcoming steps, A 1is sort of the backbone of the
proof, for we are always returning to use it to produce lots of different
layers of Cl’s. To this end, the following step is an example of a useful
general principle: It is desirable to keep Al separated from as much of the
other data as possible, so that when it is to be used again, these other data

needn't be moved.

Step 3. Getting the Aé's off of the CY's. The goal here is to arrange that

Al N C = ¢. This will be achieved by regular homotopies of C and Al.

To begin, apply the Transverse Spheres Lemma of Section 5 to obtain a
transverse collection Cl = LJC# of immersed spheres for C, so that
CL NA = 4. Here we are applying the Lemma with the sets C, CL, W and F of
the Lemma being respectively the sets A,Al, C and subdiscs of C here, and
so the proof entails moving C by regular homotopy. (Aside: This unfortunate
mismatch of notation was bound to occur somewhere in the proof, inasmuch as the
Lemma is applied in several different places.)

Having produced Cl, we can now use the Norman trick to get rid of the

intersections between Al and C, by connect-summing the At's with

appropriate C;“s, as needed. (This happens to be a regular homotopy of AL,
as each C# is regularly null-homotopic by construction. After this, this
Cl is no longer of any use, although fresh ones will be needed later.) ///

Step 4. Getting the groups of CY's disjoint. First we construct p-1 dis-

ifiEE transverse collections of spheres Ci, Cé,..., C;_l for C so that
Ci Nn@av Al) = ¢§. This is achieved by p-1 successive applications of the
Transverse Spheres Lemma (Section 5; see its Note), with the sets C, Cl, W
and F of the Lemma being A,Al, C and subdiscs of Al here, for i=1 to
p-1, producing Ci at the ith step, making sure at each step that one stays
away from the previously constructed C%'s. Note that C (as well as A)
needn't be moved here, only Al (repeatedly).

Now we can use these Ci's to make the different groups {Ci} disjoint.
Starting with Cl’ using Ci to move each Cj off of Cl’ j>1, wvia
the Norman trick. Next, use , to move each (newly positioned) Ck off of
(the new) Cz, k>2. Continue in this manner. Note that when done, the
initialization accomplished in Step 1 still holds, and similarly it remains
true that Al N C =¢. The above Ci's, being useful no longer, are dis-
carded. 11/

Having separated the groups of CY's, we now must provide the individual

groups with some additional data. The first of these are some pre-Whitney
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discs.

Step 5. Selecting W, and making W N (A U Al) = ¢. For each group Ci’ let

Wi be a collection of pre-Whitney discs for all of the intersections between

different cells of C (which, recall, only occur between cells of the same

subgroup). Let W = LiJw:.L (we needn't initialize the framings of W in any
manner, at this point).

Using Al, get W off of A by means of the Norman trick.

We next arrange that ok now = 4. To do so, construct a transverse
collection Cl to C which misses A UW (but there is no need to make it
miss Al), by using the Transverse Spheres Lemma (Section 5) with the sets
C,Cl, W and F of the Lemma being A,AL,C and subsets of W here; this may
require regularly homotoping W, but not C (nor A and Ai), as Ai ncecs=¢g.
Given , We can move Al off of W first by piping Ai off of the edges
of W, and then getting rid of the resultant intersections of Al with C by
using the Norman trick with respect to Cl. So now we have W N (A U Al) =@,
and we have retained that AL A\ C=¢g. The above C--L is no longer
needed. /11

At this point, we must separate the members of W which are attached to
distinct groups of C.

Step 6. Separating the groups {Wi}. As before, this is accomplished using

layers of 's. Using the Transverse Spheres Lemma p(p-1l) times in succes-
sion, construct p(p-1) disjoint collections of immersed 2-spheres Ct i’
1<1i,j < p, 1i#j, where for each i, Ci 3 is transverse to C;, and

1,4 NQAUAL UW) =¢ (thelsets C,C', Wand F of the Lemma are
A,Al N Ci and subdiscs of A here, making sure as usual that when con-
structing 1,3/ one stays awiy from other Ck's, and away from previously
constructed Ct’g's). Only A" need to be moved here (repeatedly).

Now, for each 1i,j, to get Wj off of C; UW, (j#i), first move W

off of Wi by piping it off of Wi

%4
(Ci U wi) fa) (Cj U wj) = ¢ for all 1i#j. Since these motions are small with

3

edges, and then move Wj off of Ci by

means of the Norman trick, using When done, we have

respect to the distance between subgroups of groups, we now have that any in-

dividual CY or wu intersects any other individual Cé or Wv (four pos-

sibilities here) only if these two intersecting cells belong to the same sub-

group of the same group. Finally, we note that all of the properties arranged

in Steps 1 through 5 remain true. The above Ci’j's are no longer needed. ///
The last data to be provided for the subgroups are some complementary

spheres for the C's.

Step 7. Providing groups of Cl's. Once again we appeal to the Transverse
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Spheres Lemma, this time constructing p disjoint collections CL,...,C: of

, and CL NC, =¢ for
1 i 1 3

i#j, and C'Il' N(AUAK UW) =¢. This is accomplished just as in Step 6,

moving only Al (repeatedly). As before, it follows from distance considera-

immersed 2-spheres, where Ci is transverse to C

tions that any two different cells in this entire collection Cl =U Ci will
intersect only if their mates (i.e. duals) in C belong to the same subgroup
of the same group. 11/

Finally, we are in a position to complete our separation of the individual

C 's.

Step 8. Separating within the sungoupé. At this point, each subgroup consists
of a finite number of CY's, their associated Cb's produced in Step 7, and

a union W, of pre-Whitney discs produced in Steps 5 and 6, one disc for each
pair of intersections between distinct CY's of the subgroup. Furthermore,
all of these data for distinct subgroups are disjoint. Hence we can apply the
Separation Proposition (Section 6) separately to each subgroup of each group,
as we have just the data we need. Consequently, we can make all of the CY's
disjoint. As noted in the Addendum (Section 6), we can leave ourselves with a
transverse collection Cl for C, for use in the next induction round (or we
could just make Cl using Al). 11/

The Cy's are now positioned to serve as bases of towers. That is, they
are disjoint from each other, with imbedded boundaries, and their interiors
are disjoint from A, and they are correctly framed. Furthermore, they are
equipped with a transverse collection of spheres C1 (whose members, however,
may intersect quite badly, but as usual are bounded). The next round of
induction proceeds to construct a disjoint collection D of discs to serve as
the second stages of the towers, just as C was constructed above. Hence, in
this second round, C and C'L play the role of A and Al in the first round
(note that they satisfy the analogues of properties (lA) and (ZA) listed
earlier, the only properties used). The only difference is that now the in-
dividual DA'S are attached to individual CY's instead of to pairs of CY'S’
so this requires changing a few words in Step 1, but otherwise all the
operations remain the same.

Concerning distances, note that in Step 8, there is no bound on how far
an individual CY may move within an individual subgroup, other than it stays
close to the subgroup. Hence, if the diameters of these subgroups are bounded

by some constant d then this number serves (approximately) as a bound for

1’
all motions of the first induction round. For the second round, then, we

must greatly enlarge our scale, for example grouping the D's so that indi-

vidual subgroups are much further apart than distance d1 (but still p=24 s
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or even p=5 groups will suffice). Nevertheless, everything remains bounded,
and in fact the bound is simple function of the original diameters of sets.
Cycling through the induction process six times, producing 6-stage towers
T=CUDUEUF U G U H, completes the goal (*3) of this section.
It is interesting to note that as one builds successive layers of the
towers, the duals of these layers spread out further and further, intersecting
more and more distant duals.

We note in Appendix 3 a few technical differences between the above con-
struction and Quinn's.

8. THE PROOF OF THE 4-DIMENSIONAL ANNULUS THEOREM
The n-dimensional Annulus Conjecture (ACn) asserts that for any homeo-
morphism h:R® >R® such that h(Bn) C intBn, the closed difference

B" - h(intBn) is homeomorphic to the annulus Sn_1

X I. This conjecture is
intimately related to the n-dimensional Stable Homeomorphism Conjecture (SHn),
which asserts that any orientation preserving (= o.p.) homeomorphism h:R"> R"
is stable, that is, can be written as a finite composition of homeomorphisms
h = hm .o hzhl where each hi is the identity on some open set. There is a
rich collection of facts and consequences surrounding these conjectures,
which we will not go into here; see for example [B-G]. But for our present
purposes we recall:
1) SHn => ACn for any given n.
2) An o.p.-homeomorphism h of R" is stable if
a) it is a composition of stable
homeomorphisms, or
b) it is differentiable at some
point, with non-singular de-
rivative there, or
¢) it is uniformly bounded, i.e.
{||h(x)—x||’x€Rn} is bounded.
3) SHrl is true for all n#4 (classical for n=1,
from [R] for n=2, from [M] for n=3, and [K]

for n>5 5

We will discuss the following

THEOREM (Quinn): SH4 (hence ACQ) is true.

Consequently, the Stable Homeomorphism and Annulus Conjectures are finally
established for all dimensions.

The proof of this theorem follows the lines of a remarkably prescient
proposal of Connell and Hollingsworth [C-H, pp. 161,179]}. In short, they
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noted that given an o.p.-homeomorphism h:Rp-*Rn, if one knew that
h><id:Rp><R1 + R%x R1 were stable, and if one could establish a certain sort
of controlled (nt+l)-dimensional h-cobordism theorem, then one could deduce

that h was stable. This they presented as one possible application of many
that would follow if one could carry to conclusion their ideas and conjectures
about ''geometric groups' set forth in [C-H].

When in 1968 Kirby established the stable homeomorphism conjecture for
dimensions >5, but not 4, then the Connell-Hollingsworth proposal grew in
credibleness. Finally in 1977-78 Quinn succeeded in supplying the missing
algebraic details of the Connell-Hollingsworth program. But as expected, the
resultant controlled h-cobordism theorem (for example) could be established
only for dimensions >6. The critical 5-dimensional case eluded Quinn, for
the usual 4-dimensional reasons prevailing in the middle level of the cobordism
(see below). However, Freedman's work offered new prospects, and a year after
Freedman's breakthrough, Quinn succeeded in establishing the 5-dimensional con-
trolled h-cobordism theorem, obtaining the Annulus Theorem as one particular
consequence (of many). This is what we have been aiming toward in this expo-
sition.

We give now the details of the Connell-Hollingsworth-Quinn program that
reduce the 4-dimensional Stable Homeomorphism Conjecture to Quinn's result es-
tablished in Section 7. (We note that as an alternative to this route, one
could instead apply Kirby's original argument directly in dimension 4, using
Quinn's work to complete the discussion of 4-dimensional homotopy tori, but
there seems to be no clear advantage in proceeding that way.)

Suppose, then, that h:R4-+R4 is an o.p.-homeomorphism. The idea will
be to express h as a composition h=gf of two homeomorphisms, where f is
bounded (defined above) and g is a diffeomorphism on some open set. Hence,

h will be stable (see Fact (2) above).

To start, we use h to put a certain, possibly nonstandard, smooth
structure on R4 x[0,1] , as follows (we use | | here to emphasize the
underlying topological space). It will be described in terms of two coordinate
charts GPO,UO) and (wl,Ul), where as usual Ui is an open subset of
IRZ’X [0,1]] and vy T eU) R>. Let Ug = IR4 x [0,2/3)] ¢ [R4 x [0,1]]

and let ¢, = inclusion: U C R4><R1 = RS. Let U, = IRaX (1/3,1]]c |R4><[0,1]L

We will chgose ¢, so that ""1| |R“x1|= hiR*x1 > R*x1 and (see Figure 8.1)
¢1¢61‘R4 x(1/3,2/3) is smooth, i.e., ¢1|R4 x(1/3,2/3) is smooth. To get

¢l,
with Connell's Smooth Approximation Theorem [Co] (as established in dimension 5
by Bing [B]), to find a diffeomorphism w:Rax (1/3,2/3) ~ R4X (1/3,2/3) which

approximates h xid as close as we like, even in the majorant sense, i.e.,

we apply Kirby's 5-dimensional Stable Homeomorphism Thereom [K], together



SOLUTION OF THE 4-DIMENSIONAL ANNULUS CONJECTURE (AFTER FRANK QUINN) 249
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Figure 8.1: Defining W

lvx) - (hx id)(x)” + 0 as fast as we like for x =+ end in ‘Ré x (1/3,2/3).
Then we can define )"1 to be h x inclusion on IR4>< [2/3’1”C01’ and ¢ on
IR* x (1/3,2/3)] C v,.
We denote by W this new smooth manifold whose underlying space is
R %X [0,1]. Clearly W is an h-cobordism. If we could show that W is
smoothly a product in some reasonably well controlled sense, then we would be
done. For example, suppose we could establish
(*) For some k>0, there is a diffeomorphism
G:r* x [0,1] + W such that T is k-close
to w, where 1T:R4><[0,1]=]Wl > &% is
vertical projection.

Granted that (*) holds, and aSSuming without loss that G(R x1) = 8 W=
the l-end of W, then let g = 0GR x 1:R* x 1R x 1 and let
f= (GIR X 1) . Regarding |3+W|, R4 x1 and R4 as being identified in the
obvious manner (to avoid a clutter of maps), we get that gf=h, where f 1is
bounded and g 1is smooth, and hence h 1is stable, as noted above.

Unfortunately it turns out that (*) not only is unknown, it is in fact
false for arbitrary smooth structures on Rﬁ x[0,1], because of the existence
of exotic structures on R4. However, Quinn establishes the following weaker
statement, which is sufficient for his needs here.

(**) For some k>0, there is a homeomorphism

G:R*x [0,1] » W, with G|Ux[0,1] a dif-

feomorphism for some open set U C R4, such

that 7G 1is k-close to = (m as above).
Granted that (**) holds, then the argument that h is stable is the same as
above. So it remains to discuss (*%),

To prove (**), one attempts to prove (*) using the methods that do in
fact work in higher dimensions, and finds that by using the work presented in
Section 7 together with Freedman's work, one can at least deduce (**).

We offer an outline of this argument. We will confine ourselves to the

specific contest of (**), although it should be remarked that the full-blown
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controlled h-cobordism theorem differs from the following discussion only de-
tail, not in spirit.

We are given W, a smooth 5-manifold whose underlying topological space
is R4X [0,1]. Following the lines of the proof of the customary compact
h-cobordism theorem, we divide the discussion into three steps: (1) establish-
ing the existence of a bounded handlebody structure on (W,3 W), (2) trading
0 and 5-handles for 2 and 3-handles, and irading 1 and 4-handles for 3 and 2-
handles, respectively, and (3) cancelling the 2 and 3-handles, all the time

maintaining boundedness control (or even e-control, if you wish, but that isn't
required here).

We elaborate these steps. We emphasize that everything is smooth here.

Step 1: Imposing a bounded handlebody structure on (W,9_W). Letting

oW = RAX 0 C W, a handlebody structure on (W,9_W) is a filtration

W_l (- WO C - C W5 =W of W by 5-dimensional submanifolds of W, closed as
subsets, such that W_l is a collar of 9 W, and wi is obtained from

wi—l by attaching (disjoint) i-handles to 3+Wi_1 = BWi_l - 9_W. The collec-

tion of such handles may be infinite, but it is presumed to be locally finite.
This handlebody structure is bounded if all handles and all fibers of the collar

are uniformly bounded in size (using say the standard metric on RAX [0,11).

It is a routine matter to get such a bounded handlebody structure: simply
take an ordinary handlebody structure which starts with a thin collar, and then
subdivide the handles to make the new handles small, isotoping the attaching
maps as required in order to make handles be attached only to unions of handles

of lower index.

Step 2: Trading handles into the middle dimension. One does the following

argument first for O-handles and then 1-handles, and dually for 5-handles and
then 4-handles. Let i be 0 or 1, and assume that the i =0 case has
been done if i = 1. In particular, we can assume that any i-handle is
attached to a+W_1 (which, when i = 0, means nothing). Focusing on an
individual i-handle H, it is traded for an (i + 2)-handle )i by introducing
a trivial i+ 1, i+ 2 (complementary) handle pair Gi+1’ Gi+2 and then-
isotoping Gi+1 to be in complementary position to H, so that it and H can
be cancelled, leaving behind the repositioned Gi+2 = fi. In more detail, the
topological product structure on W provides a predictably bounded homotopy

of core H rel its attaching region into 8+ﬂ_l. After some general posi-
tioning we can assume that this homotopy hits no handles of index > i+1,

i.e. lies in Wi+1

After some further general positioning, we can move the homotopy off of

(this motion is bounded because the handles are bounded).
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3_W U the cores of handles of index £ 1 + 1 and hence into 3+Wi+l, so it
becomes a homotopy in 8+Wi+1 carrying a parallel copy of core H (lying in
the belt region of ©3H) rel its attaching region into 8+W_1 N B+wi+1. Now
i{ntroduce a small trivial i + 1, i + 2 handle pair Gi+1’ Gi+2 aFtached to
3+Wi+1 but missing the i and i + 1 handles (so in fact it is attached to
3+W_1), and lying somewhere near the image of the homotopy. Using the homo-
topy, and the fact that for O and l-dimensional submanifolds of a 4-manifold,
homotopy gives rise to isotopy, one verifies that the attaching map of Gi+1
can be isotoped in 3 W so as to put Gi+1 in complementary position to

+ 1+1
H, as asserted. All motions here come from bounded homotopies, and so are

uniformly bounded. (For higher dimensional cobordisms, this argument must be

presented a bit more carefully; see [Ql, Thm. 6.1] following [W].)

Step 3: Cancelling 2 and 3-handles. At the end of Step 2, having gotten rid of
all of the 0,1,4 and 5-handles, we can write our cobordism W as
W=23Wwx[0,1/3] U U, j} u UK, }U3Wx[2/3,1], where 3 Wx[0,1/3] and
(for symmetry's sake) B+Wx [2/3,1] are collars for the two boundary components
of W, having fibers of uniformly bounded size, and {HZ,B} and {33,a} are

locally finite collections of 2-handles and 3-handles, all of uniformly bounded

size.

Figure 8.2: The cobordism W.

This is the place in the ordinary h-cobordism theorem where one must
use some algebra. So it is here, and in addition, some control is required.
Namely, what we would like is that

(#) after some (2,3)-handle pair introductions, and some 3-handle

slides of uniformly bounded size, the 3-handles {33,a} can be
put in 1-1 correspondence with the 2-handles {HZ,B}’ so that
for any pair a,B8, Aa . BB =6 (kronecker §), where Aa

aB

is the attaching (descending) sphere of H3 o and B8 is the
’
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belt (ascending) sphere of HZ,B’ and this intersection is taking
place in the middle 4-manifold level M = 3 +w2.
Forgeting size for the moment, in the finite simply-connected case, establishing
(#) requires only elementary algebra, being nothing more than the fact that an
integer matrix of determinant 1 is reducible to the identity matrix by (say)

row operations. But in this infinite controlled setting this is another matter,
and in fact this is the problem addressed in the earlier work of Commell and
Hollingsworth. Inasmuch as that program was successfully brought to conclusion
by Quinn in 1977-78, we consequently can presume that (#) above holds. (Inter-
estingly, Quinn [Qll deduces his main results, namely the Connell-Hollingsworth
conjectures, by starting from the fact that when suitably cast in a manifold
setting, they can be established by using the torus trick, in the same spirit

as Kirby's original work).

We take the liberty at this point of describing a variant manner of es-
tablishing (#), which amounts to a geometrization of Quinn's argument in [01],
making direct use of the previously known theorems upon which Quinn modeled his
proof. The key point is, (#) is a condition which lends itself to stabiliza-
tion-destabilization (of dimension W). To be precise, let V be the 6-dimen-
sional relative cobordism gotten by crossing W with I (see Figure 8.3),

v

N

region of |
2- & 3-handles
W

\
\

) \
) IxW, [ 8V
v AW \evt\'} 1 - ;L})_V =base

Figure 8.3. The cobordism V =1 x W.

letting 3 V= Ix3 W and &V =9I x W_is 1 1s some collar
of 9_W in W, and then letting 3+V = ¢c1(3v- (3_V U &V)), as usual. The key

1 of V, the stabilized
handles {Ixﬂz,a} and {Ix H3,B} provide a handle decomposition of V based
on wa_l.

sion 6 we know, using the Product Structure Theorem of Kirby and Siebenmann

where we recall W_

observation is that, starting with the subset IXW_

These handles are of index 2 and 3, as earlier. Now, in dimen-

[K-S], that V is a smooth product, and in fact one can perturb the topological
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structure an arbitrarily small amount to make it smooth. Consequently, the
above handle structure can be changed by the usual handle operations (births,
deaths, and slides) to become trivial (so, for example, thinking Morse-theo-
retically, one can construct a Cerf diagram). Furthermore, since the Product
Structure Theorem can be applied locally, in bounded patches, one can argue
that all of these handle operations can be done in bounded fashion.

Now, if only handles of index 2 and 3 appear during this transition, then
this would immediately provide a solution to (#), for that is exactly what (#)
is saying. In general, however, handles of other indices may be appearing,
disappearing and sliding over each other. Nevertheless, one can make a
Cerf-theoretic argument that all handles not of index 2 or 3 can be traded for
handles of index 2 or 3 (as for example in [H-W]). Thus (#) is established.

In short, we are saying that (#) can be achieved in dimension 5 because it
can be achieved, geometrically in fact, in dimension 6.

Assuming now that (#) holds, we return to our discussion of the cobordism
W, showing how to establish (**) by using the work of Section 7. By our de-
scription of W, we see that the middle level M = 8+W2 is obtained from
o W= Ra by performing a locally finite collection of l-surgeries. Since the
surgery circles in Ra are necessarily unknotted and unlinked and uniformly
bounded in size, we can regard M as being obtained from R4 by connect-sum-

ming with infinitely many copies of Szx 82 at a locally finite collection

0"}
o 2
subset (8" xS

of uniformly bounded balls in RA. In M we make note of each resultant
2

- intDA)a by labeling a spine of it, say Ba U Bd consist-

s
ing of two transverse imbedded 2-spheres, one of them the belt spthe Ba of
the handle H, and the other some dual BS for it. (Since the 2 and 3
handles have been paired by (#), we now use the same index set {a} for both
sets of handles.)

We can make the same sort of discussion at the other end of W, to see
that M 1is obtained from B+W by connect-summing with 82 x Sz's at a locally
finite collection of uniformly bounded balls in B+W. As above we mark each
SZX S2 of this collection in M via a spine Au V] Ag, i.e. a wedge of im-
bedded 2-spheres, where Aa is the attaching 2-sphere for the 3-handle H3,a ,
and A5 1is some dual for it in M.

At this point we are ready to apply the discussion in Section 7, where the
sets M, Aa, Ag R Ba and Bg correspond to the sets above. Condition (#)
above is exactly what is hypothesized at the start of Section 7, and further-
more all considerations of boundedness prevail. Hence, by Section 7 we can
find a disjoint locally finite collection of topological Whitney discs for the

excess intersections between the Aa's and the Ba’s. These discs can be used
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to perform (topological) isotopies in M, to be regarded as (topological)
isotopies of the attaching maps of the 3-handles of W, to make the 3-handles
geometrically complementary to the 2-handles. So the handles can be cancelled,
leaving W with a product structure. One routinely checks that, as the only
non-smooth part of the proof is the preceding repositioning of the 3-handles
and subsequent 2-3 cancellations, there remains an open subset U of B_W (which
can be made dense if you wish) over which the product structure can be made to
smoothly agree with that of W. Hence (**) above is established, and the
4-dimensional Stable Homeomorphism and Annulus Theorems follow.

APPENDIX 1. Casson's Imbedding Theorem via Quinn's Lemma. The preceding

material has imbedded in it a proof of Casson's original theorem, but it may
not be apparent. Indeed, if one is willing to grant the Transverse Spheres
Lemma (Section 5) and the subsequent Separation Proposition (Section 6), then
Casson's construction can be presented quite succinctly. We do this here. We

begin by recalling

CASSON'S IMBEDDING THEOREM ([C], mildly paraphrased).
Suppose Cl""’cn are immersed 2-discs in a simply-connected 4-manifold
M, with the BCi's imbedded disjointly in dM, such that Ci° Cj =0 for
i# j. Suppose there exist Bi € HZ(M), 1<i<n, such that Bi' Bi is even
and Bi 'Cj = Gij'
and one can build disjoint (infinite) towers Tl,...,'I‘n in M whose bases are

Then the Ci's can be regularly homotoped to be disjoint,

these separated Ci's.
Proof. Casson's original construction proceeded a disc at a time fixing

up the first layer C = UC of discs for his towers, then a disc at a time

through the second layers, Ztc., all the time having to spend repeated effort
to recover the necessary working hypothesis that the complement of the union of
most 2-dimensional data at hand be simply connected. However, with the aid of
the Transverse Spheres Lemma, basically one can proceed an entire layer at a
time. We give the argument in summary fashion, presuming that only experienced
hands have gotten this far. As in Casson's proof, we are immediately entering
an inductive procedure.

Let Cd = ch
[Bi]’ provided by the Hurewicz isomorphism theorem (i.e., surger the surfaces

be a union of immersed 2-spheres representing the classes

representing the Bi's). To begin, we regularly homotope Cd, as well as C,
to make Cd into a transverse collection Cl= UCi of spheres for C. This
can be done all at once using Casson's Surface Separation Lemma (Section 2),
taking C as A and Cd as B, and finding the necessary pre-Whitney discs

W as a consequence of the l-connectivity of M.
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Let W (unrelated to the preceding W) be a collection of pre-Whitney
Cj’ provided by the
l-connectivity of M and the hypothesis that Ci. Cj = 0. Applying the

discs for all of the intersections between all pairs

Separation Proposition of Section 6, we see that the Ci's can be regularly
homotoped to be disjoint, and furthermore (by the Addendum) the resultant
union C can be provided with a transverse collection of spheres, still de-
noted . Thus the Ci's are now separated, and we will not need to move
them any more.

We now begin to construct the next layers of the towers. Let D = Ulﬁ
be a collection of immersed discs in M which are attached to the Ci's to
"kill their kinks". We wish to make certain preliminary improvements to these
discs, just as we did to the CY’s in Step 1 of Section 7. First (i) we make
the 3Dj's disjointly embedded, and then (iie) we spin the Dj's at their
boundaries to make their framings correct modulo 2 (as second stages of towers,
as in Section 3). Next (iii) we get intD off of C by means of the Norman
Trick, using CL. Before proceeding further, we observe as in Step lof Section
7 that the Dj s have algebraically dual immersed spheres {D } disjoint from
C, obtained by surgering the small dual tori of the D 's, u31ng C} to keep

the surgeries off of C (note that Dg g 0 for all j,k, even if

CL' Cl¥ 0). Now, we can arrange that (ii,iv) Dj. D =0 for all j,k by
connecting-summing each Dj with appropriate copies of the various Dg's.

Now, to formally complete the induction process, we regard the Dj's as
being attached to a small regular neighborhood NC of €. So in the simply-con-
nected manifold MD = M- intNC we are back in the same sort of situation in
which we started, now with Dj's in place of Ci's. So we can cycle through
the induction again, separating the Dj's and providing a new layer of Ek's,
etc. Continuing, one can produce towers T =C UDUE U... of arbitrary

length, as desired.

APPENDIX 2. Freedman's Big Reimbedding Theorem via Quinn's Lemma. The first

formidable aspect of Freedman's work is his sequence of Reimbedding Theorems,

of which the most intricate by far is his 5-stage Reimbedding Theorem. In this
appendix, we note that Quinn's Transverse Spheres Lemma ( = TSL; see Section 5),
once mastered, substantially eases the hard technicalities of Freedman's proof,
for example rendering unnecessary any discussion of triangular bases. Quinn
himself recognized there was room for improvement in Freedman's argument [Q2];
our discussion carries this another step further.

Since [G-S] is so close at hand, we refer to it for notation and state-
ments of theorems (notational exception: we leave initial data unsuperscripted,

writing e.g. T3 or CA in place of their Tg or Cg, but we (as they) do use
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superscripts for later cobpies, e.g. T§ or C%). In particular, our discussion
is presented in the context of their one-stage improved versions. The relevant
Theorems there are 3.3 (= 6.0 = the Little Reimbedding Theorem) and 4.0.0

(= 6.1 = the Big Reimbedding Theorem). Hence our goal here is to describe how,

4’ with
agreement on the first two stages, so that the new imbedding is trivial on T

given a 4-stage tower TA’ to reimbed a new 4-stage tower Ti into T

’
and also is ﬂl—negligible in the customary manner. !

We present the argument in five steps. In brief, the idea is that in
Steps 1 (= the Little Reimbedding Theorem) and 4 we work inside of the first
three stages T3, using Quinn's Lemma to produce first one and then lots and
lots of disjoint transverse spheres for the third stage (we will assume for
simplicity of language throughout that the third stage has only one component,
i.e., each of the first two stages has just one kink each). In Step 5 the
Norman trick is applied, using these transverse spheres to change the fourth
stage kinks into kinks coming from the transverse spheres, which lie in T3
and hence are null-homotopic in T4. The intermediate Steps 2 and 3 are neces-
sitated by the fact that in Step 1 kinks were introduced into the original
third stage, and so they must be provided with their own fourth stage kinky
discs, which need to be correctly positioned, requiring some argument.

In more detail, the five steps are as follows:

Step 1. Do the Little Reimbedding Theorem, i.e., regularly homotope the orig-

inal third stage C3 to become C; so that Cg has a transverse sphere

Cé C T3 which misses the first two stages C1 V) CZ‘ This gives rise to a
transverse sphere C; C T3 for the second stage.

Some details (originally in [FI])' letting T be a small distinguished dual
torus for the third stage located near the self-crossing point of the second
stage, Freedman noted in [Fll that the two natural generating circles of T,
which are meridians of C

are null-homotopic in T, missing C1 U C2.

s
Hence, if one does doublezsurgery on T (as in Sectign 4) using these two im-

mersed null-homotopy discs to produce an immersed sphere C; missing C1 U Cz,
at the same time doing finger moves to the intersections of the original third
stage C3 with these discs as deicribed in Section 4, then we can produce

a newly positioned third stage C3 with transverse sphere Cg. (It is ob-

served in [G-S] that the above finger moves need not 1link the first stage Cl’
i.e., ﬂl(Ci) - ﬂl(T3- Cl) is trivial; this will be used later, to avoid
having to glue on an additional earlier stage.) Using C; and Freedman's ob-
servation above one can get a transverse sphere , to the second stage so

1 1 ° 1
that C; n C1-3 = C; r\C2 =1 point (recall 01_3 = C1 U C2 U C3).
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Step 2. Exhibit fourth stage discs for all of the third stage kinks, and get
their interiors off of the union of the first three stages 01_3.

Some details. During Step 1 some new self-intersections (= kinks) arose in
constructing the new third stage Cg. Since Cg C T3, these kinks are
null-homotopic in Té’ and furthermore by Gompf's observation (see Step 1),
these null-homotopies can be chosen disjoint from the first stage Cl. Using
Cg and Cg produced in Step 1, we can make these null-homotopies disjoint
also from the second and third stages C2 U C%. Hence these null-homotopies,
together with the original fourth stage 04, give us a new collection CZ of
fourth stage discs (not necessarily disjoint) for all of the kinks of C3

1 1
with intC, NCy_5 = 4.

Step 3. Produce a new transverse sphere Cl (and from it C;) lying in T

3 3

1 1
which misses C4 as well as C1_3.

Some details. The new fourth stage C: may well intersect the transverse
sphere 2 proguced in Step 1 (Aside: Ct needn't intersect the original
fourth stage C4’ but this fact isn't used.) However, we can use Quinn's
Transverse Sphere Lemma (Section 5) again, more or less repeating the con-
struction of Step 1, except this time using 2 to provide the null-homotopies
of the second stage meridians, to produce our new 3* To be precise, we

apply the TSL with C, , Wand F there being Cz, Cé, C and C4 here. The
finger moves of this operation will put extra kinks into 4, turning it into
Cz (all of these kinks, both old and new, will be dealt with in Step 5).

Finally, use the newly produced (!'L to produce a new transverse sphere as

2

at the end of Step 1 so that 2 n (C v C2 U C§ U C ) C; ne, =1 point.
To see that one can arrange that &nc ¢hﬂemwhwcm&mgmn

4
Freedman's null-homotopy of a meridian of C2 in T§ - C1 U CZ’ where T; is

a small neighborhood of C V] C U Ci, can be chosen to miss the collar
T§ N Cz, but this is clear, either by direct inspection, or by observing that
any such intersections could be pushed off the attaching boundary of Ci,
making extra intersections of the null-homotopy with Cg, which are then

gotten rid of like all of the other intersections by connect-summing with Cg'

Step 4. Construct lots of disjoint transverse spheres Cg 1° Cg 29 Cl L3000
2 1
a;l lying in T3, with 3,1 N C1 4 3,1 2] C3 = ] point, without moving

1 4 (= C V) 02 V) C3 V) CA)’ using the Transverse Spheres Lemma repeatedly.

Some details. The point is, we new have at our disposal a transverse-sphere
making machine, whose basic components are a distinguised torus T dual to
the third stage Cg (just as in Step 1), together with the transverse sphere
Ct produced in Step 3 which can be used to provide null-homotopies of the
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natural generating circles of T (= meridians of Cz), these null-homotopies

2
missing Cl—é'

there being 02, Cg, Cg and Ct here, producing a (the first) transverse

To be precise, we apply the TSL with the sets C, Cl, W and F

sphere 3.1° at the same time finger-moving 9 80 that when done
s
C; N Cg 1.= ¢. Then the TSL can be applied again to make a second transverse
tl
sphere Cg 2 disjoint from the first, again leaving a repositioned Cé dis-
’

joint from it. This process can be reiterated as long as desired. The Cg,i's
so produced have more and more kinks as i increases, because each inherits
kinks from the current C;, which itself is getting more and more complicated
because of the finger moves repeatedly being performed on it. The total number
of 3’1'5 required is the total number of'crossing in Ci, plus one more,

as we will see in Step 5.

Step 5. Apply the Norman trick, using the transverse spheres {iji,i} to

transform the kinks of the fourth stage Ci into kinks which lie in T and

s
hence are null-homotopic in T4, thereby producing the desired new T23CZ T4.
§9£g_details. For each self-crossing of Ci, choose one of the sheets and
push it along the other sheet and off the edge of CZ in the usual manner,
making for the moment two intersections with C;, and then get rid of these
intersections via the Norman trick, using one of the C%’i's (you can use the
same one for both intersections). This is the same idea as in Freedman's
original argument. Since the 0%,1'5 lie in T3, it is clear that the new
4th stage Cz so produced is null-homitopicsin Ta. Letting Tz be a small
regular neighborhood of C1 V) 02 W) C3 V) Ca, we have our desired reimbedding.
Note that Tl

4

is wl—negligible in the usual desired sense (i.e.,
1!1('1‘4 - Ti) > nl(T4 - Cl) is an isomorphism) because of the last unused

transverse sphere C3,*.
This completes the proof of the Big Reimbedding Theorem.

As a variation in the above argument, one could have not bothered pro-
ducing C; from Cé in Step 3, and could have in Step 4 produced many disjoint

transverse spheres to (the various disc-components of) C2 instead of to

4’
C;, 3 using the TSL with C, Cl, W and

F there being Cl, Cg, (various components of) Ci and Cg here. This vari-

these transverse spheres lying in T

ation is perhaps marginally more efficient than the one presented.

APPENDIX 3. Quinn's Disc Deployment Lemma. A significant portion of our ex-

position above of Quinn's work (primarily Section 7) was tailored to a specific
use, namely the proof of the Annulus Conjecture. But in fact the same proof
works to yield what Quinn calls the thin h-cobordism theorem (= €~h-cobordism
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theorem = controlled h-cobordism theorem, meaning an h~cobordism theorem in
which distances are controlled); the only change required concerns the dis-
cussion of distances. On the other hand, if one wishes to prove a controlled
surgery theorem in dimension four, then the proof in Section 7 requires a mild
strengthening, to what Quinn calls the Disc Deployment Lemma. It is to be re-
garded as a controlled analogue of Casson's Imbedding Theorem. For purposes

of discussion, we recall only a special case of the Lemma (see [Q3, Section
3.2] for the general statement, which requires too many definitions to be given

here). It should be compared to Casson's Imbedding Theorem in Appendix 1
above.

Quinn's Disc Deployment Lemma (special case). Given a 4-manifold M,

and given €>0, there is a &>0 such that if C = uCY is a locally fin-
ite collection of 2-discs immersed in M, with boundaries imbedded disjointly
in" 9M, such that CY' CG =0 for Y#6, and if CL = LJCt is a transverse
collection of immersed spheres for C, with Ct- Ct =0 (even would do),
such that each CY and each Ct has diameter <&, then there is a collec-
tion T = LJIY of disjoint 6-stage towers in M attached to the curves dC ,
such that each tower TY has diameter < e.

Note: Throughout it is understood that if M 1is not compact, themn € and §
are continuous functions from M to (0,%).

The idea of the proof is just as in Section 7: first one uses a series
of steps like those in Section 7 to regularly homotope the CY's to be dis-
joint, so that the CY's can serve as the bases of the towers; then one con-
structs a new layer D of disjoint discs to serve as the second stages of the
towers, etc. But there is one important differences between the setup here
and the earlier discussion of Section 7: here we are missing the preceding
layer A and its complement Al. Thus, we cannot produce disjoint transverse
collections Ci, Cg, etc., whenever we wish,

The manner by which Quinn proceeds amounts to shifting the construction
of Section 7 by one notch, so that in effect A and Al there become C and
Cl here, C and Cl there become W and Wl here, and W there becomes X
(say) here. In other words, to prove the above Lemma, one starts by selecting
a collection W of pre-Whitney discs for all of the intersections between dif-
ferent cells of C, and one goes through Steps 1 through 8 of Section 7, now
working with W in place of C (and C, in place of A, Al), to get
intW off of C and ultimately to get the discs of W disjoint (without
ever moving C). After doing so one can use W to regularly homotope the
CY'S to be disjoint, and then one can begin the whole process over to get the

second layer D. In applying Steps 1-8 above, one will, for example in Step 2,



260 Robert D. Edwards

put the Wﬁ's into different groups; in Step 4 get the groups disjoint using
disjoint transverse collections "{; W%; etc.; in Steps 5 and 6 provide

disjoint collections X etc., of pre-Whitney discs for the different

1> Xp»
groups of Wh's, and finally in Step 8 separate the individual wu's.

We note that the only reason we didn't present Quinn's proof in this
fashion in Section 7, where for purposes of concreteness we were interested
only in a very specific h-cobordism theorem, was that such a presentation
would have called for an additional layer of discs, namely the above X,

which seemed unwarranted in a proof which is already taxing enough.

APPENDIX 4. Some Remarks on Non-simply Connected Developments. In Freedman's

extension of his work to the nonsimply connected setting, accomplished during
the Fall of 1982, the most important consideration was to come to grips with
what was happening on the fundamental group level when one did finger moves
such as those discussed in Section 4. Here we describe Freedman's key
observation, in the context of the constructions presented in Section 4.
Suppose T# = TO U El U EZ consists of a punctured torus TO (with
circle boundary, i.e. To P T2 - int Bz), together with discs E1 and E2
attached to a figure eight basis in T as in Section 4. Suppose
£f:T
Ma, with f-l(aMa) = BT#, such that f extends to an immersion f : N+ M

of a regular neighborhood N rel 3'1'# of T#C R3 c Rl‘ in R4. (Aside:

0,
#'ﬁ» Ma is a generically positioned immersion of T# into a 4-manifold

this extension condition is not really necessary, but it substantially simpli-
fies the ensuing discussion, and also in applications it can invariably be
arranged without loss of generality. We leave it to the reader to ponder the
more general situation).

We suppose that the singularities of f 1lie only in int él \) int ﬁz,
where Ei = f(Ei)’ so that in pfrtic?lar TO = ffTO) is an imbedded copy of
TO. I? other words, the image T# = T0 V) El \J E
hood N
crossings at points of int El U int E2 (note that int E
int EZ)'

Now, if either E1 or E2 is by itself imbedded, say E
cfn do surgery on To using E
BTO. X X

In general, however, both E. and E, may have self-intersections, as

1 2
well as mutual intersections. The simplest nontrivial case to consider is

2 and its regular neighbor-

E(N) are in effect obtained from T# and N by introducing self-

1 may intersect

Al, then one

1 to produce an imbedded disc in ﬁ spanning

where each of ﬁl and ﬁz has just one self-intersection, and there are

no mutual intersections. In other words, each disc has just one kink, period.

Then nl(ﬁ) is free on two generators e, and

1 €y Say, arising from these
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respective crossing points. (We will suppress discussion of basepoints

here, although any proper discussion should address this issue. As Freedman
points out, the entite surface TO can be treated as a basepoint, since it is
null-homotopic in N.) As above, one could do surgery to To, using either

El or ﬁz, to produce an immersed disc ﬁl or ﬁz spanning 3%0 in N

(each ﬁi would have four self-intersection points), in which case the image
of nl(ﬁi) in nl(ﬁ) would be the infinite cyclic subgroup generated by

€ However, Freedman observed that there is a third possible way to proceed.

i
Namely, one can produce an immersed disc D in N spanning BTO by doing
0 using both E1 and E2’

moves to the self-crossings of El and E2 to produce self-intersections in

D (eight of them, which will occur near the point El 2 E2), just as

double surgery to T at the same time doing finger

described in Section 4. In this case it turns out that the image of (D)
in n (N) is the infinite cyclic subgroup generated by the product element

*
1 2 13 m (N), where each €, denotes either €, or € -1 (your choices,

i i i

for i =1 and i = 2) depending upon which sheet at each crossing point is
pushed along which sheet. Verifying this key observation is a matter of
examining carefully the construction discussed in Section 4.

More generally, suppose E, has p > 0 self-intersections, giving rise to

1
elements al,...,ap in ﬂl(N), and suppose E2 has q self-intersections,
giving rise to elements 81,...,8 in nl(ﬁ) (hence ﬂl(ﬁ) is freely
generated by ul,...,ap, Bl,...,B ). If one produced an immersed disc Dl

or 02 as above by doing (single) surgery to T using E1 or EZ’ then

the image of = (D ) in 7 (N) would be the suggroup freely generated by
2) in = (N) would be the sub-
group freely generated by 61,...,8 . However, if one produced an immersed
using both E, and £

0 1 2’
at the same time doing the usual finger moves, producing 8pq self-crossings

1,...,up, and likewise the image of 7 (D
disc D as above by doing double surgery to T

in ﬁ then the image of ﬂl(D) in = (N) would be the subgroup generated
*
by all of the products aisj, l<i<p and 1< j < q, where each oy is

either always o, or always ail (i.e., the superscript * on each occurrence

of a, is alway: the same supe:script, independent of j, but possibiy varying
with 1), and similarly each Bj is either always Bj or always B; (so
there are p + q choices to be made here, again determined by which of the

two sheets is finger-pushed at each of the original p + q crossings).

In the most general situation, both ﬁl and EZ have mutual inter-
sections, as well as self-intersections. Suppose these r mutual intersections
give rise to elements YyseeosY, in wl(ﬁ). Now, at each of these inter-
sections, when one does the double surgery and associated finger pushing to

form D, one may finger push either the ﬁz sheet to follow (an arc in) él’
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or alternatively one may push the E. sheet to follow (an arc 1in) E

1 2°
Suppose that at the vy,,...,Y crossings (0 < s < r) one does the former
1 8 -7 -

type of push, whereas at the vy crossings one does the latter type

s+1°" " Ty by .
of push. Then it turns out that the image of wl(D) in wl(N) is the sub-
group generated by all products of precisely two elemints of 1(N), where
the first element of the product is one of {al,..;,u ST }, and the
second element of the product is one of {Bl,...,B ’Ys+1""’Yr} (so there
are (p +s) - (q + r - s) products of this form), where as earlier the *'s
are each +1 according to choice of sheets.

Finally, it is important to note that, when producing D by doing double
surgery in this manner, one has the option at each crossing point of doing
no finger-pushing at that point. In such a case, that particular fundamental
group element (e.g.

or respectively B, or yk) would remain represented

o,

in the image of wl(ﬁ)f but it would not apgear as the first term (respectively,
the second term or either term) in any of the product elements described

above. All in all, then, this gives one a lot of options in deciding exactly
which elements of nl(ﬁ) are to be represented in the image of nl(ﬁ).

To illustrate Freedman's application of these ideas, we outline briefly
how he used this construction in the case where the ambient 4-manifold M had
finite (nontrivial) fundamental group. Consider first the model case where
1r1(M) % Z/2. Suppose that in the immersed image T € R ©M, that when one
forms the immersed disc D, one does no finger pushing at crossings of T
representing O € Z/2, but one does finger pushes (along either sheet) at
all crossings representing 1 € Z/2. Then it turns out that all the resultant
self-crossings of D will represent 0 € Z/2, because in the product elements
mentioned above, both the first and second factors will represent 1l e Z/2,
and hence their product will represent 0 ¢ Z/2.

More generally, one could proceed as follows. Suppose g ¢ wl(M) is
any preselected, fixed nontrivial element. In the immersed image 1T cl cM,

&mnlﬂdswthtarnﬂ%(oiliw;B .meimiq)aw

1
YyoeeesYy (0 <n<r) all represent g ¢ ﬂl(M), whereas all the other «a
B

suppose one does finger pushes only at these crossings representing g,

18

's and Yk's represent elements of wl(M) - {g}. When producing D,

choosing sheets so that one gets all products of the form aiﬂgl and yksgl,
where 1 <i<2,1<j<m and 1< k<n (soin particular at the Yie
sheet). Then all of these

points one pushes the E. sheet along the £

2 1
products are of the form gg-l and hence are trivial. Hence the image of
nl(ﬁ) lies in wl(M) - {g} c31r1(M).

If nl(M) is finite, it turns out that one can use this idea repeatedly

to ultimately produce a disc D such that ﬂl(ﬁ) represents trivially in
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nl(M). One must, in order to do this, start with a finite 2-sided tower of
imbedded surfaces, capped off with a single layer of immersed, possibly inter-
secting discs, with the tower being of height at least le(M)l =1 (in the
above discussion, the height was 1). (In any 4-dimensional surgery or 5-
dimensional s-cobordism problem, Freedman has shown that one can construct

such towers of arbitrary finite height, using constructions from the elementary
side of the theory.) Then, one applies the preceding construction for each
nontrivial element of nl(M) in turn, each time sacrificing one layer of

the tower, producing a new tower which no longer carries that element. In

the end, then, one has produced an immersed disc D carrying no nontrivial
elements of wl(M)’ In this manner Freedman was able to extend all of the
appropriate simply-connected theorems to the corresponding finite-nl settings
(and with another clever idea or two, to the poly- (finite or cyclic) settings).
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A u-INVARIANT ONE HOMOLOGY 3-SPHERE THAT BOUNDS AN ORIENTABLE RATIONAL BALL

Ronald Fintushei‘and Ronald J. Stern2

In this note we show that the Brieskorn homology sphere I(2,3,7) bounds

an orientable rational ball Q. It is known that the u-invariant of (2,3,7)

is one as it bounds the plumbed 4-manifold w4

Note that W4 has an even intersection form with signature o(w4)= 8 and
rank 10. Thus M4t Q Uz w4 is a closed orientable 4-manifold with even in-
tersection form of signature 8 and rank 10. (Note that M4 cannot be a
spin 4-manifold.) As a corollary we have the following recent theorem of

N. Habegger [1]:

COROLLARY. Every even unimodular symmetric bilinear form F with

rank(F)/o(F) > 5/4 can be realized as the intersection form of a closed

orientable 4-manifold.
THEOREM. £(2,3,7) bounds an orientable rational ball Q4.

PROOF. First we attach a 1-handle and a 2-handle to £(2,3,7)x I to ob~

tain a rational homology cobordism W between I(2,3,7) and a 3-manifold

1
K3 which has the integral homology of L(4,-1). Then we describe an integral

homology cobordism w2 between K3 and L(4,-1). Since L(4,-1) bounds a

3 we let Q= W1 U w2 U w3. This is done as follows.
It is well known that £(2,3,7) is obtained by +1 surgery on the figure
eight knot. Attach a 1-handle to £(2,3,7) xI to obtain a cobordism from

£(2,3,7) to £(2,3,7) # 8% x8 :

rational ball W

1 .
Supported in part by NSF grant MCS 7900244A01.
2 .
Supported in part by NSF grant MCS 8002843A01.
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This describes the cobordism w1. To see that it is a rational homology co-

bordism note that the attached 2-handle kills 4 times the generator of H1
which was introduced by the 1-handle.

//ﬁﬁ)

is ribbon concordant to the link

Now the link

e«

D

Thus K3 is integral homology cobordant to

by means of the ribbon

G0 = O

i.e. to L(4,-1). Hence we have wz.
Finally L(4,-1) bounds a rational ball w3. To see this attach the fol-
lowing 2-handle to L(4,-1) to obtain szx S':

0
led 1 O
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QUESTION. Does there exist a closed orientable 4-manifold with definite

even intersection pairing and signature 8?
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ANOTHER CONSTRUCTION OF AN EXOTIC S1 %X 53 # S2 x 52

Ronald F‘intushel1 and Ronald J. St:ex:n2

This note was motivated by Selman Akbulut's talk at this conference. (See

{A]l.) As Akbulut pointed out, if one could construct an exotic twisted

1 .
S3-bund1e over S1, with a homotopy equivalence g: N‘-» S 583, then if a
transverse preimage of an 83-fiber is a homology sphere H3, we must have

u(H3) # 0. But splitting N4 along H3 yields an acyclic 4-manifold whose

boundary is H3 # H3. Thus searching for an exotic S1 % s3 is an approach

3
'
Akbulut's construction is suggested by the fact that the complement of a

tubular neighborhood E(RPz) of RP2 in RP4 is 51583. His idea was to

look for an RP2 in Q4, Cappell and Shaneson's exotic RP4([CS]), such that

n1(04- RPZ) =%Z, and then form Q4-E(RP2) v s1 533. Unable to find such an

Rl?2 embedded in Q4, Akbulut was nonetheless able to find an RP2 in
04#82><s2 with 7« (Qq'#szxs2
4, 2 2 1
Q #8 xS

After seeing Akbulut's talk we decided to see if one could construct an

toward finding the long sought after element of order 2 in 6

- RPZ) =% and he was then able to form

—E(RP2) us‘x.B3 an exotic 81553#Szx52.

exotic S1 x S3 # szx 52 using the techniques we promoted in [Fs1] and [FSZ] .
As we show this is quite simple to do and the invariant p of these papers can

be used to detect the fact that the construction is exotic. Instead of viewing

1 . : .
S x S3 as 81 x B3U S1 X B3, it is more convenient from our point of view to

think of S1 X 33 as Sz x MB US‘I x B3 (MB = Mobius band). For our construction

we start with K3 a Seifert-fibered homology Szx s1 obtained by surgering an

exceptional fiber of £(3,5,19) and form X4, the mapping cylinder of the

free involution contained in the S1-action on K3. If we could show that K3

bounded a homotopy B3x S1 with mapping onto, we could take its union

1
with )(4 and thus construct a fake S1 553. We cannot do this, but we are

able to show that K3 bounds a homotopy B3 x s1 # Szx 32 and thus we are able

to form M4, a homotopy S1 553 # Szx 82. As in [Fs1l we can show that if M4

were s-cobordant to S1 x ‘:-‘»3 # 52 x S2 then

1St.l}:.)[.»ox:t:ed in part by NSF grant MCS 7900244A01.
2Support:ed in part by NSF grant MCS 8002843A01.

© 1984 American Mathematical Society
0271-4132/84 $1.00 + $.25 per page
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u(K/Zz)--;—a(K,Zz) = p(M4) = Q(Slgs3352x52)

= u(Szxsj)-%a(SszI, Zz) = 0 (mod 16)

for some almost framing of K/z2. However a(K;zz) =0 and the two p-in-
4 . .
variants of K/z2 are both 8(mod 16); so M is exotic. Finally, we are able

to show that the double cover M is standard, i.e. M is diffeomorphic to
S1 xS3#Szx32382x52.
We now proceed with the construction of M4. Let !(3 be the homology

52 x s1 which is the boundary of the plumbing manifold

-3 -1 -4 -4

-2

Then K 1is Seifert fibered with Seifert invariants ((1,1),(3,-1),(5,=-2),
(15,-4)); so the involution contained in the S1—action on K is free. Let
X4 be the mapping cylinder of the orbit map K-+ K/zz. As was shown in our

earlier paper [FSZ’ Lemma 3.1) there is a Z_-equivariantmap K-+ szx ‘:-‘»1 which

2
induces isomorphisms on homology. (The involution on Szx S1 is identity x
antipodal.) Taking mapping cylinders there is an induced map f: X-» Szx MB
which induces isomorphisms on homology.

We have the following Kirby calculus picture for K:

(&2

'y

(cf [FS1; p. 362]).
Now construct a cobordism Y4 from K to 3+Y=ﬁ by attaching the
following 2-handles to Kx I:
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N2\

We claim that f extends over these 2-handles to a map:

1

f:XUY*SzxMBU(Ssz xI#SszZ) .

To see this follow the 2-handles back through the Kirby calculus argument in

[Fsz; p. 361-362]. The attaching circles are k_  with O-framing and k, with

0 2

2-framing:
k

5/3 —A—/ ﬂo -3
€=
NG
(> k,

On K-(exceptional fibers), f preserves Sl-fibers and is a 15-fold cov-

ering. The image of f (see [Fsz; Lemma 3.1}) is szxs1=

f(ko)

1/9

In szx SI, f(ko) is nullhomologous (in the above diagram we see that f(ko)
bounds a genus 1 surface) therefore f(ko) is nullhomotopic in Szx sl. So

there is a homotopy in Szx S' of f(ko) to a trivial knot. By the homotopy
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extension property this extends to a homotopy from the identity of S2 x s1 to

amap g of szx S1 to itself which takes f(ko) to a trivial knot. We can
also easily arrange that g(f(k1)) be a meridian of g(f(ko)). Composing £
2 1

with the above ambient homotopy, we extend f:XUVUKxI+S" xS xI so that
x S1 x {1} maps tubular neighborhoods of k1 and k2 onto tubular

£lRx {1} + §°
neighborhoods of the components of a trivial Hopf link in szx S1 x {1},
For some framings a, on £(k,x1) and a, on f(k,x1), f will ex-
2 ! 2. V2 2 2 2
tend over Y=Kx Iy h (k1) Uh (kz) + 8 xS xI vuh (f(k1)) Uh (f(kz)). Be-
cause f|K induces isomorphisms on homology the naturality of the
Mayer-Vietoris sequence and the 5-lemma imply that the intersection form of

these two manifolds is the same. The intersection form of Y has matrix

().

and therefore is even unimodular with signature 0. Hence the same is true for

(a1 1 )
1 a2
2 1 2 2 .
of 8 x5 xI uh (f(kl)) Uh (f(kz)). This means that this intersection form

is the same as the intersection form of s2 x Sz. Hence

SszIxI th(f(k1)) th(f(kz)) ;Szxs1x1#52x52.

the intersection form

A
Another 5-lemma argument shows that f[K+ 52 x s1 induces isomorphisms on

homology. K is:
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in s3 is concordant by the ribbon move shown to
Hence there is a homology cobordism 2 from fi to 52x S.' =
4 /\ -4
2 1

with 7 (R) » 7 (2) and n1(52x81) > w,(2) onto. Let F:s?xs'+s%xs’ be
a diffeomorphism inducing on homology the same homomorphism as (flﬁ)*. (Here
we identify H*(ﬁ) with H*(Szx S’) using the homology cobordism 2.) Then
by obstruction theory £ Uf extends to f:2~ 52 x s1 x I. Since f extends
over B3 x s1 > B3 x s1 we obtain a homology equivalence

1
f:M=XyvYuz UB3xS1*82xMB USsz1xI#SZxSZUSZXS1xI UB3xS

= SIxS3#52x52 .

Using Van Kampen's theorem one checks that LS (M4) =2Z and hence f induces

3#52x82#82x52 be the

an isomorphism on fundamental groups. Let f:M~ s'xs
induced map on oriented double covers. As f is degree one, the induced homo-
morphisms on homology with Z[Z) coefficients split [W; Lemma 2.2]. However,
all homology groups are free and in any dimension are the same rank, so I,
hence f1 induces an isomorphism on homology with local coefficients. So £
is a homotopy equivalence. It is easy to compute that p(M) =8 (mod 16) (see
[FSZ; proof of Prop. 5.5]); hence M is not s-cobordant to S1 553# Szx Sz.

We now show that the double cover M is standard. Note that M is ob-
tained by gluing together two copies of Y U Z U B3x S1 by the involution
t:K~+ K. Since t 1is contained in an s1 action, t is isotopic to the
identity. Hence M is the double of Y VU 2 U B3 x S’. A handle decomposition
for YUZ U B3x S1 consists of a 0-handle, two 1-handles, and three 2-handles.
(The cobordism 2 is constructed by attaching algebraically cancelling 2 and
3-handles to K x I.) So the framed link picture for M 1is obtained by adding
a meridional circle labelled "0" to each circle representing a 2-handle.

Using these it is easy to slide 2-handles to obtain

O D MW O
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ON FREEDMAN'S REIMBEDDING THEOREMS
Robert E. Gompf and Sukhjit Singh

ABSTRACT. An improvement of Freedman's 3~Stage Reimbedding Theorem

is given and its consequences are studied. In particular, an analogue
of Freedman's 5-Stage Reimbedding Theorem is proved for 4-stage towers
instead of 5-stage towers. Consequently, the second untwisted double
of the wWhitehead link is TOP slice (by flat disks). This appears to
be new. Quite a bit of this paper is devoted to the exposition or

the formalization of the techniques involved in proving the various
Reimbedding Theorems; this is an elementary and complete account of
these theorems.

0. INTRODUCTION. M. Freedman [F1] has proved some remarkable results for top-
ological 4-manifolds. In particular, he has solved the ubiquitous 4-dimen-
sional topological Poincaré conjecture (which roughly states: a homotopy
4-sphere is a sphere). A considerable portion of this work of Freedman (see
also [F2]) deals with what he calls, "Reimbedding Theorems". These theorems
have proved to be an indispensable tool in the "exploration" of a Casson
handle, see [F1). It appears that these theorems or their variants may also
be useful in solving some other problems. It is our impression that these
theorems, by themselves, are an important contribution of Freedman [F1,F2].

The main concern of this paper is these reimbedding theorems. The main
innovation presented here is an "Improved 3-Stage Reimbedding Theorem” which is
due to the first author. Consequently, all the reimbedding theorems of [F1]
which come after the "3-Stage Reimbedding Theorem" require one less stage.
These theorems are carefully summarized in Section 6 for the convenience of
reference. As an application, we observe that every 5-stage tower contains a
topological 2-handle with the same attaching curve; see Section 5. Consequently,
the second double of the Whitehead link is topologically slice; see Theorem
(5.3.2) for a specific statement.

This paper is also written with an intent of exposition, axiomatization,

and formalization of the techniques involved in the proof of these theorems.

© 1984 American Mathematical Society
0271-4132/84 $1.00 + $.25 per page
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An effort is made to distill together the best features of [F1]) and [F2].
Furthermore, we have tried to complement or supplement the detail or exposition
available there; we give alternative proofs, discussions, etc., wherever pos-
sible.

We assume familiarity with Casson's important Lecture I of [C] and some
general knowledge of Freedman {F2]. The portion on the reimbedding theorems
given in (F1] and this paper may be read simultaneously.

We wish to thank both M. Freedman and R. Kirby for their encouragement
and other help. We first learned about this subject from Rob Kirby's course
[K2]; we thank him again for his inspiring lectures. The second author wishes
to thank U. C. Berkeley, Mathematics Department, for their hospitality during
1981-82; in particular, he thanks Emery Thomas.

1. NOTATION, TERMINOLOGY, AND OTHER CONVENTIONS. Most of the notation and
terminology is standard; we have followed [(C,F1,F2,K1] for these matters when-
ever convenient. Here is a brief discussion of some other conventions.

The word map should be interpreted as a morphism in a suitable category
which will be clear from the context, e.g., a map between groups means a homo-
morphism. An unlabelled map #;A> m,;X will be understood to be induced by the
inclusion of A into X (i.e., A 1is a subspace of X). All homology groups
will be with integral coefficients unless otherwise stated.

Suppose A 1is a subspace of X. We denote by IntA or R the interior
of A in X. It is often convenient to abbreviate commonly used words and
phrases, e.g., regular neighborhood = reg.nbd., m, - negligible or m, - negligi-
bility=n, - neg., etc. We prefer to write m,A rather than r,(d), i.e., we
get rid of the (cumbersome to type) parentheses whenever this does not cause
confusion; we also do this for other functors.

Suppose ¢ 1is a simple closed curve (circle) contained in a space X.

We often think of ¢ representing an element of m,X as follows: if
h:58'+ X is an imbedding with h(S!) =c, we consider the homotopy class of h
as an element of n,X (where the base points are appropriately chosen). The
choice of h will be either unimportant or clear from the context. Although
we explicitly state the general position or transversality condition on sub-
spaces of a manifold. assume this is the case whenever there is any doubt. A
closed or open reg.nbd. of a subset in a manifold M, whenever defined, will
be denoted by N(A) or ﬁ(A), respectively.

Suppose A,,Az,...,An are subsets cf a set X. By Ai N Aj= 6ij we mean
that A{\Aj is empty when i#3j and a singleton set otherwise. The infinite
cyclic group will be denoted by 2Z. The free product of two groups G and H
is denoted by G *H.
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2. PRELIMINARIES.
(2.0) A LEMMA OF CASSON: THE SIMPLY CONNECTED CASE. We assume familiar-

ity with [C] and we follow [C] for notation and terminology whenever convenient
Let W denote a smooth 4-manifold with non-empty boundary 3W.
(2.0.0) DEFINITION. A map f:S+W, where S is an oriented surface

with (possibly empty) boundary, is called a normal immersion if

a) f 1is a smooth immersion;

b) £(S) meets 3W in embedded £(38);

c) f is a transverse to 3W; and

d) all self-intersections are transverse double-points in IntW.
It is often convenient to forget the map and say "s=£(S) is a normall

immersed surface in W".

In the sequel, the surface S will usually be either a disk or a disk

with one hole (annulus); we refer to s, in this case, by a normally immersed

disk or annulus, respectively.

(2.0.1) DEFINITION. Suppose f:S+W is a normal immersion of an or-
iented surface S into a simply connected 4-manifold W. An algebraic dual
of £ 1is an element B8 of H,W such that the intersection number f*B8=1.
(Note that 8 can be represented by an immersed 2-sphere.)

This definition is interesting only when W is simply connected; see
Definition (2.1.0) when W is not simply connected. Although Definition
(2.1.0) includes the simply connected case, we have treated the simply con-
nected case separately, which, we hope, will motivate and clarify thenon-simply
connected case.

(2.0.2) DEFINITION. A map f:X+Y 1is called ny-negligible (abbreviate:
m,-neg.) in Y if the inclusion Y-f(X) » Y induces an isomorphism on m,.
A subset of Y is "1'222;.32 Y if its inclusion into Y has this property.

With this terminology, we have a lemma from [C]:

(2.0.3) LEMMA. Suppose £:D?2+ W ig_g_normal immersion of the disk D?

into a simply connected 4-manifold W. Then: f has an algebraic dual if and

only if f can be regularly homotoped rel aD? to a m,-neg. normal immersion

g:D2+ W,
(2.0.4) REMARKS. This lemma is proved by altering £ (or d=f(D?)) by
"Casson moves" or "finger moves" to kill certain commutators in =, (W-d); see

[C] for details. Note that Casson moves can be made to miss any preassigned

2-complex. Also, note that the lemma remains true for a normally immersed

annulus (or even an arbitrary surface).

(2.1) A LEMMA OF CASSON: THE NON-SIMPLY CONNECTED CASE. The discussion
below is essentially what appears in Freedman [F1], see Section 3. Let W

denote an oriented smooth 4-manifold with non-empty boundary which may or may
not be simply connected (the interesting case is when W fails to be simply
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connected). Suppose f:S+W is a normal immersion. Put s=£(S). In this
setting, we have the following:

(2.1.0) DEFINITION. An algebraic dual of f (or s) is an immersed
2-sphere z in W meeting s in points ReXy oY1 eXyeYareoesX 0¥, such that
for each i, 1<i<n, the points xi and yi are paired over W, i.e., xi
and Yy have opposite signs of intersection and there is a Whitney circle civ
the union of an arc on S and an arc on 2z joining xi and Yoo which
bounds an immersed disk di in W; di is called a Whitney disk. An alge-
braic dual for s (in W) 1is called a geometric dual if it meets s in
exactly one point.

The following lemma of Freedman [F1] replaces Lemma (2.0.3) in the

non-simply connected case:

(2.1.1) LEMMA (n,-LEMMA). The normally immersed surface s (or the

normal immersion f) in W can be regularly homotoped rel boundary to a

normally immersed surface s' (or a normal immersion f') which is n,-neg.

in w if and only if s (or f) has an algebraic dual.

Since Freedman [F1)] gives a (formal) proof, we merely give an informal
sketch of a proof. It is useful to carefully understand the basic ideas of
this proof, since they are needed later on.

PROOF OF w,~-LEMMA: AN INFORMAL SKETCH. It suffices to prove that f'
exists when s has an algebraic dual. Let z,x,xl,yl,...,xn,yn,c,,d,,...,cn,dn
be as in Definition (2.1.0). The proof is finished if n=0. Suppose n=1
until further notice; see Figure (2.A) for a schematic drawing.

casson Moves on s to Remove Intersections with Intd,. Suppose s and

the Whitney disk d, are transverse. Consider the case when the intersection
of s and 1Intd, is non-empty. For each point p in s and 1Intd,, use a
Casson move to push s along an arc in d, from p to a point in (sn d,)
until it falls off 3d,ns; see Figure (2.B). Do these Casson moves simul-
taneously along disjoint arcs. This introduces new pairs of intersection for
s. Observe that we have regularly homotoped f or s to obtain a new im-

mersion f' or s'.

W

N
dl

Figure (2.A) Figure (2.B)
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Q¢ singularity
due to framing

Figure (2.C)

Singular Whitney Trick on z. Use the "singular Whitney trick" to push

z across d, to cancel the points x,,y,. Thus we obtain a new immersed
2-sphere z' which is a geometric dual of s'. For more details see [F1].
Figure (2.C) gives some idea of this push of 2. Now s' is n,-neg. since it
has a geometric dual (every meridian bounds a disk). il

(2.2) Kinky Handles. A 2-handle is a pair (D?xD?, 3D?xD?) where

3D2 x D? is called the attaching region, D2?x {0} is called the core, {0} x D?

is called the cocore, and aD2x {0} is called the attaching curve. A kinky

handle (k,3 k) is a 2-handle with a finite but nonzero number of self-plumb-
ings. Our Figure (2.D) represents a kinky handle (k,3 k) with one self-plumb-

ing (or one kink). We often write k instead of (k,3 k).
5*

core (.

R

a7k

N

Figure (2.D)
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Let n:D2xD2?2+k denote the identification map used to produce a kinky
handle k. Now 3"k=w(3D?xD?) is called the attaching region for k. We
call w(3D*x {0}) the attaching curve for k with a framing which is dis-
cussed in (2.2.2).

Equivalently, a kinky handle can be identified with a regular neighborhood
of a normally immersed disk C 1in a 4-manifold W, see Figure (2.E).

A kinky handle can also be described by Kirby calculus [K1}, see Figure
(2.F).

Figure (2.E)

’(\\/.

p positive plumbings

attaching curve——»
[)

)

. n negative plumbings

1 .

@

Figure (2.F)
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Observe that every self-plumbing of D2?x D? corresponds to a transverse
double-point of the core disk D2 x {0} which inherits a + or - sign when
D?x D? is given the standard orientation. Notice that a kinky handle Kk has
a core C corresponding to the core of D?xD? 1i.e., k collapses to C,
where C is a normally immersed disk in k and 3C= the attaching curve for
k. For further information see [F1,F2].

(2.2.1) A Standard Family of Curves. Suppose (k,3°k) is a kinky

handle with n kinks (= number of self-plumbings). Casson [C, p.6] describes
a family of pairwise disjoint framed (curves) circles {c,,...,cn} in 3%k
such that if k is constructed by (abstractly) attaching a 2-handle along each
of these framed circles, the resulting pair (Q,a'k) is diffeomorphic to the
handle (D?x D?, aD?x D?). We can draw a link picture of k, as in Figure
{(2.F), in which these circles appear as zero-framed meridians of the dotted
circles. We also require, as in [C], that each ey meets exactly one dis-
tinguished torus in exactly one point. Any family of framed curves

{cl,...,cn} which fits the above description will be called a standard family

of curves. There are several different isotopy classes of such families, due
to nontrivial self-diffeomorphisms of k fixing 37k.

(2.2.2) The Standard Framing for the Attaching Curve. 1In order to attach

a kinky handle (k,37k) to the boundary of a 4-manifold (as we do with
2-handles), we define a standard framing for 93 k. Capping off a standard
family (as above) turns (k,3 k) into a 2—handle, whose attaching region is
also 3 k. The standard framing for this 2-handle (i.e., the product struc-
ture on its attaching region 3D?x D2?) gives us the desired framing for 37k.
This definition is independent of the choice of standard family, for it is a
"homological®™ invariant in the following sense: Suppose we attach a 2~handle
to k along 9k with some framing, obtaining a manifold k with H,ﬁ= Z.
Then the intersection pairing on H,ﬁ is zero if and only if the 2-handle was
attached via the standard framing of 37k. (This may be verified by capping
off a standard family on k K, obtaining a disk bundle over $S2%.) This is
equivalent to the following characterization (see [F1]): If we. push a "para-
llel" (normally displaced) copy (C',3C') off of the core disk (C,3C) in
(k,37k), with a3C' displaced from 3C via the standard framing on 37k,
then the algebraic sum of the (signed) intersections of C and C' is zero.
Note that the standard framing is not the one induced by the normal
bundle of C (i.e., the one obtained from dD%?x D? via themap 1 of
(2.2.0)). 1In fact, these framings differ by exactly twice the number (Self C)
of self-intersections of C (counted with sign). This is a consequence of the
following formula for a closed (oriented) surface F in a 4-manifold: The

homological intersection number ([F)} * (F] = x(v) + 2 Self F, where x(v) is the
normal Euler number of F.
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We now observe the following important fact: the standard framing is pre-
served by Casson moves. More precisely, suppose we have an imbedding
(k,37k) + (M,3M) of a kinky handle into a 4-manifold. Suppose that the core
C of k is altered (rel boundary) by Casson moves, to obtain a normally
immersed disk €. Taking a regular neighborhood of €, we obtain a new kinky
handle (k',37k'), with 37k'=23"k. We claim that the two induced framings
on 3k will agree. This follows easily from the homological interpretation
of these framings. (Glue a 2-handle h onto M along the circle 3C in 3M,
and note that the immersed spheres C yUcoreth) and C' y core(h) represent

the same (nonzero) homology class.)

(2.2.3) Towers. A l1-stage tower T, 1is a kinky handle k!. A 2-stage
tower T, is obtained from T, by attaching a kinky handle to T, along

each member of a standard family of framed curves by matching the framings.

Recall that the attaching region for a kinky handle is always framed as in
(2.2.2). By the second stage of T, we mean either the collection of all the
kinky handles attached to T, to obtain T, or the union of these kinky

handles (the precise meaning will always be clear from the context). Suppose

an n-stage tower Tn has been constructed. We define a standard family of
curves for Tn as the union of a standard family for each nth stage kinky
handle. We construct an (n+1)-stage tower by attaching a kinky handle to
each curve belonging to a standard family for Tn'

(2.2.4) A Casson Handle. Suppose T, » T, » Ty, > ... are inclusions of

towers constructed as above. Define T; as the union of IntTn with
a'Tn= 3 (the first stage kinky handle for Tn). A Casson handle CH is the
union of the corresponding inclusion of towers T, » T; - T; » ... with the
direct limit topology. It is a deep theorem of Freedman that any (CH, 3™ T,)
is homeomorphic as a pair to the standard open 2-handle (D?x B2, ap? x B2).

(2.2.5) Link Pictures for Towers. It is often useful to draw a link

picture for a tower Tn. We have already drawn a link picture (see Figure
(2.F)), for an arbitrary 1-stage tower T,. Figure (2.G) 1is a link picture
of a 2-stage tower T, having exactly one kinky handle with exactly one kink
at each stage.

Figure (2.H) is a link picture of a 3-stage tower T,;. The first stage
of T, 1is a kinky handle with two kinks, the second stage has a kinky handle
with one kink and a kinky handle with two kinks, and the third stage has two

kinky handles each with one kink and a kinky handle with two kinks.
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.. T 0
attaching ——p e
curve (15‘______—:::>

Ji

stage 1 stage 2

Figure (2.6)

/‘\

g — f O-6
\/@\/@cﬁﬁ

stage 1 stage 2 stage 3

i
)
Qgg

Figure (2.H)

(2.2.6) Cores for Towers. We have already defined core for T, or a

kinky handle; see (2.2). Observe that every tower Tn has a 2-complex as a
strong deformation retract. This can be seen by collapsing each kinky handle
to its core C and observing that each boundary 3C traces an annulus under
the collapse of the previous stage: the union of all these cores together with

and called a core of T .

annuli is this 2-complex which is denoted by C n

1-n
for a 2-stage tower T,.
annulus

Figure (2.I) shows C1-2

core

Figure (2.1)
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Mo nerall we denote b C
re ge Yo Y o

identify C as a subset of Cl-n to which the union of the pth stage,

(p+1)th st:age,...,qth stage, ar briefly Tp-q , CoOllapses.

the core of stages p to q in Tn: we

3. THE 3-STAGE ("LITTLE") REIMBEDDING THEOREM
(3.0) LEMMA. Suppose d is a normally immersed disk or annulus (an

annulus is diffeomorphic to s!x I) in a 4-manifold W, and T is an im-

bedded torus in W which meets d transversely in exactly one point, such

that the inclusion t+W induces the zero map =#,t » 7T,W. Then: 4 can be

regularly homotoped to a normally immersed disk d' rel boundary by Casson

moves such that d4' is wm,-negligible in W.

PROOF. Pick a basis for w;t consisting of [a] and ([B] where a and
B are simple closed curves which meet exactly once. Now {[a] and [B] are
trivial in #,W by hypothesis. We "singularly surger" 1 along a to ob-
tain an immersed 2-sphere S as follows. Let D denote a normally immersed
disk bounded by a. Now D may intersect t and d. Push a copy D' off
D which is transverse to D. Let a' denote the boundary of D'. We require
that & +is carefully pushed to obtain a' such that « and a' constitute
the boundary of an annulus A contained in t, where A is traced by a
during the push. Let S equal the union of D,D', and (t-IntA). Figure
{(3.A) shows that S is an algebraic dual of 4.

Figure (3.A)

In Figure (3.A), a pair of points %y and A with opposite signs are
shown, and a Whitney circle ci through xi and yi is exhibited. The
circle c; bounds an immersed Whitney disk di since it is homotopic to 8.
We emphasize that xi and yi, where yi is obtained from xi by the push,

always have opposite signs and trivial <y when paired in this way. Our proof
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is finished by observing that each point of intersection of d with D gives
a pair of this type; see Lemma (2.1.1). #

(3.1) Some Lemmas. Recall that 'l‘n denotes an n-stage tower and C‘_m
denotes the core of the first m-stage subtower 'l‘m of Tn' The following is
the main lemma of this section:

(3.1.0) LEMMA. (T -C,

the free group generated by a standard family of curves for Trl (i.e., for

-m) ~ 2*F whenever 1<m<n, where F is

the nth stage of Tn) , and Z is generated by a meridian of the first stage

core C.. In particular, the inclusion (Tn_CI—m) - ('rn—c1) induces an

1
isomorphism of the fundamental groups when 1<m<n.

This decomposition zZ*F of , (‘I‘n- C will be called the canonical

l-m)
decomposition.
The following sublemma is a technical prerequisite for the proof of Lemma (3.1.0):

(3.1.1) SUB-LEMMA ("BACKING-UP LEMMA"). If N is the subgroup of

n,(‘l‘m— ) normally generated by a standard family of curves for Tm' then

C
1-m
the guotient "(Tm-ci—m)/u is isomorphic to Z where Z is generated by

the meridian of C1

The following is immediate from the Seifert-Van Kampen Theorem.

(3.1.2) AN OBSERVATION. Suppose X 1is a connected space containing a

solid torus T. Suppose (k,3 k) is a kinky handle. Construct a space Y by

attaching k to X by identifying 097k with T. Then: mY ~ m,X/N*mk
where N is the subgroup of =,X normally generated by the core of the solid

torus. (Use the fact that the core is null-homotopic in k.)
PROOF OF SUBLEMMA (3.1.1). We will demonstrate our method in the special

case of the following 3-stage tower.

Box By

|
. I r—- 'T;—‘ _____ 1
| 1 [ \ !
y/[ | \J : N : @«cz | BoxB,
attaching: \_/ :
! !
|

>

o W (D
i N \::f;&fl
TI_____D_._.E-:.b _____ !

Figure (3.B)
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Figure (3.B) represents a tower T, with the first stage a kinky handle
with one kink, the second stage a kinky handle with two kinks, and the third
stage two kinky handles. (The one inside the box B, has two kinks and the
one inside B, has one kink.)

Consider the 3-manifold M®=3T,~- Int (attaching region). The 4-manifold
Ty-C,_s is M? up to homotopy (T, is a regular neighborhood of C,-,).
The link picture (see Figure (3.B)) now describes M® as a 0-framed surgery
in 8 on each component of this link other than the attaching curve, followed
by the removal of the interior of the attaching region. (Note that dots are
replaced by zeros.)

Let L denote the link consisting of all the curves of Figure (3.B). Now
m,M* is the quotient of =,(S®-L) by some "surgery relations” which are in
one-to-one correspondence with components of L other than the attaching curve.
At any rate, we have a presentation of m,M®, whose generators are the
meridians of curves in L.

We want to prove that this presentation of w,M® reduces to {(y:4)
after adding the relations c¢,=c,=cg=1. (Recall that by definition a
standard family can always be represented by meridians of the top stage dotted
circles in an appropriate link picture; see (2.2.1).) Consider the box B,.
We show that after adding the relations c,=c,=1 we have a=b=1., The
equality a=1 follows from the handle relation aac?(cf‘)ch(c;‘)e =1 cor-
responding to the component E, where o,...,e are some clements of w,M*
and a® denotes a~laa. The relation b(a~')*x(a~})¥x"ta’=1 corresponding
to D and the relation a=1 implies b=1. Now proceed with box B, in a
similar manner. This allows us to "back-up" and apply the procedure to the

box B: We call this method the backing up technique. It is now clear that

adding the relations c,, ¢, and c¢; kills all the meridians except y. This
proves our result.
The backing up technique can now be used to handle the more general case

of (Tm-c ). (Observe that we must apply the procedure given above to all

1-m
of the boxes in a given stage before backing up to the previous stage.) This

finished our proof. i
PROOF OF LEMMA (3.1.0). We first consider the case n=m+1. Put

X,=T -C,_.

handles attached to T  to produce T .
m m+1

attached. By (3.1.2), mY, = mn,X,/N, *F,, where N, and F, are as de-

Let (k,,afk,),...,(ks,a'ks) be an enumeration of the kinky
Put Y, equal to X, with k,

scribed in (3.1.2). Put Y, equal to Y, with k, attached. By an applica-
tion of (3.1.2), we have that n,Y, ~ m X;/N,*xF, * F,, where F; and F,
are free groups generatea by the standard curves on k, and k,, respectively,

and N, 1is normally generated by the attaching curves for k, and k,.
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Proceeding in this manner we have Ys‘TmH -cl-m and F=F, * e » Fs. The
subgroup N-=Ns of =,X, is normally generated by the standard family of at-
taching curves for ‘rm, and n,Ys s mX,/N*F, Since m,X,/Nw~ 2 by
Sub-Lemma (3.1.1), our proof is finished for all (m+1)-stage towers.

We now consider the case n=m+2. It is similar to the previous case.
Observe that by (3.1.2) the free factor generated by the standard family of
curves in (Tm” ~C1_m) vanishes in Tm+2- C1_m. It is replaced by a free
group F' generated by standard families of curves at the (m+2) th stage. Thus
n,(Tm+2~c1_m) =~ ZxF', The general case when n=m+{ follows in a similar
manner. i

(3.1.3) PROPOSITION. Let (k,37k) be a kinky handle belonging to the

sth i <i<n. + febd :
i stage of Tn with 2<j<n. Let 1C3k denote a distinguished torus

in k. If m<n, then themap w7 + u,('rn-c ) induced by the inclusion

1-m
is trivial.

(3.1.4) REMARKS. Observe that the map w,t + "‘Tn induced by the in-
clusion is always trivial for 1t as above. The conclusion of Proposition
(3.1.3) becomes false when m=n, or when 1 is a first stage distinguished
torus.

PROOF OF PROPOSITION (3.1.3). By [C, see page 7], each of the two
standard generators of w,T is a meridian of the kinky handle k. By Lemma

(3.1.0), such a meridian is nullhomotopic in 'rn-c when m<n. This

finishes our proof. o
We now have all the ingredients to prove the following theorem of
Freedman [Fi].
(3.2) 3-STAGE REIMBEDDING THEOREM. Every 3-stage tower Tg contains

another 3-stage tower T: satisfying:

a) (agreement) C)_, = Ci-, : and

b) (m;-neg.) T (Ty - T;) * n,('r: - c:),
or equivalently, #,(T; - T;) » m (T} - €)_,) is an isomorphism.

PROOF. Let (k,,a'k,),...,(kn,a'kn) denote the third stage kinky
handles attached to T to obtain T:. Let T denote the second stage dis-

tinguished torus for k and let éi denote the core of ki together with

i'
the annulus. By Proposition (3.1.3), for each 1<i<n, the map
LER m(Ty = CI_,) is trivial,

Put W=T) - ﬁ(C:_z), d=d, "W, and T=1,, By Lemma (3.0), find a
normally immersed disk d' such that d4' is n,-neg. in W and d' misses
@, nW),...,(Enf\W). Put d, equal to d' union (d,-W). Observe that d,
3 - 3 0 0
is n;-neg. in (T, Cl_z).

Again, put w=T1) - f(c!_, yd&,), d=d,nwW, and t=1,. Since &, is
my-neg. in (T] - C)_

) it follows that the inclusion t+W induces the
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trivial map on ;. We proceed as above, to find a normally immersed disk 51
in W satisfying: (a) d, is m,-neg. in T~ (C':-z vd,), and d, misses
(E,f\w),...,(an NW). The inductive step is now clear. We continue in this
manner and obtain disjoint normally immersed disks d"""dn whose union is
m,-neg. in T:- C:_z .

It is easy to see that a regular neighborhood of Cl_2

ud, U u&'n
is a tower T; inside Tg satisfying the required properties, since Casson
moves do not change the standard framing of a kinky handle (see (2.2.2)). i

(3.3) An Improvement of the 3-Stage Reimbedding Theorem. The proof of

Theorem (3.2) requires that we make Casson moves on each ai (recall ai is a
core of a third stage kinky handle together with annulus). It was discovered
by the first author that the required Casson moves on each ai can be made in
a controlled manner such that they do not link the core C: of the first stage
kinky handle. More precisely, the following conclusion (c), in addition to (a)
and (b) in Theorem 3.2 holds:

©) (no linking C!) The image Im[m,C; » 7,(T;-C})] lies in the image
Im(7,Cq + 7,(T3-C})], where C! denotes the core of the third stage of T!.

Note that the latter image is precisely the factor F of the canonical
decomposition m,(T)-C})=2*F. The conclusion (c) will prove useful in re-
ducing a stage in subsequent reimbedding theorems of Freedman [F1]; a complete
summary of these matters is given in Section 6.

We next prove this "Improved 3-Stage Reimbedding Theorem" by giving an al-
ternate proof of Theorem (3.2) and keeping track of the Casson moves, which we
call "careful Casson moves"”,

PROOF. We begin with the link picture Figure (3.C) which represents a
3-stage tower Tg where the exchange trick has been applied on the third stage.
We shall prove our claim for this particular tower; the general case will follow

from the pattern of this proof.

attaching
curve

Figure (3.C)
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Let L denote the link in S?® given in Figure (3.C), consisting of all
the components except the attaching curve. The boundary of T: minus an open
regular neighborhood of the attaching curve is a 3-manifold M3. Note that
M? is also obtained by performing O-framed surgery on each component of L
and deleting a regular neighborhood of the attaching curve. Observe that
M?® x 1~'rg-ﬁ(c°_,). Figure (3.C) will represent M® or M®x I in the follow-
ing discussion.

We note that in m,(M*xI), b, equals a product of conjugates of a,,a,
and their inverses. This follows from the surgery relation
b,(af‘)A x(a7)¥ x7'al=1 (from the link component A), together with the
relation that a, is conjugate to a,a;, (from component B). It follows that
there is a singular punctured 2-disk K, bounded by b, and copies of «,
and a,. In fact, K, is determined by a homotopy between b, and conjugates
of a,,a,, and their inverses. Similarly, we obtain a singular punctured
2-disk K, bounded by b, and copies of aj .

Now consider T:-C:_z. Let d,,d, and d, denote the cores of the third
stage kinky handles together with annuli. 1In the sequel, we will alter 4, ,4d,
and d, to obtain d,,d, and d, by "careful Casson moves” in Int(T}-C’_,).
We will choose these Casson moves to miss the 2-complex K, union K,, and so
that each a, , i=1,2,3, bounds an immersed disk in X= (Tg-cz_
d,, and d,).

2 minus 3l,
We now indicate why this suffices to prove Theorem (3.2) (conditions (a)
and (b)). The loops b, and b, are nullhomotopic in X, since the punctures
in the punctured disks K, and K, can now be filled. Thus, the generators of
the second stage distinguished tori are trivial in r,X, since the loops b,
and b, are meridians of the two second stage kinky handle cores. We singularly
surger these tori in X (see proof of Lemma (3.0)) to obtain geometric
spherical duals of d,,d, and d, which provide specific nullhomotopies (in X)
of a meridian for each 3i. This proves that the union of d, ,d, and d, is
m,-neg.in T{-C) .. Hence, if we let T, be a regular heighborhood of C}_

2
union with d,,d, and d,, our proof of Theorem (3.2) is clearly finished.

2

There are now two tasks remaining. We must construct "careful Casson

moves" which allow for each ai

that (c) is satisfied. At this juncture, we let the proof bifurcate into a

to bound a disk in X, and we must verify

geometric argument given in (3.3.1) or an algebraic argument given in (3.3.2);
the reader may choose either of these two depending on his or her taste.

(3.3.1) Continuation of Proof: A Geometric Argument. We consider the

circle a, and the core (with annulus) 5,; see Box B; of Figure (3.C).

Figure (3.D) shows a, bounding a punctured disk &, in W=M? szT:—N(C:_,

with two punctures whose boundaries are denoted by 8 and 8'. Let §, denote

)
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a disk with nine holes (four due to framing) as shown in Figure (3.E).

Figure (3.D) Figure (3.E)

Figure (3.F)

Observe that §, is, as drawn, a subset of the complement of L in s®. The
boundary component B, of §, bounds a disk &, in M?, since the curve B, is
obtained from the link component D by pushing a parallel copy via the framing.
Let &, equal the union of &, and §,. Push a "parallel” copy &, of &, (of
course, &, may intersect &, in isolated points). Join B8,8' to §,, &) by
tubes t,t', respectively, as shown in Figure (3.F). Let § denote the singu-
lar punctured disk in W obtained as the union of §&,, t,t',8; ,8;. (We

assume that &6-a, is normally immersed.)
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The singular punctured disk & has 16 holes whose boundary curves
G,+0%s...,04,05 are paired such that for each i, 1<i<8, oy is a curve con
[ ,o} is a curve on &%, and oi is parallel to a;. We consider
0,¢0% ,004,0g00% in M®x {0} as a subset of M°x I. Let &;,8%,...,84,8% be
disjoint disks in T:-'C:_z, with boundaries 0,,0%,...,04,0%, respectively,
such that each disk is a fibre of a normal disk-bundle for the core d, of the
third stage kinky handle (see box B; in Figure (3.C)). For each i,
1<i<8, thicken Ai. to a 2-handle hi attached to W such that A’i is
contained in h,, 8, is the coreof h,, and h, meets d, in the cocore

i
Ei of h see Figures (3.G) and (3.H) for schematic drawings. We also re-

i;

quire

A% A. h.
1 i -
£y d1
xi X,

Figure (3.6) Figure (3.H)

that the handles h,;,...,hy are pairwise disjoint. Define W, as the union
of W, h;,..., and hg,. Proceed in a similar manner to construct W, and W,
by using a,, box B,, and a;, and box B,, respectively. Let W be the union
of W;, W, and W;. Observe that n,ﬁ »nx(Tg-C:_z) is an isomorphism.

As above, we shall only discuss what happens inside the box B;; a similar
discussion for the boxes B, and By, which can be simultaneously carried out,
will remain implicit.

Construct a singular disk from & in W by capping each oi ;0. by

1

8
Ai ,A;, respectively, where 1< i < 8, Observe that the points of inter-

section of s and 5, come in pairs with opposite sign. This is due to the
fact that 6, and 8%, are parallel (with opposite orientations), in fact, a
typical pair xi,x; is obtained by intersecting Ai’ A} with the cocore Ei'

respectively. For each pair X 1<i<8, we construct a Whitney circle

X ’
i’
xi and a Whitney disk w_ . Figures (3.I) and (3.J) show Ai and Wi
i
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(Figures (3.F) and (3.H) combined)

e i%//

/
/s /
Z

>y
”,///
| Hn
' LSS

Figure (3.1)

N\

parallel
to §3

Figure (3.J)

The Whitney disk w is constructed by first constructing a punctured disk

whose puncture is aimeridian of link component C, and then running a tube
around C from this puncture to a suitable singular 2-disk in #. This disk
is constructed by pushing a "parallel” copy of 83 and filling in the punctures
in W such that it is transverse to §.

Suppose i is fixed, 1<i<8. By construction, Intmi meets Ej,
1<3j<8, in exactly one point. We make a Casson move as in Lemma (2.1.1) on

each Ej rel boundary, 1<3j<8, to remove this point of intersection.
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Observe that we make eight Casson moves for w . Thus, we make 8 x8 Casson
moves in total. Note that these Casson moves can be made inside an arbitrarily
small neighborhood of the union of WireoosWy s and can easily be arranged to
miss the 2-complex K, U K, .

Now recall d, intersects W precisely in the union of £,;,...,§4. By
making the above Casson moves on each ;1 as a subset of 5,. we have turned
d, into the desired d,. By the same procedure in boxes B, and B, we obtain
d, ana d, from d, and d,, respectively, where d, and d, denote the cores
with annuli of the other third stage kinky handles.

We now verify that &, ,d, and d, have the desired properties. Consider
d, , along with the singular disks § and Wy defined above. Proceed as in
Lemma (2.1.1) to push the singular disk & across each wy (by the singular
Whitney trick) to obtain a singular disk 3§ in Tﬂ-ﬁ(c“_z), bounded by a, ,
which is disjoint from d,,d, and d,. similarly, we find singular disks
bounded by a, and a, in the space X=TJ-C!_, minus d, ,d, and d,. This
proves (a) and (b) (i.e. Theorem 3.2)) as explained in the paragraph preceding
(3.3.1).

Finally, we must verify that (c) holds. Note that the Whitney disk wy
as in Figure (3.J) can be drawn entirely within the box B, of Figure (3.C).
Since the Casson moves are made within a small neighborhood of the Whitney
disks, they also lie in the box B, and, in particular, they cannot link the
attaching curve. (They do, however, link the link component B as a determined
reader may verify.) Since 51 minus the Casson fingers lies in the top stage
of T, it follows that the image Im[r,d, » m,(T}-C’_,)] is contained in
F where Z+*F is the canonical decomposition of ,(T;-C{_,) (see Lemma
(3.1.0)). i

We now give an algebraic argument which may replace (3.3.1) in the above
proof. (This argument was in fact constructed by carefully observing the Casson
moves and null homotopy of (3.3.1).)

(3.3.2) Continuation of Proof: An Algebraic Argument. We will show that

"careful Casson moves" can be made on the core d,, after which a; is null
homotopic. Similar arguments can be made‘for d, and d; to complete the
proof.

We will show the existence of these Casson moves with the following fact
(see [C}, Lemma 1); making Casson moves corresponds to killing certain commuta-
tors. Specifically, suppose d 1is a disk normally immersed in a 4-manifold W,
with a meridian z in m,(W-d). Choose an arbitrary w in n,(W-d). If we
obtain d by making a Casson move on d "along a loop representing w", then
n,(w-a) ~ 7, (W-d)/N, where N is the subgroup normally generated by the com-

1 -1

mutator [z,2"] = z(w lzwiz ' (w lzw) ..
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In our case, we work with the group =, (T;-C]_)) = n,M*. Consider Figure

(3.K), an enlargement of box B, of Figure (3.C).

crossing #1

| v .

| ‘ Q1T
| =St
I\J\-) _\ﬁ)_,_ |
s N AN
| o/ 3 [
L___Cffﬁi?.#z _______ ____l

Figure (3.K)
Let m,;,...,m, denote the pictured meridians of d,. It is sufficient to ex-
hibit commutators of the form [mi,mgl in m,M’, with w a loop lying within
the box B, , such that a, dies when these are all killed. For m, and mj are
conjugate (via a loop in box B,) for 1i,j=1,...,4. Thus the above fact shows
that we have killed «, by Casson moves which never leave the box B, , and
hence cannot link the attaching curve.

We now use some relations evident in Figure (3.K). Note that a,= 1~2:l.
Thus, it is sufficient to force the relation 2;=2, to hold in the quotient
group. But by examining crossing #1, we see that ;= mumz, so that weonly
need to force £.£2= 2,. Next, notice that &,=1%,, since these meridians
bound a punctured 2-sphere (which encloses link component D). From crossing
#2, we now infer &,= z,b'= k,b‘. Finally, we examine the surgery relation for
the link component D. This relation expresses &, as a product of conjugates

of the mi's and their inverses. Specifically, we have

kzm:m;%y?m:lyl)m:l(y;Im:ly,) 1 (where the mt factor is due to the framing).
We write this relation as 4%,=8, *...°B4 , where each Bi is in the set

-1
{ml,mz,m.,mly',m,y’} which we will call x.

We now exhibit the 25 commutators which we will kill. For each pair of
elements B8,y of £, we kill the commutator (B,yb‘]. (These represent the
same Casson moves which we constructed in our earlier proof, although we have
eliminated some redundancy.) Note that these commutators (or conjugates of
them) all have the correct form, with w=b, up to multiplication by Yie It
is immediate that in the quotient group n,(T:-C:_ )/N (N normally generated

b
=y?

by the above elements), we have the relation (y !) whenever B8 and y
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are in I. This tells us how we can erase the exponent 8.

It is now easy to show that 2}2 = %, , which completes the proof, as
stated above. First we regall that &, = k?‘. By the surgery relation, &,=
b
By " ..."Bg, hence &, = I B, '. (Recall the identity (ab)® = a%°%; also
i=1 '

be

a”= ("% Now 2,'2 = ( Pryfaee-fo
i

B by b = g (8 = g )
1 i i=1 i - i =9,

where the third equality follows by successively "erasing the exponents”

= 0w -

BireeesBgo i

4. THE "BIG" REIMBEDDING THEOREM
(4.0) Statement and Motivation. This section is devoted to the "Big"

Reimbedding Theorem, which is essentially Freedman's "5-stage" reimbedding
theorem except that it uses one less stage. We have used the word "big" in-
stead of "4-stage” to avoid conflict with the existing usage in [F1}, although
the latter is more appropriate. This reduction of a stage is made possible by

the Improved 3-Stage Reimbedding Theorem (3.3).

(4.0.0) THE BIG REIMBEDDING THEOREM. Every 4-stage tower T: contains
another 4-stage tower T: satisfying:
[ = 1 .
a) (agreement) Cl__z C1~z ;
b) (w,-neg.) T, (T - T)) + n,(T:- C:) is an isomorphism; and

c) (nullity) an: > n,T: is the zero map.
(4.1) Motivation of the Proof. The proof of (4.0.0) is rather lengthy

(although not intrinsically difficult), so we begin with a sketch of the main
ideas involved. A detailed proof will be given in subsequent sections.

The main conclusion of this theorem is nullity. The proof centers on
arranging this, that is, constructing the tower T: in such a way that the
nontrivial loops of its top stage "do not get caught in the top stage of T:",
i.e., are trivial in an:. To ensure this, we will do most of our construc-
tions within the subtower T: consisting of the first three stages of T:°
(Recall that an: - ﬂ,T: is the zero map.)

(4.1.0) Key Idea: The "Singular Norman Trick." First we consider the case

where the fourth stage of T: has only one kinky handle (k,a-k), with a
single kink. Recall (2.2.6) that the core C,_, of T: includes an annulus o

connecting the core of k to the core c’ of T Suppose that o had a
1-

3 3°
geometric dual in T:- C:_,, i.e., an immersed 2-sphere s in T: , called a
"Norman sphere”, meeting C:_~
could then obtain nullity by a singular version of the Norman trick, as indica-

in exactly one point, on the annulus a. We
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