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A GEOMETRIC PROOF OF ROCHLIN'S THEOREM
MICHAEL FREEDMAN* AND ROBION KIRBY**

0. In 1974 Andrew Casson outlined to us a proof of Rochlin’s Theorem (statéd_
below) on the index of a smooth, closed 4-manifold M4 His proof involved th
Arf invariant of a certain quadratlc form defined on the first homology group of a
surface in M4 which is dual. to the second Stlefel-Whatney class of M*. Our proof
was derived from Casson’s; it s the same in principle but differs considerably in -
detail. After this manuscnpt was written, we discovered that Rochlin had already
in 1971 given a short sketch of this proof it appears in a paper [R;] about real
algebraic curves in RP2.

In addition we obtain (Theorem 2) a “stable” converse to the Kervaire-Milnor
nonlmbeddmg theorem [K-M), and in §2, by relaxmg some orientability assump-
tions, we prove a new (but unspectacular) nonimbedding theorem (Theorem 4)

“and find an obstruction to approximating unoriented simplicial 3-chains in a 5-
manifold by an immersed 3:manifold,

- We' thank John Morgan for several valuable conversations.

1 Let Mtbea closed, orientable, PL (hence smooth) 4-manifold. It has an inter-
section form Hy(M; Z) wrmion X Ho(M; Z) torsion — Z which is a symmetric,
unimodular, integral bilinear form [M,]; denote this pairing by x-y or xy. Its
signature is ¢(M) = index M.

We say that w € Ho(M; Z)/ ,ors0n iS characteristic if its mod 2 reductlon fewl; is
Poincaré dual to the second Stiefel-Whitney class wp € HYM; Z;), This implies
that w-x = x-x (mod 2) for all x € Hy(M; Z). For this congruence follows from _
the equahty [a;]z y =y-yfor all ye Hy(M; Z,), which is dual to the equality
w, U=y Ur(C denotes Poincaré dual) Wthh is a definition of the second
Stelfel-Whltney class wy of a 4~mamfold
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- It is an easy bit of algebra [M-H, p. 24], that w-w = ¢(M) (mod 8). Thus
if wy = 0 so'that 0 is characteristic, then o(M) = 0 (mod 8). Rochlin improved
this by a factor of 2.

THEOREM [Ry]. If M is closed, arientable? PL and wy; = 0, then o(M ) = 0(mod 16).

Rochlin’s Theorem is an anomaly in this sense: in dimensions 4k, k > 1, there
are closed, orientable, almost paralielizable PL (not smooth) manifolds P% with
o(P*) = 8 [M,]. These PL manifolds are missing in dimension 4, and this accounts
for the counterexamples to existence and uniqueness of PL structures on manifolds
[K-S], [S;]. Rochlin’s Theorem is not known for topological 4-manifolds; the ex-
istence of such a topological 4-manifold of index 8 is equwalent to proving topol-
ogical transversality in codimension 4 [8,].

Let 0; be the group of homology cobordism classes of homology 3-spheres. Then
Rochlin’s Theorem provides an epimorphism f3 —® Z,. If 33 is a representative
of 05, it bounds a PL, parallelizable 4-manifold Q% Then ¢(Q%/8 (mod 2) e Z,
is easily seen to be an invariant of the homology. cobordism class of 33 by use
of Rochlin’s Theorem [R;].

The usual proof [Ry], [M-K] of Rochlin’s Theorem is homotopy theoretic, -
requiring: the decomposability of Sqd, the calculation of J: 75(S0) — z5, Hirze-
bruch’s identity, o{M*) = 4pi(7,n) [M4], and the identification of py(r,.) with
+2{obstruction to extending over M a. trivialization of Tue | (MA-point)}. Our
proof is geometric, except for the use of the isomorphism =7 Z where 0y isthe
oriented bordism group of oriented 4-manifolds. -

Here is some motivation for our proof. From now o, all 4-mani_fo]ds are closed,
orientable and smooth. First consider the generalization [K-M]: if the character-

-istic element w € Hy(M*; Z) is represented by a smooth, imbedded 52, then w-w
.= g(M%) = 0 (16).

In general, o is represented by an orientable (1f H(M; Z{2) = 0) surface K3 '
and @ -0 — ¢(M?%) = 0 (8), so it is predictable that there is a Z2 obstruction as-
sociated with surgering K2 to a 2—sphere Here is the sunplest case where that
obstruction occurs,

Let 0 = CP? ##3 CP? be complex pro_lectwe space connected sum eight copies .
reversed orientation. Let &y generate Hg(CP2 'Z) and let a; generate the ith
copy of Hy(CP?; Z). Then @ = 3ay + o) + -+ + agis characteristic and w-w =
1. Since w-w — o(Q%) = 8, w cannot be represented by a smooth imbedded S2.°
(To see this directly from Rochlin’s Theorem, suppose S represents w; its normal
disk bundle ¥ is the Hopf bundle, since.w-w = 1, s0 aN = 8%; remove N and sew .
in B4; the new manifold has w; = 0 and index—8, a contradiction.) In this case
ag is represented by any nonsingular cubic, all of which are tori §1 x §!-q; is
represented by CP! = 52, so ¢ is represented by an St x S, and we cannot
reduce the genus. S

We can try to surger X inside M4 to geta 2-sphere Let Al, -+, Az, be imbedded
circles representing the generators of a symplectic basis of HI(K; Z)= 7% To

* surger some A;, we must smoothly imbed a 2-ball D, in M with D; N K = 4,, D,
and K transverse, and so that the normal vector field v to 2.D; which is tangent to
K extends to a normal vector field ¥ to D,. We can then replace the normal 1-disk
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bundle to 4, in K by the normal 0-sphere bundle (the boundary of the I-disk bundle
determined by the vector field V) of D,, thereby reducing the genus of K by 1,

We can always imbed D; transversely to K with 3D; = 4,. The obstruction to
extending v over D; is an integer x € Z = #;(SO(2)). The algebraic intersection of
int D; with K, m(ini D;, K), is another integer d. Also we may spin [, once around
A, as in Figure 1, changing xtox + landdtod + 1, so thatd — xis unchanged,
By iteration we can make either d or x zero. :

Let § be a smooth imbedded 2-sphere in M*, Since K is characteristic, K-S =
§-5(mod 2); S-§'is the Euler class of the normal bundle. Under the connected sum
Dy % §, x changes to x + 5-S and d changestod + K-S. Thus d — x = d + x
=d+x+ K-8+ §-5(mod 2) is a possible Z, obstruction to surgery on A,.
Associating d + x (mod 2) to each 4;, we obtain a quadratic form 7: H,(K; Zy) -
. Zp. The Arf invariant of 4, (M, K), is shown in Lemmas 3-5 to be an invariant

of the pair (M, K) up to cobordism of such pairs. : S

o )

t=10 t=1/8

g e

t = 3/8 toal t=5/8

t = 3/4 t=7/8 Ct=1
FIGURE T

This is a movie of D; spinning around 4;: In particular, we choose an interval
of A4;, represented by the time ¢ axis, so that at a fixed time A; is represented by
 the center dot. The horizontal line is a slice of K, normal to A;. The vertical line
represents a collar of 8D; in D,. The one point of intersection of X and int D,
occurs at time 3/8. | . :

To be precise, let Q5" be the group (under disjoint union) of “characteristic”
pairs (M4, K2} up to “characteristic” bordism, where M and K are closed and ori-
- ented and [K] € Hy(M; Z){yo,, is characteristic. Two pairs (M, K) and {M’,K')are
. Characteristically bordant if there exist an oriented 5-manifold 7 and an oriented

3-submanifold K3 with [K], dual to wy(ry) and 3(M, K) = (M, K) U —{(M', K",

Thus we have ¢: Qv — Z,,

We show (Lemmas 1 and 2) that «: Qe — Z @ Z is an isomorphism where
a(M, K) = (o(M), (K-K — o(M))/8), and exhibit generators of Q5. Only here
do we need the fact that 8, = Z. ' _ ' '

- Finally we show that the Zy‘invariant §: Q5 — Z,, defined by (M, K) =
((K-K — o(M))/8)(2), is equal to ¢, by showing they are equal on the generators
of Oger (Lemima 6, Theorem 1). S
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- family of circlés, 4, in K, and an imbedding of an unoriented surface, B, in M,
which meets X normally at 4 = 3B and transversally at isolated points of K — 4,
(Generally we will suppress inclusions from our notation.) We say that two char-
2—ads-, Yo ) _ Lol L wo ’

S YRS EL AN
A M and - A’

Y LA Nk s
are equivalent (written ~) if (M, K) and (M’, K’) are characteristically bordant,
via (M, K), and 4 U 4' = 3(K) bounds an unoriented surface, 4 = &, :

‘We now define a Z, valued invariant, g, of characteristic 2-ads. Let Veear and
Vapsx denote the normal bundles. We have vgoy |88 = vypeyx @ §. Since K is
orientable the first summand is trivial; so ¢ is also trivial (as vipex @ & extends
over B). Let F be-a framing vg. 4 | 3p, restricting to a framing on each factor. Let
Wo(vgan | ams F) = ¥z € H(B, 3B; Z,) be the relative Stiefel-Whitney class.

()2 is the mod 2 reduction of the obstruction in H%(B, 5B, Ziwiseq) to extending
Vspax 1O 2 section of vpeypr) Let X = yo[B, 8], = O or 1. We define ,

B RN -
q(A M) = MNauint B, K) + X (mod 2).

N K
By m () we mean the number (mod 2)-of transverse intersections.

Lemma 3. If

M.l'

B 4
e . e
(i )= (e S
_ N ke ~N ko
then
B I
</‘ 0N
(4 )= o )
- Y Nk
PROOF. ¥ = 4 |J B | B isa closed unoriented surface.
Diagram: .

Let #: ¥ & M be the inclusion - B .
Y-K = (B K) + Nl B) + Narr (B, K7).

. The middle term is to be interpreted as the obstruction {mod 2) to extending

Vaj arspp g 10 8 section of vp. g/z.
On the other hand,

Y K = i wylc(BD) (Y] = wy(e(M Y]
= wolvyagp) + Wa(z(¥)) + wilbpag) wi(z(¥)).
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But Mis orlented $0 0 = wy(z MY}y = wi(vpag) + wi(2(Y)), 50 wi(vyez)- wi(z(¥))

- = wi(z(¥)} = wy(r(Y)) by the Wu formula, so wy(z (i) | y)[¥] = wolvyagz) [Y).

(Note that if Y is oriented and M unoriented the preceding assertion is still true.)
Rounding corners, vy 4 + has a framing, F, which extends F (restricted to A _

this is (F; inward normal to B)). We can use this frammg to break WZ(qu ) up into
three relative. Stlefel—thtney classes oo

WZ(VYGH)[Y] = WZ(VB]Tﬁls F)[B a} + WZ(VAGM: F)[A a} + wzﬁvff.:M > F )[B' a]

x : oox
' Wz(VAaM, F)y= WZ(”KGM | 4 Fo.8) + Wilvgam Fa3) - wi(vask, FY)

where F,3 (and F;) denote the last two (and the ﬁrst) vectors of F. Let
- wilvgems P, 3) =Hu and Wl(VAcK, Fy) =

wtv= wl(qu m F) = w,(r(A) framing of z(4]}4")

L (because Mis onentable) As in the closed case, (u + v) |J x = Sqlx = x2 for al] ‘
. xe Hl(A 9;Z). =+ Uy=uw+12s0 u = 0. Therefore wolvpe Y]
L= mM(A K), s0 : .

mM(B K) +x = mM.(B K’) +x (mod2). O
Note The above result holds if the hypothe51s that (M; M, M’) is onented is

replaced by: ¥ and Kare orlented

- COROLLARY 1. If (M, K) is a characterzsnc pair, q determines a welI deﬁned'
: funcnon 7: Hy(K; Zz) - 22 -

. Proor. We kill HI(M ‘Zy) with a finite number of framed 1-surgeries in the com- -
plement of K(call the trace N). To 8 e Hy(K; Z») we associate an unorlented -
~ surface (B, 9) 5. (M, K) with [3B] = 8. Deﬁne _ . :

\
q(ﬁ) = q ch/'

| Nk </' |
"To check that this procedure is well defined let ¥ be an alternative trace Let .

1, )=, KxD) /| oMo KD, 20, R)=(My, KU~ (03, K.

Let (By, 8) and (B, 8) denote unomented surfaces in (My, Ky) and (M, Kl) w1th
[88g] = e Hi(Ky; Z,), [0B)) = Be H\(Ky; Zy). There is an unonented bordlsm ,
A< K with 94 = BBU U 8By, so by definition S
BD 1
\ :
9B, -~ My) ~ aﬁl \'Ml

| | . \‘Kg /‘ .. \'Kl /‘

By Lemma 3,4 is well defined. o E

LEmMA 4. §: Hy(K; Zz) ~ Zy is quadratzc ie. q(e + 5) - q(e) - 6’(5) =¢- 5
for all &, § € Hy(K; Zy). :
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Proor. Let A, and A; represent ¢ and J. Let B, and B; be as before. Suppose A
and Aj; intersect transversally at one point p. Let A, be the connected sum (repre-
senting & 4 &) as in Figure 2. Piecewise linearly, we getB from B, | B; U T7U T:
where T and T are two curved triangles as shaded in Figure 2; note that 9B, =
A, The normal vector fields on B,:and B8; must be extended to the new part of 4,
as drawn. Consider the boundary (a circle) of a neighborhood of B in B, and push
it off itself using:the vector field. The two circles link, indicating that the obstruec-
tion to extending the vector field over the ne1ghborhood is one. We have verified
thathJ,,, xe—xa—eé-l :

1 Bl
% 12
3
;_l\'___._____, \
- .
A K ' ?Tf
B.s p K t
-,
. '.\J'_{‘L;:'\E':
T, 40

FIGURE 2

Ifint B, 1 int B; # &, then we may push these double points of B, off the bound-
ary, adding two points to int B, [} K. Thus m (B., K) + m(Ba, K) = m(Br’ Ky
(mod 2). We have shown in this. special case that gle + 5) — g(e) — 4(5) = &-9;
the other {(easier) cases are left to the reader. [J .
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Let ¢(M, K) be the Arf invariant of §: Hy(K; Z;) — Z,. (See the Appendix of
- [R-8] for a short presentation of the Arf invariant.) :

’ -LEﬁMA 5. ¢ determines a well—deﬁned homomorphism: (J5pr ¢ Z,,

ProOF. Assume that (M, K) and (M, '.K’) are characteristically bordant via
(M, K). For the usual reason . : .

“dim(V = Ker(H(X |) K', Z3) » HY(K; Z,)))
- = Mim(H(0K; Z).

- The intersection pairing on Hy(K | K'; Z;)is identically zero when restricted to V.

 HKUK) =K@ K. If viewed properly, Lemma 3 implies that
gK U K)| ¥ is identically zero, (If 4e¥ and 34= 4, then JeHy(K, KU K'; Z5);

one should regard 3(M,K,A) as (M |J — M, K U — X', 4) U (¢, ¢, ¢).) Hence

L HEK U KY) = 0,50 $(7(K)) ~ $(g(KD). O y |
- LEMMA 6. 9(CP?, CPY) = O and ¢(CP? $CP2, 3p4CPY) = 1.

- PROOF. CP1is §?, so Hy is zero and thus ¢(CP2, CPY) = 0, B
HCP2ECP?, 3r§CP") = ¢(CP2, 37). In CP?, 3y is represented by any cubic; it is .
convenient to pick x3 = y2z. In the coordinate charts x =1 or y = 1, the solution

is nonsingular, but for z = 1, 32 = x8 is the cone on the (2, 3)-torus knot (= trefoil =

knot). ‘So 3y is represented by a si‘_nb.oth 2-sphere except for the cone point. If Bt is
centered at the cone point, replace the cone in Bt by the Seifert surface (Figure 3)

of the trefoil knot in §% = 0B4, obtaining a 2-torus T2 as a representative of 37-.'_'. .

The circles A, A, in the Seifert surface generate H\(T%; Z). Each 4, is a trivial

knot and bounds a 2-ball B, in B4 The obstruction to extending v, .7z to a

section of vp.p is the linking number of 4; and s(4,) in 53, where s isa
nonzero section of Vaapz- L(4;, 5(A)) = + 1. Since m(int B;, T?) = 0, it follows

that g(d4,). = 1. Thus ¢(CPZ, . T2) = 1 (see Appendix [R-S]). [ _ :

- Let §: Qg — Z, be the homomorphism given by 8(M, K) = (K-K — o(M))/8

(mod 2). - - - ' : _ co

FiGURE 3
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THEOREM 1. 8(M, K} = ¢(M, K).

Proor. Since both § and ¢ are homomorphisms (Lemma 5), it is sufficient to
check the equality on the generators of Qgh*r, (CP2, CP!) and (CP? $CP?, 3r#CP").
But we have seen (Lemmas 2 and 6), that # and ¢ are both zero on the first genera-
- tor, as on the second. [

- CoroLLARY 2 [K-M, THEOREM 1)). If (M, K) is a characteristic pair, and K zs a
2-sphere, then 8(M, K) = 0.

COROLLARY 3 (ROCHLIN’S THEOREM [Ry]). If (M, @) is a characteristic pair, then
oM, ¢) = 0.

Proors. Hy(K, Z,) = O for K = S%or Qj, therefore ¢(M K) =0, By Theorem
L oM, K)= 0.

Note. Suppose K M is 2 PL imbedding with nonlocally flat points py,---, p,
at which X'is the cone on knots §),+--, 'S,, Let Arf(S;) be the Arf invariant of S,
(see [R;]). Then if we define

HMK) = $a(H(K: Z,))) + 3 ArI(S) (mod 2),

we may stilt conclude that §(M, K) = ¢(M, K).
We now show that “stably” ¢ is the only obstruction to surgering X to a 2-sphere.
Let M, = M#s(52 x Sz), and let j, be the composmon

HyM; Z) Hy(M — Dt Z)— . (M, Z).

THEOREM 2, Suppose 7r1(M4) = 0_._ Then q&(M, K) = 0 iff for some 5,3 (M, K"
such that K' is a 2-sphere and i, [K'] = j(i,[K]). :

. ‘Note. Larry Taylor has independently obtained this result, :
Proor. The if direction follows from Theorem 1 [K-M] and our Theorem 1.
The argument for the only if direction will be quite liberal with copies of $2 x S2.

Since #(M, K) = 0, there is a subspace V' = Hy(K; Z;) such that (1) dim(V) =
1 dim(Hy(K; Zp)), (2) vy v, = 0 for v, vpe V, and (3) g(v) = O for ve V. Let A,,- --,
A, be circles disjointly imbedded in K representing a basis for V. Let 4, A,

denote copies of 4;,---, 4, pushed off in a normal direction to X so that the Imkmg '

numbers L(K, 4) = 0 Since X is characteristic, z(M) | 4, is canonically framed.
Since 71(M) = 0, framed surgery on {4,,--- Ap} replaces M with M. In M ,, there
are disjointly imbedded 2-disks, By,---, B, with 8B; = A; and B, K = A;. There
is an Euler class obstruction y; ¢ H%(B,, 8; Z) to extending v A x 10 a section of
Ve,smy DUL0 = gl4] = y,{B,, 9] (mod 2).

Consider the diagonalimbedding 4: §% 8% x §2 y(v sscagoxse) [S?] = 2. y,{B;, 8]
may be altered by + 2 by taking a connected sum of pairs (M,, B)#(S? x 8¢,
% 4(5%). In this way it is possible to alter M, and B, so that ¥,[B;, 8] becomes
zero and M, becomes M. y; is the only obstruction to ambient surgery on K
along B,. The result of surgery on By,--, B, is a smooth submanifold, X’, with
H{(K'; Z3) = 0; so K’ is a 2-sphere. To verify 1,[K'] = j(i,[K]), recall that
LK, A)=0. O

Note. A similar argument shows: If 7,(M%) = 0 and & € H(M*; Z), then for
some 5, j,{€) is represented by an imbedded torus.

e
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2. In §1, M, M, K, K were taken to be oriented, while B and Y were unoriented

(and possibly unorientable). Orienting M, M, K, K was convenient in that itenabled = -

us to calculate the corresponding bordism group, Q5. We chose B (and Y)un- -
. oriented because we were defining a quadratic form on H((K; Z;) and onentatlons
would be superfluous. :
In the following application we unorient X.

THEOREM 3. Although (CP2, 7) — (CP2, 39) = 3(CP? x I, unoriented simplicial

3-chain), (CP?, v} — (CP2, 37) cannot be written as 3(CP x I, immersed unanented -

3-manifold).

ProoF. This is an exercise from the proof of Lemma 3. ng(CPZ, 7) # $(CP?, 37),
but a manifold bordism (even an immersed one) K from y to 3?’ would force ¢ to -
assume equal values at each end. [J- :

REMARK 1. There is an old and elegant procedure for approx1matmg a Zz- :
simplicial-cycle of dimension 2 in a triangulated 3-manifold by an unoriented, tri-
angulated submanifold. This procedure generalizes for 2-dimensional cycles in any -
manifold, and for (» — 1)-dimensional cycles in any #-manifold. The first open case

would be: Canyou approximate a 3-dimensional Z,-simplicial-chain in 2 triangu--

lated 5-manifold by an unoriented, triangulated submanifold? Theorem 3 provides
an example (in the relative case) where the answer is no.

REMARK 2.-A key calculation occurs in the proof of Lemma 3 in Wthh we show .

I wo(v( M ))[Y 1= Wz(vy::w)[y 1

We observe that this equality still holds if we replace the assumption (1) M is
oriented and Y is unoriented, with (2) M is unoriented and Y is oriented.

Suppose M, M’ are unoriented with K 5 M and K’ ¢ M’ oriented surfaoes dual
to we{r(M)) and wg(r(M ")), respectively, and that image(Hy(K; Z)) < Hy(M; Z)
- and image(H(K'; Z)) « H(M’'; Z) are zero. Then if M is unoriented and
K is oriented, with K dual to wz(z-(M)) JH\(K; Z5)) and G(H(K'; Zy)) will be
defined and o

B(M, K) = Arf(g(H(K; _Zz))) = Arf(G(H(K'; Zo) = §(M,K")

This is because, with the above assumptions, we will be able to choose B and A .

" (see notation preceding Lemma 3) to be oriented compatibly so that ¥ also is

oriented. Now the proof of Lemma 5 goes through using our second set of ori-
entability assumptions. This leads to the following nonimbedding theorem.

THEOREM 4. Let M be an orientable PL 4-manifold and let oo € Hy(M; Z) san.sfy
(@@ - o(M)}8 = 1 (mod 2). Let N be an unorientable PL. 4-manifold with
wo(T(N)) = O(or it is sufficient to assume woz(N)) is represented by a smoothly im-
bedded oriented surface A, < ™ N with inc, (Hi(4;Z)) = 0e H{N;Z)and ¢(N, A) =
0; note that ¢ is defined for the pair despite the fact that N is unoriented). Then o
image(cc) € Hy(M $N; Z) is not represented by a smooth imbedding S2 c* M § N

. LEMMA 1. 4 Z-oriented simplicial cycle, 33, of dimension 3 in an unoriented trian-
. gulated S-mamﬁ)ld may be approximated by a Z—ortented imbedded, mangulated'
submangf'old '
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ProoF. By a modification in a spindle neighborhood of the 2-simplexes of 3 (see
Figure 4), we may assume 52 is a manifold away from its 1 skeleton.

+ + + . + + ¥
\l ! I/
-2 ske!eton(sa) N

FIGURE 4

‘Let ¥ be a tubular neighborhood of the I-skeleton a¥ = j(S* x §%)
$K(S! % $%) (S1¢.S3 denotes the twisted product), 9V (| 3% L is an oriented sur-
face imbedded in @V (oriented, because L is imbedded with trivial normal bun-
-dle in the (8% —1)-skeleton). We will show that there is ‘an oriented 3-manifold
L s v with oL =L, '
" There are j + & normal 4-disks (D4 a), = (V B) such that ¥; “cut along | J;,D4
is a closed 4-disk, X. For each i, there are 2-copies of D%, D} and D3 %z included in -
0X. We may assume L meets each D; in a link Z,. Because L was oriented, the as-’
sociated links L;; < 9D}, and L, 5 8D}, are oriented oppositely (comparing
orientations by regluing D}, and D}, to form DY). Let J; ¢ D% be an orientable
surface with af; = L. Agam let J,1 G Df; and J;, s D}, be the corresponding
copies of J; in 39X oriented so that 3(J; ;) = — L, ; and a(.r,.,z) = — L;».

Wdef( UL)U 1 Ui Gip G BX

is an oriented surface. Let Z 5 X be an oriented 3-manifold with 3Z = W. Be-
cause the orientations on L, and L; , are opposite, so are the orientations on J;;
and J; ;. As a result, if we reglue X to form ¥, the image of Z (which we wxll call L)
is an orientable 3-manifold contained in ¥ with 3L = L. :
Now we can approximate 3° by (3% — ¥) U — L, an oriented submanifold. 1
- Proor oF THEOREM 4. We only consider the case: wy(z{N)) = 0. (As an example
N might be §! ¥ $3.) By Theorem 1, @ is represented by a smoothly imbedded
surface K oM with ¢(M, K} = 1. If we consider K oM # N representing a’,
¢(M 2N, K) is defined and equal to 1. If o' were represented by a smooth
imbedding, S G * M #N, ¢(M #N, §2 ) would be defined and equal 0.
But by a relative form of Lemma 7, there is a smooth oriented 3-manifold, T,
with 8T = K — 52 and a smooth imbedding

(T; K8 L ,(MiNxILN$Nx 0, M§N x 1)

restricting to the imbeddings i’ x Oand £ x 1 on t_hel boundary.
Remark 2 shows that the existence of j: T M # N x I implies g(M # N, K) =
¢(M # N, %), contradicting the above. [ '
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