
WEIL COHOMOLOGY IN PRACTICE

KIRAN S. KEDLAYA ET AL.

These are revised lecture notes from a course given by Kiran Kedlaya at UC San Diego in fall 2019 on the
topic “Weil cohomology in practice”. Thanks to the following students in the course for compiling the original
draft of the notes: Samir Canning, Mingjie Chen, Patrick Girardet, Thomas Grubb, Jacob Keller, Bochao
Kong, Woonam Lim, Zeyu Liu, Alex Mathers, Baiming Qiao, Nandagopal Ramachandran, Sankeerth Rao,
Peter Wear, Wei Yin. (Special thanks to Peter Wear for coordinating this effort.) Thanks also to David
Hansen for additional feedback.

The purpose of these notes is to present a somewhat idealized version of the course compared to what was
actually delivered. To this end, I have filled in some details that were missing (or incorrect) in the original
lectures; I have also shifted a couple of topics to improve the narrative flow.

I distributed five problem sets over the course of the term. I have included these as well as a few
supplemental exercises that came up during the revision process.

There exist many excellent expositions about different parts of this material, some of which I surely do
not yet know about. Suggestions for additional readings would be greatly appreciated.

Last revision: 22 Jun 2020.

Contents

1. Prehistory of the Weil conjectures (September 30) 1
2. The Weil conjectures and examples (October 2) 5
3. Weil’s cohomological metaconjecture (October 7) 7
4. Curves and abelian varieties (October 9) 9
5. Two approaches to RH for curves (October 14) 12
6. RH for abelian varieties (October 16) 16
7. Inverse problems for zeta functions (October 21) 19
8. The Lang-Weil estimate (October 23) 21
9. Étale cohomology as a black box (October 28) 22
10. Comparing Galois representations: the Faltings–Serre method (October 30) 25
11. Dwork’s proof of rationality (November 4) 27
12. Algebraic de Rham cohomology (November 18) 30
13. Monsky-Washnitzer cohomology (November 19) 32
14. Frobenius actions and the Lefschetz–Monsky trace formula (November 20) 34
15. Étale local systems (November 25) 37
16. Étale fundamental groups (November 26) 40
17. RH and Weil II (December 4) 43
18. Causal versus random: the Tate conjecture and equidistribution (December 9) 46
Exercises 51
References 56

1. Prehistory of the Weil conjectures (September 30)

In this lecture, we discuss the “prehistory” of theWeil conjectures from Gauss/Jacobi and Riemann/Dirichlet
to Artin to Weil.
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Readings 1.1. The primary source for this lecture is Weil’s 1949 paper [115]. We will assume some
familiarity with basic facts about algebraic number theory; there are many references for this, but we
generally will follow Neukirch [92].

Since this topic is old and well-studied, many other expositions of it are available. A particularly detailed
one has been given by Milne [87].

For context, let’s start by formulating the Riemann hypothesis for Dedekind zeta functions.

Definition 1.2. Let K be a number field, i.e., a finite-degree field extension of the field of rational numbers
Q. Let OK be the ring of integers of K, which is to say the integral closure of Z in K (more concretely,
the elements of K which are roots of monic polynomials with integer coefficients). A basic fact about OK is
that it is a Dedekind domain, and so every nonzero ideal can be written uniquely as a product of powers of
maximal ideals. (Note: we say “maximal ideals” rather than “prime ideals” only to exclude the zero ideal.)

The Dedekind zeta function of K is defined initially as the formal expression

ζK(s) :=
∏

P⊂OK

1
1−NormK/Q(p)−s ,

where the product is over all the maximal ideals of OK and NormK/Q(p) is the cardinality of the quotient
ring OK/p. For s ∈ C with Re(s) > 1, the product converges absolutely and so defines a holomorphic
function without zeroes in that region. By unique factorization, we can rewrite the product as a sum

ζK(s) =
∑
I⊆OK

NormK/Q(I)−s

where I now runs over all nonzero ideals of OK .

Theorem 1.3 (Hecke). The function ζK(s) extends meromorphically to C, with a simple pole at s = 1 and
no other poles.

When K = Q, ζK(s) is the usual Riemann zeta function. Like the latter, ζK(s) satisfies a functional
equation relating its values at s and 1− s. The cleanest way to conceptualize this is to use the language of
places, as follows.

Definition 1.4. Each maximal ideal p of OK corresponds to a dense embedding of K into a field complete
with respect to a multiplicative absolute value, namely the fraction field of the p-adic completion of OK .
These embeddings are called finite places of K. By Ostrowski’s theorem, the only other dense embeddings
of K into a field complete with respect to a (nontrivial) multiplicative absolute value are embeddings into
R or C, of which there are only finitely many; these are called infinite places of K. (For K = Q, there is
a unique infinite place, because Q maps in only one way into R. Each prime number b corresponds to the
embedding of Q into the p-adic numbers Qp.)

One may then define a completed zeta function ΛK(s) by adding to the product a suitable factor for each
infinite place. This factor has the form

π−s/2Γ(s/2) or 2(2π)−sΓ(s)

(where Γ is Gauss’s meromorphic interpolation of the factorial function) depending on whether the completion
of Q is isomorphic to R (a real place) or C (a complex place). With these factors in place, the functional
equation has the form

ΛK(s) = ΛK(1− s).

Conjecture 1.5 (Riemann Hypothesis). All nontrivial zeroes of ζK(s) (i.e., the ones not forced by the
functional equation for ΛK(s)) lie on the line Re(s) = 1/2.

It was suggested by Artin that there should be a close analogy between number fields and function fields.
This grows out of the observation that for any finite field Fq, the ring of integers Z and the polynomial
ring Fq[t] are both Euclidean domains and their maximal ideals have finite residue fields. To build out this
perspective, let’s make the following definition.

2



Definition 1.6. Fix a finite field Fq. Let K be a function field, by which I mean a finite-degree extension
of the field of rational functions Fq(t). We may then define the ring of integers OK and the Dedekind zeta
function ζK(s) using exactly the same formulas as in the number field case; the analogue of Dedekind’s
theorem also holds (with one minor quibble; see Remark 1.8). However, there is a key difference: in this
case, the residue fields OK/p all contain Fq, so ζK(s) is a power series in q−s rather than a more general
Dirichlet series.

The discussion of places, and the definition of and functional equation for the completed zeta function
ΛK(s), also extend to this setting, but again there is a key difference the “infinite places” in the function field
setting look just like finite places after a change of coordinates, so there is no need to give a separate definition
for the missing factors in the completed zeta function. We will come back to this point in Remark 1.8.

The analogue of the Riemann hypothesis for function fields was formulated by Artin. A proof was
announced by Weil in 1940 [111], and a second proof in 1941 [112], but due to the precarious state of both
Weil’s life and world events in that period, the missing details from these announcements did not see print
until 1948 [113, 114].

Theorem 1.7. For K a function field, all nontrivial zeroes of ζK(s) (i.e., the ones not forced by the
functional equation for ΛK(s)) lie on the line Re(s) = 1/2.

Remark 1.8. The analogue of the Riemann zeta function here is the Dedekind zeta function for K = Fq(t),
which one may easily calculate to be

ζK(s) = 1
1− q1−s

(see for example Definition 1.9 below). In this case, ζK(s) has no zeroes at all, so the Riemann hypothesis
holds for particularly trivial reasons. Note however that ζK(s) has poles not only at s = 1, but also at
s = 1 + 2πin/ log q for any n ∈ Z. The completed zeta function is

ΛK(s) = 1
(1− q−s)(1− q1−s) .

For a general function field K, we will have

ζK(s) = polynomial in q−s

1− q1−s

and

ΛK(s) = polynomial in q−s

(1− q−s)(1− q1−s) .

From a modern point of view, we see that the properties of ζK(s) and λK(s) amount to concrete statements
about points on a certain algebraic curve over a finite field, whose proofs rely on now-standard techniques
in algebraic geometry. For example, the proof of the functional equation for ΛK(s) uses the Riemann-Roch
theorem for curves; Weil’s first proof of the Riemann hypothesis uses the embedding of a curve in its Jacobian
variety; and Weil’s second proof uses the Hodge index theorem on the product of a curve with itself over the
base field.

What one should keep in mind here is that none of this perspective was available to Weil. At the time he
began his work, the subject of algebraic geometry only included varieties over the complex numbers; many of
its best results did not comport with modern standards of rigor; commutative algebra had not yet developed
to the point where it could be used to plug some of the gaps; and the key insights of Zariski, Serre, and
Grothendieck needed to adapt sheaf theory into the modern foundations of algebraic geometry still lay years
in the future (and would take Weil’s work, and the Weil conjectures, as a primary impetus). As a result, the
completion of Weil’s announcements was delayed not just by geopolitical events, but also by Weil’s need to
build interim foundations on which to base his work. While these foundations are no longer in widespread
use, and modern accounts of Weil’s work typically reformulate his arguments using the theory of schemes,
these reformulations are considered translations rather than completions.

In light of Remark 1.8, we now take the next step and reformulate the previous discussion in the language
of algebraic geometry.
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Definition 1.9. For K a function field, let X be the normalization of A1
Fq in K and let X◦ be the set of

closed points in K. Then we have

(1.10) ζK(s) =
∏
P∈X◦

1
1−#κ(P )−s =

∏
P∈X◦

1
1− q−dP s

where κ(P ) denotes the residue field of P and dP = [κ(P ) : Fq]. This can be rearranged to

ζK(s) = exp
( ∞∑
n=1

q−ns

n
#X(Fqn)

)
For example, for K = Fq(t), X = A1

Fq and so X(Fqn) = qn for all n; this recovers our earlier formula for
ζK(s) in this case.

Remark 1.11. In the language of schemes, the previous discussion also applies in the case where K is a
number field, taking X to be the normalization of Spec(Z) in Spec(OK). In particular, (1.10) carries over.

Definition 1.12. Following Weil, we now let X be an algebraic variety over Fq (or in modern language, a
scheme of finite type over Fq) and define ζX(s) as in (1.10):

ζX(s) :=
∏
P∈X◦

1
1−#K(P )−s =

∏
P∈X◦

1
1− q−dP s = exp

( ∞∑
n=1

q−ns

n
#X(Fqn)

)
.

We then ask whether ζX(s) shares any of the previously observed properties when dim(X) > 1. To get some
clarity on this question, we consider some examples.

Example 1.13. Let X = PnFq . Then

ζX(s) = 1
(1− τ)(1− qτ) · · · (1− qnτ) , τ = q−s.

We now consider a key example of Weil. At this point, our chain of inquiry, which so far has flowed
naturally from the Riemann zeta function, links up with another thread from elementary number theory.

Example 1.14. Consider the diagonal hypersurface (or Fermat hypersurface)

a0x
n0
0 + a1x

n1
1 + · · ·+ arx

nr
r = b (ni > 0, ai, b ∈ Fq).

Over Q, rational points on varieties of this form were considered by Fermat, Euler, and others. The finite
field case was considered first by Gauss in the setting where q = p is prime, r = 2, and n0, n1, n2 are small.
For example, Gauss proved that for p 6= 2, the equation x2 − y2 = 1 has p− 1 solutions in Fp.

Definition 1.15. Let p be the characteristic of the finite field Fq. Let χ : F×q → C× be a multiplicative
character and ψ : Fq

Trace−→ Fp → C× be an additive character (where Fp → C× is the map x 7→ e2πix/p). The
Gauss sum g(χ) = g(χ, ψ) associated to χ is given by

g(χ) :=
∑
x∈Fq

χ(x)ψ(x) ∈ Z ⊂ C.

(We have g(χ) ∈ Z because g(χ) is a sum of roots of unity.)

Theorem 1.16. The Gauss sum g(χ) has the following properties.
(1) (Gauss) We have |g(χ)|2 = g(χ)g(χ) = q.
(2) (Davenport–Hasse) For an extension Fqv of Fq, put χ′ := χ ◦NormFqv/Fq and ψ′ := ψ ◦TraceFqv/Fq .

Then
−g(χ′) =

(
− g(χ)

)v
.

Proof. See Set 1 exercises. �

Note that the conjugates of g(χ) are all themselves Gauss sums for other characters for the same q;
consequently, g(χ) is an algebraic integer all of whose conjugates in C have absolute value √q.
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Theorem 1.17 (Weil). Consider the Fermat hypersurface
a0x

n0
0 + a1x

n1
1 + · · ·+ arx

nr
r = 0 (ni > 0, ai ∈ Fq).

Then the number of points over Fq is given by

qr + q − 1
q

∑
(χ0,··· ,χr)

χ0(a0)−1 · · ·χr(ar)−1g(χ0) · · · g(χr)

where (χ0, . . . , χr) runs over all tuples in which χi is a multiplicative character of Fq of order dividing
gcd(ni, q − 1) and χ0 · · ·χr = 1.

Proof. See Set 2 exercises. �

By combining this with the Davenport-Hasse relation, we see that if we fix the hypersurface and count
points over Fvq for varying v, the answer is of the form

∑
i

±αvi . This forms a prototype for theWeil conjectures,

to be introduced in the next lecture.

2. The Weil conjectures and examples (October 2)

In this lecture, we give the full statement of Weil’s conjecture together with some small examples.

Readings 2.1. We roughly follow [59, Appendix C].

Definition 2.2. Let k = Fq be a finite field of q elements, and X/k be a quasi-projective algebraic variety
(or more generally, any k-scheme of finite type; we will add hypotheses later in the statement). For any
integer r ≥ 1, let kr = Fqr be one field extension of k with degree r (which is unique up to noncanonical
isomorphism). Write the zeta function ζX(s) as Z(X, q−s) for

Z(X,T ) := exp
( ∞∑
r=1

T r

r
#X (kr)

)
∈ ZJT K.

(The containment Z(X,T ) ∈ QJT K is more obvious here, but the prior description of ζX(s) as an infinite
product shows that Z(X,T ) ∈ ZJT K.)

Theorem 2.3 (Weil conjectures). The series Z(X,T ) has the following properties.
(1) (Rationality) The series Z(X,T ) represents a rational function of T . We will often make a minor

misuse of language and say that Z(X,T ) is a rational function of T .
(2) (Functional equation) Suppose in addition that X is of pure dimension n. Then

Z

(
X,

1
qnT

)
= ±qnE/2TEZ(X,T )

for some integer E.
(3) (Analogue of the Riemann hypothesis) Suppose in addition that X is smooth and projective1 of (pure)

dimension n. Then there is a unique factorization

Z(X,T ) = P1(T ) · · ·P2n−1(T )
P0(T ) · · ·P2n(T )

in which Pi(T ) factors over C as
∏
j(1−αijT ) where |αij | = qi/2 for all j. In particular, the integer

E from (2) equals
E =

∑
(−1)i deg(Pi).

Moreover, if X is geometrically irreducible, then P0(T ) = 1− T and P2n(T ) = 1− qnT .
(4) (Betti numbers) Suppose in addition that there exist a number field K, a finite set S of prime ideals

of OK , a maximal ideal p of OK not contained in S with residue field isomorphic to k, and a smooth
projective scheme X over OK,S (the localization of OK at the primes in S) such that X is isomorphic
to the base extension X ×OK,S k. (Informally, X is the “reduction of X modulo p.”) Then for any
embedding K → C, the i-th Betti number of the topological space (X×OK,S C)an equals deg(Pi).

1Throughout these lectures, I will often say “projective” when I could say “proper” instead.
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Example 2.4. If X is set-theoretically the disjoint union of an open subscheme Y and a closed subscheme
S, then X(kr) is likewise the disjoint union of Y (kr) and S(kr), so formally

Z(X,T ) = Z(Y, T ) · Z(S, T ).
Let us apply this to the decomposition Pn = An t Pn−1. We obtain:

Z(Pn, T ) = Z(An, T ) · Z(Pn−1, T ) = 1
1− qnT · Z(Pn−1, T )

. In particular, as we have seen before,

Z(P1, T ) = 1
(1− T )(1− qT )

and similarly for Pn (see Set 2 exercises).

Example 2.5. For X = C an elliptic curve, it can be shown by (relatively) elementary methods that

Z(C, T ) = 1− aT + qT 2

(1− T )(1− qT )

where a is an integer depending on C. It was shown by Hasse that moreover |a| ≤ 2q1/2; see [100, Chapter V]
for an efficient proof.

Remark 2.6. Let’s see in detail what the Weil conjectures say for P1 and C.
(1) Rationality is obviously true in both cases.
(2) The functional equation for P1:

Z(P1,
1
qT

) = qT 2

(1− T )(1− qT ) E = 2.

The functional equation for C:

Z(C, 1
qT

) = 1− aT + qT 2

(1− T )(1− qT ) E = 0.

(3) The factorization for P1 is obvious, and the analogue of the Riemann hypothesis carries no new
information. The factorization for C gives something nontrivial:

Pi(T ) =


1− T i = 0
1− aT + qT 2 i = 1
1− qT i = 2.

The analogue of the Riemann hypothesis asserts that the roots of P1(T ) lie on the circle |T | = q−1/2;
given the shape of the factorization, this is equivalent to the Hasse bound.

(4) The Betti numbers of a topological P1 are 1, 0, 1. The Betti numbers of a topological elliptic curve
are 1, 2, 1.

Remark 2.7. The factorization assertion was largely inspired by the example of Fermat hypersurfaces
considered in the previous lecture. In that example, the numbers αij are the products of Gauss sums
appearing in Weil’s formula.

Remark 2.8. The Betti number statement is a proxy for a stronger statement that Weil was not in a
position to formulate precisely: what we wanted is to have Pi(T ) = det(1 − FT, Vi) where Vi is some
“naturally occurring” vector space over a field and F : Vi → Vi is some endomorphism of the vector space.
This perspective gives rise to the notion of Weil cohomology around which this course is centered.

But before we get there, note that the Betti number statement has a fair bit of power on its own. One
important example computed by Weil in [115] is that of Grassmannian varieties, whose points correspond
to subspaces of a fixed vector space. It is elementary to compute the number of points on a Grassmannian
over a finite field (see Set 1 exercises); according to the Weil conjectures, this should then predict the Betti
numbers of a Grassmannian over C. These had been computed previously by Ehresmann using totally
different methods.
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Now that the Weil conjectures are a theorem, one can go further with this logic: in some cases, the first
known computation of the Betti numbers of a topological space have used the Weil conjecture. A famous
example is the Hilbert schemes of points on a smooth projective surface, by Göttsche [47].

We conclude this lecture with a very brief summary of how the Weil conjectures became a theorem. We
will spend much of the course partially unpacking this summary.

(1) The rationality was first proved in 1958 by Dwork [37] using an interpretation of Z(X,T ) in terms
of in terms of p-adic analysis (where p is the characteristic of the finite field).

(2) During the 1960s, Grothendieck [54, 55] led a heroic effort to develop modern foundations of algebraic
geometry, including a theory of étale cohomology that was meant to simulate the role of topological
(singular) cohomology for complex algebraic varieties. This led to a new proof of rationality (via a
form of the Lefschetz trace formula as per Remark 2.8), together with the first proofs of the functional
equation (arising from Poincaré duality) and the Betti number condition (arising from a comparison
theorem with singular cohomology).

(3) Grothendieck proposed an approach to the analogue of the Riemann hypothesis via the so-called
“Standard Conjectures” [56], but this approach never bore fruit.

(4) In the 1970s, Deligne [29] came up with a more ad hoc approach for part (3) and proved it. Shortly
thereafter, he gave a more robust proof [30]; this paper (commonly known as “Weil II”) is itself
foundational in the study of zeta functions.

(5) An important simplification of “Weil II” was discovered by Laumon [76], inspired by the stationary
phase approximation from classical analysis.

(6) Subsequently, Dwork’s methods were adapted to give a parallel cohomology theory, again based on p-
adic analysis, in which the entire étale-cohomological proof of the Weil conjectures can be emulated.
For example, a p-adic adaption of Laumon’s argument was given by Kedlaya [66].

3. Weil’s cohomological metaconjecture (October 7)

In the previous lecture, we stated the Weil conjectures for an algebraic variety (or a scheme of finite type)
X over a finite field Fq, which imply that the zeta function

Z(X,T ) = exp
( ∞∑
n=1

Tn

n
#X(Fqn)

)
has properties that we identified as follows:

(1) (rationality)
(2) (functional equation)
(3) (Riemann Hypothesis)
(4) (Betti numbers)
As we pointed out in Remark 2.8, Weil went further and suggested an approach to these conjectures

inspired by algebraic topology. In this lecture, we explain this approach.

Readings 3.1. We continue to follow [59, Appendix C].

Definition 3.2. Let R be a commutative algebra over Fq; then the map x → xq is an Fq-homomorphism
from R to itself. For any scheme X over Fq, this construction induces a morphism F : X → X of Fq-schemes,
called the absolute Frobenius of X (more precisely, of X over Fq). One easily sees that we have an action
of F on the set X(Fq), whose set of fixed points is exactly X(Fq). Also if we consider the action of Fn on
X(Fq), then the fixed points would be X(Fqn).

Remark 3.3. The inspiration for what follows is the general principle that the problem of counting fixed
points of a self-map on a space should have something to do with computing traces of some associated linear
map. A simple example of this principle is the following: if σ is a permutation of {1, . . . , n}, then the number
of fixed points of σ is equal to the trace of the permutation matrix assocated to σ.
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A vastly more sophisticated example is the Lefschetz trace formula. Let T : S → S be a continuous
self-map of a topological space. Under suitable conditions, the quantity∑

i

(−1)i Trace(T,Hi(S))

gives a weighted count of the fixed points of T ; in particular, the nonvanishing of this quantity can be used
to establish the existence of a fixed point of T (as in the Brouwer fixed point theorem).

With the above considerations Weil proposed the following.

Metaconjecture 3.4. (Weil) For some field K of characteristic 0, there is a series of contravariant “coho-
mology” functors

Hi : {algebraic varieties over Fq} → {finite dimensional vector spaces over K}
satsifying the following formula: for i = 0, . . . , 2d = 2 dim(X), satisfying the formula

#X(Fqn) =
2d∑
i=0

(−1)i Trace(Fn|Hi(X))

for every positive integer n, where Fn : Hi(X)→ Hi(X) denotes (by abuse of notation) the linear transfor-
mation induced by the morphism Fn : X → X. (One can also formulate a similar metaconjecture in terms
of a sequence of covariant “homology” functors Hi.)

Remark 3.5. Let us see what the metaconjecture says, or could say with some refinement, about the Weil
conjectures.

Firstly, it immediately implies rationality because

Z(X,T ) =
∏

det(1− FT,Hi(X))(−1)i+1
.

Note that here, we use crucially that K is of characteristic 0; otherwise, we would only get this relation
modulo the characteristic of K.

Secondly, the functional equation would hold if the functors Hi(X) satisfied “Poincaré Duality", in the
sense of admitting a perfect, F -equivariant pairing

Hi(X)×H2d−i(X)→ K(−d)
where K(−d) denotes the field K with the “twisted” F -action, sending 1 to qd.

Thirdly, the Betti number statement would follow from an equality of dimensions between our Hi(X) and
the usual singular cohomology groups of the analytification.

It is not clear where the Riemann hypothesis would come from in this framework. We will discuss this
later.

Let us note that we haven’t talked much about the field of coefficients K which plays an important role
in our cohomology theory here (except to note that it must be of characteristic 0). The following example
shows that we cannot hope to take K = Q.

Example 3.6. Suppose the metaconjecture holds for someK. Let X/Fq be a supersingular elliptic curve; we
then have an action of End(X) on H1(X). As we have seen in the previous lecture, H1(X) is of dimension 2.
However, if the endomorphisms of XFq are all defined over Fq, then End(X) whereas End(X) is a Z-module
of rank 4 contained in a (nonsplit) quaternion algebra over Q. However, a quaternion algebra over Q cannot
act on a 2-dimensional Q-vector space unless it splits (i.e., is isomorphic to the matrix ring M2(Q)). Thus
we cannot have K = Q.

In this example, the quaterion algebra in question remains nonsplit after tensoring over Q with either R
or Qp (where p is the characteristic of Fq). Consequently, the same argument rules out the possibility of
satisfying the metaconjecture with K = R or K = Qp (but it does not rule out extensions of these fields).

Remark 3.7. There are essentially two known approaches to constructing a Weil cohomology theory over
a finite field of characteristic p.

• For K = Q` where ` 6= p is prime (which is not precluded by Example 3.6), the construction of étale
cohomology by Grothendieck et al. will satisfy the metaconjecture.
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• For K = Qp, the construction of rigid cohomology developed by Berthelot et al. will satisfy the
metaconjecture. (Note that we cannot take K = Qp because of Example 3.6.)

More on both of these later.

4. Curves and abelian varieties (October 9)

In this lecture, we study zeta functions for curves and abelian varieties.

Readings 4.1. We follow [81, Chapters VIII–IX]. For background on abelian varieties, see also [91].

Definition 4.2. Throughout this lecture, let X be a geometrically irreducible smooth projective curve of
genus g over the finite field k = Fq of characteristic p. The field of rational functions k(X) is finite over
k(t) for any element t ∈ k(X) which is not in k (or equivalently, which is not integral over k; note that the
geometrically irreducible condition implies that k is integrally closed in k(X)).

Let Div(X) be the free abelian group generated by the closed points X◦ of X; the elements of Div(X)
are called divisors on X. We have a degree map

deg : Div(X) −→ Z∑
ai[Pi] 7−→

∑
ai[κ(Pi) : k]

where κ(P ) denotes the residue field of P . A divisor is called effective if it is a nonnegative linear combination
of closed points; the degree of an effective divisor is also nonnegative.

Denote Div0(X) := deg−1(0). Then for f ∈ k(X)×, the divisor

div(f) =
∑
P∈X◦

ordP (f)[P ]

associated to f belongs to Div0(X), hence

Pic0(X) := coker(div : k(X)× → Div0(X))

is well-defined.

Remark 4.3. In what follows, it is helpful to bifurcate the discussion based on whether or not X(k) = ∅.
For an example with X(k) = ∅, take the genus-2 curve

y2 = 2x6 − 2x2 + 2

over F3. (Note: it is impossible to have X(k) = ∅ for a curve of genus 1 over a finite field; see the
supplementary exercises.)

Suppose now that X(k) 6= ∅; then the degree map deg : Div(X)→ Z is evidently surjective. Specifically,
if we fix a choice of O ∈ X(k), we can define a map

cl : Effective divisors of degree d −→ Pic0(X)
D 7−→ [D − dO]

which is surjective. For d ≥ 2g−1, each fibre has order q
d−g+1−1
q−1 for d ≥ 2g−1; this follows from the Riemann-

Roch theorem, which implies that h0(X,L) = deg(L)− g+ 1 for a line bundle L with deg(L) ≥ 2g− 1. (We
will use the full strength of Riemann-Roch a bit later.)

Now write
Z(X,T ) =

∏
x∈X◦

1
1− T deg(x) =

∑
D≥0

T deg(D)

where the last sum is over the effective divisors D on X (this is analogous to the equality between the sum
and product representations of a Dedekind zeta function). Breaking this sum into two parts according to
whether deg(D) ≥ 2g − 1 or deg(D) ≤ 2g − 1 leads to the following proposition.

Proposition 4.4. If X(k) 6= ∅, then Z(X,T ) = f(T )
(1−T )(1−qT ) for some polynomial f with deg(f) ≤ 2g and

f(1) = # Pic0(X).
9



Remark 4.5. The equality f(1) = # Pic0(X), which crucially implies that f does not have a zero at T = 1,
is analogous to a property of Dedekind zeta functions which we did not comment on earlier. For K a number
field, the residue of ζK(s) at s = 1 (where the function has a simple pole) is given by the class number
formula. It includes factors coming from the class number of OK and the regulator of the unit lattice of K.
In this context, there are no infinite places and so we see only a class number contribution.

Let us now see about getting rid of the condition that X(k) 6= ∅. Obviously X has points over some finite
extension of k, so let us try passing from X to its base extension XFqn for some positive integer n chosen so
that X(Fqn) 6= ∅. We can then try to recover information about X using the identity

Z
(
XFqn , T

n
)

=
n−1∏
i=0

Z
(
X, ζinT

)
where ζn is a primitive n-th root of unity.

However, there is a strict loss of information between Z(X,T ) and Z
(
XFqn , T

)
, even for curves.

Example 4.6. If Z(X1, T ) = 1−aT+qT 2

(1−T )(1−qT ) , Z(X2, T ) = 1+aT+qT 2

(1−T )(1−qT ) then Z
(
X1,Fq2 , t

)
= Z

(
X2,Fq2 , t

)
.

This occurs when X1 is an elliptic curve and X2 is a quadratic twist; to make this explicit (assuming p > 2),
let X1 be a curve of the form

y2 = x3 + ax2 + bx+ c

and let X2 be the curve
dy2 = x3 + ax2 + bx+ c

where d is a nonsquare in F×q .

A key observation is that the previous proof in the case X(Fq) 6= ∅ only relies on the surjectivity of the
degree map. Hence if could show such surjectivity always hold (without assuming X(Fq) 6= ∅), then we do
not have to worry about the existence of O ∈ X(Fq). Fortunately, this is the case.

Proposition 4.7. The degree map deg : Div(X)→ Z is always surjective, whether or not X(k) 6= ∅.

Proof. Since the degree map is clearly nonzero, we have deg(Pic(X)) = eZ for some positive integer e. Let
us again compute Z(X,T ) =

∑
D≥0 T

deg(D) by breaking the sum in two as before; the second sum then runs
over T de with d ≥ d0, where d0 is the smallest integer such that d0e ≥ 2g − 1. As a result, we have

Z(X,T ) = f (te)
(1− T e) (1− qeT e)

and f(1) = # Pice(X) 6= 0. In particular, Z(X,T ) has a pole of order 1 at T = 1.
The same logic applies also toXFqe , so Z

(
XFqe , T

)
has a pole of order 1 at T = 1. As a result, Z

(
XFqe , T

e
)

has a pole of order 1 at T = 1. On the other hand,

Z
(
XFqe , T

e
)

=
e−1∏
i=0

Z
(
X, ζieT

)
= Z (X,T )e .

Comparing the pole orders at T = 1, we deduce that e = 1, which finishes the proof. �

Remark 4.8. Using the full strength of the Weil conjectures, one can prove more: for any fixed X, we have
X(Fqn) 6= ∅ for every sufficiently large n. See the supplementary exercises.

Given Proposition 4.7, we can now reprise the proof of Proposition 4.4 to deduce the following.

Proposition 4.9. For any X, Z(X,T ) = f(T )
(1−T )(1−qT ) for some polynomial f with deg(f) ≤ 2g and f(1) =

# Pic0(X).

Note that we currently only know that deg(f) ≤ 2g, whereas we expect equality. To resolve this, we must
prove the functional equation using the Riemann-Roch theorem.

Proposition 4.10. We have Z(X, 1/(qT )) = q−gT 2−2gZ(X,T ). Consequently, f(q−1T−1) = q−gT−2gf(T )
and deg(f) = 2g.

10



Proof. Write (q − 1)Z(X,T ) as a sum of two terms:

α(T ) :=
∑

0≤deg(L)≤2g−2

qh
0(L)T deg(L)

β(T ) :=
∑

deg(L)≥2g−1

qh
0(L)T deg(L) −

∑
deg(L)≥0

T deg(L).

We will prove that each of these satisfies the same functional equation that we desire for Z(X,T ). For β(T ),
using the weak form of Riemann-Roch used earlier, we obtain

β(T ) = # Pic0(X)
(
qgT 2g−1

1− qT −
1

1− T

)
and the functional equation is clear. To analyze α(T ), we must use Riemann-Roch at full strength: for Ω
the sheaf of Kähler differentials on X and L any line bundle on X,

h0(X,L) = deg(L) + 1− g + h0(Ω⊗ L−1).

Since deg(Ω) = 2g − 2, we may rewrite α(T ) by substituting Ω⊗L−1 for L. Using Riemann-Roch, we then
obtain

α(T ) =
∑

0≤deg(L)≤2g−2

qh
0(Ω⊗L−1)T deg(Ω⊗L−1)

=
∑

0≤deg(L)≤2g−2

qh
0(L)−deg(L)−1+gT 2g−2−deg(L)

and again read off the desired functional equation. �

We will show a bit later, using the Riemann-Roch theorem, that Z(X,T ) satisfies the functional equation;
this will also show that deg(f) = 2g. One can also establish the Riemann hypothesis in this framework, but
we postpone this to a later lecture.

In the remainder of this lecture, we describe (without proofs) the relationship between curves and abelian
varieties, and between the Weil conjectures in these two cases.

Definition 4.11. An abelian variety over a field k is a smooth, projective, geometrically connected k-scheme
equipped with a commutative group structure. It turns out that the commutativity hypothesis is superfluous;
see [91].

Example 4.12. Elliptic curves over k are abelian varieties of dimension 1. Products of elliptic curves give
examples of higher-dimensional abelian varieties.

Definition 4.13. Given a curve of genus g, there are two different constructions giving rise to a g-dimensional
abelian variety.

• The Albanese construction:
pointed curve X/k of genus g  Alb(X)

This is a covariant functor, and comes with a (functorial) map X → Alb(X) sending the marked
point to the identity. This map does not factor through any abelian subvariety of Alb(X), and
induces a homomorphism

Div0(X)→ Alb(X)(k)
which factors through Pic0(X).

• The Picard construction:
curve X/k of genus g  Pic0(X) := Moduli space of degree-0 line bundles on X.

This is a contravariant functor. The following universal property holds: maps from an abelian variety
S over k to Pic0(X) correspond to line bundles on S×kX whose restriction to every fiber s×X has
degree 0.

11



Remark 4.14. These two construction are related by the Abel-Jacobi map:

Alb∨(X) ∼= Pic0(X)

where for an abelian variety A, the dual variety A∨ is defined as Pic0(A). Using the Poincaré bundle, we
obtain a natural isomorphism (A∨)∨ ∼= A.

For a general abelian variety A over k, A and A∨ need not be isomorphic (although they are necessarily
isogenous. However, one can construct a principal polarization giving rise to an isomorphism

Alb(X) ∼= Pic0(X).

Example 4.15. Over C, every abelian variety arises analytically as a complex torus Cg/Λ. The dual variety
is then (Cg/Λ)∨ ∼= Cg/Λ∨, where Λ∨ := {µ : HomR(Cg,R)| µ(Λ) ⊂ Z}.

The zeta functions of a curve A and its Jacobian Jac(X) := Pic0(X) are related as follows.

Theorem 4.16. Suppose A is an abelian variety over k = Fq of dimension g.
(1) The zeta function for A is

Z(A, T ) = P1(T ) · · ·P2g−1(T )
P0(T ) · · ·P2g(T )

where P0(T ) = 1 − T, P2g(T ) = 1 − qgT , and Pi(T ) = ∧iP1(T ) for i = 1, . . . , 2g in the sense
that if P1(T ) =

∏
j(1 − αjT ), then Pi(T ) =

∏
j1<···<ji(1 − αj1 · · ·αjiT ). Note that this implies

#X(k) = P1(1) =
∏
j(1− αj).

(2) If A ∼= Jac(X), then Z(X,T ) = P1(T )
(1−T )(1−qT ) for the same P1.

5. Two approaches to RH for curves (October 14)

In this lecture we examine two of the three “elementary” approaches to the Riemann hypothesis for curves
over finite fields (that is, the approaches that do not require Weil cohomology).

(1) Comparison of a curve with its Jacobian. This is the first proof announced by Weil.
(2) Intersection theory on the self-product of the curve. This is the second proof announced by Weil.
(3) Clever use of Riemann-Roch. This approach was introduced by Stepanov for hyperelliptic curves

[101] and generalized to all curves by Bombieri [10].
This list is given in order of first appearance, but we will proceed in the opposite order, focusing in this

lecture on the Bombieri–Stepanov method and then the second proof of Weil. We will turn to the first proof
of Weil in a subsequent lecture.

Readings 5.1. For the Bombieri–Stepanov method, we continue to follow [81, Chapters VIII–IX]. For the
second method of Weil, we follow [59, Exercise V.1.10].

Throughout this lecture, let X be a geometrically irreducible smooth projective curve of genus g over the
finite field k = Fq of characteristic p, and write q = pa. Let us first summarize what we established in the
previous lecture.

Proposition 5.2. We have

Z(X,T ) = P (T )
(1− T )(1− qT ) ,

where P (T ) ∈ Z[T ] is a polynomial satisfying:
• P (0) = 1;
• deg(P (T )) = 2g;
• P (T ) = 1 + a1T + · · ·+ a2g−1T

2g−1 + qgT 2g, with ag+i = qiag−i.

Our goal is therefore to prove the Riemann hypothesis for X, which amounts to the assertion that the
roots of P (T ) lie on the circle |T | = q−1/2.

We give some initial preparation the Bombieri-Stepanov method.
12



Remark 5.3. Recall that if we can prove the Riemann Hypothesis for a base extension XFqn of X, then this
will imply the Riemann hypothesis for X because the zeroes and poles of Z(XFqn , T ) are the n-th powers of
the zeroes and poles of Z(X,T ). In particular, we can arrange for q to be “sufficiently large” compared to g.

Definition 5.4. Let α−1
1 , . . . , α−1

2g be the roots of P (T ), labeled so that |α1| ≤ · · · ≤ |α2g|; the functional
equation implies that q/αi = α2g−i. Utilizing the equality

log
(

P (T )
(1− T )(1− qT )

)
=
∞∑
N=0

#X(FqN )
N

TN ,

expanding power series, and matching coefficients, we obtain

#X(FqN ) = qN + 1−
2g∑
i=1

αNi

for all N ≥ 1. In particular, the Riemann Hypothesis would imply∣∣#X(FqN )− qN − 1
∣∣ ≤ CqN/2

for N ≥ 1 and C a constant (we can take C = 2g). A key point here is that the reverse implication is also
true!

Lemma 5.5. Assume there exists an integer d ≥ 1 and a constant C0 for which
|#X(FqdN )− qdN − 1| ≤ C0q

dN/2

for all N . Then the Riemann Hypothesis for X holds.

Proof. The hypothesis implies that
∞∑
N=0

(αdN1 + · · ·+ αdN2g )TN

converges in the open disc |T | < q−d/2 (say, by the root test). In particular, the power series
2g∑
i=1

(1− αdi T )−1

converges uniformly on |T | < q−d/2 (i.e., there are no poles), so that |αi| ≥ q−1/2. The functional equation
then tells us that α2g−i = αi/q, and hence we obtain |αi| = q−1/2 for all i. �

We are thus reduced to proving an upper bound and a lower bound on #X(Fq). We start with the former,
again keeping in mind that we may apply this after performing a base change.

Theorem 5.6. Let q = ps, with s even and q > (g + 1)4. Then
#X(Fq) ≤ q + 1 + (2g + 1)√q.

Proof. There is nothing to verify if #X(Fq) is empty, so assume there is an Fq-rational point on X and call
it ∞. The goal is to write down a rational function on X with a controlled pole at ∞ and with zeroes at
X(Fq) \ {∞}; this would then imply #X(Fq) ≤ 1 +P , where P denotes the pole order of the function at ∞.
To this end, let

Hm := {f ∈ K(X) : div(f) ≥ −m∞}

Hpµ

m := {fp
µ

: f ∈ Hm}.
Let us consider a function

f =
∑

νis
q
i ,

with νi ∈ Hpµ

l and si ∈ Hm. Suppose that f is not identically zero and that δ(f) =
∑
νisi = 0. It follows

that f vanishes on X(Fq) \ {∞}. If we assume moreover that pµ < q, then f is a perfect pµ-th power and
hence vanishes to order pµ at each of its zeroes; in particular, we obtain

#X(Fq) ≤ 1 + deg(f)/pµ ≤ 1 + l +mq/pµ.
13



Now we examine when such an f exists. By polar expansion around infinity, one may show that the map
δ : Hpµ

l ·H
q
m → Hlpµ+m

is in fact a well-defined linear morphism; moreover, if we assume additionally that lpu < q, a straightforward
calculation gives an isomorphism Hpµ

l ·Hq
m
∼= Hpµ

l ⊗Hq
m, and hence

dimFq H
pµ

l ·H
q
m = dimFq (H

pµ

l ) dimFq (Hq
m).

By Riemann-Roch,
dimFq H

pµ

l = dimFq Hl ≥ max{1, l + 1− g}.
Hence δ will have a nontrivial kernel whenever

(l + g − 1)(m+ 1− g)− (lpµ +m+ 1− g) > 0.
To optimize this, choose µ = s/2 and m = √q+ 2g. All of the requisite conditions will be satisfied if we can
choose an integer l for which

q + g

g + 1
√
q < l <

√
q.

This is possible so long as q > (g + 1)4; with these choices of l,m, µ the bound reduces to
#X(Fq) ≤ 1 +√q + (√q + 2g)√q

as desired. �

The previous method does not directly give a lower bound. Instead, we use a trick to convert the lower
bound problem into a collection of upper bound problems that can be treated as before.

Definition 5.7. For a Galois cover of curves π : X → S and an element σ ∈ Gal(X/S), let N(X/S, σ)
denote the number of points P ∈ X(Fq) which lie above a point of S(Fq) in an unramified way and for which
σ acts as the Frobenius on P .

Lemma 5.8. Let π : X → S be a Galois cover of curves defined over Fq, with q > (g(X) + 1)4. Then
N(X/S, σ) < q + 1 + (2g(X) + 1)√q.

Proof. Let ∞ be a point counted by N(X/S, σ) (if there are no such points there is nothing to prove).
Consider the endomorphism φ := σ−1 ◦ Frob on X; it suffices to bound the fixed points of φ on XFq .

Maintaining the notation of Theorem 5.6, any nonconstant function in φ∗(Hm) has a pole solely at ∞,
since φ∗(Hm) ⊂ Hqm. Consider f =

∑
viφ
∗(si) in Hpµ

l φ
∗(Hm), and set δ(f) =

∑
visi. As in the previous

proof, if there exists a nonzero function f for which δ(f) = 0, it follows that f vanishes at all points counted
by N(X/S, σ). One then proceeds as before to show that δ must have a nontrivial kernel once q is suitably
chosen with respect to g. �

This becomes helpful when we combine all of the automorphisms σ.

Lemma 5.9. Let π : X → S be a Galois cover of curves defined over Fq. Then∣∣∣∣∣∣
∑

σ∈Gal(X/S)

N(X/S, σ)−# Gal(X/S)#S(Fq)

∣∣∣∣∣∣
is bounded by a constant depending only on g(X) and deg(π).

Proof. Both
∑
σ∈Gal(X/S)N(X/S, σ) and # Gal(X/S)#S(Fq) can be written as a sum over points P0 ∈

S(Fq). If P0 is not a branch point of π, then P0 makes identical contributions to both quantities. Thus
the discrepancy comes only from fibers containing branch points, the number of which is controlled by the
Riemann-Hurwitz formula. �

We now derive the desired lower bound, thus completing the Bombieri-Stepanov proof of the Riemann
hypothesis for curves.

Lemma 5.10. There exist an integer d ≥ 1 and a constants C0 for which for all positive integers N ,
#X(FqdN ) ≥ qdN − C0q

dN/2.
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Proof. IfX itself can be written as a Galois cover of P1 via some map π, then Lemma 5.9 implies that an upper
bound on N(X/S, σ) for each nontrivial automorphism σ implies a lower bound on N(X/S, idX) = #X(Fq).
So in this case, we just apply Lemma 5.8 and we are done.

In general, X cannot always be written as a Galois cover of P1 (e.g., if it has trivial automorphism group
and positive genus). However, we can always choose a finite separable morphism X → P1 (perhaps after
extending the base field, although this isn’t really needed) and then take its Galois closure to obtain a Galois
cover Z → X for which Z → X → P1 is also Galois. By applying Lemma 5.9 to both Z → X and Z → P1,
we may again reduce the desired lower bound to some instances of Lemma 5.8. �

We now shift our attention to Weil’s second method, whose main tools are the intersection pairing on
surfaces and the Hodge index theorem. We briefly recall these two objects.

Definition 5.11. Let S be a smooth projective surface over a field k. There is a unique bilinear pairing

Div(S)×Div(S)→ Z,

called the intersection pairing, with the following properties.
• If D1 and D2 are effective divisors on S without common components, then

D1 ·D2 = lengthk(D1 ×k D2).

In other words, the pairing measures usual intersections when possible.
• The pairing depends solely on linear equivalence; i.e. if D1 ∼lin D

′
1 and D2 ∼lin D

′
2, then D1 ·D2 =

D′1 ·D′2.
The intersection pairing furthermore can be shown to satisfy the adjunction formula: if C ↪→ S is a closed
immersion and C is a smooth, projective, geometrically irreducible curve of genus g over k, then

C · (C +K) = 2g − 2,

where K is the canonical divisor (or rather, “a” canonical divisor) on S. See [59, §V.1].

Having set up the intersection pairing on surfaces, we can state the Hodge Index Theorem [59, Theo-
rem V.1.9].

Theorem 5.12 (Hodge Index Theorem). Let H be an ample divisor on the surface S. Then for any divisor
D, D ·H = 0 implies D ·D ≤ 0. �

With this setup, we can proceed with Weil’s proof. The idea is to apply the previous two theorems with
S = X ×k X. The surface S comes equipped with two natural divisors:

• ∆, the diagonal embedding X ↪→ X ×k X;
• and Γ, the graph of the Frobenius morphism.

One can verify (by working locally) that ∆ and Γ have no common component and intersect transversally.
Furthermore, the intersection ∆ ×S Γ is naturally identified with X(Fq). Thus utilizing the intersection
pairing we can write

#X(Fq) = ∆ · Γ.
We need the following preparatory lemma.

Lemma 5.13. Let H be an ample divisor, and D an arbitrary divisor, on S = X ×k X. Let σ(1, 0)
and σ(0, 1) be the divisors obtained by pulling back a hyperplane section on X from the first and second
projections respectively.

(1) We have D2H2 ≤ (D ·H)2

(2) For S = X ×X, D2 ≤ 2(D · σ(1, 0))(D · σ(0, 1)), with equality if and only if D = aσ(1, 0) + bσ(0, 1).

Proof. For the first statement, we may take an orthogonal decomposition of the space of divisors to write
D = aH+bE, where E ·H = 0. Then D2H2 = ((aH)2 +(bE)2)H2. By the Hodge index theorem, (bE)2 ≤ 0,
so D2H2 ≤ (aH)2H2. But now (aH)2H2 = (H ·(aH+bE))2 = (D ·H)2 as desired. For the second statement,
apply the first statement to the ample divisor σ(1, 1) = σ(0, 1) + σ(1, 0). �
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To finish Weil’s proof we now need the following computations, which follow from adjunction:
∆2 = 2− 2g
Γ2 = q(2− 2g)

∆ · σ(1, 0) = 1
∆ · σ(0, 1) = 1

{Γ · σ(1, 0),Γ · σ(0, 1)} = {1, q}.
Now apply the previous lemma to aΓ + b∆ to obtain

a2Γ2 + 2abΓ ·∆ + b2∆2 ≤ 2(aΓ + b∆) · σ(0, 1)(aΓ + b∆) · σ(1, 0).
Simplifying gives

0 ≤ 2(a+ b)(qa+ b)− a2q(2− 2g)− b2(2− 2g)− 2ab#X(Fq).
In other words, we have a semipositive quadratic form in a and b represented by the matrix(

q(2g − 1) 2(q + 1)− 2ab#X(Fq)
2(q + 1)− 2ab#X(Fq) (2g − 1)

)
;

by Sylvester’s criterion, semipositivity implies
q(2g − 1)2

4 − (q + 1−#X(Fq))2 ≥ 0,

giving a bound as in Lemma 5.5 and thus completing the proof.

6. RH for abelian varieties (October 16)

In this lecture, we discuss Weil’s first proof of the Riemann hypothesis for curves, and the Weil conjectures
for abelian varieties.

Readings 6.1. We follow the presentation of Weil’s proof given in [87]. For background on abelian varieties,
see [91].

We begin by discussing Weil’s construction of the Jacobian of a curve.

Definition 6.2. Let X be a smooth, projective, geometrically irreducible curve of genus g. Consider the
symmetric product SymgX. We want to obtain an abelian variety from the symmetric product. One
begins by fixing a point on SymgX and constructing rational maps m : SymgX × SymgX 99K SymgX and
i : SymgX 99K SymgX, which serve as a birational multiplication law and inverse law, respectively. Weil
proved that any such set up as above is birational to a genuine group variety, the Jacobian Jac(X). The
construction of the multiplication law above, for example, comes from Riemann-Roch. A more modern way
to view Jacobians is as the moduli space of degree 0 line bundles on a curve (as discussed in a previous
lecture).

We want to study the action of Frobenius on the Jacobian. It makes sense to more generally discuss
endomorphisms on abelian varieties. We will want to study the action of Frobenius, or more generally any
endomorphism, on the Tate module of an abelian variety.

Definition 6.3. Let A be an abelian variety over a field k. Let ` be a prime nonzero in k. The `-adic Tate
module T`(A) is defined as

T`(A) := lim←−A(k)[`n].
The rational `-adic Tate module V`(A) is the base extension T`(A)⊗Z` Q`.

The Tate module is a free rank-2g module over the `-adic integers Z` (this will follow from Example 6.8
below), and it comes equipped with an action of the absolute Galois group of k. It records information about
endomorphisms faithfully, in the following sense.

Theorem 6.4. For any abelian varieties A and B over a field k, and any prime ` nonzero in k, the map
Z` ⊗Z Hom(A,B)→ HomZ`(T`(A), T`(B))

is injective. In particular, Hom(A,B) is a finite Z-module.
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Proof. See [91, §18, Theorem 3]. �

For α ∈ End(A), the characteristic polynomial of α acting on the Tate module T`(A) is of degree 2g as a
polynomial over Z`.

Corollary 6.5. The minimal and characteristic polynomials of α on T`(A) are defined over Z.

Proof. By the Cayley-Hamilton theorem, the minimal polynomial of α kills α in Z` ⊗Z End(A). From the
injection

End(A) ↪→ Z` ⊗ End(A),
one sees that the linear dependence relation between 1, α, . . . , α2g−1 coming from the Cayley-Hamilton theo-
rem provides a linear dependence relation in End(A). Because End(A) is a finite free Z-module, the minimal
polynomial and characteristic polynomial of α on the Tate module T`(A) are both actually polynomials
defined over the integers. �

We will now use this result to obtain information about the number of rational points on an abelian
variety over a finite field.

Definition 6.6. Let A be an abelian variety over a finite field k = Fq, and let F : A→ A be the Frobenius
endomorphism over Fq. Then one can see easily that A(k) = A[1− F ], where the notation A[α] denotes the
kernel of the endomorphism α (the key point is that A[1−F ] is reduced, which is an easy local calculation).

Hence to count A(k), we want to understand the kernel of 1− F . We do this using the degree function.

Definition 6.7. Let L be a symmetric ample line bundle on A. The degree map deg : End(A)→ Q is given
by the formula

α 7→ c1(α∗L)g/c1(L)g,
where c1 denotes the first Chern class.

If α is an endomorphism with finite kernel (i.e., an isogeny from A to itself), then α defines a finite
morphism A→ A, and the degree of this morphism is the same as the quantity deg(α) defined above. It is
also equal to the k-length of the scheme-theoretic kernel A[α], which agrees with the number of geometric
points of the kernel if α is separable. (For example, α = 1− F is always separable.)

On the other hand, if α does not have finite kernel, then from dimensional considerations one may see
that deg(α) = 0.

Example 6.8. For any positive integer n, using the theorem of the cube we may see that [n]∗L ∼= Ln
2 .

Therefore deg([n]) = n2g.

Proposition 6.9. The degree map on End(A)Q is a polynomial of degree 2g.

Proof. As in Example 6.8, we see that deg(nα) = n2g deg(α) for any α ∈ End(A)Q. Hence to prove that
deg is a polynomial of degree 2g, it will suffice to show that for any fixed α, β ∈ End(A), deg(α + nβ) is a
polynomial in n of degree at most 2g. This again can be deduced using the theorem of the cube; we omit
the details. �

Proposition 6.10. For α ∈ End(A), the determinant of α acting on T`(A) is equal to deg(A).

Proof. We now know that both quantities are polynomials of degree 2g on End(A). To compare them, we
first examine what happens on `-power torsion to see that

|det(α, T`(A))|` = |deg(α)|` (α ∈ End(A)).

In particular, for any fixed α ∈ End(A),

|det(F (α), T`(A))|` = |deg(F (α))|` (F ∈ Z[T ]).

By an elementary argument (see the supplemental exercises), this is enough to deduce that det(α, T`A) =
deg(α). �
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In particular, #A(Fqn) = (1 − rn1 ) . . . (1 − rn2g) where r1, . . . , r2g are the roots of the characteristic poly-
nomial of Frobenius acting on T`(A) for any `. It follows (see Set 3 exercises) that Z(A, T ) is of the form

P1(T ) . . . P2g−1(T )
P0(T ) . . . P2g(T ) ,

where P1(T ) = (1− r1T ) . . . (1− r2gT ) and Pi(T ) = ∧iP1(T ).

Example 6.11. If A is the product of the abelian varieties A1 and A2, then #A(Fqn) = #A1(Fqn)#A2(Fqn)
for all n. From this, it follows that the polynomial P1 for A is the product of the polynomials P1 for A1 and
A2.

Remark 6.12. From the interpretation of #A(Fqn) as deg(1−Fn), we see that it is invariant under isogeny,
as then is the whole zeta function. Beware however that the structure of the abelian group A(Fqn) is not an
isogeny invariant.

This leaves the matter of the Riemann hypothesis. As in Weil’s second proof of the Riemann hypothesis
for curves, the key is a positivity assertion, here given in terms of the Rosati involution.

Definition 6.13. Let λ : A → A∨ be an isogeny induced by a polarization of A, and define End(A)Q :=
End(A)⊗Z Q. The Rosati involution is the map † : End(A)Q → End(A)Q given by

α 7→ λ−1 ◦ α∨ ◦ λ := α†.

Theorem 6.14. The pairing (α, β) = Trace(α ◦ β†) : End(A)Q × End(A)Q → Q is positive definite.

Proof. For L an ample line bundle defining the polarization, we obtain

Trace(α ◦ α†) = 2g
Lg

(Lg−1 · α∗L).

This number is positive for α 6= 0 because L is ample. �

Theorem 6.15. The analogue of the Riemann hypothesis holds for abelian varieties over k.

Proof. Let F : A → A again be the Frobenius endomorphism of an abelian variety A over k = Fq. Using
the Weil pairing (or a more direct calculation), one may calculate that F † ◦ F = [q]. In particular the ring
Q[F ] ⊂ End(A) is stable under †, and hence must be semisimple. Hence Q[F ]⊗QR must also be semisimple,
meaning that it is a product of copies of R and C; the action of † extends to Q[F ] ⊗Q R and (in order to
obey positivity) must fix each copy of R and conjugate each copy of C. Each eigenvalue r of C appears as
the image of F in one of the factors, and the image of F † in the same factor is r; hence

∣∣r2
∣∣ = q. �

As a corollary, we may now recover the Riemann hypothesis for a curve over k, by applying the previous
theorem to its Jacobian.

Remark 6.16. Alternatively, one can go the other way and deduce the Riemann hypothesis for abelian
varieties from the corresponding statement for curves. This seems not obvious at first, because an arbitrary
abelian variety A over k is not isomorphic, or even isogenous, to a Jacobian. However, if we take X to be a
transverse intersection of dim(A) − 1 ample divisors (see the next remark), then Jac(X) maps surjectively
onto A, and is in fact isogenous to the product of A with the kernel A′ of the map. As per Example 6.11,
the polynomial P1 for Jac(X) factors as the product of the P1 polynomials for A and A′, so the Riemann
hypothesis for X does imply the Riemann hypothesis for A.

Remark 6.17. In the previous remark, it is not immediately obvious that a transverse intersection exists
because we are working over a finite field; the assertion of the Bertini smoothness theorem that a “generic”
intersection is transverse is of no value. However, one may apply Bertini over k and then just make a suitable
base extension; the latter does not affect the proof of the Riemann hypothesis. Alternatively, one can find
such an intersection defined over k by using a probabilistic adaptation of the Bertini smoothness theorem to
finite fields given by Poonen [93], or more directly a further adaptation by Bucur–Kedlaya [17] that directly
address complete intersections rather than single hypersurface sections. The latter can be used to give a
good bound on the genus of the curve X in terms of the dimension of A; see [13].
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7. Inverse problems for zeta functions (October 21)

Note that for any fixed g and q, the Weil conjectures imply that there are only finitely many rational
functions that can occur as the zeta function of a curve of genus g over Fq, or of an abelian variety of
dimension g over Fq. (See supplemental exercises.)

In this lecture, we discuss the “inverse problems” of which zeta functions actually occur. One can give a
relatively complete answer for abelian varieties; for curves this is much more subtle.

Readings 7.1. Our presentation of the Honda-Tate theorem follows [110]. For a discussion of numbers of
points on curves over finite fields extending Remark 7.13, see [109].

Definition 7.2. To alleviate confusion, let us fix a bit of terminology here. Let A be an abelian variety over
a finite field k, and let F : A→ A be the Frobenius map. We refer to the characteristic polynomial det(T −
F, T`(A)) of F (for any prime ` nonzero in k) as the Weil polynomial of A, and the reverse characteristic
polynomial det(1 − FT, T`(A)) as the L-polynomial of A. The latter coincides with the factor P1(A, T ) of
the zeta function Z(A, T ).

Definition 7.3. An isogeny of abelian varieties A1, A2 over a field k is a finite k-linear morphism f : A1 → A2
which is a homomorphism of group varieties. Any such morphism is surjective with finite (scheme-theoretic)
kernel.

For any prime ` nonzero in k, the induced map T`(A1) → T`(A2) is itself an isogeny (it becomes an
isomorphism after inverting `). As we observed earlier, this implies that the characteristic polynomials of
Frobenius of isogenous abelian varieties over a finite field coincide. Amazingly, this result has a converse;
see Theorem 7.5 below.

Before stating the converse, we state (without further discussion) the key result that goes into its proof.

Theorem 7.4 (Tate). Let A1, A2 be abelian varieties over a finite field k = Fq. Let ` be a prime nonzero
in k. Then the map

Z` ⊗Z Hom(A1, A2)→ HomZ`(T`(A1), T`(A2))
from Theorem 6.4 (which is injective without any condition on k) becomes a bijection if we restrict to Gk-
equivariant maps on the right-hand side.

Proof. See [110, Theorem 6]. �

Theorem 7.5 (Tate). Let A1, A2 be abelian varieties over a finite field k = Fq. Then the following conditions
are equivalent.

(1) A1 and A2 are isogenous.
(2) The Weil polynomials of A1, A2 coincide.
(3) The L-polynomials of A1, A2 coincide.
(4) For each positive integer n, #A1(Fqn) = #A2(Fqn). (As noted earlier, this does not guarantee that

the groups A1(Fqn) and A2(Fqn) are in fact isomorphic.

Proof. The only issue is to prove that if the L-polynomials coincide, thenA1 andA2 are isogenous. Recall that
the action of Frobenius on T`(Ai)⊗ZQ is semisimple, and so is determined up to isomorphism by its charac-
teristic polynomial. Consequently, HomZ`[Gk](T`(A1), T`(A2)) contains a map of full rank; by Tate’s theorem,
Hom(A1, A2) must do so also. (For example, if we start with an element of HomZ`[Gk](T`(A1), T`(A2)) of
full rank, any sufficiently close `-adic approximation contained in Hom(A1, A2) will have full rank over Z`,
hence also over Z.) �

Remark 7.6. When Theorem 7.5 implies the existence of an isogeny, it does not give much useful information
about how to find the isogeny, or what its degree might be. Indeed, finding an explicit isogeny (or one of
a specific form) is a sufficiently (apparently) hard computational problem that it has been proposed as the
basis of cryptographic protocols; see for example [38].

Remark 7.7. It is not immediately obvious why Theorem 7.4 should depend on k being finite. Tate’s proof
ultimately comes down to the fact that there are only finitely many isomorphism classes of abelian varieties
of a given dimension over a fixed finite field.
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One can hope to prove a similar theorem for other base fields using more refined finiteness statements.
Indeed, one such statement (which takes into account primes of bad reduction) was proved by Faltings, giving
his isogeny theorem which extends Theorem 7.4 to the case where k is a number field (see Theorem 9.16).
This in turn yields an analogue of Theorem 7.5 asserting that two abelian varieties over a number field are
isogenous if and only if their L-functions coincide.

At this point, we know that abelian varieties over a finite field are characterized up to isogeny by their
Weil polynomials or their L-polynomials. We next formulate the Honda-Tate theorem which pins down
exactly which polynomials can occur. This theorem almost says that every polynomial consistent with the
Weil conjectures occurs, but not quite: there are some multiplicity conditions that have to be enforced also.

Theorem 7.8 (Honda-Tate theorem, part 1). Fix a positive integer g and a prime power q. Then for every
irreducible polynomial P (T ) ∈ Z[T ] such that:

(i) P (0) = 1;
(ii) deg(P ) = 2g;
(iii) P ( 1

qT ) = q−gT−2gP (T );
(iv) all roots of P in C have absolute value q−1/2;

there exist a positive integer e and a simple abelian variety A such that P1(A, T ) = P (T )e.

The integer e is determined by the rational endomorphism algebra of A, which can itself be described
explicitly in terms of P .

Theorem 7.9 (Honda-Tate theorem, part 2). With notation as in Theorem 7.8, E := End(A)Q is a central
simple algebra of degree e over Φ = Q(πA), where π−1

A is a root of P . The invariant of E at a place v of Φ
is given by 

1
2 if v is real
[Φv : Qp] ordv(πA)

ordv(q) if v lies over p
0 otherwise.

Note that e is then the least common denominator of the local invariants.

Corollary 7.10. If the coefficient of T g in P is nonzero modulo p, then e = 1. (This corresponds to the
case of an ordinary abelian variety.)

Remark 7.11. We limit ourselves to a few words about the proof of Theorem 7.8. The construction starts
by using analytic methods to construct a complex torus whose endomorphism ring contains Z[πA]. One then
introduces a polarization to give this torus the structure of an abelian variety over C. Since abelian varieties
with complex multiplication occur as isolated points in moduli, they are forced to descend to some number
field. Reducing modulo a suitable prime, we then get the desired abelian variety except that it might be
defined not over Fq but over a finite extension. Finally, we use Tate’s theorem to descend down to Fq.

It is possible to supplant the use of complex analysis with more arithmetic methods; see [19]. However,
the use of characteristic 0 methods to prove this statement, which is formulated exclusively in positive
characteristic, remains unavoidable with current techniques.

Remark 7.12. Using the Honda-Tate theorem, one can tabulate isogeny classes of abelian varieties of
dimension g over Fq for small values of g and q. This has been done in the LMFDB [80], using Sage to
enumerate Weil polynomials. The theory behind this enumeration is described in [69] and [72].

Remark 7.13. The constraint imposed by the Honda-Tate theorem may be restricted to Jacobians, so it also
implies a nontrivial restriction on the zeta function of a curve of genus g over Fq. However, for dimensional
reasons there are expected to be many fewer zeta functions of curves than zeta function of abelian varieties
(once g is large enough), so it is natural to look for other constraints on zeta functions that are exclusive to
curves.

One important set of constraints arises from positivity conditions. For any curve X over Fq (or indeed
any algebraic variety at all), the following conditions obviously hold.

(1) We have #X(Fq) ≥ 0.
(2) For all positive integers m and n, #X(Fqnm) ≥ #X(Fqm).
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These conditions impose certain “linear programming” constraints which have unexpectedly strong conse-
quences. For example, suppose we want to know the maximum value of #X(Fq) for X a curve of a given
genus g. This question is more than theoretical in light of the Goppa construction: one can construct in-
teresting error-correcting codes by fixing a rational point ∞ and a positive integer d, and considering the
vectors

{(f(x)x∈X(Fq)\{∞} : f ∈ K(X),div(f) + d∞ ≥ 0}.
The corrective capacity of this code is limited by g (thanks to Riemann-Roch), so the quality of the code
depends on #X(Fq) being large relative to g.

Much is known about optimizing #X(Fq) for fixed q, g; see https://manypoints.org. However, let us
consider instead the asymptotic situation where q is fixed and g → ∞. For fixed q, the Weil conjectures
imply

lim sup
g→∞

#X(Fq)
g

≤ 2√q

but Ihara [60] discovered this is not best possible; Drinfeld-Vlădut, [36] improved the upper bound to √q−1.
In the other direction, it is known that the bound √q− 1 is best possible when q is a square. For q not a

square, it is known that

lim sup
g→∞

#X(Fq)
g

≥ c(q) > 0

but the optimal value is unknown.

We end with one concrete result with a curious history: the class number 1 problem for function fields.

Theorem 7.14. There are exactly 8 isomorphism classes of curves of any genus g over any finite field Fq
for which Jac(X)(Fq) = 1. The pairs (g, q) that occur are

(1, 2), (1, 3), (1, 4), (2, 2), (2, 2), (3, 2), (3, 2), (4, 2).

Proof. It was originally “proved” by Leitzel–Madan–Queen [77] that there are only 7 such isomorphism
classes, with the case (g, q) = (4, 2) omitted; the list of these had previously been obtained by Madan–Queen
[82]. Much later, it was discovered by Stirpe [102] that the case (g, q) = (4, 2) actually does occur. The
completeness of the list as given above is due independently to Mercuri–Stirpe [84] and Shen–Shi [99]. �

8. The Lang-Weil estimate (October 23)

In this lecture, we discuss the Lang-Weil theorem, which uses the Riemann hypothesis for curves to give
a partial result towards the Weil conjectures for higher-dimensional varieties.

Readings 8.1. We follow the original presentation of Lang–Weil [75].

Our first statement of the Lang-Weil theorem is the following.

Theorem 8.2 (Lang-Weil 1). Let X be a scheme of finite type over Fq of dimension n. Let c be the number
of irreducible components of X of dimension n which are also geometrically irreducible. Then we have the
estimate

#X(Fq) = c · qn +O(qn− 1
2 )

where the constant for the big-O notation depends only on the geometry of XFq .

Proof. We induction on the dimension of n, the case n = 0 being straightforward (and the source of the
constant c). For n > 0, choose a projection map X → S from X onto a scheme S of dimension n− 1, such
that X and S have the same value of c. We may then compute #X(Fq) by summing over the fibers of the
map over Fq-points. By the induction hypothesis, the number of summands is cqn−1 + Q(qn−3/2); by the
Weil conjectures for curves, the number of points on each fiber is q +O(q1/2) where the implied constant in
the big-O notation can be bounded in terms of the geometry of the projection map. This yields the desired
estimate. �

Here we illustrate by an example that c should count only geometrically irreducible components.
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Example 8.3. Let X := V (x2 + y2) ⊂ A2
Fq , for a prime power q such that q ≡ 3 (mod 4). By the quadratic

residue criterion for -1,

#X(Fqk) =
{

1 k odd
2qk − 1 k even.

Note that XF
qk

has only one irreducible component for odd k, but this component is not geometrically
irreducible because it splits after a base change. Hence c = 0 for this case which coincides with the above
calculation. If k is even, then XF

qk
is a disjoint union of two geometrically irreducible points, hence c = 2

which also agrees with the calculation.

Here is a more precise version of the theorem, whose proof we omit.

Theorem 8.4 (Lang-Weil 2). Let X be a geometrically irreducible projective variety of dimension n admitting
an embedding X ↪→ Pm of degree d. Then we have the following inequality∣∣#X(Fq)− qn

∣∣ ≤ 2
(
d− 1

2

)
qn−

1
2 +A(n,m, d)qn−1

where A(n,m, d) is a constant dependent only on n,m, d.

Remark 8.5. The shape of the estimate in Lang-Weil is in some sense best possible: the exponent of q in
the error term cannot be reduced. For example, if X = C ×Fq An−1, then the error term for #X(Fq) comes
from the error term for #C(Fq), and this can certainly be as large as O(q1/2) (e.g., for elliptic curves).

On the other hand, under additional hypotheses one can hope for a better error estimate. For example,
Let X be a smooth hypersurface in Pn over Fq. Then using the Weil conjectures plus some additional
knowledge (the hard Lefschetz theorem in Weil cohomology; see Theorem 9.14 for the étale version), one can
show that

#X(Fq) = #Pn−1(Fq) +O(q
n−1

2 )

where the first term is coming from the geometry of the ambient space and the second term is from the
interesting middle cohomology Hn−1(X).

As an intermediate case, consider what happens if we drop the smoothness hypothesis. Then the exponent
in the error term is O(q(n+d−2)/2) where d is the dimension of the singular locus Xsing (or −1 if Xsing = ∅).

All of these results can be made with completely explicit error terms. See [46].

9. Étale cohomology as a black box (October 28)

In this lecture, we give a “black box” description of étale cohomology for varieties over finite fields and
number fields. This will be our first example of a Weil cohomology theory.

Readings 9.1. We make no attempt here to explain how étale cohomology is constructed. Introductory
sources for that include Freitag–Kiehl [44], Milne [86], Tamme [104].

Definition 9.2. Let K be a number field. Let X be a smooth projective K-scheme. Then for any prime
number `, we get a collection of finite-dimensional Q`-vector spaces Hi

et(XK ,Q`), each with a continuous
GK-action. The GK-action comes from the fact that we first base-extend X from K to K before taking
cohomology. (Since K is of characteristic 0, there is no restriction on ` right now.)

Similarly, suppose that X is a smooth projective k-scheme where k is a finite field. Then for any prime
number `, we get a collection of finite-dimensional Q`-vector spaces Hi

et(Xk,Q`), each with a continuous
Gk-action. However, the case where ` equals the characteristic of k is anomalous and is not considered a
Weil cohomology theory. (We will describe a replacement later.)

Example 9.3. For X = A an abelian variety over K, H1
et(XK ,Q`) = V`(A)∗ = HomQ`(V`(A),Q`(1)) where

Q`(1) = V`(Gm). That is, Q`(1) is a one-dimensional vector space over Q` with the Galois action given by
the `-adic cyclotomic character. For i > 1, Hi(XK ,Q`) = ∧iQ`H

1(XK ,Q`).
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Theorem 9.4 (Lefschetz trace formula). Let X be a smooth projective scheme over a finite field k. Then
for any prime ` nonzero in k,

#X(Fq) =
2 dim(X)∑
i=0

(−1)i Trace(F,Hi
et(Xk,Q`)).

Consequently,

Z(X,T ) =
2 dim(X)∏
i=0

det(1− FT,Hi
et(Xk,Q`))

(−1)1+i
.

Let us inspect more closely the relationship between the constructions over K and over k.

Definition 9.5. Let p be a maximal ideal of OK with residue field κ(p). By choosing a place of K above p,
we obtain an inclusion K ⊂ Kp and a corresponding inclusion GKp

⊂ GK .
Taking GKp

apart further, we have an exact sequence

1→ Ip → GKp
→ Gκ(p) → 1,

where Ip is the inertia group, and a tower of field extensions:

Kp∣∣∣∣Ip
Kunr

p∣∣∣∣Gκ(p)

Kp.

We say that a representation of GKp
is unramified if it restricts trivially to Ip, which is to say that it factors

through Gκ(p). A representation of GK is unramified at p if its restriction to GKp
is unramified.

The following is a form of the proper base change theorem.

Proposition 9.6. Suppose that X is a smooth projective scheme over the local ring (OK)p. Then for any
prime ` nonzero in κ(p), there is a natural isomorphism

Hi
et(XK ,Q`)|GKp

∼= Hi
et(Xκ(p),Q`)|Gκ(p)

which is equivariant for the actions of GKp
on both sides (the latter via GKp

� Gκ(p)). In particular, the
action of GK on Hi

et(XK ,Q`) is unramified at p.

In other words, if X is a smooth projective K-scheme with good reduction at a prime ideal p, the action
of GK on its étale cohomology is unramified at p - `.

Remark 9.7. In general, if X has good reduction at p, meaning that it extends in some way to a smooth
proper scheme over (OK)p, then this extension is not guaranteed to be unique up to isomorphism. It is
unique if dim(X) = 1, and in some isolated cases of higher dimension (e.g., when X is an abelian variety);
but in general, when dim(X) ≥ 2 there can be multiple lifts which differ by a birational transformation.
(Note that the lifts will have dimension ≥ 3, so constructions like flips become relevant.)

In particular, the reduction modulo p is not uniquely determined by X. However, its zeta function is
independent of choices by Proposition 9.9 below.

In the good reduction case, we may transfer the statement of the Lefschetz trace formula to an assertion
about the GK-action on étale cohomology.

Definition 9.8. We denote by Frobp any element of GK which belongs to GKp
and projects to the inverse

of the Frobenius element of Gκ(p). Such an element of GK is called a geometric Frobenius element at p; the
inverse of such an element is called an arithmetic Frobenius element at p.
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Proposition 9.9. With notation as in Proposition 9.6,

Z(Xκ(p), T ) =
2 dim(XK)∏

i=0
det(1− Frobp T,H

i
et(XK ,Q`))

(−1)1+i
.

Remark 9.10. The case where p divides ` behaves differently; in that case, even if X has good reduction
at p, the action of GK on `-adic étale cohomology will not in general be unramified at p. For example, this
is already true for P1 with i = 2.

Based on ideas of Tate, Fontaine managed to define a condition on p-adic Galois representations which is
satisfied by étale cohomology in this context but “usually” fails for other representations; this is called the
crystalline condition. Its study is part of the subject of p-adic Hodge theory, which we will not pursue here.

Remark 9.11. The case where the action of GK is ramified at p, but p does not divide `, is also different. In
this case, there is no well-defined action of Frobp on all of Hi

et(XK ,Q`), only on the subspace invariant under
the action of Ip. The resulting action can be used to predict “missing” Euler factors needed to complete the
L-function to achieve its functional equation (in addition to factors corresponding to infinite places, as in
the case of Dedekind zeta functions).

However, these can be somewhat difficult to compute in practice. For elliptic curves, the relevant compu-
tation is Tate’s algorithm, which is somewhat of a nuisance to implement from scratch (but is fortunately
implemented in many existing software packages). The corresponding algorithm for curves of genus 2 has
been worked out, but is even more complicated. Beyond that, few general results are known, except in a few
special cases like cyclic covers of P1 [11] (but see [34] for some recent progress on general curves).

For empirical purposes (i.e., where a rigorous proof is not required), one can sometimes short-circuit this
issue by guessing a value for the missing Euler factors and then verifying numerically (by contour integration)
that the resulting L-function appears to satisfy the correct functional equation. A more extreme version of
this is [41], in which L-functions are detected by guessing all of their Euler factors up to some bound.

We now ask whether Proposition 9.6 has a converse. That is, if X is a smooth projective K-scheme and
the action of GK on Hi

et(XK ,Q`) is unramified at p - `, does X have good reduction at p?
For abelian varieties, such a converse does hold.

Theorem 9.12 (Néron–Ogg–Shafarevich criterion). Let X be an abelian variety over K. For p a prime
ideal of OK and ` a prime not equal to the characteristic of κ(p), X has good reduction at p if and only if
the action of GK on Hi

et(XK ,Q`) is unramified at p. (Note that on account of Example 9.3, it suffices to
check the case i = 1.)

Proof. See Serre-Tate [98]. �

Remark 9.13. For general X, there is no converse of Proposition 9.6. For example, if X is a curve of genus
2, then Hi

et(XK ,Q`) is unramified at p if and only if the same is true with X replaced by its Jacobian (as this
does not change H1

et). However, it is possible for the Jacobian of X to degenerate to a product of two elliptic
curves (with the product polarization), which obstructs X itself from having good reduction (as otherwise
taking the reduction would commute with taking the Jacobian, whereas the product of two elliptic curves
cannot be a Jacobian).

One way to fix this is to consider “nonabelian étale cohomology”. Roughly speaking, this means that étale
cohomology arises from some sort of abelianization process on homotopy groups, which we replace with a
less drastic quotienting operation.

We mention another key property of étale cohomology which was mentioned previously in our analysis of
the Lang-Weil theorem (see Remark 8.5): the hard Lefschetz theorem.

Theorem 9.14 (hard Lefschetz theorem). Let X be a smooth projective scheme over K of dimension n.
Let Y/K be a smooth ample hypersurface in X. Then the functoriality map

Hi
et(XK ,Q`) −→ Hi

et(YK ,Q`)
(1) is GK-equivariant,
(2) is an isomorphism for i < n− 1,
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(3) and is injective for i = n− 1.

Example 9.15. For X = Pn,

Hi
et(XK ,Q`) =

{0 i odd
Q`(i/2) i even

For Y a smooth ample hypersurface in X, using hard Lefschetz (and Poincaré duality) one sees that
Hi

et(YK ,Q`) ∼= Hi
et(XK ,Q`) in all degrees except i = n− 1 (the middle cohomology degree for Y ).

As discussed earlier (Remark 7.7), Tate’s theorem on isogenies of abelian varieties over finite fields (The-
orem 7.4) extends to number fields. However, the proof of this theorem is outside the scope even of our
suggested readings; see instead [22].

Theorem 9.16 (Faltings isogeny theorem). Let A1, A2 be abelian varieties over a number field K. For any
prime `,

Hom(A1, A2)⊗Z Z` ∼= HomZ`[GK ](T`(A1), T`(A2)).

As for Tate’s theorem, this has the following corollary.

Corollary 9.17. Let A1, A2 be abelian varieties over a number field K. Then A1 and A2 are isogenous if
and only if V`(A1) ∼= V`(A2) as Q`[GK ]-modules.

To make this look more like Tate’s corollary, we must do a bit more group theory.

Proposition 9.18. Fix a finite set S of primes of the number field K, and let GK,S be the Galois group of
the maximal algebraic extension of K unramified away from S. Let

ρ1 : GK,S −→ GLn(Q`), ρ2 : GK,S −→ GLn(Q`)

be two continuous representations with the property that

Trace(Frobp,Qn` ) = Trace(Frobp,Qn` ),

for every p /∈ S. Then ρ1 and ρ2 are isomorphic up to semisimplification (that is, their irreducible constituents
can be matched up).

Proof. By the Chebotarëv density theorem, the elements {Frobp} are dense in GK (see Set 4 exercises); so the
equality of traces holds identically on GK,S . By the Brauer-Nesbitt theorem, two representations (on vector
spaces over a field of characteristic 0) whose traces agree everywhere must have the same simplification. �

Corollary 9.19. Let A1, A2 be abelian varieties over a number field K. Then A1 and A2 are isogenous if
and only if Trace(Frobp, T`(A1)) = Trace(Frobp, T`(A2)) for all but finitely many prime ideals p of OK .

This sort of condition does not appears to be finitely verifiable, but in fact it is. We will discuss this point
in the next lecture.

10. Comparing Galois representations: the Faltings–Serre method (October 30)

In the last lecture, we formulated Proposition 9.18, which asserts that two continuous `-adic represen-
tations of GK,S (for K a number field and S a finite set of primes) are equal up to semisimplification if
and only if their Frobenius traces coincide for all but finitely many primes. In this lecture, we discuss the
Faltings–Serre method which makes it psosible to verify this sort of equality by a finite computation. This
turns out to have numerous applications, which do not depend on computing with étale cohomology in any
direct way.

Readings 10.1. The Faltings–Serre method has been codified for GL2 by Livné [79]. See [15] for an
extension to larger groups plus some practical improvements.

Before proceeding, let us discuss an example where such a comparison of representations comes up natu-
rally: the modularity of elliptic curves, which had been conjectured in various forms by Taniyama, Shimura,
and Weil.
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Theorem 10.2 (Modularity of rational elliptic curves). Let E be an elliptic curve over Q. Then there
exists a modular form f (more precisely, a cuspidal weight 2 newform for the group Γ0(N) where N is the
conductor of E) such that for every prime p at which E has good reduction (i.e., every prime not dividing
N), the trace of Frobenius on E/Fp equals the Fourier coefficient ap(f).
Proof. In the case where E is semistable (i.e., the conductor N is squarefree), this is part of the work of
Wiles [116] and Taylor–Wiles [107] that completed the proof of Fermat’s last theorem. The general case was
resolved (based on the aforementioned papers and several intermediate results) by Breuil–Conrad–Diamond–
Taylor [12]. �

Remark 10.3. Before Theorem 10.2 was proved in the 1990s, it had been verified in numerous examples,
most conclusively by Cremona [26]. This relied on the older Eichler-Shimura theorem, which implies that
for any f as in the theorem, there exists an elliptic curve Ef for which the desired conclusion holds.

Now suppose in that context, one had in mind a particular elliptic curve E for which one wanted to
confirm the statement of the theorem. Since the conjecture includes a prediction for the level of the newform
in terms of E, and the newforms for a given level form a computable (via Manin’s method of modular
symbols) finite-dimensional vector space, one could then do the finite computation to find all candidates for
f , and quickly isolate a unique candidate with the first few Fourier coefficients correct.

However, this would not suffice to prove that E and Ef are isogenous: applying Corollary 9.19 would
require an infinite number of equalities, which cannot a priori be established via a finite computation.
Instead, one applies some form of the Faltings–Serre method as described below to conclude.
Remark 10.4. It should be emphasized that the Faltings-Serre method cannot be used to prove that an
“abstract” infinite list of numbers matches the list of Frobenius traces of a given Galois representation; one
must know that the first list itself comes from a Galois representation with some control on the ramified
primes. Besides the control on ramification, we need no other information other than the ability to compute
entries of both lists on demand.

For example, in the case of elliptic curves, it would not have been possible to rigorously establish modular-
ity of a given elliptic curve E without knowledge of the existence of the other elliptic curve Ef produced from
f via Eichler-Shimura. However, it is not necessary to know anything more about Ef beyond its existence,
its ramified primes (or even just an upper bound on this set), and its Frobenius traces.
Remark 10.5. Let us now break down how to reduce a comparison of infinitely many Frobenius traces, as
in Proposition 9.18, to a finite computation. This splits into two main steps.

(1) This is the hard step. We know that these representations can be factored through GLn(Z`) (they
are representations of compact groups into Hausdorff targets, so they have closed image), so we
would like to see these two representations with images in GLn(F`) have the same semisimplification
(and in particular, the Frobenius traces are pairwise congruent modulo `). To check that, we try to
identify the two kernels and comparing them; this involves enumerating number fields with prescribed
ramification.

(2) Use a group-theoretic argument to promote the mod-` equality to an `-adic equality. This turns out
to be much easier since it doesn’t depend on the set S; it is a matter of pure group theory.

The difficulty of both steps scales badly with `, so generally one takes ` = 2 in practice. (Fortunately, there
is no requirement that the representations in question have good reduction at primes above 2.)

To settle the first step, we use the following basic theorem of algebraic number theory.
Theorem 10.6 (Hermite-Minkowski). Given a number field K, an integer d ∈ Z+, and a finite set of finite
primes S of OK , there are only finitely many isomorphism classes of number fields L/K which are unramified
away from S and satisfy [L : K] = d. Moreover, this list is effectively computable.
Proof. One may reduce to the case K = Q. In this case, one can bound the contribution of each prime in S
to the discriminant to get a bound on the absolute discriminant of L, and then use a geometry of numbers
argument (Minkowski’s theorem) to limit the possibilities for L to a finite set. �

In particular, there are finitely many homomorphisms GK,S → GLn(F`) and (in principle!) one can
compute them all, and then group them according to semisimplification. By Chebotarëv density, it takes
only finitely many Frobenius traces to rule out all but the right candidate.
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To achieve the second step (for ` = 2), we use the following theorem.

Definition 10.7. A subset T of a vector space V over a field (here F2) is noncubic if every homogeneous
polynomial of degree 3 which vanishes on T also vanishes on all of V .

Theorem 10.8 (Livné, after Serre). With notation as in Proposition 9.18, if the Frobenius traces of ρ1 and
ρ2 agree modulo 2 for all h ∈ GK (as evidenced by the first step) and agree “on the nose” for some finite set
T ⊆ GK whose image in Gab

K,S/2Gab
K,S is noncubic, then the traces agree for all h ∈ GK .

Remark 10.9. Note that if Gab
K,S/2Gab

K,S has dimension ≤ 2 over F2, then it is impossible for T to be
noncubic. This is easily fixed by adding extra primes to S.

Remark 10.10. The main practical difficulty in applying this method in practice is to make the enumeration
of homomorphisms GK,S → GLn(F`) efficient. There is a lot of work to be done in this direction; see for
example [15].

Remark 10.11. To conclude this lecture, we justify our claim that the Faltings-Serre method is useful in
practice by citing a few additional examples of its use in the literature.

• There is a conjectural analogue of the modularity theorem for elliptic curves over imaginary quadratic
fields, in which the role of classical modular forms is played by Bianchi forms. However, one must
consider not only elliptic curves, but also abelian surfaces with quaternionic multiplication (QM);
instances of modularity in this context have been exhibited by Dieulefait–Guerberoff–Pacetti [33] for
elliptic curves and Schembri [95] for QM abelian surfaces.

• Inspired by some examples arising in mirror symmetry in mathematical physics, numerous authors
have identified examples of Calabi-Yau threefolds whose Frobenius traces can be computed in terms
of modular forms. See [117] for a survey.

• There is a conjectural analogue of the modularity theorem for elliptic curves known as the paramod-
ularity conjecture of Brumer–Kramer [14]. This has been verified in a small number of cases [15].

11. Dwork’s proof of rationality (November 4)

In this lecture, we discuss Dwork’s proof of rationality of the zeta function for varieties over finite fields.
Dwork’s proof does not itself use a finite-dimensional cohomology theory on X, but it did inspire the
construction of p-adic Weil cohomology which we will see later.

Readings 11.1. The original paper of Dwork is [37]. An updated presentation of the proof was given by
Koblitz [73].

Theorem 11.2 (Dwork, 1958). For any scheme X of finite type over Fq, Z(X,T ) represents a rational
function of T .

The proof involves three key components.
• Some initial reduction steps to put the problem in a more convenient form.
• An extension of a theorem of Borel on power series.
• Use of p-adic analysis to check the hypothesis of Borel’s theorem.

We start with the reduction steps. Recall that if X splits as a disjoint union of an open subscheme U and
a closed subscheme S, then

Z(X,T ) = Z(U, T )Z(S, T ).
Similarly, if X is a union of two closed subschemes X1 and X2, then

Z(X,T ) = Z(X1, T )Z(X2, T )
Z(X1 ∩X2, T ) .

Using this logic (and induction on dimension), we may reduce to the case where X is affine and irreducible;
in fact, we can assume that X is contained not just in an affine space An, but in a torus Gnm.

We can even take this a bit further. Write X as the subscheme of Gnm cut out by some Laurent polynomials
(P1, . . . , Pn). Suppose that we know the rationality for the hypersurface cut out by any single (but not
necessarily irreducible) Laurent polynomial; we may then deduce the same conclusion for an intersection of
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k such hypersurfaces by induction on k. That is, we may assume from now on that X is the zero locus of a
(not necessarily irreducible) Laurent polynomial P ∈ k[x±1 , . . . , x±n ] in a torus Gnm.

We next turn to the Borel-Dwork theorem. It is motivated by a simple observation.

Lemma 11.3. Let f(T ) =
∑∞
n=0 anT

n ∈ ZJT K be a power series which over C has radius of convergence
strictly greater than 1. Then f(T ) ∈ Z[T ].

Proof. The root test implies lim supn→∞ a
1/n
n < 1. The only integer with absolute value less than 1 is zero,

giving the claim. �

In the setting of zeta functions we do not expect polynomials, and we don’t have much control over any
archimedean valuations, although we can at least prove that Z(X,T ) has some positive radius of convergence.

Lemma 11.4. As a power series over C, Z(X,T ) has radius of convergence at least q− dim(X).

Proof. Since we are assuming X is a toric hypersurface, it admits a finite morphism f : X → Gdm where
d = dim(X). Then

#X(Fqn) ≤ deg(f)#(qn − 1)d,
so the claim follows by an elementary calculation using the expression

Z(X,T ) = exp
(∑

#X(Fqn)T
n

n

)
.

�

To finesse this issue, we bring in the other places of Q. The statement
{x ∈ Z : |x| < 1} = {0}

has an analogue over Q in the form of the product formula for the valuations of Q:x ∈ Q :

 ∏
v a valuation of Q

|x|v

 6= 1

 = {0}.

This forms the basis of Dwork’s extension of Borel’s theorem.

Theorem 11.5 (Borel, 1894, extended by Dwork in 58). Suppose f(T ) ∈ ZJT K has radius of convergence
over C at least R and is meromorphic on Qp for |T | < r (that is, it is the ratio of two power series with
radius of convergence at least r, as measured by the root test). If R > r−1, then f(T ) represents a rational
function of T . Additionally, if f(T ) itself has radius of convergence over Qp at least r, f(T ) is a polynomial.

Proof. We give only an outline of the proof here; the details are filled in one of the Set 4 exercises. suppose
first that f(T ) has radius of convergence over Qp at least r. By the root test, we have

|an|∞ < Cε(R− ε)−n, |an|p < Cδ(r − δ)−n

and, since f(T ) ∈ ZJT K, |an|l ≤ 1 for any other valuation. In particular, for n� 0,∏
v a valuation of Q

|x|v <
CεCδ

(R− ε)n(r − δ)n < 1.

In particular, an = 0 for n sufficiently large, as desired.
In the general setting, write

f(T ) = g(T )
h(T )

with g(T ), h(T ) ∈ QpJT K having radius of convergence at least r. If h(T ) is a polynomial, we can clear
denominators and argue that the result is a polynomial. Otherwise, h(T ) can have only finitely many zeroes
in Qp with absolute value less than r−δ for any δ > 0. Thus on |T | < r−δ we can write h(T ) = pδ(T )uδ(T ),
with pδ(T ) ∈ Qp[T ] and uδ(T ) a unit in QpJT K. The idea then is to strip off pδ(T ) and apply the previous
observation to g(T )/uδ(T ), but in a way that is uniform as δ varies. See the Set 4 exercises for the remaining
details. �
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Remark 11.6. As an aside, the equality h(T ) = pδ(T )uδ(T ) in the above proof is governed by the Newton
polygon of h. Suppose h(T ) =

∑
anT

n is a polynomial with a0 = 1; then the Newton polygon of h is the
lower convex hull of the set {(i, vp(ai)}. See the following diagram for an example.

The main theorem is that if the Newton polygon has a segment of width w and slope s, then the original
polynomial has exactly w roots of p-adic valuation −s.

At this point, Dwork proceeds by emulating Weil’s analysis of Fermat hypersurfaces. Recall that we are
assuming that X = Spec k[x±1 , . . . , x±n ]/(P ) is a toric hypersurface. Write q = pa and let Θ be a nontrivial
additive character of Fp (we do not yet specify where Θ is valued), so that for any positive integer s,

Θas(x) = Θ(x1+p+···+pas−1
)

is a nontrivial additive character of Fqs . Then∑
x0∈Fqs

Θas(x0y) =
{
qs y = 0
0 y 6= 0;

consequently,
qs#X(Fqs) = (qs − 1)n +

∑
x0,...,xn∈F×qs

Θas(x0P (x1, . . . , xn)).

If we expand x0P as a sum
∑
j αjµj(x) with αj ∈ F×q and µj(x) a monomial in x0, . . . , xn, we also have

qs#X(Fqs) = (qs − 1)n +
∑

x0,...,xn∈F×qs

∏
j

Θas(αjµj(x)).

So far we have done nothing p-adic. We now make the key advance, expressing the character Θ in p-adic
terms.

Definition 11.7. Let Zq be the finite étale extension of Zp with residue field Fq. For x ∈ F×q , there is a
unique (q−1)-st root of unity in Zq congruent to x modulo p. We denote it by [x] and call it the Teichmüller
lift of x. We also write [0] = 0.

Form the product

(1 + Y )X(1 + Y p)(Xp−X)/p(1 + Y p
2
)(Xp

2
−Xp)/p2

· · · ∈ QJX,Y K

using binomial expansions, and label its coefficients as
∞∑
n=0

∞∑
m=n

am,nX
nY m.

Then pick a primitive p-th root of unity ζp in Qp, put λ = ζp − 1, and define

Θ(T ) =
∞∑
n=0

anT
n, =

∞∑
m=n

am,nλ
m.

As in [73, Chapter 4], one verifies that x 7→ Θ([x]) is a nontrivial additive character of Fp, so we may use it
in place of Θ(x) in the previous calculations.
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Remark 11.8. The power series Θ(T ) is not uniquely determined by the fact that it gives rise to an additive
character of Fp in this fashion; indeed, Dwork used a slightly different construction (see Set 4 exercises), but
this discrepancy has no significant effect on the resulting argument.

Now define the power series

G(X0, . . . , Xn) :=
∏
j

Θ([αj ]µj(X))Θ([αj ]pµj(X)p) · · ·Θ([αj ]p
a−1

µj(X)p
a−1

),

so that
qs#X(Fqs) = (qs − 1)n +

∑
x0,...,xn∈F×qs

∏
j

G([x])G([xq]) · · ·G([xq
s−1

]).

The sum can be written as the trace (for a suitable topology) of the operator f 7→ T (Gf) on QpJX0, . . . , XnK,
where T is the “decimation” map∑

ai0,...,inX
i0
0 · · ·X

in
0 7→

∑
api0,...,pinX

i0
0 · · ·X

in
0

(see [73, §V.3, Lemma 3]). Since this operator does not act on a finite-dimensional space, it does not
immediately give rationality of the zeta function; however, it does give p-adic meromorphicity, which is what
we need to plug into Borel’s theorem and complete the proof.

Remark 11.9. Notice that the key move here was indeed to use a trace formula, but on an infinite-
dimensional vector space. This construction can be promoted to give what is sometimes called Dwork
cohomology, which we do not treat as a Weil cohomology per se but is nonetheless extremely useful in the
study of zeta functions.

Remark 11.10. If one were to specialize this argument back to Fermat hypersurfaces, it would yield an
explicit p-adic analytic formula for Gauss sums. This was somehow missed by Dwork and his contemporaries,
only to be appear later as the Gross-Koblitz formula [53].

12. Algebraic de Rham cohomology (November 18)

In this lecture, we lay the groundwork for the introduction of a p-adic Weil cohomology theory, by
describing algebraic de Rham cohomology.

Readings 12.1. In preparation for the next lecture, we follow [68].

Definition 12.2. Let K be a field of characteristic 0. Let R be a K-algebra. Let us denote by ΩR/K the
module of Kähler differentials, i.e.

ΩR/K = free module on dr (r ∈ R)
〈dr (r ∈ K), d(r + s)− dr − ds, d(rs)− s dr − r ds〉 .

This admits a K-linear derivation d : R→ ΩR/K given by r 7→ dr and is universal in the sense that if M is
an R-module and δ : R→M is a K-linear derivation, then δ factors uniquely as

R→ ΩR/K →M

where the map on the right is R-linear and the map on the left is d.
Similarly, we define ΩX/K when X is a K-scheme.

Example 12.3. If R = K[t1, ..., tn], then ΩR/K = Rdt1⊕ · · · ⊕Rdtn with the universal derivation d taking
f to ∂f

∂t1
dt1 + · · ·+ ∂f

∂tn
dtn.

Remark 12.4. By the previous example, If R is a finite type K-algebra, then ΩR/K is a finite R-module.
When R is a smooth K-algebra of dimension n, then ΩR/K is finite and locally free of rank n. The converse
is also true by the Jacobian criterion. Similarly, if X is a scheme of finite type over K, ΩX/K is coherent; if
X is smooth over K, then ΩX/K is locally free.
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Definition 12.5. For i ≥ 1, we define ΩiR/K = ∧iRΩR/K . That is, ΩiR/K is the free R-module on symbols
ω1 ∧ · · · ∧ ωi with ωj ∈ ΩR/K , modulo relations of the form

(rω1 + r′ω′1) ∧ · · · ∧ ωi − r(ω1 ∧ · · · ∧ ωi)− r′(ω′1 ∧ · · · ∧ ωi)

(and similarly for each position) and ω1 ∧ · · · ∧ ωi whenever two of the ωj are equal (alternating condition).
The map d induces a map di : ΩiR/K → Ωi+1

R/K by

rω1 ∧ · · · ∧ ωi 7→ dr ∧ ω1 ∧ · · · ∧ ωi.

One checks that di+1 ◦ di = 0, so the ΩiR/K form a K-linear complex, called the de Rham complex of R/K.
Similarly, for X a scheme over K, we get a de Rham complex Ω•X/K .

Example 12.6. For R = K[t1, . . . , tn], Ω•R/K has cohomology

h0(Ω•R/K) = K and hi(Ω•R/K) = 0 for i > 0.

Definition 12.7. How do we make sense of the “cohomology” of Ω•X/K? The correct notion is that of
hypercohomology. In fancy terms, this means viewing the complex as an object in the (bounded) derived
category of quasicoherent sheaves on X, then taking the derived global sections functor. In concrete terms,
it is computed as follows.

For simlicity, let us assume that X is separated. Let {Ui} be a cover of X by open affines; our condition
that X is separated means that any intersection among the Ui is again affine. Define the double complex

Dj,k =
⊕

Γ(Ui0 ∩ · · · ∩ Uij ,ΩkX/K)

with the j-differentials being the Čech differentials and the k-differentials being the de Rham differentials.
Then form the associated total complex, whose i-th term is

⊕
j+k=iD

j,k (with appropriate signs on the
differentials to make this a complex), and take the cohomology to obtain Hi(X,Ω•X/K).

Example 12.8. Take X = P1 and consider the covering by two copies of A1. The double complex in this
case is

0 0

0→ K[x]⊕K[x−1] K[x, x−1]→ 0

0→ K[x]dx⊕K[x−1] dx−1 K[x, x−1] dx→ 0

0 0

f

f ′ g′

g

Here f is surjective with kernel K; f ′ is surjective with kernel K ⊕ K; g is injective and the cokernel is
generated by x−1 dx; and ker(g′) = K and coker(g′) = Kx−1 dx. Keeping in mind that dx−1 = −x−2dx, we
find that

H0(X,Ω•X/K) = K; H1(X,Ω•X/K) = 0; H2(X,Ω•X/K) = K.

Theorem 12.9 (Grothendieck). Suppose X is a smooth projective (or proper) variety over C. Then there
is a natural isomorphism Hi(X,Ω•X/C) → Hi(Xan,C) where Xan denotes the associated complex analytic
variety (analytification of X).

Proof. This follows by combining the following statements.
• By Serre’s GAGA theorem [96], Hi(X,Ω•X/C) ∼= Hi(Xan,Ω•Xan/C).
• By Dolbeaut’s theorem [50, §0.3], Hi(Xan,Ω•Xan/C) ∼= Hi(XC∞ ,Ω•

XC∞
).

• By de Rham’s theorem, Hi(XC∞ ,Ω•
XC∞

) ∼= Hi(Xan,C).
�
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Remark 12.10. We can also define Ω•X/k and H•(X,Ω•X/k) when k is of characteristic p, but this can
behave in unexpected ways. For example, if X/k is smooth and proper, H•(X,Ω•X/k) is finite dimensional
over k (because it can be computed in terms of the coherent cohomology groups of the individual terms of
the complex), but can be of the “wrong dimension.” Such phenomena can mostly be explained in terms of
failure of degeneration of the Hodge-de Rham spectral sequence.

13. Monsky-Washnitzer cohomology (November 19)

In this lecture, we explain how to adapt algebraic de Rham cohomology to obtain the Monsky-Washnitzer
cohomology of a smooth affine variety over a finite field. The construction globalizes naturally to smooth
nonaffine varieties; the generalization to nonsmooth varieties is more difficult, and is part of Berthelot’s
theory of rigid cohomology which we do not discuss in detail here.

Readings 13.1. We continue to follow [68]. The original development of Monsky-Washnitzer cohomology
is [90, 88, 89]. For Berthelot’s rigid cohomology, start with [78].

Definition 13.2. Throughout this lecture, let k be a finite field. Let W (k) be the the ring of Witt vectors
of k; all you need to know about this ring is that it is a finite étale algebra over Zp with W (k)/pW (k) ∼= k.
Let K be the fraction field of W (k), which is obtained by inverting p.

Let X = Spec(A) be a smooth affine scheme over k. Since a Weil cohomology theory has to have
coefficient field of characteristic 0 (otherwise it cannot completely control the zeta function), if we want to
use differential forms it will have to be over some characteristic-0 lift of k.

Theorem 13.3 (Elkik, Arabia). There exists a smooth affine scheme X = Spec(A) over W (k) with X×W (k)
k ∼= X.

Proof. A crude summary of Elkik’s proof is the following. Since X is smooth, there is no local obstruction
to finding at least a formal lift (i.e., a lift to the formal scheme Spf W (k)). Since X is affine, there is also
no global obstruction. To complete the proof, one must show that the existence of a formal lift implies the
existence of an algebraic lift. A streamlined presentation and generalization of Elkik’s result has been given
by Arabia [4]. �

Our first candidate for the cohomology of X is the de Rham cohomology of the generic fiber of a lift:
Hi(XW (k)[1/p],Ω•).

Unfortunately, this is not independent of the choice of the lift X, so we need to try something else.
Our second attempt involves replacing X with its p-adic completion.

Definition 13.4. Let Â be the p-adic completion of A. We define the module of continuous Kähler differ-
entials of Â to be

ΩÂ[ 1
p ]/K := lim←−Ω(A/pn)/(W (k)/pn) ⊗W (k) K.

Since A is smooth, this is is a finite projective Â[ 1
p ]-module.

Our second candidate for the cohomology of X is the cohomology of the resulting de Rham complex:
H•(Ω•

Â[ 1
p ]/K).

Unfortunately, this turns out not to be finite-dimensional over K!

Example 13.5. Take A = k[X], A = W (k)[X]. Then Â is the ring W (k)〈X〉 of null power series (also
called strictly convergent power series) over W (k), and similarly

Â

[
1
p

]
= K〈X〉 =

{ ∞∑
n=0

anX
n ∈ KJXK|an → 0 for the p-adic topology

}
.

It is easy to see that
∑
pnXpn−1 belongs to Â[ 1

p ] but its antiderivative
∑
Xpn does not. By similar consid-

erations, one may show that H1(Ω•
Â[ 1

p ]/K) is infinite-dimensional over K.
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Definition 13.6. As prelude for the general case, let us see how to modify this example to eliminate the issue
we have just seen. If we think of K〈X〉 as the rigid analytic functions on the closed unit disc, the problem is
that antidifferentiation preserves the radius of convergence but not the convergence at the boundary. (This
is of course backwards from what happens in classical analysis, where it is differentiation of power series that
has a similar problem.) To remedy this issue, we consider instead functions which are holomorphic on some
larger disc: taking these together yields the ring

K〈X〉† =
{ ∞∑
n=0

anX
n|an ∈ K, lim

n→∞
sup |an|

1
n < 1

}
= lim−→
ρ>1

{∑
anX

n|an ∈ K, lim
n→∞

|an|ρn = 0
}
.

One may verify easily that the sequence

0→ K〈X〉† d→ K〈X〉† dx→ 0
has cohomology K in degree 0 (the constants) and 0 in degree 1 (differentiation is surjective).

Returning to the general case, we introduce the following definition.

Definition 13.7. Let R be a ring and let I = (x1, . . . , xn) ⊂ R be a finitely generated ideal. Let R̂ :=
lim←−m→∞R/Im denote the I-adic completion of R. Note that for any y1, . . . , yn ∈ R and any power series
c(X) =

∑
J cJX

j1
1 · · ·Xjn

n ∈ RJX1, . . . , XnK for which there exists a function f(x) with limx→∞ f(x) = ∞
and

cJ ∈ If(j1+···+jn) (j1, . . . , jn ≥ 0),
the evaluation c(y1, . . . , yn) makes sense as an element of R.

We define the weak completion of R with respect to I to be the smallest subring R† of R̂ with the following
property: if y1, . . . , yn ∈ R† and c(X) =

∑
J cJX

j1
1 · · ·Xjn

n ∈ RJX1, . . . , XnK is a power series for which there
exists a constant C > 0 with

cJ ∈ IbC(j1+···+jn)c (j1, . . . , jn ≥ 0),
then c(y1, . . . , yn) ∈ R†.
Example 13.8. For R = W (k)[X1, . . . , Xn],

R† = W (k)〈X1, . . . , Xn〉† := lim−→
ρ>1

{∑
aIX

I |aI ∈W (k), lim
n→∞

|aI |ρi1+···+in = 0
}

is the ring of rigid analytic functions on all possible polydiscs of radius > 1.
Theorem 13.9 (Fulton; see [45]). If R is a noetherian ring, then any weak completion of R is again
noetherian.
Remark 13.10. Corresponding to the passage from adically complete rings to formal schemes, one may use
weak completions to define weak formal schemes. This was done by Meredith [85].
Definition 13.11. With notation as before, let A† be the weak completion of A with respect to the ideal
(p). We may compute A† by choosing a surjection W (k)[X1, . . . , Xn]→ A and then taking

A† = A⊗W (k)[X1,...,Xn] W (k)〈X1, . . . , Xn〉†.
Using such a presentation, we may also define the module of continuous Kähler differentials ΩA†[ 1

p ]/K (for
A = W (k)[X1, . . . , Xn] it will again be freely generated by dX1, . . . , dXn) and then define the Monsky-
Washnitzer cohomology to be

Hi
MW(X) = Hi(Ω•A†[ 1

p ]/K).

To see that this gives something well-defined, we need to verify that it is independent of the choice of
lifting and the presentation.
Theorem 13.12 (Monsky–Washnitzer). The Monsky–Washnitzer cohomology groups of X are independent
of the choice of lift A and of the presentation of A as a finitely generated W (k)-algebra. Moreover, they are
(contravariantly) functorial in X.
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Proof. Let us sketch some ideas behind the proof. One starts with a form of the Poincaré lemma: the natural
map

Hi
MW(X)→ Hi

MW(X ×k A1
k)

is an isomorphism (using a particular presentation of X and the corresponding presentation of X ×k A1
k by

adding one more variable). This can then be applied in the following ways.
• Adding generators to a presentation does not change cohomology. Given two presentations, we may
then combine their generators to see that the cohomology groups given by the two presentations may
be naturally identified.

• Given two different lifts of the same morphisms, we may “interpolate” between the two to see that
they define the same morphism in cohomology.

This gives everything we need, except that it is not yet apparent that one can always lift a morphism at all
(even if one does not specify in advance a lift of either the source or target). This again follows from the
theorem of Arabia [4]. �

Remark 13.13. The proof of the Poincaré lemma gives more than just an isomorphism in cohomology, but
also a chain homotopy witness for the fact that the composition Hi

MW(X)→ Hi
MW(X×kA1

k)→ Hi
MW(X) is

the identity (mapping X to X ×k A1
k via the zero section). This makes it possible to globalize the definition

of Monsky–Washnitzer cohomology to accommodate general smooth schemes over k.

The following is not a priori clear, and indeed was unknown to Monsky–Washnitzer.

Theorem 13.14 (Berthelot). The space H•MW is finite-dimensional over K.

Proof. This was first proved by Berthelot in 2000 [8], using de Jong’s theorem on alterations [27]. A stronger
result, allowing coefficients in the p-adic analogue of a local system, was given by Kedlaya in 2006 [65]. �

What makes Monsky–Washnitzer computable in practice is the following comparison theorem with the
de Rham cohomlogy of the generic fiber.

Theorem 13.15. If X is nice enough, then

Hi
dR(XK) '→ Hi

MW(X).

Here “Nice” means that X admits a smooth proper compactification X such that the complement X − X
corresponds to a normal crossings divisor and X admits a smooth proper lifting over W (k), in which the
complement of a certain relative normal crossings divisor lifts X.

When X is not nice, we could use de Jong’s resolution of singularities and excision to reduce to the nice
case.

Lemma 13.16 (Excision). Suppose X is smooth and Z ⊂ X is pure and smooth of codimension d, set
U = X − Z, then we have a short exact sequence

· · · → Hi−2d
dR (Z)→ Hi

dR(X)→ Hi
dR(U)→ Hi−2d+1

dR (Z)→ · · ·

The final piece needed to make Monsky–Washnitzer cohomology into a Weil cohomology theory is the
Lefschetz trace formula for Frobenius. We will state and prove this in the next lecture.

14. Frobenius actions and the Lefschetz–Monsky trace formula (November 20)

In this section, we will give an example of a Frobenius action on the cohomology of the affine piece of a
hyperelliptic curve, and give a proof of the Lefschetz trace formula in the p-adic setting due to Monsky.

Readings 14.1. The Frobenius action on a hyperelliptic curve is presented as in [64]. The Lefschetz trace
formula is presented as in Monsky [89]. See also [68].

Example 14.2. Let k = Fq be a finite field with characteristic p not equal to 2. Let P (x) ∈ k[x] be a monic
polynomial of degree 2g + 1 with no repeated roots. Let A be the ring

A := k[x, y, z]/(y2 − P (x), yz − 1)
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and let X the affine curve X := SpecA; X is then a hyperelliptic curve of genus g with one rational
Weierstrass point at infinity, with all of its Weierstrass points removed. Choose P̃ (x) ∈ W (k)[x] a monic
polynomial lifting P (x); note that P̃ (x) has no repeated roots, since it is a lift of something with no repeated
roots. Define the lift

A := W (k)[x, y, z]/(y2 − P̃ (x), yz − 1).

Remark 14.3. The space H1
dR(SpecA[ 1

p ]) has a basis given by

xi
dx

y
(i = 0, . . . , 2g − 1),

xi
dx

y2 (i = 0, . . . , 2g)

(see Set 5 exercises). Since X is hyperelliptic, it has an involution

x 7→ x

y 7→ −y
z 7→ −z.

Lifting this involution, we find that the xi dxy form the minus eigenspace and that the xi dxy2 form the plus
eigenspace.

Definition 14.4. With A, k as before, let A† be the set of all sums of the form

∞∑
n=−∞

Qn(x)
yn

,

with Qn(x) ∈ W (k)[x] such that deg Qn(x) ≤ 2g. Moreover, we require as a convergence condition that
there exist positive integers a, b such that the p-adic valuation of Qn is at least a|n| − b.

Lemma 14.5. Every element in A can be written as a finite sum

n1∑
n=n0

Qn(x)
yn

for some integers n0, n1, with Qn(x) ∈W (k)[x] of degree ≤ 2g.

Proof. Note first that via the relation yz = 1 in A that every element in A is a polynomial in x, y, y−1. We
may then successively take remainders modulo P̃ (x) and use the relation y2 = P̃ (x) to reduce the degrees
of everything to at most 2g. �

To compute the action of the q-power Frobenius on H1
MW(X), it suffices to find a map Q : A† → A† lifting

the action of Frobenius on A. To do this, let C be the projective curve obtained from X by adding back in
the Weierstrass points. We then get the following diagram:

X C

P1

where the vertical arrow is the two-to-one cover of P1 by the hyperelliptic curve C. Since we took out the
Weierstrass points in defining X, the arrow X → P1 is étale, so we may lift the standard Frobenius map
x 7→ xp on P1 to X. Using that (A†, (p)) is a henselian pair, we may then lift the induced Frobenius action
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on X to A†. We may compute out this action explicitly, as
x 7→ xq

y 7→
√
P̃ (xq)

=
√
P̃ (x)q + p(∗)

=
√
y2g + p(∗)

= yq(1 + p(∗)z2q)1/2

z 7→ y−1,

where the expression in the last line for y may be expanded out using the generalized binomial theorem and
the instances of (∗) denote polynomial quantities which may be computed explicitly.

Remark 14.6. This example of the use of Monsky-Washnitzer cohomology for algorithmic computation is
taken from [64]. Subsequently, Tuitman [105, 106] adapted this method to work for arbitrary curves. (As an
aside, note that this also gives a method to compute Coleman’s p-adic path integrals [6]; such computations
play a pivotal role in the Chabauty–Coleman–Kim approach to finding rational points on curves, as in [5].)

In higher dimension, Abbott–Kedlaya–Roe [1] involves similar computations for smooth hypersurfaces
in Pn, using the explicit description of de Rham cohomology by Griffiths [48, 49]. This has been further
adapted to smooth nondegenerate hypersurfaces in toric varieties by Costa–Harvey–Kedlaya (unpublished,
but see [24] for a preview).

We now turn our attention to proving the Lefschetz trace formula.

Theorem 14.7 (Monsky). Let X = Spec(A) be a smooth affine scheme over a finite field k = Fq of
characteristic p. Then

#X(Fq) =
∑

(−1)i Trace(qnF−1, Hi
MW(X)).

Proof. We start with two key reductions.
• First, both sides of the desired equality are additive for a scissors decomposition (i.e. a union of an
open set and its closed complement): this is obvious for the left side, and for the right side it follows
from the excision exact sequence.

• Second, if X = Spec(Fq), then H0
MW(X) = K, Hi

MW(X) = 0 for i > 0, and the action of F on
H0

MW(X) is the identity map. Hence both sides of the desired equality equal 1.
From these observations, it follows that we may reduce the general case of the theorem to the case where
#X(Fq) = 0. This equality has a key algebraic consequence: it implies that the ideal in A generated by
all elements of the form fq − f for f ∈ A is trivial (see supplementary exercises). That is, we can find an
equality of the form

1 =
∑

ai(b
q

i − bi)

for some ai, bi ∈ A; we will use this equality in a crucial way to see that the right-hand side of the trace
formula is also zero.

By the Elkik–Arabia theorem cited in the previous lectures, we may choose a lift φ : A† → A† of Frobenius
to A†. We may then find elements ai, bi ∈ A† such that

1 ≡
∑

ai(ϕ(bi)− bi) mod p.

Since p belongs to the Jacobson radical of A†, we may multiply all of the ai by a suitable unit to ensure that
in fact

1 =
∑

ai(ϕ(bi)− bi).

Note that ϕ : A† → A† is finite flat of degree qn (this is true mod p, and one can argue then that it is true
in general). Define ψ : A† → A† to be the reduced trace of ϕ, i.e.

ψ = 1
qn
· Trace(ϕ), ψ ◦ ϕ = id.
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Since we know by Berthelot that dimHi
MW(X) <∞, ψ is not just a left inverse but a genuine inverse to ϕ

by linear algebra. Thus, the actions of qnF−1 and qnψ coincide, so we want to show that the alternating
sum of traces of ψ is 0; in fact, we will show that each trace of ψ vanishes in this situation.

Note that ψ(ϕ(a)b) = aψ(b). Therefore, if we define La : Ω+ → Ω+ on the de Rham complex to be
multiplication by a, we then have

ψ ◦ Lϕ(a) = La ◦ ψ,
implying that ∑

i

Lai ◦ ψ ◦ Lϕ(bi) =
∑
i

Lai ◦ Lbi ◦ ψ.

Take the traces of both sides to obtain

Trace
(∑

i

Lai ◦ ψ ◦ Lϕ(bi)

)
= Trace

(∑
i

Lai ◦ Lbi ◦ ψ

)

= Trace
(∑

i

Laibi ◦ ψ

)
since composition of the multiplication operator becomes multiplication by the product. On the other hand,
we may apply the fact that the trace of a product is invariant under cyclic permutations to get that

Trace
(∑

i

Lai ◦ ψ ◦ Lϕ(bi)

)
= Trace

(∑
i

Lϕ(bi) ◦ Lai ◦ ψ

)
.

We thus get the equality

Trace
(∑

i

Lϕ(bi) ◦ Lai ◦ ψ

)
= Trace

(∑
i

Laibi ◦ ψ

)
,

so that

0 = Trace
(∑

i

(Lϕ(bi) ◦ Lai ◦ ψ − Laibi ◦ ψ)
)

= Trace
(∑

i

Laiϕ(bi)−bi ◦ ψ

)
= Trace

(
L∑

i
ai(ϕ(bi)−bi) ◦ ψ

)
= Trace(ψ)

since
∑
i ai(ϕ(bi)− bi) = 1 by prior arrangement. Thus, Trace(ψ) = 0 as desired. �

Remark 14.8. Recall that Monsky did not have the finite-dimensionality of dimHi
MW(X) at his disposal

when he originally devised this argument. This required him to be more careful in two aspects. First, he
had to introduce a suitable topology in order to argue that he could take traces (recall that there was a
corresponding step in Dwork’s proof of the rationality of zeta functions). Second, he could not assume that
F is invertible, and so he had to set up the formula in a more cautious way.

15. Étale local systems (November 25)

In this lecture, we turn back to étale cohomology and introduce the notion of an étale local system.

Readings 15.1. The (profinite) étale fundamental group is introduced in SGA 1 [57].

First we cover the étale fundamental group. Its definition is motivated by the fact that in algebraic
geometry, universal covers don’t have a good equivalent, but finite covering space maps correspond to finite
étale morphisms.
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Definition 15.2. Let X be a connected scheme and x ∈ X a geometric point, i.e., a map
x : Spec(k)→ X

where k is an algebraically closed field. (In fact we could even take k to be only separably closed, but never
mind about that here.) To this data, one then attach a profinite fundamental group π1(X,x) the profinite
(étale) fundamental group of X with basepoint x. This has the following properties.

(1) If y → X is another geometric point of X, then π1(X,x) ∼= π1(X, y) via an isomorphism which is
well-defined up to conjugation. This parallels the topological case, in which such isomorphisms are
paths joining the two basepoints, and two different paths give isomorphisms differing by conjugation
by the loop formed by the two paths.

This also parallels Galois theory. Fixing an algebraic closure of a field gives one absolute Galois
group, and choosing another closure gives another group that is isomorphic to the first one, but the
isomorphism is only well-defined up to conjugation.

(2) If
f : X → Y

is a morphism, then the composition

x→ X
f→ Y

defines a geometric point f(x) ∈ Y . There is then a homomorphism
f∗ : π1(X,x)→ π1(Y, f(x)).

Note that this map is defined “on the nose”, without any conjugation ambiguity. However, if we
want to consider a map

π1(X, ?)→ π1(Y, ?)
with unrestricted base points, then we must first apply the previous point to line up the base points;
consequently, the resulting map is only well-defined up to conjugation.

(3) If X = Spec(k) for some field k, and x = Spec(k), then π1(X,x) ∼= Gal(k/k).

Remark 15.3. In the case where X is normal (and excellent, so that normalization of finite covers behaves
well) and η ∈ X is its generic point, we may give a concrete description of π1(X,x) where x is a geometric
point mapping to η. Note that κ(η) = k(X), the function field of X. We may identify π1(X,x) with the
quotient of the absolute Galois group Gk(X) corresponding to the compositum of every finite extension of
k(X) inside of which the normalization of X is finite and étale over X. This family of fields is closed under
compositum because in the composite field, the normalization of X is a connected component of the fiber
product of the covers.

Note that this definition does not give a good description of what happens when you change the basepoint
to something not lying over η. It is thus hard to see how functoriality works, say, for the embedding of a
closed subscheme into X.

Example 15.4. Suppose that X = Spec(Z[1/N ]). Then π1(X,x) = GQ,S , where S is the set of primes
dividing N and GQ,S is the Galois group of the compositum of all number fields unramified outside S. As
an example of functoriality, for any p not dividing N , there is a diagram

GQp GQ,S

GFp

but we may obtain other such diagrams via conjugation in GQ,S .

The general definition uses the following setup.

Definition 15.5. Let FÉt(X) denote the category of finite étale schemes over X. For a geometric point
x ∈ X, we have a base change (fiber) functor

ωx : FÉt(X)→ FÉt(x)
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where FÉt(x) is canonically equivalent to the category of finite sets (via the forgetful functor from schemes
to sets: each object of FÉt(x) is a finite disjoint union of copies of x).

Definition 15.6. We define the profinite fundamental group of the scheme X with basepoint x to be
π1(X,x) = Aut(ωx)

That is, the group of natural isomorphisms of the fiber functor to itself.

Lemma 15.7. If X = Spec(k) for some field k, and k is an algebraic closure of k, then π1(X,Spec(k)) is
naturally isomorphic to Gal(k/k) (the absolute Galois group of k).

Proof. See supplemental exercises. �

Remark 15.8. Definition 15.6 is an example of a Tannakian construction. The formalism of Tannakian
categories typically involves categories of vector spaces (over a field of characteristic 0, for technical reasons).
rather than finite sets; one can get into that setup by replacing finite sets with the free vector spaces that
they generate. The standard treatments of Tannakian categories are [94] and [31].

Remark 15.9. The group π1(X,x) was originally called the étale fundamental group; for instance, this is
the terminology used in [57]. The terminology profinite fundamental group is now preferred because, when
X is not normal, there are infinite-degree étale covers of schemes that should be included in the construction
of the étale fundamental group, but do not contribute to the profinite fundamental group as we have defined
it. One way to get the “right” definition is to replace finite étale covers with pro-étale covers in the sense of
Bhatt–Scholze [9].

Example 15.10. A typical example of the previous remark is the “banana”. This is the connected, but not
normal, scheme given by gluing two copies of P1 together at 0 and ∞. It has an infinite étale cover which
looks like a helix, and is constructed as a set as follows

P1 × Z
(0, 2n) ∼ (0, 2n+ 1), (∞, 2n+ 1) ∼ (∞, 2n+ 2)

That is, it is countably many copies of P1 glued together alternately at 0 and ∞. There are deck transfor-
mations of this cover given by the action of 2Z o Z/2Z on the second factor that are not included in the
profinite fundamental group.

Remark 15.11. The issue of infinite étale covers becomes much more acute if one passes from algebraic
geometry to analytic geometry. For example, in rigid analytic geometry, the Tate elliptic curve has important
infinite covers analogous to those seen in complex geometry. However, there are even more exotic examples:
the Gross-Hopkins period maps give rise to infinite covers of rigid analytic projective spaces [51, 52]. In
perfectoid geometry, something similar happens with Hodge-Tate period maps [18].

Remark 15.12. Note that when applicable, functoriality gives Frobenius elements coming from points,
although they are only defined up to conjugation in general. For example, you can take the image of
Frobenius in the diagonal arrow in the diagram of Galois groups in Example 15.4.

Now we turn to lisse Q`-sheaves.

Definition 15.13. Let ` be a prime. A lisse Q`-sheaf “is” a finite-dimensional continuous representation
π1(X)→ GL(r,Q`);

note that here we are being sloppy and dropping the basepoint in the fundamental group.

Remark 15.14. Note that
GL(r,Q`) =

⋃
E/Q`finite

GL(r, E)

and any continuous representation from a profinite group, such as π1(X), into GL(r,Q`) factors through
some GL(r, E) (see supplemental exercises). Consequently, the category of lisse Q`-sheaves is the 2-colimit
of the categories of lisse E-sheaves (meaning representations into GL(r, E)) over all finite extensions E/Q`
within Q`.
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Remark 15.15. This is not the real definition, just a shortcut. It is not even a sheaf. We are on the wrong
side of the Riemann-Hilbert correspondence.

There is an actual sheaf on some Grothendieck topology (a profinite version of the étale topology) that
corresponds to a lisse Q`-sheaf as we have defined it. If F is such a sheaf, we denote the corresponding
representation by ΛF .
Definition 15.16. Suppose X is a scheme of finite type over a finite field k. Then there is an L-function
associated to a lisse sheaf F on X, given by

L(X/k,F)(T ) :=
∏

x∈X closed point
det
(

1− T [κ(x):k]ΛF (Frobx)
)

Here Frobx is the geometric Frobenius coming from the map
π1(x)→ π1(X).

The geometric Frobenius is the inverse of the map t 7→ t#κ(x), which is called the arithmetic Frobenius.
As with zeta functions, we may formally rewrite this L-function as

L(X/k,F)(T ) = exp
( ∞∑
n=1

sn
Tn

n

)
, sn :=

∑
[κ(x):k]=n

Trace(Frobx).

Why do we care?
Example 15.17. Let

π : Y → X

be a morphism between smooth proper schemes of finite type over a finite field k, and ` a prime number not
dividing the characteristic of k. Then there exist lisse Q`-sheaves Fi such that for each closed point x ∈ X,

det (I − TΛFi(Frobx))
is the i-th factor of the zeta function

Z(π−1(x), T )
in the factorization predicted by the Weil conjectures. These Fi arise as higher direct images of the trivial
sheaf Q` on Y .
Remark 15.18. Deligne conjectured that every lisse Q`-sheaf on X “comes from geometry” in the sense
that each of its irreducible subquotients is a twist (by a rank 1 sheaf) of a subquotient of something appearing
in the previous example.

This conjecture was stated somewhat cautiously in [30]. It was motivated by the observation that when
X is a curve, it followed from Drinfeld’s geometric proof of the Langlands correspondence for the group GL2
over the function field [35], which appeared at around the same time as [30]. For a general lisse sheaf on a
curve, the conjecture follows from the extension of Drinfeld’s work to GLn given by L. Lafforgue [74].

For X of dimension greater than 1, we do not know of any plausible approach to proving Deligne’s
conjecture. However, one can extract a number of concrete predictions from it, concerning both `-adic and
p-adic Weil cohomologies, that can be verified using the case of curves as a black box. See for example the
introduction to [71] and references cited therein.

16. Étale fundamental groups (November 26)

In this section, we’ll continue the discussion of the étale fundamental group, giving the formulation of
Deligne’s “Weil II” theorem.
Readings 16.1. We follow the setup of [30]. While there is a whole parallel p-adic setup, we did not have
time to say much it in these lectures (besides Remark 16.8 below); for more, see [70].
Remark 16.2. Let’s recall our setup from last time. Let X be a smooth connected scheme over a finite
field k of characteristic p. (We didn’t require smoothness last time, but it will be convenient later to add
this hypothesis.) Let ` be a prime nonzero in k. We “defined” the notion of a lisse Q`-sheaf F in terms of
an associated continuous representation ΛF : π1(X,x)→ GL(r,Q`), where x is a geometric point of X. For
any closed point y ∈ X, we have a well-defined conjugacy class of elements Froby ∈ π1(X,x).
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Definition 16.3. Suppose now that X is geometrically irreducible. The geometric profinite fundamental
group of X is defined as π1(Xk), where the basepoint is omitted.

The geometric fundamental group is related to the actual fundamental group by functoriality for the
morphism Xk → X → k. This sequence of maps behaves a bit like a homotopy fiber sequence, in that we
obtain the following exact sequence.

Proposition 16.4. The sequence
1→ π1(Xk)→ π1(X)→ Gk → 1

is exact.

Proof. See for example [57, Exposé IX, Théoréme 6.1]. �

Remark 16.5. In lieu of saying more about the proof of Proposition 16.4, we point out a philosophical
observation: the group π1(Xk) has “many” representations, but π1(X) has “few” representations.

To wit, the exact sequence gives rise to a map Gk → Out(π1(Xk)) to the group of outer automorphisms
of π1(Xk) (which makes sense without regard for the basepoint). The group Out(π1(Xk)) acts on the set
of isomorphism classes of continuous Q`-representations of π1(Xk), and the class of any representation that
extends to π1(Xk) must be a fixed point for this action. However, “most” classes are not fixed points.

Example 16.6. Let X be the scheme obtained from a smooth, projective, geometrically irreducible curve of
genus g over k by removing a zero-dimensional closed subscheme of length m over k. While the group π1(Xk)
is somewhat difficult to define, Grothendieck defined a quotient of it, the tame profinite fundamental group
πtame

1 (Xk), which is much easier to compute: it is a certain profinite completion of the free group generated
by 2g + m letters a1, . . . , ag, b1, . . . , bg, c1, . . . , cm modulo the relation [a1, b1] · · · [ag, bg]c1 · · · cm, where the
brackets denote commutators. (That is, we take the profinite completion of the ordinary fundamental group
of a genus-g Riemann surface with m punctures.)

It is quite easy to write down continuous Q`-representations of πtame
1 (Xk): this just comes down to writing

down systems of matrices corresponding to the generators, with a bit of care to ensure that the resulting
map extends to the profinite completion. However, most of these maps will not be preserved by the outer
action of Gk.

Remark 16.7. Proposition 16.4 remains true for an arbitrary field k. In the case k = Q, the resulting
“mysterious” action of Gk on π1(Xk) gives rise to a “mysterious” action on finite covers of P1 branched over
{0, 1,∞} (since these covers are rigid, they always give rise to curves defined over number fields) and in turn
to a “mysterious” action on Grothendieck’s dessins d’enfants.

Remark 16.8. Although we have not included in these lectures a detailed account, there is a parallel p-adic
construction of “lisse sheaves” to which much of the following discussion carries over. Let us briefly indicate
the analogue of Proposition 16.4 in this setup.

The analogue of a continuous `-adic representation of π1(Xk) is an overconvergent isocrystal. For X affine,
such an object can be described as a finite projective module (“vector bundle”) over a dagger lift A† equipped
with an integrable K-linear connection, where K again denotes the fraction field of the ring of Witt vectors
W (k). (An additional condition must be imposed to ensure that this definition is independent of the choice
of the dagger lift.)

The analogue of a continuous `-adic representation of π1(X) is an overconvergent F -isocrystal. Such an
object consists of an overconvergent isocrystal plus an isomorphism with its Frobenius pullback.

As in the étale case, it is relatively easy to manufacture overconvergent isocrystals from the definition,
but most of these will not admit a compatible Frobenius action.

Definition 16.9. Fix now a lisse Q`-sheaf F . Let Hi(Xk,F) and Hi
c(Xk,F) denote étale cohomology with

coefficients in F and étale cohomology with compact support with coefficients in F respectively. We will refer
to these for short as Hi and Hi

c.
It turns out that Hi and Hi

c are finite-dimensional Q` vector spaces on which Gk acts continuously;
that is, there are lisse Q`-sheaves over the point Spec(k). These are special cases of higher direct images
Rif∗F , Rif!F for f : X → S a smooth morphism, but in general these land in a large category than the lisse
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Q`-sheaves (namely, the category of constructible Q`-sheaves). When f is smooth proper, they are indeed
lisse lisse Q`-sheaves.

To formulate Poincaré duality for étale cohomology, before stating it, we need three more constructions.
• The forgetting supports map Hi

c → Hi, which is an isomorphism when X is proper.
• The trace map: when X is of dimension n, there is a Gk-equivariant map

H2n
c (Xk)� Ql(−n)

where Q`(−n) is the (−n)-th Tate twist of Q`. This map is an isomorphism if X is (smooth and)
geometrically irreducible.

• The cup product pairing:

Hi
c(Xk,F)×H2n−i(Xk,F

∨)→ H2n
c (Xk,F ⊗ F

∨)→ H2n
c (Xk,Ql)� Ql(−n).

With this pairing defined, we can state Poincare duality in étale cohomology.

Proposition 16.10. (Poincare Duality) For X smooth over k, the cup product pairing is perfect. That is,
it defines a Gk-equivariant isomorphism of either Hi

c(Xk,F) and H2n−i(Xk,F
∨) with the space of maps of

the other one into Ql(−n).

We also have a Lefschetz trace formula for étale cohomology. In the following formulation, it does not
even require X to be smooth over k.

Proposition 16.11 (Lefschetz trace formula). For X of finite type over k,∑
x∈X(k)

Trace(Frobx,F) =
∑

(−1)i Trace(Frobx, Hi
c(Xk,F))

This implies a factorization of the L-function of a now-familiar form.

Corollary 16.12.

L(X,F) =
2 dim(X)∏
i=0

det(1− Frobk T,Hi
c(Xk,F))(−1)i+1

.

In order to state Weil II, we need to add a little more notation in order to measure archimedean absolute
values.

Definition 16.13. Fix an algebraic (but in no way topological!) embedding ι : Q` → C, and let |x|ι = |ι(x)|
be the induced absolute value on Ql.

We say that a lisse Q`-sheaf F is ι-pure of weight w ∈ R (resp. ι-mixed of weight ≤ w, ι-mixed of weight
≥ w) if for all finite extensions k′/k and all x ∈ X(k′), all the eigenvalues of ΛF (Frobx) have ι-absolute value
equal to (resp. greater than or equal to, less than or equal to) (#k′)w/2.

Remark 16.14. The construction of an embedding ι as above is not at all effective: it depends on the
axiom of choice. However, while one cannot easily run the proof of Weil II without making such an artificial
choice, in practice one only ever applies such an embedding to algebraic numbers, for which it is much less
exotic: it amounts to choosing a place of Q above `.

In its simplest form, “Weil II” is the following statement.

Theorem 16.15 (Deligne’s “Weil II” theorem). Let U be a smooth geometrically connected curve over a
finite field k. Let F be a lisse Q`-sheaf on U which is ι-pure of weight w. Then H1

c (Uk), viewed as a lisse
Q`-sheaf on Spec(k), is ι-mixed of weight ≤ w + 1.

Remark 16.16. By Poincaré duality, if U is proper, then we get that H1
c (Uk) is `-pure of weight w + 1.
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17. RH and Weil II (December 4)

In this lecture, we’ll talk about the proof of the (Riemann hypothesis part of the) Weil conjectures and
Deligne’s Weil II theorem. As this is far too deep a topic to cover thoroughly in one lecture, we instead
describe a few of the main tools used in the proof and sketch their application. emphasizing analogies and
intuition.

Readings 17.1. The original source is Deligne’s “Weil II” paper [30], but the use of the Fourier transform
was introduced later by Laumon [76]. We follow most closely [66], which is written in terms of p-adic
coefficients but can be translated fairly directly back to the `-adic side. See also [62] for an approach to
“Weil II” in the style of “Weil I” [29].

Remark 17.2. The major advance of Weil II over Weil I is to allow for cohomology with nonconstant
coefficients. Roughly speaking, this will allow us to translate the Riemann hypothesis—a statement about
the cohomology of a simple sheaf on a complicated space—into a statement about a complicated sheaf on
a simple space. In particular, we will be able to induct on dimension and reduce consideration to one-
dimensional spaces.

17.1. Dévissage.

Remark 17.3. Making this a little more precise, let’s start with a smooth connected variety X of dimension
n over a finite field k. Then we’ll study a tower

X = Xn → Xn−1 → · · ·X1 → k

where each map fi : Xi → Xi−1 presents Xi as a family of curves over a space with dimension one lower.
We want to understand the cohomology of X by summing over fibers of f = fn : X → Xn−1 (the zeta
function of X is literally a product over fibers of this map). The Leray spectral sequence gives a description
of Hi(X,Q`) in terms of Hi(Xn−1, R

jf∗Q`). This in turn can be described in terms of cohomology of some
sheaves on Xn−2, and so on; this dévissage2 allows us to reduce the general problem to understanding families
of curves. Note that the Weil conjectures for curves tell us what we need to know about Hi(Xn−1, R

jf∗Q`),
but for the remaining steps we really need Weil II because we start already with nontrivial coefficients.

As reported earlier (Definition 16.9), the higher direct images Rif∗F of a lisse Q`-sheaf do not always exist
in the category of lisse Q`-sheaves, but only in some larger category of constructible Q`-sheaves. However, any
object in the constructible object defines a stratification on its space, and it “looks lisse” on each stratum
(but the rank may vary between strata). In particular, there is always a dense open subset on which it
restricts to something lisse. More precisely, given a morphism f : X → S and a lisse Q`-sheaf F on X, there
is always an open dense subset U of S on which the higher direct images Rif∗F are lisse and their formation
commutes with arbitrary base change, in particular to a point. That means that these objects really are
computing “cohomology in fibers”.

17.2. Nearby cycles and monodromy. Of course, in the previous discussion we cannot simply throw
away the part of S where the higher direct images of E are not lisse. We need a nearby cycles formalism or
vanishing cycles formalism to extract information about the fibers over S − U from the fibers over U .

Remark 17.4. Here’s the classical picture to keep in mind. Imagine we have a family of complex varieties
over a base with a singularity over some degenerate point. Then we should be able to understand the
cohomology of the singular fiber by removing it and looking at the cohomology of all the “nice" things
surrounding it. Imagine looping around this bad fiber and looking at a homology class of the good fibers
surrounding it. As you go around this bad fiber, you’ll get a different class once you get to the end of a loop:
this gives a monodromy action on the cohomology. (This picture is sometimes called a Milnor fiber.)

The intuition is that the cohomology of an “exceptional fiber" can be recovered from its neighbors by
looking at monodromy invariants. So even if we don’t understand S − U , we can try understand U near a
point of S, and see what happens. The idea of vanishing cycles is that there are cycles that make sense in
U , but as we move towards the exceptional point they get smaller and smaller until they vanish.

In the étale world, here’s an example of this showing up.

2Translation: “unscrewing”. The English word vise is related.
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Example 17.5. Say X is a curve, and E is a lisse sheaf on X −{s} for some point s, so that E corresponds
to a representation of π1(X−{s}). There is a surjection π1(X−{s})→ π1(X), but this won’t be injective as
we have covers coming from looping around s. Picking a geometric base point x, we have an exact sequence

1→ Is → π1(X − s, x)→ π1(X,x)→ 1

where Is is defined by this sequence and called the inertia group at s. The number theory analogue is
the inertia group in Galois theory. Roughly speaking, Is is keeping track of the new cohomology coming
from loops around s. (As an aside, this is closely related to the discussion of missing Euler factors in the
L-function associated to a variety over a number field, from Remark 9.11.)

Remark 17.6. The p-adic analogue of inertia is much closer to differential geometry: it’s related to actual
monodromy of differential equations. Because a p-adic coefficient object is a vector bundle with connection,
you can actually try to solve differential equations using power series (possibly after adjoining some extra
ring elements, as in differential Galois theory) and study monodromy that way.

17.3. Grothendieck-Ogg-Shafarevich. If you’re trying to make some kind of estimate about a zeta func-
tion, you need to control the dimensions of the spaces Hi(X,F). It’s therefore good to know things about
Euler characteristics, as these are easier to control but still retain some of the needed information.

Definition 17.7. Let X be a curve over k with smooth compactification X. Let F be a lisse sheaf (or a
p-adic coefficient) on X. We define the Euler characteristic to be

χ(F) =
2∑
i=0

(−1)i dimHi(X,F)

and as in normal cohomology, these are well behaved (eg, additive in short exact sequences, etc).

We’d expect this to be related to the Euler characteristic of X, which is χ(X) = χ(Q`), and should also
be related to F somehow. A natural guess is

χ(F) = χ(X) rank(F)

but this formula is missing a correction factor as we will see in the following example.

Example 17.8. Let f : Y → X be a finite étale morphism of curves and put F = f∗Q`. Then χ(F) = χ(Y ),
which doesn’t agree with our guess! There’s a correction factor given by Riemann-Hurwitz, coming from the
ramification at points of X − X. These factors can be computed locally, so we can look at them one at a
time. In the étale case, this is essentially the Artin conductor of the inertia representation, which detects
only what is happening at a single bad point.

This suggests that the shape of the correct formula is

χ(F) = χ(X) rank(F) +
∑

x∈X−X

(correction at x)

where the correction term depends only on what is happening at x (say, on the formal completion at x).
This is true, but we will not give a more precise formulation here.

17.4. Deligne’s study of weights on curves. We now discuss, in very sketchy terms, how to use the
above tools to get to Weil II.

Remark 17.9. Let us recall how weights were defined in the previous lecture. Let X be a curve over k = Fq
and fix an embedding ι : Q` ↪→ C or ι : Qp ↪→ C. Given a lisse Q`-sheaf F on X, we say that F is ι-pure of
weight w if for all x ∈ X, the eigenvalues of Frob on Fx have ι-absolute values #κ(x)w/2. We say that E is
ι-mixed of weight ≤ w or ≥ w if a corresponding condition holds.

It is not clear that one expects to be able to impose much effective control on these weights: we are
manipulating `-adic objects and attempting to keep track of archimedean information, and the two are not
very compatible. However, Deligne proves a key theorem that imposes some control on the situation.
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Theorem 17.10. Suppose F is ι-real (that is, all of the Frobenius charpolys have coefficients in ι−1(R)).
Then the irreducible subquotients (using Jordan-Holder filtrations because we’re in an abelian category) of F
are each ι-pure of some weight.

Corollary 17.11. The same is true if F is a subquotient of something ι-real. (We say F is ι-realizable in
this case.)

Somehow, if you are able to force the real numbers into the picture, really nice things happen. The idea
comes from an argument of Rankin about modular forms, a real analysis argument which boils down to the
fact that squares of real numbers are nonnegative. This is useful for us because the next lemma says that
any pure coefficient can be written as a subquotient of something real. So studying real coefficients isn’t as
arbitrary as it may seem.

Lemma 17.12. If F is ι-pure of weight 0, then F∨ ⊕ F is ι-real. More generally, if F is ι-pure of some
other weight, then some twist of F ⊕ F∨ is ι-real.

Proof. In the weight 0 case, all of the Frobenius eigenvalues have complex norm 1, so live on the unit circle.
The coefficients of the characteristic polynomials are all symmetric functions in the Frobenius eigenvalues,
so they will be real if the set of eigenvalues is stable under complex conjugation. Because we’re living on
the unit circle, this is the same as the eigenvalues being stable under inverses. The eigenvalues of F∨ are
precisely the inverses of the eigenvalues of F , and the eigenvalues of F∨ ⊕ F is the disjoint union of the
eigenvalues of F∨ and F , so we are all set. �

To prove Theorem 17.10, we first guess what the weight should be, then use this guess to prove that
things actually work. Let E be an irreducible subquotient of F of rank r. We want to show that E is ι-pure
of some weight w. If this were true, then ∧rE would be an ι-pure, rank 1 object of weight rw. The following
key lemma will let us understand rank 1 objects nicely.

Lemma 17.13. All rank 1 sheaves are ι-pure.

The proof uses geometric class field theory. Any rank 1 coefficient on a curve corresponds to a character,
which can be explicitly written as a constant times a finite order character. So any eigenvalue will be a
constant times a root of unity. As roots of unity always have weight 0, the weights of the eigenvalues are all
just given by the weight of the constant, so the coefficient must be pure.

So we understand rank-1 objects well, and we can therefore guess what the weight of F must be:

Definition 17.14. The determinantal weight of a rank r sheaf F is 1/r times the weight of the determinant
sheaf ∧rF .

The hard part is then to show that the determinantal weights of F actually behave like weights with
respect to operations like ⊕. This takes plenty of work, but eventually we can find some inequality between
our guess and reality, then use positivity and duality to flip the inequality and get things on the nose.

17.5. `-adic Fourier transforms. Then you combine this theorem with a Fourier transform construction.
The key case is for A1, because we’re just working with curves, and you can use the following trick in
characteristic p. If you take x 7→ xp + 1/x, this gives a finite étale cover Gm → A1 of degree p + 1. This
type of thing lets us shove all of the missing points to a single point at ∞, so if we were thinking about
P1 − s1, . . . , sk, we can replace it with A1.

Remark 17.15. The previous argument shows for example that Belyi’s theorem goes out the window in
positive characteristic, unless one does something like restrict to tamely ramified maps.

Now the really rough idea of Fourier transforms is to take a function f(x), multiply it by e−2πixη, and
integrate with respect to x to get a new function in terms of η. In more geometric terms, you start with a
function on R, pull back to R× R, twist by a biadditive character, then project on the second factor.

Translating this idea into our language, we’ll start with a coefficient object on A1, pull it back to A1×A1

along the first projection, twist by the Artin-Schreier cover to get a family of coefficients that we mostly
understand, then project onto the second factor. Because we rigged our cover so that we understand all of
the coefficients in the family besides the original one, the fibers over this second projection are copies of A1
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with coefficient objects that we understand away from a single point. This is the kind of thing that Deligne’s
theory of weights is good at dealing with, so we’re now in a good situation; we then use nearby cycles to
recover information about the original sheaf. (It is in this last step that we are forced to get something
mixed rather than pure.)

Remark 17.16. In the p-adic world, a coefficient looks like a module over a Weyl algebra, a noncommutative
ring containing both multiplication by a coordinate x and differentiation d

dx in the same coordinate. There,
the Fourier transform can be effected by interchanging these two variables (up to a sign).

Remark 17.17. A slogan for this argument is that one doesn’t prove Weil II for a single sheaf in isolation.
Instead, one proves something about a whole collection of sheaves at once.

18. Causal versus random: the Tate conjecture and equidistribution (December 9)

In this last lecture, we talk about two different-sounding things that we’ll see are actually related: the Tate
conjecture, and distribution problems. Roughly speaking, we’ll see that the Tate conjecture is a question
about the “causal” factors of zeta functions, whereas distribution problems are questions about “random”
factors of zeta functions. The idea is that zeta functions should be made up of these two parts, the first
coming from the geometry of the variety, and the second being something that we can (sometimes) show is
really random in a suitable sense.

Readings 18.1. Since this lecture covers many disparate topics, suggestions for additional reading have
been embedded in the text as appropriate.

18.1. The Hodge conjecture. The Tate conjecture is an analogue of the Hodge conjecture, so we’ll start
with that.

Definition 18.2. Let X/C be a smooth, proper variety of dimension n, and look at the singular cohomology
Hi(Xan,C) of the associated complex analytic space. (From now on we’ll sloppily write X for Xan.) We
know that Hi(X,Q) injects into Hi(X,Q) ⊗Q C = Hi(X,C); that is, the C-vector space contains a lattice
which remembers which classes are rational.

We also have the Hodge decomposition

Hi(X,C) ∼=
⊕
p+q=i

Hp,q, Hp,q := Hp(X,Ωq).

Let Z ↪→ X be a closed irreducible subvariety of pure codimension p. Via the cycle class map (i.e., by viewing
Z as representing a homology class and then dualizing), Z gives rise to a class in H2p(X,Q) ∩Hp,p(X).

Conjecture 18.3 (Hodge conjecture). The intersection H2p(X,Q)∩Hp,p(X) is spanned by classes coming
from subvarieties.

Not much is known about the Hodge conjecture.

Theorem 18.4 (Lefschetz (1,1) theorem). The Hodge conjecture holds for p = 1.

Proof. See [50, Page 163] for a proof, and a lot of background. �

Example 18.5. Let A/C be an abelian variety. By the Lefschetz (1,1) theorem, H1,1(A) can be described
using endomorphisms of A. In particular, if A has trivial endomorphism ring, then H1,1 is 1-dimensional.

Remark 18.6. Besides the p = 1 case, not much is known about the Hodge conjecture. It is far from clear
“where to look” for a subvariety corresponding to a particular (p, p)-class.

One case that can be handled is the case p = 2 when X is a K3 surface, which is to say a smooth projective
surface such that KX ' OX and which is simply connected (say, in the sense that every geometrically
connected finite etale cover of X splits).

For a K3 surface, the weight-2 Hodge structure in this case can be embedded into the square of a weight-1
Hodge structure coming from a certain abelian variety, via the Kuga-Satake construction. Using a similar
construction, Deligne was able to prove the Weil conjectures for K3 surfaces before coming up with the
general proof [28].
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18.2. The Tate conjecture.
Definition 18.7. Let X be a smooth proper scheme over a finite field k. As in the complex case, for any
codimension-i subvariety Z on X, the cycle class map gives us a class in H2i(X). By the Weil conjectures,
this class is a Frobenius eigenvector with eigenvalue qi.

The Tate conjecture is now the natural analogue of the Hodge conjecture.
Conjecture 18.8. The generalized qi-eigenspace of H2i(X) is spanned by cycles coming from codimension-i
subvarieties of X.
Remark 18.9. Note that we don’t a priori know that Frobenius gives a diagonalizable matrix, so part of
the conjecture is a semisimplicity statement. We can rephrase this to get a concrete prediction about zeta
functions. In this language, the Tate conjecture says that

Z(X,T ) = · · ·
· · · det(1− FT,H2i(X)) · · ·

has a pole at T = q−i of order equal to the dimension of the space spanned by the codimension i cycle
classes. So given a variety, we can write down zeta functions explicitly, look at its poles, and get a prediction
about cycle classes which would generally be hard to find by hand.
Remark 18.10. The Tate conjecture tends to be as hard as the Hodge conjecture. It’s known for i = 1
for abelian varieties (this is equivalent to Tate’s theorem) and for K3 surfaces by a recent result of Ito–Ito–
Koshikawa [61].

The K3 case is already extremely hard and interesting, so let’s look a little at it. For X a K3 surface,

Z(X,T ) = 1
(1− T )P (T )(1− q2T ) .

Here the outside terms of the denominator come from H0 and H4, and the inside two come from H2, which
is the interesting bit. Renormalizing to make the roots lie on the unit circle, we have Q(T ) := qP (q−1T ) =
a0T

22 + a1T
21 + · · ·+ a22 with a0 = a22 = q, and we are interested in the multiplicity of the factor (1− T )

in Q.
This renormalization introduces lots of powers of q in the denominators, so one might expect Q to no

longer be integral. However, there is a crucial piece of information that we have not yet introduced in these
lectures.
Proposition 18.11. The coefficients ai of Q(T ) are all integers.
Sketch. This comes from Mazur’s Newton above Hodge theorem [83]. In this case, the theorem says that
the Newton polygon of det(1 − FT,H2(X)) lies above the Hodge polygon, which has integer slopes given
by the second row of the Hodge diamond. This row is 1,20,1, so the Hodge polygon has slope 0 for one
step, slope 1 for 20 steps, and slope 2 for the final step. Renormalizing and scaling to write this in terms of
Q, the polygon starts at (0, 1), goes down to (1, 0), goes horizontally to (21, 0), then goes up to (22, 1). In
particular, it never dips below the x-axis, so the coefficients of the Newton polygon must all have nnnegative
q-adic valuation and therefore will be integers. �

Remark 18.12. Continuing with our K3 example, we also have a symmetry property a22−j = ±aj (where
this sign is uniform over j). So we either have actual symmetry, or there’s a sign flip after we cross the
middle. It is possible but tricky to understand which of these actually happens using the geometry of the
K3 surface.

As we are looking at H2, we are in the case where i = 1, so our cycles are divisors. The well-studied
Néron-Severi group NS(X) is the group of divisors modulo algebraic equivalence. Rephrasing the conjecture
one more time, we are saying that the order of the zero of Q at 1 is equal to the Picard number of X,
a/k/a the rank of NS(X). Call this order r; it must be an integer between 1 and 22, the 1 because there is
automatically a Tate class corresponding to an ample divisor, and the 22 because this is the dimension of
H2 (see following remark). After renormalizing, we’re looking for the order of vanishing of Q(T ) at T = 1.
Call this order r; we have the Artin-Tate formula (a conjecture in general, but known for K3 surfaces)

Q(T )
(1− T )r |T=1 = D# Br(X)
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where D is the discriminant of the Néron-Severi lattice and Br(X) is the Brauer group: a finite group with
order a perfect square.

This should remind us of the conjecture of Birch–Swinnerton-Dyer. It actually coincides with it in certain
cases: when X is an elliptic K3 surface, the Brauer group coincides with the Tate-Shafarevich group. In
general, just like the latter, the Brauer group carries an alternating pairing which forces its order to be a
square.

Remark 18.13. In characteristic 0, the Picard number can only go up to 20, but in characteristic p the
value 22 is actually possible! This is similar to the fact that the endomorphism ring of an elliptic curve in
characteristic 0 has rank at most 2, but in characteristic p it can have rank as high as 4.

Remark 18.14. A nice thing here is that if we’re handed a K3 surface over a small finite field, we can
compute this polynomial, get our hands on r and make a guess about what the constants should be. For
example, if r = 1 and X is a smooth quartic in P3, then D = 4 and so the right-hand side should be a
square. In [72], Kedlaya–Sutherland checked that this is always true over F2.

Remark 18.15. This isn’t quite the whole story; so far we’ve been focused on cycles that are defined over
Fq. If we pass to a finite extension, we might get more cycles, and the Tate conjecture would tell us that they
should show up in the zeta function as well. For example, if 1 +T divides Q(T ), then −q−1 is an eigenvalue,
and if we base change to Fq2 , we square the eigenvalues and get an eigenvalue of q−2. So the Tate conjecture
is also saying that eigenvalues of q−ζ for any root of unity ζ are “causal”: once we base-change, they should
also come from cycles. We should therefore be thinking about the factorization of Q(T ) into cyclotomic
factors and noncyclotomic factors. The cyclotomic factors tell us about the geometric Néron-Severi rank.

There’s a nice heuristic about point counting underlying all of this. Going back to the general Tate
conjecture, any codimension-i subvariety Z of X will make some “geometric” contribution to the number of
Fqr points on X, coming from the Fqr points on Z. The (unnormalized) factor of (1−qiT ) in the denominator
is just keeping track of this contribution. So if X has lots of codimension-i subspaces, we expect it to have
more rational points than usual, giving rise to a larger pole in the zeta function. This heuristic seems very
similar to the heuristic that led to the Birch–Swinnerton-Dyer conjecture: if an elliptic curve over a number
field has high rank, then its reductions modulo primes are forced to have lots of points, which should again
lead to a large pole of the L-function at s = 1.

Remark 18.16. For a final application in this section, we explain the key idea behind constructing a K3
surface over Q with geometric Picard number 1. This construction is due to van Luijk [108] and answers a
question of Mumford.

If one starts with a K3 surface over Q, its geometric Picard number can only increase under specialization,
as the Néron-Severi lattice of a characteristic 0 K3 surface injects into the Néron-Severi lattice of a reduction.
So in principle, we could try to prove that the geometric Picard number is 1 by reduction to a finite field.
But there’s a catch: the polynomial Q has integer coefficients and its degree is even (22), so its geometric
Picard number is always even (the noncyclotomic part necessarily has even degree).

This seems to be the end of the story, until we realize (as van Luijk did) that we can apply the Artin-Tate
formula at various different primes of good reduction and compare the answers. To wit, van Luijk constructs
a family of K3 surfaces over Z whose reductions at 2 and 3 both have geometric Picard number 2 (the smallest
possible value given the previous discussion). Using the Artin-Tate formula, he shows that the discriminants
of the lattices in characteristics 2 and 3 are −12 and −9, which represent different elements of Q∗/Q∗2. But
if the Néron-Severi lattice over Z were 2-dimensional, its discriminant would be the same modulo squares as
each of these, as it would be a sublattice of full rank. As this cannot happen, the geometric Picard number
must be 1.

For more results about the variation of Picard numbers under specialization, see [25, 20, 23].

18.3. Distribution questions. Individual zeta functions can be unpredictable, but we can make headway
looking at distributions of lots of them. Here are three different flavors of questions that people study.

(1) Fix a finite field Fq and look at a class of varieties {X} over Fq. The zeta function of each variety
is related to the number of points, so we can consider #X(Fq) (or something related) as a random
variable on the probability space of all such X.
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(2) Look at a geometric family of varieties, i.e., look at the fibers of a map X → S over closed points
of S where both X and S are varieties over Fq. Now that we’re looking over all closed points, we’ll
also be counting Fqr points.

(3) Look at the same question for an arithmetic family X → Spec(OK) for a number field K.
For an example of the first flavor, look at smooth plane curves over Fq. We want to understand #X(Fq)

viewed as a random variable on the probability space of all such X. For a fixed degree d, this is a finite
probability space as there are finitely many curves, so we should really average over all d in some fashion.
We take all d up to some bound, compute the distribution, then take the limit as the bound goes to infinity.

Theorem 18.17. The resulting distribution is a sum of q2 + q + 1 individually independently distributed
0,1-random variable with total mean q + 1.

Sketch. This is an application of Poonen’s Bertini theorem [93] by Bucur-David-Feigon-Lalín [16]. Here’s
where this is coming from. The quantity q2 + q+ 1 is the number of points on P2(Fq). We can think of each
point as a variable, and ask if that point is a rational point of a given plane curve X. At the point 0, we
can locally expand out our curve as being cut out by the equation a + bx + cy + . . . . So 0 is on the curve
exactly when a = 0, and it’s a smooth point if a = 0 and bc 6= 0. If we exclude the case where a = b = c = 0
(by sieving), all other possibilities are equally likely. Now we have q3 − 1 total possibilities, of which q2 − 1
are good. So the probability that a given point is on a random curve is (q + 1)/(q2 + q + 1), and one uses
Poonen’s theorem to ensure that each point contributes independently to the count. �

Remark 18.18. Poonen’s Bertini theorem asserts that given a smooth quasiprojective variety X, the proba-
bility that an ample hypersurface section ofX is predicted by a product of local probabilities, each computing
the probability that there is no failure of smoothness at a given point. It has spawned a sizable literature
concerning questions of a similar flavor. Two notable examples are the papers of Bucur–Kedlaya [17], which
extends Poonen’s theorem by considering a complete intersection of multiple hypersurfaces (this came up
previously in Remark 6.17), and of Erman–Wood [40], which allows the use of semiample hypersurfaces (at
the cost of some degree of independence between points).

Remark 18.19. The standard reference for questions of type 2 is the book of Katz-Sarnak [63]. We won’t
talk much about these today, except to say that they can generally be settled by combining Weil II with a
computation of a certain monodromy group attached to the family of varieties. See Theorem 18.27 below for
an example.

It’s generally harder to prove anything for questions of type 3 than type 2, but we expect similar answers.
In each case, assuming X is smooth and proper, we have Z(X,T ) =

∏
Li(T )(−1)i+1 where Li(T ) is pure of

weight i. We normalize to get Li(T ) = Li(q−i/2T ), which has eigenvalues on the unit circle.

Philosophy 18.20. We expect the Li(T ) to behave like characteristic polynomials of random matrices in a
certain compact Lie group G. Here randomness is measured with respect to the (unique) Haar measure on
G.

Remark 18.21. This philosophy predates people thinking about finite fields. It was originally introduced
to think about the Riemann zeta function, based on the idea (attributed to Pólya) that the zeroes of ζ
should be (up to rotation) the eigenvalues of some self-adjoint operator on some Hilbert space. Since we
have no idea what this operator should look like, we might hope that it behaves like a “random” operator,
and indeed evidence (from Montgomery, Odlyzko, and others) suggests that the distribution of zeroes of ζ
does have some features in common with the eigenvalues of suitable random matrices.

An important question of type 3 is the Sato-Tate conjecture (now a theorem) over Q.

Definition 18.22. To formulate the Sato-Tate conjecture, let E/Q be an elliptic curve. For p a prime of
good reduction, let ap be the trace of Frobenius on EFp ; the Hasse bound says that ap ∈ [−2√p, 2√p], so
we divide by √p to renormalize ap. This lets us compare the values of ap as p varies over all primes of good
reduction.

Theorem 18.23. Given an elliptic curve E/Q, as p varies over all primes of good reduction, the ap/
√
p

are equidistributed (see below) in [−2, 2] with respect to one of the following measures:
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• If E has CM, the trace of a random matrix in N(SO(2),SU(2)) (the normalizer);
• else, the trace of a random matrix in SU(2).

Remark 18.24. For a gif of this theorem in action, see https://math.mit.edu/~drew/g1_r28_a1f.gif.
See also https://math.mit.edu/~drew/g1SatoTateDistributions.html for additional examples.

Definition 18.25. The notion of equidistribution comes from ergodic theory. Let X be a measure space
with measure µ, and let x1, x2, . . . be a sequence in X. We say this sequence is equidistributed if for all
continuous functions f : X → R, we have∫

µ

f = lim
N→∞

f(x1) + · · ·+ f(xN )
N

.

The intuition here is that the left-hand side of this equation represents a “space average” of the function f ,
while the right-hand side represents a “time average” over a sequence of sample points.

This is now a (very very hard) theorem of Clozel–Harris–Taylor [21], Harris–Shephard-Barron–Taylor [58],
and many more using automorphic forms. These show up because the relevant X comes from taking a Lie
group G modulo conjugation, which gives it a natural measure coming from the Haar measure on G. When
we look at a distribution problem on a space of conjugacy classes, it suffices to test the equidistribution
property for f = χ an irreducible character by the Peter-Weyl theorem. For these, an argument of Serre
(inspired by the prime number theorem; see [97, Chapter I, Appendix]) shows that the limiting property
follows from analytic continuation of suitable L-function.

We could ask the same question over other number fields K. There’s a similar conjecture, except if K
contains an imaginary quadratic field M , there’s a third option when E has CM in M . Then the random
matrices are in SO(2). The CM cases can be settled using Hecke’s theory of Grossencharacters, so the real
issue is the non-CM cases.

Theorem 18.26. The analogue of the Sato-Tate conjecture is known when K is either a totally real number
field, or a CM field (a totally imaginary quadratic extension of a totally real field, such as an imaginary
quadratic field).

Proof. The first case was settled by Barnet-Lamb–Geraghty–Gee [7]. The second case was settled by the
“paper of 10 authors” [3]. �

For comparison, let us also formulate the corresponding type 2 question; this amounts to looking at all
elliptic curves over finite extensions of some Fq.

Theorem 18.27. Let f : X → S be a family of elliptic curves over a finite-type Fq-scheme, and assume
that the j-invariant is nonconstant in the family (that is, the family is nonisotrivial). Then as s varies
over closed points of S, if we write as for the trace of Frobenius on f−1(s), the quantities as/

√
#κ(s) are

equidistributed with respect to the distribution of traces of random matrices in SU(2).

Proof. This is proved by Deligne in his Weil II paper [30, Section 3.5] �

Remark 18.28. In more general cases, you figure out what Lie group to use (either conjecturally or provably)
by looking at the image of monodromy in the case of geometric families, or the image of Galois in the case
of arithmetic families.

In the number field case, you look at the associated Galois representation; look at how big the image
might possibly be; check that you aren’t missing constraints that could make the image smaller; and then
hope that this actually is the image. For example, for CM elliptic curves, the image of Galois must respect
the endomorphisms and is thus much smaller than for non-CM elliptic curves; this is then reflected in the
distribution of the Frobenius traces.

By looking carefully at the constraints involved, one can sometimes identify all possible candidates for
the distribution and for the compact Lie group (the Sato-Tate group) giving rise to it. For example, if X/K
is a genus 2 curve over a number field, or an abelian surface, there are 52 possible Sato-Tate groups [42],
and one can easily distinguish the resulting distributions numerically. For an abelian threefold, there are 410
possible groups [43]. For further discussion of the Sato-Tate conjecture and its generalizations, see [103].
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18.4. Tying everything together. We’ll end with a remarkable application of random matrix theory to
questions about point counting, which ties together our discussions of causality and randomness in zeta
functions.

Remark 18.29. We start with a remarkable fact from probability theory due to Diaconis-Shahshahani [32].
Consider the k-th moment of the trace of a random matrix in the unitary group U(n). If we fix k and send
n to ∞, we might expect the moment to grow; after all, we’re taking the trace of a really big matrix! But
this doesn’t happen: the k-th moment stabilizes for n ≥ k. In particular, a random matrix has bounded
trace! Similar results hold for orthogonal and symplectic groups.

What does this mean for zeta functions? Let X be a smooth proper scheme over Fq, and factor the
i-th piece of the zeta function Li(T ) = det(1 − FT,Hi(X)) into a causal part (the Tate classes if i is
even, otherwise nothing) and a random part Pr(T ) (everything else). Then if the renormalized polynomial
Pr(q−i/2T ) really corresponds to a random matrix (say in the unitary group U or the unitary symplectic
group USp(n), the trace should be fairly small even if the degree is large. It’s therefore reasonable to expect
that as the degree gets big, the zeta function will be dominated by the causal factors.

One application of this logic is a heuristic prediction about the distribution of the number of rational
points of #X(Fq) as X varies over all curves of a given genus [2]. This prediction involves point counts on
Mg,n, which has a causal part (the stable cohomology) and a non-causal part (the unstable cohomology). If
we predict that the unstable part should act randomly, then the causal part will dominate.

Exercises

Set 1.
(1) Let k be a finite field of order q and fix an additive character (homomorphism) ψ : k → C×. For

χ : k× → C× a nontrivial multiplicative character, define the Gauss sum

Gψ(χ) =
∑
x∈k×

χ(x)ψ(x).

Prove that Gψ(χ)Gψ(χ) = q, where χ is the character for which χ(x) is the complex conjugate of
χ(x). (Hint: write the product as a sum over x, y ∈ k×, then regroup terms by the value of x/y.)

(2) Fix a choice of χ as above. For P (T ) = Tn+Pn−1T
n−1 + · · ·+P0 ∈ k[T ] a monic polynomial, define

λ(P ) = χ(P0)ψ(Pn−1).

(In particular, λ(1) = 1.) Show that

λ(P1P2) = λ(P1)λ(P2) (P1, P2 ∈ k[T ])

and deduce that for each positive integer n, in CJUK we have∑
P∈k[T ] monic

λ(P )Udeg(P ) =
∏

Q∈k[T ] monic irreducible

(1− λ(Q)UdegQ)−1.

(3) Show that for n a nonnegative integer,

∑
P∈k[T ] monic,deg(P )=n

λ(P )Udeg(P ) =


1 n = 0
Gψ(χ)U n = 1
0 n > 1.

(4) With notation as in the previous problem, let k′ be an extension of k of degree v. Let ψ′ : k′ → C×
be the additive character given by ψ◦Tracek′/k. Given χ, let χ′ be the multiplicative character given
by χ ◦Normk′/k. For P ′ ∈ k′[T ] monic, define λ′ by analogy with λ.

For P ∈ k[T ] monic irreducible, let P ′ run over the irreducible factors of P in k′[T ]. Prove that∏
P ′

(1− λ′(P ′)Uv deg(P ′)) =
v−1∏
ρ=0

(1− λ(P )(e2πiρ/vU)deg(P )).

(Hint: let −ξ be a root of one of the factors P ′, and consider the field extensions k(ξ)/k and k′(ξ)/k′.)
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(5) Using all of the above, deduce the Davenport-Hasse relation
−Gψ′(χ′) = (−Gψ(χ))v.

Set 2. Throughout, let Fq denote a finite field of characteristic p.
(1) For X an algebraic variety over Fq, we write the zeta function of X as Z(X, q−s) for

Z(X,T ) =
∏
x∈X◦

(1− T deg(x))−1,

where X◦ denotes the set of Galois orbits of Fq-points and deg(x) is the cardinality of such an orbit.
Prove that in QJT K, we have the equality

Z(X,T ) = exp
( ∞∑
n=1

Tn

n
#X(Fqn)

)
.

(2) For X equal to the n-dimensional projective space over Fq, compute that

Z(X,T ) = 1
(1− T )(1− qT ) · · · (1− qnT ) .

(3) Prove that the following statements are equivalent.
(i) The power series Z(X,T ) represents a rational function in T .
(ii) There exist α1, . . . , αr, β1, . . . , βs ∈ C such that

#X(Fqn) = αn1 + · · ·+ αnr − βn1 − · · · − βns (n = 1, 2, . . . ).
(4) Let X be the Grassmannian of k-dimensional subspaces of m-space over Fq.

(i) Compute #X(Fqn); your answer should be a polynomial in qn depending on k and m. (Hint:
count bases of subspaces, then divide by the number of bases of a given subspace.)

(ii) Compute Z(X,T ).
(5) Choose a0, . . . , ar ∈ F×q . For d a positive integer dividing q−1, let Xd be the projective hypersurface

a0x
d
0 + · · ·+ arx

d
r = 0.

(i) Let Gd be the group of homomorphisms χ : F×q → C× of order d. For χ ∈ Gd, extend the
definition of χ to Fq by setting χ(0) = 1 if χ = 1 and χ(0) = 0 otherwise. Show that

1 + (q − 1)#Xd(Fq) =
∑

(u0,...,ur)∈X1

∑
χ0,...,χr∈Gd

r∏
i=0

χi(ui).

(ii) Show that χ0, . . . , χr ∈ Gd are neither all equal to 1 or all distinct from 1, then∑
(u0,...,ud)∈X1

r∏
i=0

χi(ui) = 0.

(iii) Let T be the set of tuples (χ0, . . . , χr) ∈ Gd \ {1} with χ0 · · ·χr = 1. For (χ0, . . . , χr) ∈ T ,
define the Jacobi sum

j(χ0, . . . χr) = 1
q − 1

∑
u0,...,ur∈Fq :u0+···+ur=0

χ0(u0) · · ·χr(ur).

Deduce from above that
#Xd(Fq) = 1 + q + · · ·+ qr−1 +

∑
(χ0,··· ,χr)∈T

χ0(a−1
0 ) · · ·χr(a−1

r )j(χ0, . . . , χr).

(iv) Fix an additive character ψ : Fq → C×. Show that

j(χ0, . . . , χr) = 1
q
G(χ0, ψ) · · ·G(χr, ψ)

where G(χ, ψ) denotes the Gauss sum.
(6) Keep notation as in the previous exercise, but assume only that d is not divisible by p (not that it

divides q − 1).
(i) Show that #Xd(Fq) = #Xe(Fq) for e = gcd(d, q − 1).
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(ii) Using the Davenport-Hasse relation, show that the rationality, functional equation, and Rie-
mann hypothesis hold for Z(Xd, T ).

Set 3. Throughout, let Fq denote a finite field of characteristic p. Assume the Weil conjectures for curves
and abelian varieties unless otherwise specified.

(1) Let X be a nonzero abelian variety over Fq. Prove that if q ≥ 5, the group X(Fq) is nontrivial.
(2) Let X be a curve over Fq such that #X(Fq) = 1.

(a) If q = 3 or q = 4, prove that

Z(X,T ) = 1− qT + qT 2

(1− T )(1− qT ) .

(b) If q = 2, prove that the genus of X is at most 4, and that there are at most 6 possibilities for
Z(X,T ).

(c) Optional: show that each of the 8 possibilities occurs for a unique X up to isomorphism.
(3) Let X be an abelian variety of dimension g over Fq. Assuming only the existence of complex numbers

α1, . . . , α2g such that
X(Fqn) = (1− αn1 ) · · · (1− αn2g) (n = 1, 2, . . . ),

compute Z(X,T ).
(4) Using the Honda-Tate theorem, prove that if A1, A2 are abelian varieties over Fq and P1(A1, T )

divides P1(A2, T ), then A1 is isogenous to the product of A2 with some other abelian variety.
(5) Let X be a curve of genus g over Fq. Prove the following refinement of the Weil bound due to Serre:

|#X(Fq)− q − 1| ≤ gb2√qc.
Hint: apply AM-GM to the numbers b2√qc+1+α+α where α runs over the Frobenius eigenvalues.

(6) Let P (T ) =
∑2g
i=0 aiT

i be a polynomial over Z such that a0 = 1, ag+i = qiag−i for all i, all roots of
P (T ) in C lie on the circle |T | = q−1/2, and ag is not divisible by p (that is, P is an ordinary Weil
polynomial). Use the Honda-Tate theorem to show that P (T ) occurs as P1(A, T ) for some abelian
variety A over Fq (without raising P to a power).

Set 4.
(1) Let K be a number field. Using the Chebotarëv density theorem, prove that the Frobenius elements

corresponding to maximal ideals of oK are dense in the absolute Galois group GK . (This is just an
exercise in unwinding the definitions.)

(2) In this exercise, we prove the theorem of Borel stated in class on November 4.
(a) Let f(T ) =

∑∞
n=0 anT

n be a power series over an arbitrary field K. Prove that f(T ) represents
a rational function over K if and only if for some positive integer m, the determinants of the
(m+ 1)× (m+ 1) matrices An,m = (an+i+j)mi,j=0 vanish for all sufficiently large n.

(b) Let f(T ) =
∑∞
n=0 anT

n be a power series over Z. Let r > 0 be a real number such that over Qp,
there exists a polynomial P (T ) of degree d < m such that P (T )f(T ) converges for |T | < r + ε
for some ε > 0. (We do not assume that P has coefficients in Z.) Prove that for some C > 0,
|det(An,m)|p ≤ Cr

−n(m−d) for all n.
(c) Let f(T ) =

∑∞
n=0 anT

n be a power series over Z. Let R and r be real numbers with Rr > 1
such that over C, f(T ) converges for |T | < R; and over Qp, f(T ) is the ratio of two series
that converge for |T | < r. Prove that f represents a rational function. (Hint: apply (b)
with r replaced by r − ε for which (R − ε)(r − ε) > 1, then combine with a trivial bound on
|det(An,m)|∞.)

(3) Let π be an element of an algebraic closure of Qp satisfying πp−1 = −p. (You may use without proof
the fact that Zp[π] is a discrete valuation ring with maximal ideal (π).) Define the power series

Eπ(T ) = exp(π(T − T p)) ∈ Qp(π)JT K.

(a) Prove that Eπ(T ) ∈ 1 + πZp[π]JT K.
(b) Prove that Eπ(T ) has radius of convergence strictly greater than 1. In particular, it makes sense

to evaluate it at any element of Zp[π].
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(c) Prove that if t ∈ Zp satisfies tp = t, then Eπ(t)p = 1. (Hint: check that in the identity
Eπ(T )p = exp(πpT ) exp(−πpT p)

it is valid to substitute t separately into the two factors on the right.)
(4) With notation as in the previous problem, let n be a positive integer and define

En(T ) := exp(π(T − T p
n

)) = Eπ(T )Eπ(T p) · · ·Eπ(T p
n−1

) ∈ Qp(π)JT K.

Show that the formula t 7→ En([t]) defines a nontrivial additive character on Fpn , where [t] denotes
the unique element of Zpn (the finite étale extension of Zp with residue field Fpn) lifting t and
satisfying tpn = t.

(5) Set q = pn and let
f =

∑
I=(i1,...,id)

aIx
i1
1 · · ·x

id
d ∈ Fq[x1, . . . , xd]

be a polynomial. Prove that for any positive integer m, the number of points (x1, . . . , xd) ∈ (F×qm)d
for which f(x1, . . . , xd) = 0 equals

(qm − 1)d

qm

1 + (qm − 1)
∑

x0,...,xd∈F×qm

∏
I:aI 6=0

m−1∏
j=0

Eπ(aI([x0][x1]i1 · · · [xd]id)q
j

)

 .

Set 5.
(1) Define the rings

R = Z[x1, y1, x2, y2, . . . ], R′ = Q[x1, y1, x2, y2, . . . ], F = Frac(R) = Frac(R′).
Define the power series x = 1 + x1T + x2T

2 + · · · , y = 1 + y1T + y2T
2 + · · · , and

f = 1/ exp(log(1/x) ? log(1/y)) ∈ R′JT K

where ? denotes the Hadamard product:
(a1T + a2T

2 + · · · ) ? (b1T + b2T
2 + · · · ) = a1b1T + a2b2T

2 + · · ·
(a) Let V1, V2 be two finite-dimensional vector spaces over F equipped with endomorphisms ϕ1, ϕ2

satisfying, for some positive integer n,
det(1− ϕ1T, V1)−1 ≡ 1 + x1T + · · ·+ xnT

n (mod Tn+1F JT K),
det(1− ϕ2T, V2)−1 ≡ 1 + y1T + · · ·+ ynT

n (mod Tn+1F JT K),
Prove that

det(1− (ϕ1 ⊗ ϕ2)T, V1 ⊗F V2)−1 ≡ f (mod Tn+1F JT K).
(Hint: pass to an algebraic closure of F and write everything in terms of eigenvalues. Remember
that f is determined mod Tn+1F JT K by x1, . . . , xn, y1, . . . , yn.)

(b) Deduce that f ∈ RJT K.
(2) Using the previous exercise, prove that there is a unique functor Λ from rings to rings with the

following properties.
(a) The underlying functor from rings to additive groups takes R to Λ(R) = 1 + TRJT K with the

usual series multiplication.
(b) For any ring R, the multiplication map ∗ on Λ(R) satisfies

(1− aT )−1 ∗ (1− bT )−1 = (1− abT )−1 (a, b ∈ R).
The ring Λ(R) is (a form of) the ring of big Witt vectors with coefficients in R.

(3) Let X1, X2 be two varieties over Fq. Prove that in Λ(Z), we have
Z(X1 ×Fq X2, T ) = Z(X1, T ) ∗ Z(X2, T ).

(4) Let K be a field of characteristic 0. Let P (x) ∈ K[x] be a monic polynomial of degree 2g + 1 with
no repeated roots.
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(a) Let X be the affine scheme SpecK[x, y]/(y2 − P (x)). Prove that Ω1
X/K is freely generated by

dx/y. (Hint: it suffices to check that dx/y is a nowhere vanishing section of Ω1
X/K . Treat the

points where y = 0 and y 6= 0 separately.)
(b) Prove that H1

dR(X) admits the basis

xi
dx

y
(i = 0, . . . , 2g − 1).

(Hint: for each integer d ≥ 2g, write down a relation of the form Q(x)dx/y with deg(Q) = d.)
(c) Let Y be the affine scheme SpecK[x, y, z]/(y2 − P (x), yz − 1). Prove that H1

dR(Y ) admits the
basis

xi
dx

y
, (i = 0, . . . , 2g − 1); xi

dx

y2 (i = 0, . . . , 2g).

(5) Let p > 2 be a prime. Let P ∈ Fp[x] be a monic polynomial of degree 2g+ 1 with no repeated roots.
(a) Put X = SpecFp[x, y]/(y2 − P (x)). Prove that H1

MW(X) admits the basis

xi
dx

y
(i = 0, . . . , 2g − 1).

(b) Put Y = SpecFp[x, y, z]/(y2 − P (x), yz − 1). Prove that H1
MW(Y ) admits the basis

xi
dx

y
, (i = 0, . . . , 2g − 1); xi

dx

y2 (i = 0, . . . , 2g).

Supplementary exercises. These exercises were not assigned during the course, but were added subse-
quently.

(1) Using the Weil conjectures for curves, show that a curve X of genus 1 over a finite field k cannot
satisfy X(k) = ∅.

(2) Using Tate’s theorem, show that the zeta function of a curve C over a finite field Fq is uniquely
determined by the sequence

# Jac(C)(Fq),# Jac(C)(Fq2),# Jac(C)(Fq3), . . . .

Optional (and harder): use the Weil conjectures to show that O(g) terms suffice, where g is the
genus of C. See [67].

(3) Let X be a geometrically irreducible variety over a finite field Fq. Using the Weil conjectures, show
that there exists an integer N such that X(Fqn) 6= ∅ for all n ≥ N .

(4) (Weil’s lemma) Let ` be a prime. Let P ∈ Q`[T ] be a polynomial with roots α1, . . . , αd ∈ Q`. Show
that P is uniquely determined by the function Z[T ]→ Q given by

F 7→

∣∣∣∣∣
d∏
i=1

F (αi)

∣∣∣∣∣
`

.

(5) Fix a positive integer g and a prime power q. Using the Weil conjectures, show that the number of
polynomials that can occur as P1(T ) for some abelian variety of dimension g over Fq is bounded.
(Hint: each coefficient is both integral and bounded by some function of g and q.)

(6) Let X = Spec(A) be an affine scheme of finite type over Fq. Prove that #X(Fq) = 0 if and only if
the ideal in A generated by all elements of the form fq − f for f ∈ A is the unit ideal.

(7) Put X = Spec(k) for some field k and fix an algebraic closure k of k. Show that the profinite
fundamental group π1(X,Spec(k)), as defined in Definition 15.6, is canonically isomorphic to the
absolute Galois group Gk = Gal(k/k).

(8) Let G be a profinite topological group. Prove that any homomorphism G → GL(r,Q`) has image
contained in GL(r, E) for some finite extension E/Q`. (Hint: one approach to this uses the Baire
category theorem. See [63, Remark 9.0.7].)
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