
Errata for p-adic Differential Equations (updated 26 Oct 2021)

Thanks to Francesco Baldassarri, Joshua Ciappara, Michel Matignon, Grant Molnar,
Takahiro Nakagawa, Shun Ohkubo, David Savitt, Atsushi Shiho, Junecue Suh, Peiduo Wang,
and Shuyang Ye for contributions to this list. All references are to the first printing; a few
of these issues are already fixed in the second printing.

Definition 0.3.2: The formula for (a)i should read a(a + 1) · · · (a + i − 1), not a(a +
1) · · · (a+ i).

Theorem 1.2.4: While the attribution of this result to Ostrowski is correct, the second
reference is insufficient: it only covers the case F = Q. For a complete reference for the
second assertion, see for example J.W.S. Cassels, Local Fields.

Theorem 1.3.6: The last sentence of the proof is incorrect (the first inequality goes in
the wrong direction); it should be replaced by the following. By the definition of the quotient
norm,

|a1m1 + · · ·+ anmn|V ≥ |a2m2 + · · ·+ anmn|V ′
≥ c2 max{|a2| , . . . , |an|}

≥ c2
max{|m2|V , . . . , |mn|V }

|a2m2 + · · ·+ anmn|V .

Put c1 = min{1, c2/max{|m2|V , . . . , |mn|V }}; we then have

c−11 |a1m1 + · · ·+ anmn|V = max{|a1m1 + · · ·+ anmn|V , |a2m2 + · · ·+ anmn|V }
≥ |a1m1|V ,

from which it follows that |a1m1 + · · ·+ anmn|V ≥ c1 |a1m1|V . This proves that |·|V is
equivalent to the supremum norm defined by m1, . . . ,mn.

Lemma 1.3.8: In the last paragraph of the proof, the equation xij =
∑∞

h=i+1 ah,jmj

should read xij =
∑∞

h=i+1 ah,jmh.
Theorem 1.4.9: the given proof is incorrect. A submultiplicative norm on a field need

not be multiplicative; consider for instance the norm on Q given by taking the supremum of
the p-adic norms. In fact, the given formula does not define a multiplicative norm in general;
worse yet, it is possible to choose F so that there is no α ∈ E for which the given formula
describes a multiplicative norm. (This is connected to the phenomenon of defect described
in Chapter 3.)

Here is a correct proof of Theorem 1.4.9. For α ∈ E, let P (T ) be the minimal polynomial
of α over F , put d = deg(P ), and define |α| = |P (0)|1/d. To check that this gives a
multiplicative norm, choose an arbitrary β ∈ E with minimal polynomial Q(T ) of degree
f . The polynomials P and Q are irreducible, so by Theorem 2.2.1 their Newton polygons
consist of single segments of some slopes r and s, respectively. Write P (T ) =

∑
i PiT

i and
Q(T ) =

∑
j QjT

j; then |Pi| ≤ e−r(d−i) and |Qj| ≤ e−s(f−j), with equality for i = j = 0.
Factor P (T ) = (T −α1) · · · (T −αd) and Q(T ) = (T −β1) · · · (T −βe) over some algebraic

extension of F , and define

A(T ) =
∑
k

AkT
k =

d∏
i=1

e∏
j=1

(T − αi − βj), M(T ) =
∑
k

MkT
k =

d∏
i=1

e∏
j=1

(T − αiβj).
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Then Ak is an integer polynomial in the Pi and Qj which is homogeneous of degree df − k
for the weighting giving degree d − i to Pi and degree f − j to Qj. This implies that
|Ak| ≤ e−min{r,s}(df−k), so the Newton polygon of A has no slopes less than min{r, s}. By the
multiplicativity of Newton polygons, the same holds for the minimal polynomial of α + β,
so |α + β| ≤ e−min{r,s} = max{|α|, |β|}. Meanwhile, Mk is an integer polynomial in the Pi
and Qj which is homogeneous of bidegree (df − k, df − k) for the weighting giving bidegree
(d − i, 0) to Pi and bidegree (0, f − j) to Qj. This implies that |Mk| ≤ e−(r+s)(df−k) with
equality for k = 0, so the Newton polygon of M has all slopes equal to r + s. By the
multiplicativity of Newton polygons, the same holds for the minimal polynomial of αβ, so
|αβ| = e−r−s = |α||β|.

Notes for Chapter 1: Some prior references for Lemma 1.3.7 are [31, Proposition
2.6.2/3] and §3, Lemme 2 of: M. Matignon and M. Reversat, Sous-corps fermés d’un corps
valué, J. Algebra 90 (1984), 491–515. See also Lemme 8 of: J. Fresnel and M. Matignon,
Produit tensoriel topologique de corps valués, Canad. J. Math. 35 (1983), 218–273.

Exercises for Chapter 1: In exercise 9, it should be assumed that E is algebraic and
the limit of the sequence |α1| , |α2| , . . . is not in pQ.

Example 2.1.4: The last term of the polynomial should be p3, not p3T 3.
Theorem 2.2.1: The ring denoted R in the theorem statement is called F in the proof.

The ring denoted R in the proof (to which Theorem 2.2.2 is applied) is a polynomial ring
over the original ring.

Theorem 2.2.2: The hypothesis that R be a nonarchimedean ring includes the condition
that the norm on R is multiplicative, which is too strong for some applications (e.g., to rings
of matrices, as in Proposition 8.3.5). It should only be assumed that the norm on R is
submultiplicative, i.e., for all a, b ∈ R, one has |ab| ≤ |a||b|. Also, condition (d) should read
|ab− c| ≤ λ2|a||b|, and the definition of Bµ should be correspondingly changed to

Bµ = {(u, v) ∈ U × V : |(u, v)| ≤ µ|a||b|}.

Notation 3.0.1: change “the separable closure of E” to “the separable closure of F”.
Theorem 4.1.4: in the first line of the proof, replace V by Cn.
Definition 4.1.8: change “will not necessarily form a basis for” to “will not necessarily

fill out”.
Definition 4.3.3: change “as in the nonarchimedean case” to “as in the archimedean

case”.
Corollary 4.4.8: while the statement is correct as written, later in these errata (see

Theorem 6.7.4) we will need the following variant: condition (b) (but not (a)) holds for the
function

max{1, σ1/δ}a(n).
where a(n) is a suitable function of n (e.g., a(n) = 2nn! − 1). To see this, note that in the
proof, we have

|U1| ≤ (σ1/δ)
n−1, |U4| ≤ (σ1/δ) |U1|2 |U3|2

and U3 is bounded using the induction hypothesis with n replaced by n− i ≤ n− 1 and σ1
replaced by |A2| ≤ σ1 |U1|.
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Definition 5.5.1: in the formula for multiplication, the sum on h should run from 0 to
i (not j) and the binomial coefficient should be

(
i
h

)
(not

(
j
h

)
).

Example 5.8.3: change “this makes sense only if” to “this cannot make sense except
possibly if”

Remark 5.8.4: the last line in the display should read (1 + d(r))T (r,D(m)), not (1 +
d(r))T (r,m).

Definition 6.2.12: in the definition of a refined differential module, it is not necessary
to assume a priori that V is pure, as this follows from the condition |D|sp,V ∨⊗V < |D|sp,V
by Lemma 6.2.8. Namely, if V is not pure, then it admits at least one subquotient V1 with
|D|sp,V1 = |D|sp,V and at least one subquotient V2 with |D|sp,V2 < |D|sp,V . Then V ∨2 ⊗ V1
occurs as a subquotient of V ∨ ⊗ V , so |D|sp,V ∨⊗V ≥ |D|sp,V ∨2 ⊗V1 = |D|sp,V .

Definition 6.4.1: delete the word “field”.
Lemma 6.7.3: to apply Lemma 6.7.1, one must first reduce to the case |σ1| = 1. This

can be achieved by rescaling d after adjoining an element of suitable norm to the constant
subfield of F ; note that the latter step does not change the operator norm of d, and so
preserves the visible spectrum by Corollary 6.5.5. One can then apply Theorem 4.3.11 to
put N in the right form.

Theorem 6.7.4: while the statement is correct as written, later in these errata (see
Lemma 6.8.1) we will need the following variant: the conclusion of the theorem also holds for
θ = max{1, σ1/δ}a(n) as in the comment on Corollary 4.4.8. In particular, in this formulation
the bound δ ≥ θ |d|F holds for δ in some neighborhood of σ1 depending only on n and |d|F .

Lemma 6.8.1: In the last sentence, the application of Theorem 6.7.4 as published is not
sufficient; one needs the variant described above.

Definition 7.1.1: there should be no minus sign in the formula for irregularity.
Remark 7.1.4: change “for a, b ∈ C” to “for a, b, c ∈ C”.
Theorem 7.2.1: in (7.2.1.1), there should be a minus sign in front of the summation.
Definition 7.2.4: in the last line, e−α1 , . . . , e−αn should be e−2πiα1 , . . . , e−2πiαn .
Theorem 7.3.8: change “informal” to “nonformal”.
Proposition 7.3.12: change d to D in one place in the statement and two places in the

proof.
Lemma 8.0.4: change [α, γ] to [α, γ).
Proposition 8.3.5: the matrix U should belong to GLn(K〈t/β〉[t−1]), not GLn(K〈t/β〉).
Lemma 8.3.6: the matrix U should belong to GLn(K〈t/β〉[t−1]), not GLn(K〈t/β〉).
Corollary 8.5.3: the union is over α, with β fixed.
Proposition 8.5.7: the matrix U should belong to GLn(K〈t/β〉[t−1]), not GLn(K〈t/β〉).
Example 9.6.2: in order to get two linearly independent solutions (without using loga-

rithmic solutions), one must also assume that c is not a positive integer.
Example 9.9.3: the reference to M1 after the first displayed equation should be to M0.
Definition 10.3.1: The second displayed equation does not make sense, because ptp−1

is not an element of F ′ρ. It should instead read

D(v ⊗ f) = D′(v)⊗ ptp−1f + v ⊗ d(f).
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Lemma 10.3.6: The statements of (d) and (f) are not correct. To fix them, one must
assume K contains the full group µp of p-th roots of unity. In this case, for ζ ∈ µp, define
the map ζ : Fρ → Fρ as the substitution t 7→ ζt. For a finite differential module (V,D) over
Fρ, define the pullback ζ∗(V,D) as the differential module (ζ∗V,D′) with

ζ∗V = V ⊗Fρ,ζ Fρ, D′(v ⊗ f) = D(v)⊗ ζf + v ⊗ d(f).

Then the correct statement of (d) is that if µp ⊆ K, then

ϕ∗ϕ∗V ∼=
⊕
ζ∈µp

ζ∗V.

More precisely, the map ζ∗V → ϕ∗ϕ∗V takes v ⊗ 1 to 1
p

∑p−1
i=0 (t/ζ)iv ⊗ t−i. Similarly, the

correct statement of (f) is that if µp ⊆ K, then

ϕ∗V1 ⊗ ϕ∗V2 ∼=
⊕
ζ∈µp

ϕ∗(V1 ⊗ ζ∗V2).

Theorem 10.4.2: In the proof, in order to conclude that V ′′ ⊗ W0 is contained in a
factor of V ′ ⊗W0, it must be shown not only that IR(V ′ ⊗Wm) = p−p/(p−1), but also that
IR(X ′) = p−p/(p−1) for every Jordan-Hölder constituent X ′ of V ′⊗Wm. Since Wm⊗W−m ∼=
W0, we can write X ′ = X ⊗Wm for X = X ′ ⊗W−m. Then IR(X) ≥ IR(V ′) > p−p/(p−1) by
Lemma 9.4.6(a), so IR(X ′) = p−p/(p−1) by Lemma 9.4.6(c).

Theorem 10.4.4: The equivalence between checking the condition for ρ = α and ρ = β
with checking the condition for all ρ ∈ [α, β] is not yet known at this point in the text; it
will follow later from Theorem 11.3.2(e).

Theorem 10.5.1: The proof needs to be corrected to avoid the use of the incorrect
formulation of Lemma 10.3.6(d) in the last paragraph (see above). This may be accomplished
as follows.

Assume first that K contains the full group µp of p-th roots of unity. In the first sentence
of the last paragraph of the proof, it is noted that ϕ∗W ′ is a subquotient of ϕ∗ϕ∗V . By the
corrected formulation of Lemma 10.3.6(d), the latter is isomorphic to ⊕ζ∈µpζ∗V . Note that
IR(ζ∗V ) = IR(V ) for each ζ ∈ µp by Corollary 6.2.7. Since each ζ∗V is irreducible, each
Jordan-Hölder constituent of ϕ∗W ′ must be isomorphic to ζ∗V for some ζ ∈ µp, yielding
IR(ϕ∗W ′) = IR(V ). We may then continue as in the original proof.

Still assuming that K contains µp, we may now deduce Proposition 10.6.1 and The-
orem 10.6.2. To obtain Theorem 10.5.1 for general K, it is sufficient to verify that the
subsidiary radii of V and V ⊗K K(µp) coincide. For this, we may again assume V is irre-
ducible. From the definition of the spectral radius, we see that IR(V ) = IR(V ⊗K K(µp)).
This is not enough to deduce the desired result because V ⊗K K(µp) may fail to be irre-
ducible. However, by Theorem 10.6.2 applied over K(µp), V ⊗K K(µp) admits a strong
decomposition, which by Corollary 6.2.7 again is Gal(K(µp)/K)-invariant. The strong de-
composition of V ⊗K K(µp) must therefore contain only a single summand, from which the
claim follows.
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Section 10.6: Change IR(V ) = p−1/(p−1)ρ to IR(V ) = p−1/(p−1).
Proposition 10.6.1, Theorem 10.6.2: Note that for a given K, these results depend on

Theorem 10.5.1 for that particular K. As noted above (see the correction to Theorem 10.5.1),
we must first prove Theorem 10.5.1 assuming that K contains the full group of p-th roots
of unity, then deduce Proposition 10.6.1 and Theorem 10.6.2 under this assumption, then
deduce Theorem 10.5.1 in full, then deduce Proposition 10.6.1 and Theorem 10.6.2 in full.

Proposition 10.6.6: The application of Corollary 6.2.7 in the proof is invalid, because it
is not assumed that s lies in the visible spectrum. In fact, it is only necessary to execute the
first paragraph for a Galois extension of constant subfields, in which case the preservation of
the spectral radius is apparent from its definition (as in the corrected proof of Theorem 10.5.1
given above).

Theorem 10.6.7: Since we may include µp in E, we may assume from the outset that
µp ⊂ K. In the proof that X is refined, the displayed equation should read

(ϕ∗X
∨)⊗ (ϕ∗X) ∼=

⊕
ζ∈µp

ϕ∗(X
∨ ⊗ ζ∗X).

The rest of the proof continues unchanged.
Definition 10.8.1: The quantity t − 1 should be t + 1 in all three places where it

appears. Similarly, the quantity t− µ should be t+ µ. The inclusion du/dt ∈ K〈t〉× should
read du/dt ∈ K〈t〉 ∩KJtK×an.

Remark 11.6.4: change “differential” to “different”.
Question 11.8.3: This question has a negative answer. See Exercises for Chapter 11.
Notes for Chapter 11: Footnote 1 is not quite accurate: Baldassarri’s paper (F. Bal-

dassarri, Continuity of the radius of convergence of differential equations on p-adic analytic
curves, Invent. Math. 182 (2010), 513–584) only treats the radius of convergence, not all of
the radii of optimal convergence.

Exercises for Chapter 11: Exercise (4) is false as stated. For example, if p = 0 and M
is free of rank 1 with a single generator v satisfying D(v) = λtnv for some nonnegative integer

n, then R(M) = max{β, |λ|−1/(n+1)} need not belong to |K×|. A similar counterexample can
be used against Question 11.8.3 by taking n coprime to p.

Theorem 12.2.2: There is a subtlety in the induction step because ϕ∗M is not a
differential module: the Frobenius pushforward introduces a pole at t = 0. Note that this
issue does not arise in the corresponding arguments for Theorem 12.3.1, Theorem 12.4.2,
or Theorem 12.5.2; for Theorem 12.4.1 and Theorem 12.5.1, one may replace ϕ∗M with
the off-center Frobenius pushforward ψ∗M to remedy the original argument. To address
Theorem 12.2.2 itself, apply Theorem 12.3.1 to M ⊗K〈β/t, t/β〉 (noting that condition (b)
is vacuous when α = β) and Theorem 12.5.1 to M ⊗ KJt/βKan, then glue the resulting
decompositions.

Lemma 12.2.7: change fi(− log β) to fi(M,− log β).
Theorem 12.7.2: In the proof (page 213, line 10), ζ should be a primitive ph+1-st root

of unity.
Theorem 13.2.3: Above the theorem statement, “which may viewed” should be “which

may be viewed”. In the theorem statement, it should be assumed that the exponents of
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the regular singularity have p-adic non-Liouville differences, not that they are p-adic non-
Liouville numbers; and the final inclusion should read y ∈M ⊗K〈t/β〉 K〈t/ρ〉.

Remark 13.2.4: the displayed equation should read

F (a, b, c; z) =
∞∑
i=0

a(a+ 1) · · · (a+ i− 1)b(b+ 1) · · · (b+ i− 1)

c(c+ 1) · · · (c+ i− 1)i!
zi.

Proposition 13.4.5: From what is written, it is unclear how Proposition 13.1.4 implies
that Bσm(i)−Bσm(i+1) is forced to be zero for m large, since it varies with m. The point is that
we may apply Proposition 13.1.4 to each element of the finite set {Bj − Bk : 1 ≤ j, k ≤ n}
to obtain a uniform lower bound m0 > 0 such that for 1 ≤ j, k ≤ n and m ≥ m0, if Bj 6= Bk,
then |Bj −Bk|(m) > 3cm ≥ 2cm+ c. We then apply this with j = σm(i), k = σm+1(i).

Definition 13.5.2: The group µpm is the group of pm-th roots of unity (not p-th roots
of unity). The displayed equation should read

ζ(x) =
∞∑
i=0

(ζ − 1)i
(
D

i

)
(x)

because D is a derivation with respect to t d
dt

rather than d
dt

. Delete “w” at the end of page
227, line 10. For the proofs of Theorem 13.5.6 and Theorem 13.6.1, we must also note that
for any α′, β′ with α < α′ < β′ < β, the matrices Sm,A are invertible over K〈α′/t, t/β′〉 for
m sufficiently large (depending on α′ and β); this follows from (b) and (c) as described in
[79, Lemma 1.2].

Theorem 13.5.5: The notation j(i) should be read as j(i,m). The first sentence after
(13.5.5.2) should read “Write det(Sm,A) =

∑
i∈Z sm,A,it

i.” Thereafter, every expression of
the form det(Sm,A,0) (for various values of m and A) should be replaced with sm,A,0.

Theorem 13.5.6: The definition of Tm should read Tm = S−1m,ASm,B. The quantity
Ti,σm(i) is never defined: it is shorthand for the matrix entry (Tm)i,σm(i). In the last displayed

equation, A1, . . . , An, B1, . . . , Bn should be A
(m)
1 , . . . , A

(m)
n , B

(m)
1 , . . . , B

(m)
n , respectively.

Theorem 13.6.1: The given proof is incorrect starting from the third paragraph: the
upper bound on |Tm′,m|ρ, |T−1m′,m|ρ should be pnkm

′
rather than pnkm. The argument from this

point should instead be carried out as follows.
As in the proof of Theorem 13.5.6, for all m we have

|Sm,A|ρ ≤ pkm, |S−1m,A|ρ ≤ p(n−1)km (ρ ∈ [α′′, β′′]).

Choose λ ∈ (0, 1) and c > 0 so that p8nkη−c ≤ λ. Since A has p-adic non-Liouville differences,
there exists m0 > 0 such that for m ≥ m0, the congruence h ≡ Ai − Aj (mod pm) forces
either h = Ai − Aj = 0 or |h| ≥ cm. By enlarging m0 if needed, we may also ensure that
Ai ≡ Aj (mod pm0) if and only if Ai = Aj.

The strategy is to renormalize the matrices Sm,A to obtain a convergent sequence. To
this end, we will construct invertible matrices Rm over K for m ≥ m0 such that Rm0 = In,
(Rm)ij = 0 whenever Ai 6= Aj (or equivalently Ai 6≡ Aj (mod pm)), and

|In −RmS
−1
m,ASm+1,AR

−1
m+1|ρ ≤ λm (ρ ∈ [α′, β′],m ≥ m0).
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This will imply that form ≥ m0 and ρ ∈ [α′, β′], |In−S−1m0,A
Sm,AR

−1
m |ρ < 1 and |S−1m0,A

Sm,AR
−1
m −

S−1m0,A
Sm+1,AR

−1
m+1|ρ ≤ λm. Consequently, the sequence S−1m0,A

Sm,AR
−1
m for m = m0,m0+1, . . .

will converge to an invertible matrix U over K〈α′/t, t/β′〉 which will have the desired effect
(more on this below).

The construction of the Rm proceeds recursively as follows. Given Rm0 , . . . , Rm, we first
verify that

|Rm|, |R−1m | ≤ pnkm.

This is clear for m = m0, so we may assume m > m0. Choose any ρ ∈ [α′, β′]. As noted
above, we have |In − S−1m0,A

Sm,AR
−1
m |ρ < 1, so |S−1m0,A

Sm,AR
−1
m |ρ = |RmS

−1
m,ASm0,A|ρ = 1. We

then deduce the claim using the bounds on |Sm,A|ρ, |S−1m,A|ρ from above.

Next, put Tm = RmS
−1
m,ASm+1,A; we then have |Tm|ρ, |T−1m |ρ ≤ p2nk(m+1) for all ρ ∈ [α′′, β′′].

If we write Tm =
∑

h∈Z Tm,ht
h, then (Tm,h)ij can only be nonzero if h ≡ Ai − Aj (mod pm),

which forces either h = 0 or |h| ≥ cm. If h > 0, we have

|(Tm,h)ijth|α′ ≤ |(Tm,h)ijth|β′ ≤ |(Tm,h)ijth|β′′η−cm ≤ p2nk(m+1)η−cm,

while if h < 0, we have

|(Tm,h)ijth|β′ ≤ |(Tm,h)ijth|α′ ≤ |(Tm,h)ijth|α′′η−cm ≤ p2nk(m+1)η−cm.

We may now take Rm+1 = Tm,0, because

|In −Rm+1T
−1
m |ρ ≤ |T−1m |ρ|Tm − Tm,0|ρ ≤ p2nk(m+1)p2nk(m+1)η−cm ≤ λm < 1 (ρ ∈ [α′, β′])

and so |In − TmR−1m+1|ρ ≤ λm. (Note that indeed (Rm)ij = 0 whenever Ai 6≡ Aj (mod pm),
and that the latter condition is equivalent to Ai 6= Aj by our choice of m0.) This completes
the construction of the Rm.

At this point, we have exhibited a invertible matrix U over K〈α′/t, t/β′〉 such that Sm0,AU
is the change-of-basis matrix to a basis e1, . . . , en of M ⊗ K〈α′/t, t/β′〉 with the property
that

ζ(ei) = ζAiei (ζ ∈ µp∞ ; i = 1, . . . , n).

We next check that the matrix of action N of D on e1, . . . , en has entries in K. To this end,
note that the actions of ζ and D commute; writing Nij =

∑
n∈ZNijnt

n, we have

∑
i

(
ζAj
∑
n∈Z

Nijnt
n

)
ei = D(ζAjej)

= (D ◦ ζ)(ej) = (ζ ◦D)(ej)

=
∑
i

(∑
n∈Z

ζn+AiNijnt
n

)
ei.

Since we previously enforced the assumption that A has no nonzero integer differences, it
follows that Nijn = 0 whenever n 6= 0 or Ai 6= Aj.
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From the previous paragraph, we see that M decomposes into summands, each corre-
sponding to a single value in A. It remains to check that the multiset of eigenvalues of N
equals A; for this, we first reduce to the case where A consists of a single element, and then
to the case where that single element equals 0. In this case, if b occurs as an eigenvalue of
N , then by Example 9.5.2 we must have b ∈ Zp, and there must exist a nonzero eigenvector
v of N with eigenvalue b of the form c1e1 + · · ·+ cnen for some c1, . . . , cn ∈ K. However, we
then have

ζbv = ζ(v) = ζ(c1e1 + · · ·+ cnen) = c1e1 + · · ·+ cnen = v,

a contradiction if b 6= 0.
Exercises for Chapter 13: in exercise 10, it should be assumed that M has p-adic

non-Liouville exponent differences.
Hypothesis 14.0.1: change “Part V” to “Part IV”.
Definition 14.1.1: change ϕ∗(M) to ϕ∗M .
Definition 14.5.1: change sH,i to sH,1.
Notes for Chapter 14: change “Ck is a complete discretely valued field” to “Ck is a

complete discrete valuation ring”.
Theorem 15.3.4: the isomorphism is one of difference modules, not differential modules.
Theorem 16.1.1: in the sentence containing (16.1.1.1), the difference module V is the

space of n× n matrices with the action X 7→ ciA0φ(X)A−10 .
Lemma 17.3.4: in the proof, change Φ(A) to ϕ(A).
Section 18.2: at the end of the first sentence, the ring should be K{t/β}.
Proposition 18.4.3: it should also be assumed that the fundamental solution matrix of

M is an invertible matrix over K{t}, so that Theorem 18.2.1 applies.
Theorem 18.5.1: The bound as stated is not correct. This can be seen concretely by

considering examples of the form

N =

(
0 t
0 α +

∑∞
n=1 t

n

)
, U =

(
1
∑∞

n=1
tn

α−n
0

∑∞
n=0 t

n

)
where α ∈ Zp has type 1 in the sense of Definition 13.1.1 (to enforce condition (e)). Such

examples can have arbitrarily large log-growth: for k a positive integer and α = −
∑∞

i=1 p
ki ,

U has order of log-growth k.
The error in the original proof occurs in the step “calculate explicitly as in Proposition

18.1.1.” To illustrate this in more detail, and to give a corrected statement of Theorem 18.5.1,
we state and prove a generalization of Proposition 18.1.1 under the hypothesis that N0 is not
nilpotent with nilpotency index m, but has prepared em α1, . . . , αl ∈ Zp and the minimal

polynomial of N0 equals
∏l

j=1(T−αj)mj . Under this condition, the map f(X) = N0X−XN0

has eigenvalues αj − αk for 1 ≤ j, k ≤ l. By the hypothesis on prepared eigenvalues, the
map X 7→ iX + f(X) remains invertible, but we cannot compute the inverse using the same
formula as before.

Instead, note that by Lemma 7.3.5, the minimal polynomial of f is then P (T ) =

8



∏l
j,k=1(T − αj + αk)

ej+ek−1. We may thus invert X 7→ iX + f(X) using the formula

X 7→
deg(P )∑
j=1

−P
(j)(i)

j!P (i)
Xj,

keeping in mind that P (j)(i)/j! ∈ Zp. For the generalization of Proposition 18.1.1, we obtain
the bound

|Ui| βi ≤
l∏

j,k=1

i∏
h=1

|h− αj + αk|−(mj+mk−1) .

In the proof of Theorem 18.5.1, we must apply this bound for i ≤ p. In this case, for each
pair (j, k), at most one value of h ∈ {1, . . . , i} contributes nontrivially to the product, so the

Using this bound, we may now follow the original proof of Theorem 18.5.1 to obtain the
corrected bound

|Ui| βi ≤ cpn+(n−1)dlogp iemax{1, |N |n−1β }

where

c = max

{ ∏
1≤j<k≤l

∣∣∣(αj − α(s)
j − αk + α

(s)
k )/ps

∣∣∣−(mj+mk−1) : 0 ≤ s ≤ blogp ic

}
.

(Condition (d) ensures that c <∞.)
Corollary 19.4.2: change GκK((t)),i to Gi

κK((t)).

Lemma 21.4.1: change pp
−h/(p−1) < IR(N ⊗ Fρ) < pp

−h+1/(p−1) to p−p
−h+1/(p−1) <

IR(N ⊗ Fρ) < p−p
−h/(p−1).

Definition 24.4.1: change D(V ) to D†rig(V ).

Definition 24.4.3: change D(V ) to D†rig(V ) in three places.
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