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91 I. Moerdijk & J. Mrčun Introduction to foliations and Lie groupoids
92 J. Kollár, K. E. Smith & A. Corti Rational and nearly rational varieties
93 D. Applebaum Lévy processes and stochastic calculus (1st edition)
94 B. Conrad Modular forms and the Ramanujan conjecture
95 M. Schechter An introduction to nonlinear analysis
96 R. Carter Lie algebras of finite and affine type
97 H. L. Montgomery & R. C. Vaughan Multiplicative number theory, I
98 I. Chavel Riemannian geometry (2nd edition)
99 D. Goldfeld Automorphic forms and L-functions for the group GL(n,R)

100 M. B. Marcus & J. Rosen Markov processes, Gaussian processes, and local times
101 P. Gille & T. Szamuely Central simple algebras and Galois cohomology
102 J. Bertoin Random fragmentation and coagulation processes
103 E. Frenkel Langlands correspondence for loop groups
104 A. Ambrosetti & A. Malchiodi Nonlinear analysis and semilinear elliptic problems
105 T. Tao & V. H. Vu Additive combinatorics
106 E. B. Davies Linear operators and their spectra
107 K. Kodaira Complex analysis
108 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Harmonic analysis on finite groups
109 H. Geiges An introduction to contact topology
110 J. Faraut Analysis on Lie groups: An introduction
111 E. Park Complex topological K-theory
112 D. W. Stroock Partial differential equations for probabilists
113 A. Kirillov, Jr An introduction to Lie groups and Lie algebras
114 F. Gesztesy et al. Soliton equations and their algebro-geometric solutions, II
115 E. de Faria & W. de Melo Mathematical tools for one-dimensional dynamics
116 D. Applebaum Lévy processes and stochastic calculus (2nd edition)
117 T. Szamuely Galois groups and fundamental groups
118 G. W. Anderson, A. Guionnet & O. Zeitouni An introduction to random matrices
119 C. Perez-Garcia & W. H. Schikhof Locally convex spaces over non-Archimedean valued fields
120 P. K. Friz & N. B. Victoir Multidimensional stochastic processes as rough paths
121 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Representation theory of the symmetric groups
122 S. Kalikow & R. McCutcheon An outline of ergodic theory
123 G. F. Lawler & V. Limic Random walk: A modern introduction
124 K. Lux & H. Pahlings Representations of groups



p-adic Differential Equations

KIRAN S. KEDLAYA

Massachusetts Institute of Technology



C A M B R I D G E U N I V E R S I T Y P R E S S

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521768795

c© K. S. Kedlaya 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Kedlaya, Kiran Sridhara, 1974–

p-adic differential equations / Kiran S. Kedlaya.
p. cm. – (Cambridge studies in advanced mathematics ; 125)

Includes bibliographical references and index.
ISBN 978-0-521-76879-5

1. p-adic analysis. 2. Differential
equations. I. Title. II. Series.

QA241.K43 2010
512.7′4–dc22
2010004489

ISBN 978-0-521-76879-5 Hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.



Contents

Preface page xiii

0 Introductory remarks 1
0.1 Why p-adic differential equations? 1
0.2 Zeta functions of varieties 3
0.3 Zeta functions and p-adic differential equations 5
0.4 A word of caution 7

Notes 8
Exercises 9

Part I Tools of p-adic Analysis 11

1 Norms on algebraic structures 13
1.1 Norms on abelian groups 13
1.2 Valuations and nonarchimedean norms 16
1.3 Norms on modules 17
1.4 Examples of nonarchimedean norms 25
1.5 Spherical completeness 28

Notes 31
Exercises 33

2 Newton polygons 35
2.1 Introduction to Newton polygons 35
2.2 Slope factorizations and a master factorization theorem 38
2.3 Applications to nonarchimedean field theory 41

Notes 42
Exercises 43

3 Ramification theory 45
3.1 Defect 46
3.2 Unramified extensions 47

v



vi Contents

3.3 Tamely ramified extensions 49
3.4 The case of local fields 52

Notes 53
Exercises 54

4 Matrix analysis 55
4.1 Singular values and eigenvalues (archimedean case) 56
4.2 Perturbations (archimedean case) 60
4.3 Singular values and eigenvalues (nonarchimedean case) 62
4.4 Perturbations (nonarchimedean case) 68
4.5 Horn’s inequalities 71

Notes 72
Exercises 74

Part II Differential Algebra 75

5 Formalism of differential algebra 77
5.1 Differential rings and differential modules 77
5.2 Differential modules and differential systems 80
5.3 Operations on differential modules 81
5.4 Cyclic vectors 84
5.5 Differential polynomials 85
5.6 Differential equations 87
5.7 Cyclic vectors: a mixed blessing 87
5.8 Taylor series 90

Notes 91
Exercises 91

6 Metric properties of differential modules 93
6.1 Spectral radii of bounded endomorphisms 93
6.2 Spectral radii of differential operators 95
6.3 A coordinate-free approach 102
6.4 Newton polygons for twisted polynomials 104
6.5 Twisted polynomials and spectral radii 105
6.6 The visible decomposition theorem 107
6.7 Matrices and the visible spectrum 109
6.8 A refined visible decomposition theorem 112
6.9 Changing the constant field 114

Notes 116
Exercises 117

7 Regular singularities 118
7.1 Irregularity 119



Contents vii

7.2 Exponents in the complex analytic setting 120
7.3 Formal solutions of regular differential equations 123
7.4 Index and irregularity 126
7.5 The Turrittin–Levelt–Hukuhara decomposition theorem 127

Notes 129
Exercises 130

Part III p-adic Differential Equations on Discs and Annuli 133

8 Rings of functions on discs and annuli 135
8.1 Power series on closed discs and annuli 136
8.2 Gauss norms and Newton polygons 138
8.3 Factorization results 140
8.4 Open discs and annuli 143
8.5 Analytic elements 144
8.6 More approximation arguments 147

Notes 149
Exercises 150

9 Radius and generic radius of convergence 151
9.1 Differential modules have no torsion 152
9.2 Antidifferentiation 153
9.3 Radius of convergence on a disc 154
9.4 Generic radius of convergence 155
9.5 Some examples in rank 1 157
9.6 Transfer theorems 158
9.7 Geometric interpretation 160
9.8 Subsidiary radii 162
9.9 Another example in rank 1 162
9.10 Comparison with the coordinate-free definition 164

Notes 165
Exercises 166

10 Frobenius pullback and pushforward 168
10.1 Why Frobenius descent? 168
10.2 pth powers and roots 169
10.3 Frobenius pullback and pushforward operations 170
10.4 Frobenius antecedents 172
10.5 Frobenius descendants and subsidiary radii 174
10.6 Decomposition by spectral radius 176
10.7 Integrality of the generic radius 180
10.8 Off-center Frobenius antecedents and descendants 181



viii Contents

Notes 182
Exercises 183

11 Variation of generic and subsidiary radii 184
11.1 Harmonicity of the valuation function 185
11.2 Variation of Newton polygons 186
11.3 Variation of subsidiary radii: statements 189
11.4 Convexity for the generic radius 190
11.5 Measuring small radii 191
11.6 Larger radii 193
11.7 Monotonicity 195
11.8 Radius versus generic radius 197
11.9 Subsidiary radii as radii of optimal convergence 198

Notes 199
Exercises 200

12 Decomposition by subsidiary radii 201
12.1 Metrical detection of units 202
12.2 Decomposition over a closed disc 203
12.3 Decomposition over a closed annulus 207
12.4 Decomposition over an open disc or annulus 209
12.5 Partial decomposition over a closed disc or annulus 210
12.6 Modules solvable at a boundary 211
12.7 Solvable modules of rank 1 212
12.8 Clean modules 214

Notes 216
Exercises 216

13 p-adic exponents 218
13.1 p-adic Liouville numbers 218
13.2 p-adic regular singularities 221
13.3 The Robba condition 222
13.4 Abstract p-adic exponents 223
13.5 Exponents for annuli 225
13.6 The p-adic Fuchs theorem for annuli 231
13.7 Transfer to a regular singularity 234

Notes 237
Exercises 238

Part IV Difference Algebra and Frobenius Modules 241

14 Formalism of difference algebra 243
14.1 Difference algebra 243



Contents ix

14.2 Twisted polynomials 246
14.3 Difference-closed fields 247
14.4 Difference algebra over a complete field 248
14.5 Hodge and Newton polygons 254
14.6 The Dieudonné–Manin classification theorem 256

Notes 258
Exercises 260

15 Frobenius modules 262
15.1 A multitude of rings 262
15.2 Frobenius lifts 264
15.3 Generic versus special Frobenius lifts 266
15.4 A reverse filtration 269

Notes 271
Exercises 272

16 Frobenius modules over the Robba ring 273
16.1 Frobenius modules on open discs 273
16.2 More on the Robba ring 275
16.3 Pure difference modules 277
16.4 The slope filtration theorem 279
16.5 Proof of the slope filtration theorem 281

Notes 284
Exercises 286

Part V Frobenius Structures 289

17 Frobenius structures on differential modules 291
17.1 Frobenius structures 291
17.2 Frobenius structures and the generic radius of

convergence 294
17.3 Independence from the Frobenius lift 296
17.4 Slope filtrations and differential structures 298
17.5 Extension of Frobenius structures 298

Notes 299
Exercises 300

18 Effective convergence bounds 301
18.1 A first bound 301
18.2 Effective bounds for solvable modules 302
18.3 Better bounds using Frobenius structures 306
18.4 Logarithmic growth 308
18.5 Nonzero exponents 310



x Contents

Notes 310
Exercises 311

19 Galois representations and differential modules 313
19.1 Representations and differential modules 314
19.2 Finite representations and overconvergent differential

modules 316
19.3 The unit-root p-adic local monodromy theorem 318
19.4 Ramification and differential slopes 321

Notes 323
Exercises 325

20 The p-adic local monodromy theorem 326
20.1 Statement of the theorem 326
20.2 An example 328
20.3 Descent of sections 329
20.4 Local duality 332
20.5 When the residue field is imperfect 333

Notes 335
Exercises 337

21 The p-adic local monodromy theorem: proof 338
21.1 Running hypotheses 338
21.2 Modules of differential slope 0 339
21.3 Modules of rank 1 341
21.4 Modules of rank prime to p 342
21.5 The general case 343

Notes 343
Exercises 344

Part VI Areas of Application 345

22 Picard–Fuchs modules 347
22.1 Origin of Picard–Fuchs modules 347
22.2 Frobenius structures on Picard–Fuchs modules 348
22.3 Relationship to zeta functions 349

Notes 350
23 Rigid cohomology 352
23.1 Isocrystals on the affine line 352
23.2 Crystalline and rigid cohomology 353
23.3 Machine computations 354

Notes 355



Contents xi

24 p-adic Hodge theory 357
24.1 A few rings 357
24.2 (φ, �)-modules 359
24.3 Galois cohomology 361
24.4 Differential equations from (φ, �)-modules 362
24.5 Beyond Galois representations 363

Notes 364

References 365
Notation 374
Index 376





Preface

This book is an outgrowth of a course, taught by the author at MIT dur-
ing fall 2007, on p-adic ordinary differential equations. The target audience
was graduate students with some prior background in algebraic number the-
ory, including exposure to p-adic numbers, but not necessarily with any
background in p-adic analytic geometry (of either the Tate or Berkovich
flavors).

Custom would dictate that ordinarily this preface would continue with an
explanation of what p-adic differential equations are, and why they mat-
ter. Since we have included a whole chapter on this topic (Chapter 0), we
will devote this preface instead to a discussion of the origin of the book, its
general structure, and what makes it different from previous books on the
subject.

The subject of p-adic differential equations has been treated in several pre-
vious books. Two that we used in preparing the MIT course, and to which
we make frequent reference in the text, are those of Dwork, Gerotto, and
Sullivan [80] and of Christol [42]. Another existing book is that of Dwork [78],
but it is not a general treatise; rather, it focuses in detail on hypergeometric
functions.

However, this book develops the theory of p-adic differential equations in
a manner that differs significantly from most prior literature. Key differences
include the following.

• We limit our use of cyclic vectors. This requires an initial investment in
the study of matrix inequalities (Chapter 4) and lattice approximation
arguments (especially Lemma 8.6.1), but it pays off in significantly
stronger results.

• We introduce the notion of a Frobenius descendant (Chapter 10). This
complements the older construction of Frobenius antecedents, partic-
ularly in dealing with certain boundary cases where the antecedent
method does not apply.

xiii



xiv Preface

As a result, we end up with some improvements of existing results, includ-
ing the following. (Some of these can also be found in an upcoming book of
Christol [46], whose development we learned about only after this book was
mostly complete.)

• We refine the Frobenius antecedent theorem of Christol and Dwork
(Theorem 10.4.2).

• We extend some results of Christol and Dwork, on the variation of the
generic radius of convergence, to subsidiary radii (Theorem 11.3.2).

• We extend Young’s geometric interpretation of subsidiary generic radii
of convergence beyond the range of applicability of Newton polygons
(Theorem 11.9.2).

• We give quantitative versions of the Christol–Mebkhout decomposition
theorem for differential modules on an annulus that are applicable even
when the modules are not solvable at a boundary (Theorems 12.2.2
and 12.3.1).

• We give a somewhat simplified treatment of the theory of p-adic
exponents (Theorems 13.5.5, 13.5.6, and 13.6.1).

• We sharpen the bound in the Christol transfer theorem to a disc con-
taining a regular singularity with exponents in Zp (Theorem 13.7.1).

• We give a general version of the Dieudonné–Manin classification
theorem for difference modules over a complete nonarchimedean field
(Theorem 14.6.3).

• We give improvements on the Christol–Dwork–Robba effective bounds
for solutions of p-adic differential equations (Theorems 18.2.1 and
18.5.1) and some related bounds that apply in the presence of a
Frobenius structure (Theorem 18.3.3). The latter can be used to recover
a theorem of Chiarellotto and Tsuzuki concerning the logarithmic
growth of solutions of differential equations with Frobenius structure
(Theorem 18.4.5).

• We state a relative version of the p-adic local monodromy theorem,
formerly Crew’s conjecture (Theorem 20.1.4), and describe in detail
how it may be derived either from the p-adic index theory of Christol
and Mebkhout, which we treat in detail in Chapter 13, or from the slope
theory for Frobenius modules of Kedlaya, which we only sketch, in
Chapter 16.

Some of the new results are relevant in theory (in the study of higher-
dimensional p-adic differential equations, largely in the context of the
semistable reduction problem for overconvergent F-isocrystals, for which
see [138] and [143]) or in practice (in the explicit computation of solutions
of p-adic differential equations, e.g., for the machine computation of zeta
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functions of particular varieties, for which see [139]). There is also some rel-
evance, entirely outside number theory, to the study of flat connections on
complex analytic varieties (see [144]).

Although some applications involve higher-dimensional p-adic analytic
spaces, this book treats exclusively p-adic ordinary differential equations. In
joint work with Liang Xiao [145], we have developed some extensions to
higher-dimensional spaces.

Each individual chapter of this book exhibits the following basic structure.
Before the body of the chapter, we give a brief introduction explaining what
is to be discussed and often setting some running notations or hypotheses.
After the body of the chapter, we typically include a section of afternotes, in
which we provide detailed references for results in that chapter, fill in historical
details, and add additional comments. (This practice is modeled on that in [94],
although we do not carry it out quite as fully.) Note that we have a habit of
attributing to various authors slightly stronger versions of their theorems than
the ones they originally stated; to avoid complicating the discussion in the
text, we resolve these misattributions in the afternotes instead. At the end of
a chapter we typically include a few exercises; a fair number of these request
proofs of results which are stated and used in the text but whose proofs pose
no unusual difficulties.

The chapters themselves are grouped into several parts, which we now
describe briefly. (Chapter 0, being introductory, does not fit into this grouping.)

Part I is preliminary, collecting some basic tools of p-adic analysis. How-
ever, it also includes some facts of matrix analysis (the study of the variation
of numerical invariants attached to matrices as a function of the matrix entries)
which may not be familiar to the typical reader.

Part II introduces some formalism of differential algebra, such as differential
rings and modules, twisted polynomials, and cyclic vectors, and applies these
to fields equipped with a nonarchimedean norm.

Part III begins the study of p-adic differential equations in earnest, develop-
ing some basic theory for differential modules on rings and annuli, including
the Christol–Dwork theory of variation of the generic radius of convergence
and the Christol–Mebkhout decomposition theory. We also include a treat-
ment of p-adic exponents, culminating in the Christol–Mebkhout structure
theorem for p-adic differential modules on an annulus satisfying the Robba
condition (i.e., having intrinsic generic radius of convergence everywhere
equal to 1).

Part IV introduces some formalism of difference algebra, and presents (with-
out full proofs) the theory of slope filtrations for Frobenius modules over the
Robba ring.
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Part V introduces the concept of a Frobenius structure on a p-adic differ-
ential module, to the point of stating the p-adic local monodromy theorem
and sketching briefly the proof techniques using either p-adic exponents or
Frobenius slope filtrations. We also discuss effective convergence bounds for
solutions of p-adic differential equations.

Part VI consists of a series of brief discussions of several areas of applica-
tion of the theory of p-adic differential equations. These are somewhat more
didactic, and much less formal, than in the other parts; they are meant primarily
as suggestions for further reading.

The following diagram indicates the logical dependencies of the chapters. To
keep the diagram manageable, we have grouped together some chapters (1–3
and 9–12) and omitted Chapter 0 and the chapters of Part VI. The reader should
be aware that there is one forward reference, from Chapter 13 to Chapter 18,
but the graph remains acyclic. (There are some additional forward references
between Chapters 1 and 2, but these should not cause any difficulty.)
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As noted above we have not assumed that the reader is familiar with rigid
analytic geometry and so have phrased all statements more concretely in terms
of rings and modules. Although we expect that the typical reader has at least
a passing familiarity with p-adic numbers, for completeness we include a
rapid development of the algebra of complete rings and fields in the first few
chapters of the book. This development, when read on its own, may appear
somewhat idiosyncratic; its design is justified by the reuse of some material in
later chapters.



Preface xvii

We would like to think that the background needed is that of a two-semester
undergraduate abstract algebra course. However, some basic notions from
commutative algebra do occasionally intervene, including flat modules, exact
sequences, and the snake lemma. It may be helpful to have a well-indexed text
on commutative algebra within arm’s reach; we like Eisenbud’s book [84], but
the far slimmer Atiyah and Macdonald [9] should also suffice.

The author would like to thank the participants of the MIT course 18.787
(“Topics in number theory”, fall 2007) for numerous comments on the lec-
ture notes which ultimately became this book. Particular thanks are due to Ben
Brubaker and David Speyer for giving guest lectures, and to Chris Davis, Han-
sheng Diao, David Harvey, Raju Krishnamoorthy, Ruochuan Liu, Eric Rosen,
and especially Liang Xiao for providing feedback. Additional feedback was
provided by Francesco Baldassarri, Laurent Berger, Bruno Chiarellotto, Gilles
Christol, Ricardo García López, Tim Gowers, and Andrea Pulita.

During the preparation of the course and of this book, the author was sup-
ported by a National Science Foundation CAREER grant (DMS-0545904), a
Sloan Research Fellowship, MIT’s NEC Research Support Fund, and the MIT
Cecil and Ida Green Career Development Professorship.





0

Introductory remarks

The theory of ordinary differential equations is a fundamental instrument of
continuous mathematics, in which the central objects of study are functions
involving real numbers. It is not immediately apparent that this theory has
anything useful to say about discrete mathematics in general or number theory
in particular.

In this book we consider ordinary differential equations in which the role
of the real numbers is instead played by the field of p-adic numbers, for some
prime number p. The p-adics form a number system with enough formal sim-
ilarities to the real numbers to permit meaningful analogues of notions from
calculus, such as continuity and differentiability. However, the p-adics incor-
porate data from arithmetic in a fundamental way; two numbers are p-adically
close together if their difference is divisible by a large power of p.

In this chapter, we first indicate briefly some ways in which p-adic differen-
tial equations appear in number theory. We then focus on an example of Dwork,
in which the p-adic behavior of Gauss’s hypergeometric differential equation
relates to the manifestly number-theoretic topic of the number of points on an
elliptic curve over a finite field.

Since this chapter is meant only as an introduction, it is full of statements
for which we give references instead of proofs. This practice is not typical of
the rest of this book, except for the discussions in Part VI.

0.1 Why p-adic differential equations?

Although the very existence of a highly developed theory of p-adic ordinary
differential equations is not entirely well known even within number theory,
the subject is actually almost 50 years old. Here are circumstances, past and
present, in which it arises; some of these will be taken up again in Part VI.

1



2 Introductory remarks

Variation of zeta functions (see Chapter 22). The original circumstance in
which p-adic differential equations appeared in number theory was Dwork’s
work on the variation of zeta functions of algebraic varieties over finite fields.
Roughly speaking, solving certain p-adic differential equations can give rise
to explicit formulas for the numbers of points on varieties over finite fields.

In contrast with methods involving étale cohomology, methods for study-
ing zeta functions based on p-adic analysis (including p-adic cohomology)
lend themselves well to numerical computation. The interest in computing
zeta functions for varieties where straightforward point-counting is impossible
(e.g., curves over extremely large finite fields) has been driven by applica-
tions in computer science, the principal example being cryptography based on
elliptic or hyperelliptic curves.

p-adic cohomology (see Chapter 23). Dwork’s work suggested, but did not
immediately lead to, a proper analogue of étale cohomology based on p-adic
analytic techniques. Such an analogue was eventually developed by Berth-
elot (on the basis of some work of Monsky and Washnitzer, and also ideas
of Grothendieck); it is called rigid cohomology (see the notes at the end of this
chapter for the origin of the word “rigid”). The development of rigid cohomol-
ogy has lagged somewhat behind that of étale cohomology, partly owing to the
emergence of some thorny problems related to the construction of a good cate-
gory of coefficients. These problems, which have only recently been resolved,
are rather closely related to questions concerning p-adic differential equations;
in fact, some results presented in this book have been used to address them.

p-adic Hodge theory (see Chapter 24). The subject of p-adic Hodge theory
aims to do for the cohomology of varieties over p-adic fields what ordinary
Hodge theory does for the cohomology of varieties over C: that is, it aims
to provide a better understanding of the cohomology of a variety in its own
right, independently of the geometry of the variety. In the p-adic case, the
cohomology in question is often étale cohomology, which carries the structure
of a Galois representation.

The study of such representations, pioneered by Fontaine, involves a number
of exotic auxiliary rings (rings of p-adic periods), which serve their intended
purposes but are otherwise a bit mysterious. More recently, the work of Berger
has connected much of the theory to the study of p-adic differential equations;
notably, a key result that was originally intended for use in p-adic cohomol-
ogy (the p-adic local monodromy theorem) turned out to imply an important
conjecture about Galois representations, Fontaine’s conjecture on potential
semistability.

Ramification theory (see Chapter 19). There are some interesting analo-
gies between properties of differential equations over C with meromorphic
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singularities and properties of “wildly ramified” Galois representations of
p-adic fields. At some level, this is suggested by the parallel formulation of
the Langlands conjectures in the number field and function field cases. One
can use p-adic differential equations to interpolate between the two situations,
by associating differential equations with Galois representations (as in the pre-
vious item) and then using differential invariants (for example, irregularity) to
recover Galois invariants (for example, Artin and Swan conductors).

For representations of the étale fundamental group of a variety over a field
of positive characteristic of dimension greater than 1, it is difficult to con-
struct meaningful Galois-theoretic numerical invariants. Recent work of Abbes
and Saito [1, 2] provides satisfactory definitions, but the resulting quantities
are quite difficult to calculate. One can alternatively use p-adic differential
equations to define invariants which can be somewhat easier to deal with; for
instance, one can define a differential Swan conductor which is guaranteed
to be an integer [133], whereas this is not clearly the case for the Abbes–
Saito conductor. One can then equate the two conductors, deducing integrality
for the Abbes–Saito conductor; this has been carried out by Chiarellotto and
Pulita [40] for one-dimensional representations and by L. Xiao [219] in the
general case.

0.2 Zeta functions of varieties

For the rest of this introduction, we return to Dwork’s original example show-
ing the role of p-adic differential equations and their solutions in number
theory. This example refers to elliptic curves, for which see Silverman’s book
[200] for background.

Definition 0.2.1. For λ in some field K , let Eλ be the elliptic curve over K
defined by the equation

Eλ : y2 = x(x − 1)(x − λ)

in the projective plane. Remember that there is one point O = [0 : 1 : 0] at
infinity. There is a natural commutative group law on Eλ(K ), with identity
element O , characterized by the property that three points add to zero if and
only if they are collinear. (It is better to say that three points add to zero if
they are the three intersections of Eλ with some line, as this correctly permits
degenerate cases. For instance, if two of the points coincide, the line must be
the tangent to Eλ at that point.)

For elliptic curves over finite fields, one has the following result of Hasse,
which generalizes some observations, made by Gauss and others, for certain
special cases.
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Theorem 0.2.2 (Hasse). Suppose that λ belongs to a finite field Fq . If we write
#Eλ(Fq) = q + 1 − aq(λ), then |aq(λ)| ≤ 2

√
q.

Proof. See [200, Theorem V.1.1].

Hasse’s theorem was later vastly generalized as follows, originally as a set
of conjectures by Weil. (Despite no longer being conjectural, these are still
commonly referred to as the Weil conjectures.)

Definition 0.2.3. For X an algebraic variety over Fq , the zeta function of X is
defined as the formal power series

ζX (T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn )

)
;

another way to write this, which makes it look more like a typical zeta
function, is

ζX (T ) =
∏

x

(1 − T deg(x))−1,

where x runs over the Galois orbits of X (Fq) and deg(x) is the size of the orbit
x . (If you prefer algebro-geometric terminology, you may run x over closed
points of the scheme X , in which case deg(x) denotes the degree of the residue
field of x over Fq .)

Example 0.2.4. For X = Eλ one can verify that

ζX (T ) = 1 − aq(λ)T + qT 2

(1 − T )(1 − qT )
,

using properties of the Tate module of Eλ; see [200, Theorem V.2.2].

A statement of the Weil conjectures is given in the following theorem.

Theorem 0.2.5 (Dwork, Grothendieck, Deligne, et al.). Let X be an alge-
braic variety over Fq . Then ζX (T ) represents a rational function of T .
Moreover, if X is smooth and proper of dimension d, we can write

ζX (T ) = P1(T ) · · · P2d−1(T )

P0(T ) · · · P2d(T )
,

where each Pi (T ) has integer coefficients, satisfies Pi (0) = 1, and has all
roots in C on the circle |T | = q−i/2.

Proof. The proof of this theorem is a sufficiently massive undertaking that
even a reference is not reasonable here; instead, we give [107, Appendix C] as
a source of references. (Another useful exposition is [178].)
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Remark 0.2.6. It is worth pointing out that the first complete proof of
Theorem 0.2.5 used the fact that for any prime � �= p one has

#X (Fqn ) =
∑

i

(−1)i Trace(Fn, Hi
et(X,Q�)),

where Hi
et(X,Q�) is the i-th étale cohomology group of X (or rather, the base

change of X to Fq ) with coefficients in Q�. This is an instance of the Lefschetz
trace formula in étale cohomology.

0.3 Zeta functions and p-adic differential equations

Remark 0.3.1. The interpretation of Theorem 0.2.5 in terms of étale coho-
mology (Remark 0.2.6) is all well and good, but there are several downsides.
An important one is that étale cohomology is not explicitly computable; for
instance, it is not straightforward to describe étale cohomology to a computer
well enough that the computer can make calculations. (The main problem is
that while one can write down étale cocycles, it is very hard to tell whether any
given cocycle is a coboundary.)

Another important downside is that you do not get every good information
about what happens to ζX when you vary X . This is where p-adic differential
equations enter the picture. It was observed by Dwork that if one has a family
of algebraic varieties defined over Q, the same differential equations appear
on the one hand when one studies the variation of complex periods and on the
other hand when one studies the variation of zeta functions over Fp.

Here is an explicit example due to Dwork.

Definition 0.3.2. Recall that the hypergeometric series

F(a, b; c; z) =
∞∑

i=0

a(a + 1) · · · (a + i)b(b + 1) · · · (b + i)

c(c + 1) · · · (c + i)i ! zi (0.3.2.1)

satisfies the hypergeometric differential equation

z(1 − z)y′′ + (c − (a + b + 1)z)y′ − aby = 0. (0.3.2.2)

Set

α(z) = F(1/2, 1/2; 1; z).

Over C, α is related to an elliptic integral, for instance, by the formula

α(λ) = 2

π

∫ π/2

0

dθ√
1 − λ sin2 θ

(0 < λ < 1).
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(One can extend this to complex λ, but care needs to be taken with the branch
cuts.) This elliptic integral can be viewed as a period integral for the curve Eλ,
i.e., one is integrating some meromorphic differential form on Eλ around some
loop (or more properly, around some homology class).

Let p be an odd prime. We now try to interpret α(z) as a function of a
p-adic variable rather than a complex variable. Be aware that this means that z
can take any value in a field with a norm extending the p-adic norm on Q, not
just in Qp itself. (For the moment, you can imagine z running over a completed
algebraic closure of Qp.)

Lemma 0.3.3. The series α(z) converges p-adically for |z| < 1.

Proof. Exercise.

Dwork discovered that a closely related function admits a sort of analytic
continuation.

Definition 0.3.4. Define the Igusa polynomial

H(z) =
(p−1)/2∑

i=0

(
(p − 1)/2

i

)2

zi .

Modulo p, the roots of H(z) are the values of λ ∈ Fp for which Eλ is a super-
singular elliptic curve, i.e., for which aq(λ) ≡ 0 (mod p). (In fact, the roots
of H(z) all belong to Fp2 , by a theorem of Deuring; see [200, Theorem V.3.1].)

Dwork’s analytic continuation result is the following.

Theorem 0.3.5 (Dwork). There exists a series ξ(z) = ∑∞
i=0 Pi (z)/H(z)i ,

with each Pi (z) ∈ Qp[z], converging uniformly for those z satisfying |z| ≤ 1
and |H(z)| = 1 and such that

ξ(z) = (−1)(p−1)/2 α(z)

α(z p)
(|z| < 1).

Proof. See [213, §7].

Remark 0.3.6. Note that ξ itself satisfies a differential equation derived
from the hypergeometric equation. We will see such equations again once
we introduce the notion of a Frobenius structure on a differential equation,
in Chapter 17.

In terms of the function ξ , we can compute zeta functions in the Legendre
family as follows.
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Definition 0.3.7. Let Zq be the unique unramified extension of Zp with residue
field Fq . For λ ∈ Fq , let [λ] be the unique qth root of 1 in Zq congruent to λ
mod p (the Teichmüller lift of λ).

Theorem 0.3.8 (Dwork). If q = pa and λ ∈ Fq is not a root of H(z), then

T 2 − aq(λ)T + q = (T − u)(T − q/u),

where

u = ξ([λ])ξ([λ]p) · · · ξ([λ]pa−1
).

That is, the quantity u is the “unit root” (meaning the root of valuation 0) of
the polynomial T 2−aq(λ)T +q occurring (up to reversal) in the zeta function.

Proof. See [213, §7].

0.4 A word of caution

Example 0.4.1. Before we embark on the study of p-adic ordinary differential
equations, a cautionary note is in order concerning the rather innocuous-
looking differential equation y′ = y. Over R or C, this equation is nonsingular
everywhere and its solutions y = cex are defined everywhere.

Over a p-adic field, things are quite different. As a power series around
x = 0, we have

y = c
∞∑

n=0

xn

n!
and the denominators hurt us rather than helping. In fact, the series only con-
verges for |x | < p−1/(p−1) (assuming that we are normalizing in such a way
that |p| = p−1). For comparison, note that the logarithmic series

log
1

1 − x
=

∞∑
n=1

xn

n

converges for |x | < 1.

Remark 0.4.2. The conclusion to be drawn from the previous example is that
there is no fundamental theorem of ordinary differential equations over the
p-adics! In fact, the hypergeometric differential equation in the previous exam-
ple was somewhat special; the fact that it had a solution in a disc where it had
no singularities was not a foregone conclusion. One of Dwork’s discoveries
is that this typically happens for differential equations that “come from
geometry”, such as the Picard–Fuchs equations, which arise from integrals



8 Introductory remarks

of algebraic functions (e.g., elliptic integrals). Another of Dwork’s discoveries
is that, using similar techniques to those used to study obstructions to solving
complex differential equations in singular discs, one can quantify the obstruc-
tion to solving a p-adic differential equation in a nonsingular disc. We will
carry this out later in the book.

Notes

For detailed notes on the topics discussed in Section 0.1, see the notes for the
chapters referenced.

We again mention [107, Appendix C] and [178] as starting points for further
reading about the Weil conjectures.

The notion of an analytic function specified in terms of a uniform limit
of rational functions with poles prescribed to certain regions is the original
such notion, introduced by Krasner. For this book, we will restrict our con-
sideration of p-adic analysis to working with complete rings in this fashion,
without attempting to introduce any notion of nonarchimedean analytic geom-
etry. However, it must be noted that it is much better in the long run to work
in terms of analytic geometry; for example, it is prohibitively difficult to deal
with partial differential equations without doing so.

That said, there are several ways to develop a theory of analytic spaces over a
nonarchimedean field. The traditional method is Tate’s theory of rigid analytic
spaces, so-called because one develops everything “rigidly” by imitating the
theory of schemes in algebraic geometry but using rings of convergent power
series instead of polynomials. The canonical foundational reference for rigid
geometry is the book of Bosch, Güntzer, and Remmert [31], but novices may
find the text of Fresnel and van der Put [93] or the lecture notes of Bosch [30]
more readable. A more recent method, which in some ways is more robust,
is Berkovich’s theory of nonarchimedean analytic spaces (commonly called
Berkovich spaces), as introduced in [19] and further developed in [20]. For
both points of view, see also the lecture notes of Conrad [59].

Dwork’s original analysis of the Legendre family of elliptic curves using
the associated hypergeometric equation (this analysis expands earlier work of
Tate) appears in [74, §8]. The treatment in [213] is more overtly related to
p-adic cohomology.

The family of hypergeometric equations with a, b, c ∈ Q∩Zp is rich enough
that one could devote an entire book to the study of its p-adic properties.
Indeed, Dwork did exactly this; the result was [78].

It is possible to resurrect in part the fundamental theorem of ordinary dif-
ferential equations in the p-adic setting. The best results in that direction seem
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to be those of Priess-Crampe and Ribenboim [183]. One consequence of their
work is the fact that a differential equation over Qp has a solution if and only
if it has a sufficiently good approximate solution; this amounts to a differen-
tial version of Hensel’s lemma. We too will need noncommutative forms of
Hensel’s lemma; see Theorem 2.2.2.

Christol [45] has given an interesting retrospective on some of the key
ideas of Dwork, including generic points, the transfer principle, and Frobenius
structures, which resonate throughout this book.

Exercises

The reader new to p-adic numbers should postpone doing these exercises until
he or she has read Part I.
(1) Prove directly from the definition that the series F(a, b; c; z) converges

p-adically for |z| < 1 whenever a, b, c are rational numbers with
denominators not divisible by p. This implies Lemma 0.3.3.

(2) Using the fact that α(z) satisfies the hypergeometric equation, write down
a nontrivial differential equation with coefficients in Q(z) satisfied by the
function ξ(z).

(3) Check that the usual formula

lim inf
n→∞ |an|−1/n

for the radius of convergence of the power series
∑∞

n=0 anzn still works
over a nonarchimedean field. That is, the series converges when |z| is less
than this radius and diverges when |z| is greater than this radius.

(4) Show that in the previous exercise, just like in the archimedean case, a
power series over a nonarchimedean field can either converge or diverge at
a value of z for which |z| equals the radius of convergence.

(5) Check that (as claimed in Example 0.4.1), under the normalization
|p| = p−1, the exponential series exp(z) over Qp has radius of con-
vergence p−1/(p−1), while the logarithm series log(1 − z) has radius of
convergence 1.

(6) Show that, over Qp, while a power series in z which converges for |z| ≤ 1
may have an antiderivative which only converges for |z| < 1, its derivative
still converges for |z| ≤ 1. This is the reverse of what happens over an
archimedean field.





Part I

Tools of p-adic Analysis
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Norms on algebraic structures

In this chapter, we recall some basic facts about norms (absolute values),
primarily of the nonarchimedean sort, on groups, rings, fields, and modules.
We also briefly discuss the phenomenon of spherical completeness, which is
peculiar to the nonarchimedean setting. Our discussion is not particularly com-
prehensive; the reader new to nonarchimedean analysis is directed to [191] for
a fuller treatment.

Several proofs in this chapter make forward references to Chapter 2.
There should be no difficulty in verifying the absence of circular
references.

Convention 1.0.1. In this book, a ring means a commutative ring unless com-
mutativity is suppressed explicitly by describing the ring as “not necessarily
commutative” or implicitly by its usage in certain phrases, e.g., a ring of
twisted polynomials (Definition 5.5.1).

Notation 1.0.2. For R a ring, we denote by R× the multiplicative group of
units of R.

1.1 Norms on abelian groups

Let us start by recalling some basic definitions from analysis, before specializ-
ing to the nonarchimedean case.

Definition 1.1.1. Let G be an abelian group. A seminorm (or semiabsolute
value) on G is a function | · | : G → [0,+∞) satisfying the following
conditions.

13
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(a) We have |0| = 0.
(b) For f, g ∈ G, | f − g| ≤ | f | + |g|. (Equivalently, |g| = |−g| and | f +

g| ≤ | f |+ |g|. This condition is usually called the triangle inequality.)
We say that the seminorm | · | is a norm (or absolute value) if the following
additional condition holds.

(a′) For g ∈ G, |g| = 0 if and only if g = 0.
We also express this by saying that G is separated under | · |. A seminorm on
an abelian group G induces a metric topology on G, in which the basic open
subsets are the open balls, i.e., sets of the form {g ∈ G : | f − g| < r} for some
f ∈ G and some r > 0.

Definition 1.1.2. Let G,G ′ be abelian groups equipped with seminorms | · |,
| · |′, respectively, and let φ : G → G ′ be a homomorphism. Note that φ
is continuous for the metric topologies on G,G ′ if and only if there exists a
function h : (0,+∞)→ (0,+∞) such that for all r > 0,

{g ∈ G : |g| < h(r)} ⊆ {g ∈ G : |φ(g)|′ < r}.
We say that φ is bounded if there exists c ≥ 0 such that |φ(g)|′ ≤ c|g| for
all g ∈ G. We say that φ is isometric if |φ(g)|′ = |g| for all g ∈ G. We say
two seminorms | · |1, | · |2 on G are topologically equivalent if they induce
the same metric topology, i.e., the identity morphism on G is continuous in
both directions. We say that | · |1, | · |2 are metrically equivalent if there exist
c1, c2 > 0 such that, for all g ∈ G,

|g|1 ≤ c1|g|2, |g|2 ≤ c2|g|1;
this implies topological equivalence but the reverse implication does not
necessarily hold.

Definition 1.1.3. Let G be an abelian group equipped with a seminorm.
A Cauchy sequence in G under | · | is a sequence {xn}∞n=0 in G such that,
for any ε > 0, there exists an integer N such that, for all integers m, n ≥ N ,
|xm −xn| < ε. We say the sequence {xn}∞n=0 is convergent if there exists x ∈ G
such that, for any ε > 0 there exists an integer N such that, for all integers
n ≥ N , |x − xn| < ε; in this case, the sequence is automatically Cauchy, and
we say that x is a limit of the sequence. If G is separated under | · |, then limits
are unique when they exist. We say G is complete under | · | if every Cauchy
sequence has a unique limit.

Theorem 1.1.4. Let G be an abelian group equipped with a norm | · |. Then
there exists an abelian group G ′, equipped with a norm | · |′ under which it is
complete, and an isometric homomorphism φ : G → G ′ with dense image.

This is standard, so we only sketch the proof.
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Proof. We take the set of Cauchy sequences in G and declare two sequences
{xn}∞n=0, {yn}∞n=0 to be equivalent if the sequence x0, y0, x1, y1, . . . is also
Cauchy. This is easily shown to be an equivalence relation; let G ′ be the set
of equivalence classes. It is then straightforward to construct the group oper-
ation (termwise addition) and the norm on G ′ (the limit of the norms of the
terms of the sequence). The map φ takes g ∈ G to the constant sequence
g, g, . . .

Definition 1.1.5. With the notation of Theorem 1.1.4, we call G ′ the comple-
tion of G; the group G ′, equipped with the norm | · |′ and the homomorphism
φ, is functorial in G. That is, any continuous homomorphism G → H extends
uniquely to a continuous homomorphism G ′ → H ′ between the completions;
in particular, G ′ is unique up to unique isomorphism. Note that one can also
define the completion even if G is only equipped with a seminorm, but only by
first quotienting by the kernel of the seminorm; in that case, the map from G
to its completion need not be injective.

Definition 1.1.6. If R is a not necessarily commutative ring and | · | is a semi-
norm on its additive group, we say that | · | is submultiplicative if the following
additional condition holds.

(c) For f, g ∈ R, | f g| ≤ | f ||g|.
We say that | · | is multiplicative if the following additional condition holds.

(c′) For f, g ∈ R, | f g| = | f ||g|.
The completion of a ring R equipped with a submultiplicative seminorm
admits a natural ring structure, because the termwise product of two Cauchy
sequences is again Cauchy.

Lemma 1.1.7. Let F be a field equipped with a multiplicative norm. Then the
completion of F is also a field.

Proof. Note that if { fn}∞n=0 is a Cauchy sequence in F then {| fn|}∞n=0 is a
Cauchy sequence in R by the triangle inequality, and so has a limit since R

is complete. Since F is equipped with a true norm, if { fn}∞n=0 does not con-
verge to 0 then {| fn|}∞n=0 also must not converge to 0. In particular, | fn|∞n=0 is
bounded below away from 0, from which it follows easily that { f −1

n }∞n=0 is also
a Cauchy sequence. This proves that every nonzero element of the completion
of F has a multiplicative inverse, as desired.

Proposition 1.1.8. Two multiplicative norms | · |, | · |′ on a field F are topo-
logically equivalent if and only if there exists c > 0 such that |x |′ = |x |c for
all x ∈ F.

Proof. Exercise, or see [80, Lemma I.1.2].
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Definition 1.1.9. Let G be an abelian group equipped with a seminorm | · |G ,
and let G ′ be a subgroup of G. The quotient seminorm on the quotient G/G ′
is defined by the formula

|g + G ′|G/G ′ = inf
g′∈G ′{|g + g′|G}. (1.1.9.1)

If | · |G is a norm, then | · |G/G ′ is a norm if and only if G ′ is closed in G.

1.2 Valuations and nonarchimedean norms

We now restrict our attention to nonarchimedean absolute values, which can
be described additively (using valuations) as well as multiplicatively (using
norms). It will be convenient to switch back and forth between these points of
view throughout the book.

Definition 1.2.1. A real semivaluation on an abelian group G is a function
v : G → R ∪ {+∞} with the following properties.

(a) We have v(0) = +∞.
(b) For f, g ∈ G, v( f − g) ≥ min{v( f ), v(g)}.

We say v is a real valuation if the following additional condition holds.
(a′) For g ∈ G, v(g) = +∞ if and only if g = 0.

If v is a real (semi)valuation on G, then the function | · | = e−v(·) is a
(semi)norm on G which is nonarchimedean (or ultrametric), i.e., it satisfies
the strong triangle inequality, which is given as follows.

(b′) For f, g ∈ G, | f − g| ≤ max{| f |, |g|}.
Conversely, for any nonarchimedean (semi)norm | · |, v(·) = − log | · | is a
real (semi)valuation. We will apply various definitions made for seminorms
to semivaluations in this manner; for instance, if R is a ring and v is a real
(semi)valuation on its additive group, we say that v is (sub)multiplicative if the
corresponding nonarchimedean (semi)norm is.

Definition 1.2.2. We say that a group is nonarchimedean if it is equipped
with a nonarchimedean norm; we say that a ring or field is nonarchimedean
if it is equipped with a multiplicative nonarchimedean norm. Note that any
nonarchimedean ring is an integral domain.

Definition 1.2.3. Let F be a nonarchimedean field. The multiplicative value
group of a nonarchimedean field F is the image of F× under | · |, viewed as
a subgroup of R+; we will often denote it simply as |F×|. The additive value
group of F is the set of negative logarithms of the multiplicative value group.
If these groups are discrete and nonzero (i.e., isomorphic to Z), we say F is
discretely valued. Define also
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oF = { f ∈ F : v( f ) ≥ 0},
mF = { f ∈ F : v( f ) > 0},
κF = oF/mF .

Note that oF is a local ring (the valuation ring of F), mF is the maximal ideal
of oF , and κF is a field (the residue field of F).

It is worth noting that there are comparatively few archimedean (i.e., not
nonarchimedean) absolute values on fields.

Theorem 1.2.4 (Ostrowski). Let F be a field equipped with a norm | · |. Then
| · | fails to be nonarchimedean if and only if the sequence |1|, |2|, |3|, . . . is
unbounded. In that case, F is isomorphic to a subfield of C equipped with the
restriction of the usual absolute value.

Proof. Exercise, or see [191, §2.1.6] and [191, §2.2.4], respectively.

1.3 Norms on modules

When considering norms on modules, we usually require compatibility with
the underlying ring.

Definition 1.3.1. Let R be a ring equipped with a multiplicative seminorm | · |,
and let M be an R-module equipped with a seminorm | · |M . We say that | · |M
is compatible with | · | (or with R) if the following conditions hold.

(a) For f ∈ R, x ∈ M , | f x |M = | f ||x |M .
(b) If | · | is nonarchimedean, then so is | · |M .

Note that (b) is not superfluous; see the end-of-chapter exercises. If R is a field,
then two norms | · |M , | · |′M on M compatible with R are metrically equivalent
if and only if they are topologically equivalent (exercise).

One thing to be aware of is that if M ′ is a quotient of M and | · |M ′ is the
quotient norm on M ′ induced by | · |M , then in general we cannot say that | · |M ′
is compatible with R. Rather, we only have the inequality

| f x ′|M ′ ≤ | f ||x ′|M ′ ( f ∈ R, x ′ ∈ M ′);
this implies compatibility only if R is a field.

We can generate a rich supply of norms on modules via the following
construction.

Definition 1.3.2. Let R be a ring equipped with a multiplicative (semi)norm
| · |, and let M be a finite free R-module. For B a basis of M , define the
supremum (semi)norm of M with respect to B by setting
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∣∣∣∣∣∑
b∈B

cbb

∣∣∣∣∣ = sup
b∈B

{|cb|} (cb ∈ R).

This (semi)norm extends canonically to M ⊗R S for any isometric inclusion
R ↪→ S. (The situation is more complicated for arbitrary (semi)norms; see
Definition 1.3.10 below.)

We say that a seminorm on M is supremum-equivalent if it is metrically
equivalent to the supremum seminorm with respect to some basis; the same is
then true of any basis, by Lemma 1.3.3 below. In particular, if | · | is a norm
then any supremum-equivalent seminorm is a norm.

Lemma 1.3.3. Let R be a ring equipped with a multiplicative seminorm | · |,
and let M be a finite free R-module. Then for any two bases B1, B2 of M, the
supremum seminorms of M defined by B1 and B2 are metrically equivalent.

Proof. Put B1 = {m1,1, . . . ,m1,n} and B2 = {m2,1, . . . ,m2,n}. Define the
n × n matrix A over R by the formula

m2, j =
n∑

i=1

Ai j m1,i ;

then A is invertible. In particular, we cannot have |Ai j | = 0 for all i, j .
For x ∈ M , we can uniquely write x = a1,1m1,1 + · · · + a1,nm1,n =

a2,1m2,1 + · · · + a2,nm2,n with ai, j ∈ R. We then have

a1,i =
n∑

j=1

Ai j a2, j (i = 1, . . . , n)

and so

max
i

{|a1,i |} ≤
⎛⎝ n∑

i=1

n∑
j=1

|Ai j |
⎞⎠max

j
{|a2, j |}.

This inequality, together with the corresponding one with the bases reversed
(involving the matrix A−1), implies the claim.

Corollary 1.3.4. Let R ↪→ S be an isometric inclusion of rings equipped
with multiplicative seminorms. Let M be a finite free R-module. Let | · |M
be a seminorm on M that is compatible with R, which is the restriction of a
supremum-equivalent seminorm on M ⊗R S that is compatible with S. Then
| · |M is supremum-equivalent.

Proof. Put N = M ⊗R S, and let | · |N be a supremum-equivalent norm on
N , compatible with S, whose restriction to M equals | · |M . Pick any basis B
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of M ; then B is also a basis of N . Since | · |N is equivalent to the supremum
norm on N defined by some basis, by Lemma 1.3.3 it is also equivalent to the
supremum norm defined by B. By restriction, we see that | · |M is equivalent to
the supremum norm on M defined by B.

The notion of supremum-equivalence is well-behaved under quotients.

Lemma 1.3.5. Let R be a ring equipped with a multiplicative seminorm | · |,
let M be a finite free R-module, and let M1 be a finite free R-submodule of M
such that M/M1 is also free. Let | · |M be a supremum-equivalent norm on M
compatible with R. Then the quotient norm | · |M1 on M1 induced by | · |M is
also supremum-equivalent.

Proof. Let m1, . . . ,mk be a basis of M1, and choose mk+1, . . . ,mn ∈ M lift-
ing a basis of M/M1. Then m1, . . . ,mn is a basis of M ; by Lemma 1.3.3, | · |M
is equivalent to the supremum norm defined by m1, . . . ,mn . That is, there exist
c1, c2 > 0 such that, for any x = a1m1 + · · · + anmn ∈ M ,

c1 max{|a1|, . . . , |an|} ≤ |x |M ≤ c2 max{|a1|, . . . , |an|}.
Then for any ak+1, . . . , an ∈ R, we have

c1 max{|ak+1|, . . . , |an|} = c1 inf
a1,...,ak∈R

{max{|a1|, . . . , |an|}}
≤ inf

a1,...,ak∈R
{|a1m1 + · · · + anmn|M }

= |ak+1mk+1 + · · · + anmn|M1

≤ |ak+1mk+1 + · · · + anmn|M
≤ c2 max{|ak+1|, . . . , |an|}.

Thus | · |M1 is equivalent to the supremum norm defined by the images of
mk+1, . . . ,mn in M1, proving the desired result.

In general, even over a field, not every compatible norm on a vector space
need be supremum-equivalent; see the exercises. However, such supremum-
equivalence is true for complete fields.

Theorem 1.3.6. Let F be a field complete for a norm | · |, and let V be a
finite-dimensional vector space over F. Then any two norms on V compatible
with F are metrically equivalent.

Proof. In the archimedean case, apply Theorem 1.2.4 to deduce that F = R

or F = C, then use compactness of the unit ball. In the nonarchimedean case,
we proceed as follows. (See [80, Theorem I.3.2] for a different proof.)
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We proceed by induction on n, the case n = 1 being trivial. Let m1, . . . ,mn

be any basis of V . It suffices to show that any given norm | · | on V compat-
ible with F is equivalent to the supremum norm defined by m1, . . . ,mn . One
inequality is evident: for any a1, . . . , an ∈ F , we have

|a1m1 + · · · + anmn|V ≤ max
i

{|mi |}max
i

{|ai |}.

Put V ′ = V/Fm1. Let | · |V ′ denote the quotient seminorm on V ′ induced
by | · |V . This seminorm is compatible with F , but we must check that it is
indeed a norm. Suppose on the contrary that a2, . . . , an ∈ F are such that
|a2m2 + · · · + anmn|V ′ = 0. Then we can choose a sequence a1,1, a1,2, . . .

of elements of F such that |a1,i m1 + a2m2 + · · · + anmn|V → 0 as i → ∞.
But then |a1,i − a1, j ||m1|V = |(a1,i − a1, j )m1|V → 0 as i, j → ∞, so the
a1,i form a Cauchy sequence. Since F is complete, this Cauchy sequence has
a limit a1, and |a1m1 + · · · + anmn|V = 0 contrary to the hypothesis that | · |V
is a norm.

Hence | · |V ′ is indeed a norm. By the induction hypothesis, there exists
c2 > 0 such that

|a2m2 + · · · + anmn|V ′ ≥ c2 max
i

{|ai |}.
We then have

|a1m1 + · · · + anmn|V ≥ max{|a1m1|V , |a2m2 + · · · + anmn|V }
≥ max{|a1m1|V , |a2m2 + · · · + anmn|V ′ }
≥ min{|m1|, c2}max

i
{|ai |},

proving that | · |V is equivalent to the supremum norm defined by m1, . . . ,mn .

Even if a norm is supremum-equivalent, it need not be equal to the supre-
mum norm defined by any basis. However, one can approximate supremum-
equivalent norms using supremum norms as follows. For a stronger result in
the spherically complete case, see Lemma 1.5.5.

Lemma 1.3.7 (Approximation lemma). Let F be a nonarchimedean field, let
V be a finite-dimensional vector space over F, and let | · |V be a supremum-
equivalent norm on V compatible with F. Assume that either:

(a) c > 1 and the value group of F is not discrete; or
(b) c ≥ 1 and the value groups of F and V coincide and are discrete.

Then there exists a basis of V defining a supremum norm | · |′V for which

c−1|x |V ≤ |x |′V ≤ c|x |V (x ∈ V ).
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Proof. We induct on n, with trivial base case n = 0. For n > 0, pick any
nonzero m1 ∈ V , and put V1 = V/Fm1. Using (a) or (b), we can rescale m1

by an element of F to force 1 ≤ |m1|V ≤ c2/3.
Equip V1 with the quotient seminorm |·|V1 induced by |·|V . By Lemma 1.3.5,

| · |V1 is again supremum-equivalent. Moreover, in case (b) the infimum in
(1.1.9.1) is always achieved, i.e., for every x1 ∈ V1, there exists x ∈ V lifting
x1 with |x |V = |x1|V1 . Hence V1 again satisfies (b).

We may now apply the induction hypothesis to V1 to produce a basis
m2,1, . . . ,mn,1 of V1 defining a supremum norm | · |′V1

for which

c−1/3|x1|V1 ≤ |x1|′V1
≤ c1/3|x1|V1 (x1 ∈ V1).

For i = 2, . . . , n, choose mi ∈ V lifting mi,1 such that |mi |V ≤ c1/3|mi,1|V1 ;
then

|mi |V ≤ c1/3|mi,1|V1 ≤ c2/3|mi,1|′V1
= c2/3.

Let | · |′V be the supremum norm defined by m1, . . . ,mn . For x ∈ V , write
x = a1m1 + · · · + anmn with ai ∈ F . On the one hand,

|x |V ≤ max
1≤i≤n

{|ai ||mi |V } ≤ c2/3|x |′V .
On the other hand, if x1 is the image of x in V1 then

|x1|′V1
≤ c1/3|x1|V1 ≤ c1/3|x |V ,

so |a2|, . . . , |an| ≤ c1/3|x |V . Moreover,

|a1m1|V ≤ max{|x |V , |x − a1m1|V }
≤ max{|x |V , c2/3|x − a1m1|′V }
= max{|x |V , c2/3 max{|a2|, . . . , |an|}}
≤ c|x |V .

Since |m1|V ≥ 1, we deduce |a1| ≤ c|x |V and so |x |′V ≤ c|x |V . This proves
the desired inequalities.

We need the following infinite-dimensional analogue of Theorem 1.3.6,
taken from [195, Proposition 10.4]. Be aware that the situation in the archi-
medean case is much subtler; see the notes at the end of the chapter.

Lemma 1.3.8. Let F be a complete nonarchimedean field. Let V be an
F-vector space equipped with a norm | · |V compatible with F. Suppose
that V contains a dense F-subspace of countable infinite dimension over F.
Then there exists a sequence m1,m2, . . . of elements of V with the following
properties.



22 Norms on algebraic structures

(a) For each m ∈ V , there is a unique sequence a1, a2, . . . of elements of
F such that the series

∑∞
i=1 ai mi converges to m.

(b) With notation as in (a), the function | · |′V defined by

|m|′V = sup
i
{|ai mi |V }

is a norm on V compatible with F and metrically equivalent to | · |V .

Proof. Choose an ascending sequence of F-subspaces 0 = V0 ⊂ V1 ⊂ · · · ,
with dimF Vn = n, whose union is dense in V . For each n > 0, pick some
mn,0 ∈ Vn \ Vn−1.

Let | · |n be the quotient seminorm on V/Vn induced by | · |V . As in the
proof of Theorem 1.3.6, we may show by induction on n that | · |n is a norm,
as follows. The claim for n = 0 is given. Supposing that | · |n−1 is a norm,
let m ∈ V be an element with |m|n = 0. There must exist a sequence ai of
elements of F with |ai mn,0 + m|n−1 → 0 as i → ∞. Since |mn,0|n−1 �= 0
by the induction hypothesis, the ai must form a Cauchy sequence in F whose
limit a satisfies |amn,0 + m|n−1 = 0. Again by the induction hypothesis, m
and −amn,0 represent the same class in V/Vn−1, so m represents the zero
class in V/Vn . Hence | · |n is a norm.

Choose an increasing sequence of real numbers 0 < r1 < r2 < · · · < 1.
Since | · |n−1 is a norm, we have |mn,0|n−1 �= 0. We can thus choose mn ∈
mn,0 + Vn−1 with m1 = m1,0 and

|mn|n−1 = |mn,0|n−1 ≥ rn

rn+1
|mn|V (n > 1).

For m ∈ Vn−1 and a ∈ F , we have |amn + m|V ≥ |amn|n−1 ≥
(rn/rn+1)|amn|V . If |amn|V = |m|V , this yields

|amn + m|V ≥ rn

rn+1
max{|amn|V , |m|V };

the same holds if |amn|V �= |m|V since in that case |amn + m|V = max
{|amn|V , |m|V }.

By induction on n, we deduce that, for a1, . . . , an ∈ F ,

|a1m1 + · · · + anmn|V ≥ r1

rn+1
max{|a1m1|V , . . . , |anmn|V }

≥ r1 max{|a1m1|V , . . . , |anmn|V }.
Combining this with the evident inequality

|a1m1 + · · · + anmn|V ≤ max{|a1m1|V , . . . , |anmn|V },
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we conclude that on ∪n Vn the seminorms | · |V and | · |′V are metrically equiv-
alent. Consequently, | · |′V extends by continuity to a function on V which is
metrically equivalent to | · |V and hence is a norm (which is evidently com-
patible with F). This assertion will imply both (a) and (b) as soon as we have
established the existence aspect of (a), which we will do now.

Given m ∈ V , by hypothesis there exists a sequence x1, x2, . . . of elements
of ∪n Vn converging to m. For j = 1, 2, . . . write x j = ∑∞

i=1 ai, j mi , where
only finitely many ai, j are nonzero. Since {x j }∞j=1 is a Cauchy sequence, for
each ε > 0 there exists N such that, for j, j ′ ≥ N , |x j − x j ′ |V ≤ ε. Since | · |′V
is metrically equivalent to | · |V , for each ε > 0 there also exists N such that,
for j, j ′ ≥ N , |x j − x j ′ |′V ≤ ε.

On the one hand this implies that, for each fixed i , the sequence {ai, j }∞j=1
is Cauchy. Since F is complete, this sequence has a limit ai . On the other
hand, for j = N there exists some i0 such that ai, j = 0 for all i ≥ i0. If we
write xi, j = ∑∞

h=i+1 ah, j m j , for all j ≥ N and all i ≥ i0 we have |xi, j |′V ≤
ε and hence |xi, j |V ≤ ε. For fixed i , xi, j converges to m − a1m1 − · · · −
ai mi as j → ∞; hence, for all i ≥ i0, |m − a1m1 − · · · − ai mi |V ≤ ε so
the series

∑∞
i=1 ai mi converges to m. As noted earlier, both (a) and (b) now

follow.

Definition 1.3.9. For F a field complete for a norm | · |, a Banach space over
F is a vector space V over F equipped with a norm compatible with | · |, under
which it is complete. For V a Banach space and W a closed subspace, the
quotient V/W is again complete. See [214] or [195] for a full development of
the theory of Banach spaces and other topological vector spaces over complete
nonarchimedean fields.

Definition 1.3.10. Let R be a nonarchimedean ring, and let M, N be modules
over R equipped with seminorms | · |M , | · |N compatible with R. The product
seminorm on M ⊗R N is defined by the formula

|x |M⊗R N = inf

{
max

1≤i≤s
{|mi |M |ni |N } : x =

s∑
i=1

mi ⊗ ni

}
.

As in the case of the quotient seminorm, it is clear that the product seminorm is
a seminorm, but it is not clear whether it is compatible with R unless R happens
to be a field. Moreover for norms | · |M and | · |N , it is not clear whether the
product seminorm is a norm. However, if M and N are finite free R-modules
equipped with supremum-equivalent norms then the product seminorm will
be supremum-equivalent, which forces it to be a norm. See also the following
lemma.
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Lemma 1.3.11. Let F be a complete nonarchimedean field. Let V and W be
(possibly infinite-dimensional) vector spaces over F equipped with norms | · |V
and |·|W compatible with F. Then the product seminorm on V ⊗F W is a norm.

Proof. Suppose first that V admits a dense F-subspace of at most countably
infinite dimension. Then by Theorem 1.3.6 and/or Lemma 1.3.8, we can find
a (finite or infinite) sequence m1,m2, . . . of elements of V such that every
element can be uniquely written as a convergent series

∑∞
i=1 ai mi , with ai ∈

F , and | · |V is equivalent to the norm | · |′V defined by∣∣∣∣∣
∞∑

i=1

ai mi

∣∣∣∣∣
′

V

= sup
i
{|ai mi |V } (ai ∈ F).

More precisely, we have c|·|′V ≤ |·|V ≤ |·|′V for some c > 0. Let π j : V → F
be the projection carrying

∑∞
i=1 ai mi to a j . By tensoring with W , we obtain a

projection π j,W : V ⊗F W → W . For x ∈ V ⊗F W , we define

|x |′V⊗F W = sup
j
{|m j |V |π j,W (x)|W }.

This gives a norm by the following argument. Let
∑s

k=1 yk ⊗ zk be any
representation of x ∈ V ⊗F W with yk ∈ V and zk ∈ W , so that

π j,W (x) =
s∑

k=1

π j (yk)zk .

Suppose that |x |′V⊗F W = 0; then choose the representation of x to minimize
s. If s > 0 then yk �= 0 for all k and the zk must be linearly independent over
F . We can then choose j and k such that π j (yk) �= 0, but then

0 = π j,W (x) =
s∑

k=1

π j (yk)zk,

a contradiction. Hence s = 0 and so x = 0.
For x = ∑s

k=1 yk ⊗ zk ∈ V ⊗F W and any positive integer N , we can
express x also as

m1⊗π1,W (x)+· · ·+m N ⊗πN ,W (x)+
s∑

k=1

(yk − π1(yk)m1 − · · · − πN (yk)m N )⊗zk;

as N → ∞, the product seminorm of the sum over k tends to zero. We thus
conclude that, on the one hand,

|x |V⊗F W ≤ |x |′V⊗F W .
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On the other hand,

max
k

{|yk |V |zk |W } ≥ c sup
j

max
k

{|π j (yk)m j |V |zk |W }

≥ c sup
j

{
|m j |V

∣∣∣∣∣
s∑

k=1

π j (yk)zk

∣∣∣∣∣
W

}
= c sup

j
{|m j |V |π j,W (x)|W },

so that

|x |V⊗F W ≥ c|x |′V⊗F W .

That is, the product seminorm is equivalent to | · |′V⊗F W and so is a norm.
In the general case, suppose on the contrary that x = ∑s

j=1 m j ⊗ n j ∈
V⊗F W had product seminorm 0. This would mean that we can find a sequence
xi ∈ V ⊗F W in which each xi can be represented as

∑si
j=1 mi, j ⊗ni, j , and so

lim
i→∞ max

j
{|mi, j |V |ni, j |W } = 0.

Then the same data would be available if we replaced V by the closure of the
F-subspace spanned by the m j and the mi, j , and similarly for W . We may thus
apply the previous case to obtain a contradiction.

1.4 Examples of nonarchimedean norms

Example 1.4.1. For any field F , there is a trivial norm of F defined by

| f |triv =
{

1 f �= 0,

0 f = 0.

This norm is nonarchimedean, and F is complete under it. The trivial case will
always be allowed unless explicitly excluded; it is often a useful input into a
highly nontrivial construction, as in the next few examples.

Example 1.4.2. Let F be any field, and let F((t)) denote the field of formal
Laurent series. The t-adic valuation vt on F is defined as follows: for f =∑

i ci t i ∈ F((t)), vt ( f ) is the least i for which ci �= 0. This exponentiates to
give a t-adic norm under which F((t)) is complete and discretely valued. (See
Example 1.5.8 for a variation on this construction.)

Before introducing our next example, we make a more general definition for
later use.
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Definition 1.4.3. Let R be a ring equipped with a nonarchimedean submulti-
plicative (semi)norm | · |. For ρ ≥ 0, define the ρ-Gauss (semi)norm | · |ρ on
the polynomial ring R[T ] by∣∣∣∣∣∑

i

Pi T
i

∣∣∣∣∣
ρ

= max
i

{|Pi |ρi };

it is clearly submultiplicative. Moreover, it is also multiplicative if | · | is;
however, we will postpone the verification of this to the next chapter (see
Proposition 2.1.2). For r ∈ R, we define the r-Gauss (semi)valuation vr as
the (semi)valuation associated with the e−r -Gauss (semi)norm.

Remark 1.4.4. The definition of the ρ-Gauss norm depends on the choice of
the indeterminate T ; that is, it is not equivariant for arbitrary endomorphisms
of the ring R[T ]. For clarity, we will sometimes need to specify that the Gauss
norm is being defined with respect to a particular indeterminate.

Example 1.4.5. For F a nonarchimedean field and ρ > 0, the ρ-Gauss norm
on F[t] (with respect to t) is a multiplicative norm, so it extends to the rational
function field F(t). Note that F(t) is discretely valued under the ρ-Gauss norm
if and only if either:

(a) F carries the trivial norm and ρ �= 1; or
(b) F is discretely valued and ρ belongs to the divisible closure of the

multiplicative value group of F .
In case (a) the ρ-Gauss norm is equivalent to the t-adic norm if 0 < ρ < 1, to
the trivial norm if ρ = 1, and to the t−1-adic norm if ρ > 1.

So far we have not mentioned the principal examples from number theory;
let us do so now.

Example 1.4.6. For p a prime number, the p-adic norm | · |p on Q is defined
as follows. Given f = r/s with r, s ∈ Z, write r = pam and s = pbn with
m, n not divisible by p and then put

| f |p = p−a+b.

In particular, we have normalized in such a way that |p|p = p−1; this conven-
tion is usually taken in order to make the product formula hold. Namely, for
any f ∈ Q, if | · |∞ denotes the usual archimedean absolute value then

| f |∞
∏

p

| f |p = 1.

Completing Q under | · |p gives the field of p-adic numbers Qp; it is discretely
valued. Its valuation ring is denoted Zp and called the ring of p-adic integers.
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Remark 1.4.7. When converting the p-adic norm into a valuation, it is com-
mon practice to use base-p logarithms. We have instead opted to keep the
factor of log p visible when we take logarithms. One may liken this practice
to using metric units rather than normalizing some dimensioned constants to 1
(e.g., the speed of light).

Just as the only archimedean norm on Q is the usual one, every nontrivial
nonarchimedean norm on Q is essentially a p-adic norm, again by a theorem
of Ostrowski.

Theorem 1.4.8 (Ostrowski). Any nontrivial nonarchimedean norm on Q is
equivalent to the p-adic norm for some prime p.

Proof. See [191, §2.2.4].

To equip extensions of Qp with norms, we use the following result. As usual,
when E is a finite extension of a field F we write [E : F] for the degree of the
field extension, i.e., the dimension of E as an F-vector space.

Theorem 1.4.9. Let F be a complete nonarchimedean field. Then any finite
extension E of F admits a unique extension of | · | to a norm on E (under
which E is also complete).

Proof. We only prove uniqueness now; existence will be established in
Section 2.3. Let |·|1 and |·|2 be two extensions of |·| to norms on E . Then these
in particular give norms on E viewed as an F-vector space; by Theorem 1.3.6,
these norms are metrically equivalent; that is, there exist c1, c2 > 0 such that

|x |1 ≤ c1|x |2, |x |2 ≤ c2|x |1 (x ∈ E).

They are also both metrically equivalent to the supremum norm for some basis
of E over F , under which E is evidently complete.

We now use the extra information that | · |1 and | · |2 are multiplicative
(because they are norms on E as a field in its own right). For any positive
integer n, we may substitute xn in place of x in the previous inequalities and
then take nth roots, to obtain

|x |1 ≤ c1/n
1 |x |2, |x |2 ≤ c1/n

2 |x |1 (x ∈ E).

Taking limits as n → ∞ gives |x |1 = |x |2, as desired.

Remark 1.4.10. The completeness of F is crucial in Theorem 1.4.9. For
instance, the 5-adic norm on Q extends in two different ways to the Gaussian
rational numbers Q(i), depending on whether |2 + i | = 5−1 and |2 − i | = 1,
or vice versa.
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Because of the uniqueness in Theorem 1.4.9, it also follows that any alge-
braic extension E of F , finite or not, inherits a unique extension of | · |.
However, if [E : F] = ∞ then E is not complete, so we may prefer to use its
completion instead. For instance, if F = Qp, we define Cp to be the comple-
tion of an algebraic closure of Qp. One might worry that this may launch us
into an endless cycle of completion and algebraic closure, but fortunately this
does not occur.

Theorem 1.4.11. Let F be an algebraically closed nonarchimedean field.
Then the completion of F is also algebraically closed.

For the proof, see Section 2.3.

1.5 Spherical completeness

For nonarchimedean fields there is an important distinction between two dif-
ferent notions of completeness, which does not appear in the archimedean
case.

Definition 1.5.1. A metric space is complete if any decreasing sequence of
closed balls with radii tending to 0 has nonempty intersection. (For an abelian
group equipped with a norm this reproduces our earlier definition.) A met-
ric space is spherically complete if any decreasing sequence of closed balls,
regardless of radii, has nonempty intersection.

Example 1.5.2. The fields R and C with their usual absolute value are
spherically complete. Any complete nonarchimedean field which is discretely
valued, e.g., Qp or C((t)), is spherically complete. Any finite-dimensional vec-
tor space over a spherically complete nonarchimedean field equipped with a
compatible norm is spherically complete (exercise); in particular, any finite
extension of a spherically complete nonarchimedean field is again spherically
complete. However, the completion of an infinite algebraic extension of Qp is
not spherically complete unless it is discretely valued; see the end-of-chapter
exercises.

Theorem 1.5.3 (Kaplansky–Krull). Any nonarchimedean field embeds iso-
metrically into a spherically complete nonarchimedean field. (However, the
construction is not functorial; see the notes.)

Proof. Since completion is functorial, we may assume we are starting with
a complete nonarchimedean field F . It was originally shown by Krull [151,
Theorem 24] that F admits an extension which is maximally complete, in the
sense of not admitting any extensions preserving both the value group and the
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residue field. (In fact, this is not difficult to prove using Zorn’s lemma.) The
equivalence of this condition with spherical completeness was then proved by
Kaplansky [118, Theorem 4]. See also [214, p. 151].

One can also prove the result more directly; for instance, the case F =
Qp is explained in detail in [191, §3]. For the case F = K ((t)), see
Example 1.5.8.

One benefit of the hypothesis of spherical completeness is that it can
simplify the construction of quotient norms.

Lemma 1.5.4. Let F be a spherically complete nonarchimedean field, let V
be a finite-dimensional vector space over F, and let | · |V be a norm on V com-
patible with F (and which must be supremum-equivalent by Theorem 1.3.6).
Let V ′ be a quotient of V , and let | · |V ′ be the quotient norm on V ′ induced by
| · |V . Then, for every x ′ ∈ V ′, there exists x ∈ V lifting x ′ with |x |V = |x ′|V ′ .

Proof. We first treat the case where dimF (V ′) = dimF (V ) − 1. In this case,
we can choose m1 ∈ V so that V ′ = V/Fm1. Given x ′ ∈ V ′, start with any
lift x0 of x ′ to V . Any other lift of x ′ to V can be written uniquely as x0 + am1

for some a ∈ F .
For ε > 0, let Bε be the set of a ∈ F such that |x0 + am1|V ≤ |x ′|V ′ + ε.

By the definition of |x ′|V ′ , Bε is nonempty. Pick any a ∈ Bε and define

r(a, ε) = sup
b∈Bε

{|b − a|}.

Then on the one hand Bε is contained in the closed ball of radius r(a, ε) cen-
tered at a. On the other hand, for any r < r(a, ε) there exists b ∈ Bε with
r ≤ |b − a|, so

r |m1|V ≤ |b − a||m1|V
≤ max{|x0 + am1|V , |x0 + bm1|V }
≤ |x ′|V ′ + ε.

By taking limits, we may deduce that r(a, ε)|m1|V ≤ |x ′|V ′ + ε. Hence, for
any c ∈ F with |c − a| ≤ r(a, ε),

|x0 + cm1|V ≤ max{|x0 + am1|V , |(c − a)m1|V }
≤ |x ′|V ′ + ε

and so c ∈ Bε .
We conclude that Bε must equal the closed ball of radius r(a, ε) centered at

a. As ε decreases, the Bε form a decreasing family of closed balls in F . Since
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F is spherically complete, the intersection of the Bε is nonempty. For any a in
this intersection, x = x0 + am1 is a lift of x ′ to V satisfying |x |V = |x ′|V1 .

Having completed the proof in the case where dimF (V ′) = dimF (V ) − 1,
we may treat the general case by induction on dimF (V )− dimF (V ′). There is
nothing to check if the difference is 0, and the above argument applies if the
difference is 1. Otherwise, we can choose a nontrivial quotient V ′′ of V which
in turn has V ′ as a nontrivial quotient. Define the quotient norm | · |V ′′ on V ′′
induced by | · |V ; then | · |V and | · |V ′′ induce the same quotient norm | · |V ′ on
V ′. To lift x ′ ∈ V ′ to V while preserving its norm, it thus suffices to apply the
induction hypothesis first to lift x ′ to x ′′ ∈ V ′′ while preserving its norm and
then to lift x ′′ to x ∈ V while preserving its norm.

In the case of a spherically complete field, we obtain the following refine-
ment of the approximation lemma (Lemma 1.3.7).

Lemma 1.5.5. Let F be a spherically complete nonarchimedean field, let V
be a finite-dimensional vector space over F, and let | · |V be a norm on V
compatible with F and having the same value group as F. Then | · |V is the
supremum norm defined by some basis of V .

Proof. Note that | · |V is supremum-equivalent by Theorem 1.3.6. Define V1 as
in the proof of Lemma 1.3.7. By Lemma 1.5.4, any x ′ ∈ V1 lifts to some x ∈ V
with |x |V = |x ′|V1 . We may thus imitate the proof of case (b) of Lemma 1.3.7
to prove the desired result.

We leave as an exercise the following alternate characterizations of spherical
completeness.

Definition 1.5.6. Let X be a nonarchimedean metric space with distance
function d. A sequence {xn}∞n=0 is pseudoconvergent if, for some n, either
xn = xn+1 = · · · or d(xn, xn+1) > d(xn+1, xn+2) > · · · . An element x ∈ X
is a pseudolimit if, for all sufficiently large n, d(x, xn) ≥ d(xn, xn+1).

Proposition 1.5.7. Let X be a nonarchimedean metric space. Then the
following conditions are equivalent.

(a) The space X is spherically complete.
(b) For any sequence B1, B2, . . . of balls in X, if any two of the balls have

nonempty intersection then the intersection of all the balls is nonempty.
(c) Every pseudoconvergent sequence in X has a pseudolimit.

Proof. Exercise.

To conclude, we give one explicit example of a field which is spherically
complete without being discretely valued. This example is used in the proof of
the slope filtration theorem (Theorem 16.4.1).
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Example 1.5.8. Let K be an arbitrary field. A generalized power series, or
Mal’cev–Neumann series, over K is a formal sum

∑
i∈Q xi t i for which the set

of i ∈ Q with xi �= 0 is a well-ordered subset of Q (i.e., it contains no infinite
decreasing subsequence). Let K ((tQ)) be the set of such series; we may equip
K ((tQ)) with a t-adic valuation by sending

∑
i∈Q xi t i to the least index i for

which xi �= 0.
We can demonstrate that K ((tQ)) is a spherically complete abelian group as

follows. Let B1, B2, . . . be a decreasing sequence of balls of radii r1, r2, . . . .
Put r = lim j→∞ r j ; we may assume that r �= r j for all j (otherwise the balls
are all equal after some point and their intersection is clearly nonempty). For
each i < − log r , choose j with i ≤ − log r j ; then there is a single xi ∈ K
which occurs as the coefficient of t i for every element of B j . The formal sum

x =
∑

i<− log r

xi t
i

is then an element of K ((tQ)) belonging to the intersection of all the B j .
It is somewhat less obvious that K ((tQ)) is a field. Let x = ∑

i∈Q xi t i and

y = ∑
j∈Q y j t j be two elements of K ((tQ)). We would like to define their

product to be

xy =
∑
k∈Q

⎛⎝ ∑
i, j∈Q:i+ j=k

xi y j

⎞⎠ tk .

To make this definition sensible, we must check two assertions.
(a) The set of k ∈ Q admitting at least one representation as i + j where

xi y j �= 0 is well-ordered.
(b) For each k ∈ Q, the number of representations of k as i + j , where

xi y j �= 0, is finite.
We leave both these statements, plus the fact that the resulting ring K ((tQ)) has
multiplicative inverses, as an exercise. (Once the multiplication is known to be
well-defined, such properties as associativity and distributivity over addition
are fairly trivial to check.)

Notes

The concept of a real valuation is a special case of Krull’s notion of a valuation
(sometimes called a Krull valuation for emphasis), in which the role of the real
numbers is replaced by an arbitrary totally ordered group. For instance, on the
polynomial ring k[x, y] one can define a degree function taking monomials to
elements of Z × Z. If we then equip the latter with the lexicographic ordering
(i.e., we compare pairs in their first component, using the second component
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only to break a tie in the first component), we may then define a valuation
taking each polynomial to the lowest degree of any of its monomials.

While not all concepts from archimedean analysis generalize as nicely to
Krull valuations as to real valuations, Krull valuations are important in alge-
braic geometry; indeed, they were originally advocated by Zariski as a key
component of a rigorous foundation for the study of algebraic varieties. They
were later ousted from this role by the more flexible theory of schemes, but
they continue to play an important role in the study of birational properties of
varieties and schemes, particularly in questions about the resolution of singu-
larities by blowups. See [187] for a full account of the theory of valuations and
[113] for discussion of some points concerning Zariski’s use of valuations in
algebraic geometry.

A sequence m1,m2, . . . as in the statement of Lemma 1.3.8(a) is called a
Schauder basis for V . For more discussion, see [31, §2.7.2]. Over a complete
archimedean field (i.e., R or C), the statement of Lemma 1.3.8 becomes false,
as there are Banach spaces admitting countable dense subsets (i.e., Banach
spaces which are separable) but not admitting Schauder bases. The first exam-
ple is due to Enflo [85]. For a general discussion of the problem of constructing
various sorts of Banach-space bases in the archimedean setting, see [159,
Part I] or [37].

For a direct proof of Theorem 1.4.11 in the case of the completed algebraic
closure of Qp, see [191, §3.3.3].

The fact that the completion of an infinite extension of Qp fails to be
spherically complete if it is not discretely valued (see Example 1.5.2 and the
exercises) is a special case of a more general fact, namely, that any nonar-
chimedean metric space which admits a countable dense subset and whose
metric takes values which are dense in R+ fails to be spherically complete
[193, Theorem 20.5].

The condition of spherical completeness is quite important in nonarchi-
medean functional analysis, as it is needed for the Hahn–Banach theorem to
hold. (By contrast, the nonarchimedean version of the open mapping theorem
requires only completeness of the field.) For an expansion of this remark we
recommend [195]; an older reference is [214].

Condition (c) of Proposition 1.5.7 is due to Ostrowski [179]; it is the
definition used by Kaplansky in [118].

Example 1.5.8 was originally due to Hahn [100]. It was later generalized
independently by Mal’cev and by Neumann to the case where the ordered
abelian group Q is replaced by a possibly nonabelian group. Then it was used
by Poonen [182] to describe the spherical completion of an arbitrary complete
nonarchimedean field, even in the mixed-characteristic case. For instance, one
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obtains a description of a spherical completion of Cp in terms of a generalized
power series in p.

Exercises

(1) Prove Proposition 1.1.8. (Hint: first note that |x | < 1 if and only if the
sequence x, x2, . . . converges to 0.)

(2) Prove Ostrowski’s theorem (Theorem 1.2.4).
(3) Give an example to show that, even for a finite-dimensional vector space

V over a complete nonarchimedean field F , the requirement that a norm
on | · |V compatible with F must satisfy the strong triangle inequal-
ity is not superfluous; that is, condition (b) in Definition 1.3.1 is not a
consequence of the rest of the definition. (Hint: use a modification of a
supremum norm.)

(4) Let M be a module over a nonarchimedean field F . Prove that any two
norms on M compatible with F are topologically equivalent if and only
if they are metrically equivalent.

(5) Use Remark 1.4.10 to give an example showing that the statement of
Theorem 1.3.6 may fail if F is not complete.

(6) Prove that the valuation ring oF of a nonarchimedean field is noetherian
if and only if F is trivially or discretely valued.

(7) Use Theorem 1.4.9 to prove that, for any field F , any nonarchimedean
norm | · | on F , and any extension of E , there exists at least one extension
of | · | to a norm on E . (Hint: reduce to the cases where E is a finite
extension or a purely transcendental extension.)

(8) Here is a more exotic variation of the t-adic valuation. Let F be a field,
and choose α1, . . . , αn ∈ R.
(a) Prove that on the rational function field F(t1, . . . , tn) there is a val-

uation vα such that v( f ) = 0 for all f ∈ F× and v(ti ) = αi for
i = 1, . . . , n. (Hint: you may construct it by iterating the definition
of Gauss valuations.)

(b) Prove that if α1, . . . , αn are linearly independent over Q, the valua-
tion vα is uniquely determined by (a).

(c) Prove that if α1, . . . , αn are not linearly independent over Q, the val-
uation vα is not uniquely determined by (a). (Hint: try for a starter
the case n = 2, α1 = α2 = 1.)

(9) Let E be the completion of an infinite extension of Qp which is not dis-
cretely valued. Let α1, α2, . . . ∈ E be any sequence of elements such
that |α1|, |α2|, . . . form a strictly decreasing sequence with positive limit.
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(Since E is not discretely valued, such a sequence must exist.) Prove that
the sequence of discs

{z ∈ E : |z − α1 − · · · − αi | ≤ |αi |}
is decreasing, but its intersection is empty. (Hint: note that if the intersec-
tion were nonempty then it would contain an element algebraic over Qp,
since such elements are dense in E .) Deduce as a corollary that E is not
spherically complete.

(10) Prove that any finite-dimensional vector space over a spherically com-
plete nonarchimedean field equipped with a compatible norm is also
spherically complete. (Hint: use Lemma 1.5.5.)

(11) Prove Proposition 1.5.7.
(12) Prove that a subset S of R is well-ordered (contains no infinite decreasing

sequence) if and only if every nonempty subset of S has a least element.
(13) Check the unproved assertions at the end of Example 1.5.8. (Hint: reduce

both (a) and (b) to the fact that, given any sequence of pairs (i, j) ∈
Q2 for which i + j is nonincreasing, one can pass to a subsequence in
which one component is nonincreasing. Reduce (c) to checking that x ∈
K ((tQ)) has an inverse whenever x −1 has positive t-adic valuation, then
use a geometric series.)
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Newton polygons

In this chapter, we recall the traditional theory of Newton polygons for poly-
nomials over a nonarchimedean field. In the process, we introduce a general
framework which will allow us to consider Newton polygons in a wider range
of circumstances; it is based on a version of Hensel’s lemma that applies in not
necessarily commutative rings. As a first application, we fill in a few missing
proofs from Chapter 1.

2.1 Introduction to Newton polygons

We start with the possibly familiar notion of the Newton polygon associated
with a polynomial over a nonarchimedean ring.

Definition 2.1.1. Let R be a ring equipped with a nonarchimedean submul-
tiplicative (semi)norm | · |. For ρ > 0 and P = ∑

i Pi T i ∈ R[T ], define
the width of P under the ρ-Gauss norm | · |ρ as the difference between the
maximum and minimum values of i for which maxi {|Pi |ρi } is achieved.

Proposition 2.1.2. Let R be a ring equipped with a nonarchimedean multi-
plicative seminorm | · |. For ρ > 0 and P, Q ∈ R[T ] the following results
hold.

(a) We have |P Q|ρ = |P|ρ |Q|ρ . That is, | · |ρ is multiplicative.
(b) The width of P Q under | · |ρ equals the sum of the widths of P and Q

under | · |ρ .

Proof. For ∗ ∈ {P, Q}, let j∗, k∗ be the minimum and maximum values of i
for which maxi {|∗i | ρi } is achieved. Write

35
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P Q =
∑

i

(P Q)i T
i =

∑
i

⎛⎝ ∑
g+h=i

Pg Qh

⎞⎠ T i .

In the sum (P Q)i = ∑
g+h=i Pg Qh , each summand has norm at most

|P|ρ |Q|ρρ−i , with equality if and only if |Pg| = |P|ρρ−g and |Qh | =
|Q|ρρ−h . This cannot occur for i < jP + jQ , and for i = jP + jQ it can
only occur for g = jP , h = jQ . Hence

|(P Q)i | < |P|ρ |Q|ρρ−i (i < jP + jQ),

|(P Q)i | = |P|ρ |Q|ρρ−i (i = jP + jQ),

|(P Q)i | ≤ |P|ρ |Q|ρρ−i (i > jP + jQ).

Similarly, we also have

|(P Q)i | ≤ |P|ρ |Q|ρρ−i (i < kP + kQ),

|(P Q)i | = |P|ρ |Q|ρρ−i (i = kP + kQ),

|(P Q)i | < |P|ρ |Q|ρρ−i (i > kP + kQ).

This proves both claims.

Definition 2.1.3. Let R be a ring equipped with a nonarchimedean submulti-
plicative seminorm | · |. Let v = − log | · | denote the corresponding valuation.
Given a polynomial P(T ) = ∑n

i=0 Pi T i ∈ R[T ], draw the set of points

{(−i, v(Pi )) : i = 0, . . . , n; v(Pi ) < +∞} ⊂ R2,

then form the lower convex hull of these points. (That is, take the intersec-
tion of every closed half-plane which contains all the points and lies above
some nonvertical line.) The boundary of this region is called the Newton poly-
gon of P . The slopes of P are the slopes of this open polygon, viewed as
a multiset in which each slope r counts with multiplicity equal to the hori-
zontal width of the segment of the Newton polygon of slope r (or equal to
zero if there is no such segment); the latter can also be interpreted as the
width of P under | · |e−r . (In the case where this multiset has cardinality
less than deg(P), we include +∞ with sufficient multiplicity to make up the
shortfall.)

Example 2.1.4. For R = Qp equipped with the p-adic norm | · |p, the
Newton polygon of the polynomial T 3 + pT 2 + pT + p3T 3 has vertices
(−3, 0), (−1, log p), (0, 3 log p). Its slopes are 1

2 log p with multiplicity 2 and
2 log p with multiplicity 1.
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Proposition 2.1.5. Let R be a nonarchimedean ring, and suppose that
P(T ) = (T − λ1) · · · (T − λn). Then the slope multiset of P consists of
− log |λ1|, . . . ,− log |λn|.
Proof. This is immediate from the multiplicativity of | · |e−r .

Here is an explicit example of Proposition 2.1.5 which we will use
repeatedly.

Example 2.1.6. For p a prime and m a positive integer, let ζm be a primitive
mth root of unity in an algebraic closure of Qp. According to Theorem 1.4.9
(which we will finish proving later in this chapter), Qp(ζm) admits a unique
extension of the p-adic norm | · |p on Qp. Assuming this, let us calculate the
norm of the element 1 − ζm .

The easiest case is when m is not divisible by p. In this case ζm − 1 is a
root of the polynomial ((T + 1)m − 1)/T , which has integer coefficients and
constant term m �≡ 0 (mod p). Hence the Newton polygon has all slopes equal
to 0, so |1 − ζm |p = 1.

Suppose next that m = ph for some positive integer h. In this case ζph is a
root of the polynomial

P(T ) = T ph − 1

T ph−1 − 1
=

p−1∑
i=0

T iph−1
,

so ζph − 1 is a root of Q(T ) = P(T + 1). The image Q(T ) of Q(T ) in Fp[T ]
satisfies

Q(T ) = (T + 1)ph − 1

(T + 1)ph−1 − 1
= T ph + 1ph − 1

T ph−1 + 1ph−1 − 1
= T (p−1)ph−1

,

so all the coefficients of Q except for its leading coefficient are divisible by p.
Moreover Q(0) = p, so the Newton polygon of Q is a straight line segment
with endpoints (−(p − 1)ph−1, 0) and (0, log p). We conclude that

|1 − ζph |p = p−p−h+1/(p−1) (2.1.6.1)

(see the exercises for an alternate derivation of (2.1.6.1)).
Finally, suppose that m = ph j , where j is not divisible by p. If j = 1,

we have |1 − ζm |p = p−p−h+1/(p−1) by (2.1.6.1). Otherwise, we can write
ζm = ζph ζ j and

1 − ζm = (1 − ζph )+ ζph (1 − ζ j ).

On the right-hand side, the first term has norm less than 1 whereas the second
term has norm equal to 1. We thus have |1 − ζm |p = 1.
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Remark 2.1.7. The data of the Newton polygon is equivalent to the data of
the ρ-Gauss norms for all ρ. This amounts to the statement that the graph of
a convex continuous function is determined by the positions of its supporting
lines of all slopes; this holds because the graph is the lower boundary of the
intersection of the closed halfspaces bounded below by the supporting lines.
For an example of the use of this observation, see the proof of Theorem 11.2.1.

2.2 Slope factorizations and a master factorization theorem

A key property of the operation of completing a nonarchimedean ring, first
noticed by Hensel, is that it vastly enlarges the collection of polynomials over
the ring which can be factored. Here is a sample statement of this form, which
gives us a factorization that separates slopes in the Newton polygon.

Theorem 2.2.1. Let R be a complete nonarchimedean ring. Suppose that S ∈
R[T ], r ∈ R, and m ∈ Z≥0 satisfy

vr (S − T m) > vr (T
m).

Then there exists a unique factorization S = P Q satisfying the following
conditions.

(a) The polynomial P ∈ R[T ] has degree deg(S) − m, and its slopes are
all less than r.

(b) The polynomial Q ∈ R[T ] is monic of degree m, and its slopes are all
greater than r.

(c) We have vr (P − 1) > 0 and vr (Q − T m) > vr (T m).
Moreover, for this factorization,

min{vr (P − 1), vr (Q − T m)− vr (T
m)} ≥ vr (S − T m)− vr (T

m). (2.2.1.1)

(In fact, this statement turns out to be an equality; see the exercises.)

Let us translate this statement into plainer language. The hypothesis vr (S −
T m) > vr (T m) is equivalent to the following two conditions.

(a) The coefficient Sm of T m in S satisfies |Sm − 1| < 1; in particular, Sm

is a unit.
(b) The supporting line of slope r of the Newton polygon of S touches the

polygon at the point (−m, 0) and nowhere else.
In particular, r does not occur as a slope of the Newton polygon of S. Note that
if (b) holds and Sm is a unit, we can apply the theorem to S−1

m S instead.
It is not difficult to prove Theorem 2.2.1 directly. However, we will be

stating a number of similar results as we go along, with similar proofs. To
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save some effort, we state a master factorization theorem applicable to not
necessarily commutative rings, from which we can deduce Theorem 2.2.1 and
all the variants we will use later. The theorem, and the proof given here, are
due to Christol [42, Proposition 1.5.1].

Theorem 2.2.2 (Master factorization theorem). Let R be a nonarchimedean,
not necessarily commutative, ring. Suppose that the nonzero elements a, b, c ∈
R and the additive subgroups U, V,W ⊆ R satisfy the following conditions.

(a) The spaces U, V are complete under the norm, and U V ⊆ W .
(b) The map f (u, v) = av + ub is a surjection of U × V onto W .
(c) There exists λ > 0 such that

| f (u, v)| ≥ λmax{|a||v|, |b||u|} (u ∈ U, v ∈ V ).

(d) We have ab − c ∈ W and

|ab − c| < λ2|c|.
Then there exists a unique pair (x, y) ∈ U × V such that

c = (a + x)(b + y), |x | < λ|a|, |y| < λ|b|.
For this x, y we also have

|x | ≤ λ−1|ab − c||b|−1, |y| ≤ λ−1|ab − c||a|−1.

Before proving Theorem 2.2.2, let us see how it implies Theorem 2.2.1.

Proof of Theorem 2.2.1. We apply Theorem 2.2.2 with the following para-
meters:

R = F[T ],
| · | = | · |e−r ,

U = {P ∈ F[T ] : deg(P) ≤ deg(S)− m},
V = {P ∈ F[T ] : deg(P) ≤ m − 1},
W = {P ∈ F[T ] : deg(P) ≤ deg(S)},
a = 1,

b = T m,

c = S,

λ = 1

and then put P = a + x and Q = b + y.
To see that this works, let us verify explicitly that condition (c) is satisfied

in this setup (the other conditions are more obvious). If u ∈ U, v ∈ V are such
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that max{|a||v|, |b||u|} is achieved by some term of av then that term appears
unchanged in av + ub because ub is divisible by T m . Hence | f (u, v)| ≥ |av|
in that case. Otherwise we have |av| < |bu| and so | f (u, v)| = |bu|.

With this motivation in mind, we now prove Theorem 2.2.2.

Proof of Theorem 2.2.2. We define a norm on U × V by setting

|(u, v)| = max{|a||v|, |b||u|},
so that (c) implies

λ|(u, v)| ≤ | f (u, v)| ≤ |(u, v)|.
In particular λ ≤ 1, so |ab − c| < |ab| = |c|.

Since a, b are nonzero, (c) implies that f is injective. By (b), f is in fact a
bijective group homomorphism between U × V and W . It follows that, for all
w ∈ W ,

| f −1(w)| ≤ λ−1|w|.
By (d) we may choose μ ∈ (0, λ) with |ab − c| ≤ λμ|c|. Define

Bμ = {(u, v) ∈ U × V : |(u, v)| ≤ μ|c|}.
For (u, v) ∈ Bμ we have

|a||v| ≤ |(u, v)| ≤ μ|c| = μ|a||b|,
so |v| ≤ μ|b|. Similarly |u| ≤ μ|a|. As a result,

| f −1(c − ab − uv)| ≤ λ−1|c − ab − uv|
≤ λ−1 max{|c − ab|, |uv|}
≤ λ−1 max{λμ|c|, μ2|a||b|}
= μ|c|.

Consequently, the map g(u, v) = f −1(c − ab − uv) carries Bμ into itself.
We next show that g is contractive. For (u, v), (t, s) ∈ Bμ,

|g(u, v)− g(t, s)| ≤ | f −1(ts − uv)|
≤ λ−1|ts − uv|
= λ−1|t (s − v)+ (t − u)v|
≤ λ−1 max{μ|a||s − v|, μ|t − u||b|}
= λ−1μ|(u − t, v − s)|
= λ−1μ|(u, v)− (t, s)|,

which has the desired effect because λ−1μ < 1.
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Since g is contractive on Bμ and U ×V is complete, by the Banach contrac-
tion mapping theorem (exercise) there is a unique (x, y) ∈ U × V fixed by g.
That is,

ay + xb = f (x, y) = f (g(x, y)) = c − ab − xy

and so

c = (a + x)(b + y).

Moreover, there is a unique such (x, y) in the union of all the Bμ, and that
element belongs to the intersection of all the Bμ.

Remark 2.2.3. One can also use Theorem 2.2.2 to recover other instances
of Hensel’s lemma. For instance, if F is a complete nonarchimedean field,
P(x) ∈ oF [x], and the reduction of P(x) into κF [x] factors as Q R with Q, R
coprime, then there exists a unique factorization P = Q R in oF [x] with Q, R
lifting Q, R (exercise).

2.3 Applications to nonarchimedean field theory

We now go back and apply Theorem 2.2.1 to prove some facts about exten-
sions of nonarchimedean fields which were omitted from Chapter 1. We first
complete the proof of Theorem 1.4.9; for this we need the following lemma.

Lemma 2.3.1. Let F be a complete nonarchimedean field. Let P(T ) ∈ F[T ]
be a polynomial whose slopes are all greater than or equal to r . Let S(T ) ∈
F[T ] be any polynomial, and write S = P Q+ R with deg(R) < deg(P) using
the division algorithm. Then

vr (S) = min{vr (P)+ vr (Q), vr (R)}.
Proof. Exercise.

Proof of Theorem 1.4.9 (continued). It remains to show that if F is a complete
nonarchimedean field then any finite extension E of F admits an extension of
| · | to a norm on E . If E ′ is a field intermediate between F and E , we may
first extend the norm to E ′ and then to E . Consequently, it suffices to check
the case where E = F(α) for some α ∈ E , that is, E ∼= F[T ]/(P(T )) for
some monic irreducible polynomial P ∈ F[T ] (the minimal polynomial of α).
Apply Theorem 2.2.1; since P(T ) cannot factor nontrivially, we deduce that
P must have a single slope r .
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We now define a norm on E as follows: for β = c0 + c1α+· · ·+ cn−1α
n−1,

with n = deg(P) = [E : F], put

|β|E = max
i

{|ci |e−ri }.

That is, take |β|E to be the e−r -Gauss norm of the polynomial c0 + c1T +
· · · + cn−1T n−1. The submultiplicativity of | · |E is then a consequence
of Lemma 2.3.1; however, since E is a field, submultiplicativity implies
multiplicativity.

We next give the proof of Theorem 1.4.11. For this, we need a crude version
of the principle that the roots of a polynomial over a complete algebraically
closed nonarchimedean field should vary continuously in the coefficients.

Lemma 2.3.2. Let F be an algebraically closed nonarchimedean field with
completion E, and suppose that P ∈ E[T ] is monic of degree d. Then, for any
ε > 0, there exists z ∈ F such that |z| ≤ |P(0)|1/d and |P(z)| < ε.

Proof. If P(0) = 0 we may pick z = 0, so assume that P(0) �= 0. Put P =
T d + ∑d−1

i=0 Pi T i . For any δ > 0, we can pick a polynomial Q = T d +∑d−1
i=0 Qi di ∈ F[T ] with |Qi − Pi | < δ for i = 0, . . . , d − 1.
Now assume that δ < min{|P0|, ε, ε/|P0|}, so that |Q0| = |P0|. By

Proposition 2.1.5 there exists z ∈ F with Q(z) = 0 and |z| ≤ |Q0|1/d =
|P0|1/d . We now have

|P(z)| = |(P − Q)(z)| ≤ δmax{1, |z|}d ≤ δmax{1, |P(0)|} < ε,

as desired.

Proof of Theorem 1.4.11. We must check that the completion E of an alge-
braically closed nonarchimedean field F is itself algebraically closed. Let
P(T ) ∈ E[T ] be a monic polynomial of degree d. Define a sequence of poly-
nomials P0, P1, . . . as follows. Put P0 = P . Given Pi , apply Lemma 2.3.2 to
construct zi with |zi | ≤ |Pi (0)|1/d and |Pi (zi )| < 2−i ; then set Pi+1(T ) =
Pi (T + zi ), so that Pi+1(0) = Pi (zi ). If some Pi satisfies Pi (0) = 0 then
z0+· · ·+zi−1 is a root of P . Otherwise, we get an infinite sequence z0, z1, . . .

such that z0 + z1 + · · · converges to a root of P .

Notes

There is a good reason for Newton’s name to be attached to the polygons con-
sidered in this chapter. He considered them in the context of finding a series
expansion at the origin for a function y = f (x) implicitly defined by a poly-
nomial relation P(x, y) = 0 over C. This was later reinterpreted by Puiseux,
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in terms of computing roots of polynomials over the subfield of C((x)) con-
sisting of series which represent meromorphic functions in a neighborhood
of x = 0.

Remark 2.1.7 is perhaps best viewed within the broader context of duality
for convex functions, which is a central theme in the study of linear optimiza-
tion problems. One reference for the rigorous mathematical theory of convex
functions is [192].

Although the formulation of Theorem 2.2.2 is due to Christol, the basic
observation that Hensel’s lemma does not rely on commutativity is rather old.
One early instance is due to Zassenhaus [223].

The Banach contraction mapping theorem (also known as the Banach fixed
point theorem), used in the proof of Theorem 2.2.2, is probably familiar to most
readers except possibly in name. For instance, it appears in the most common
proofs of the implicit function theorem, the inverse function theorem, and the
fundamental theorem of ordinary differential equations.

The notion of a nonarchimedean metric space can be generalized to the case
where the metric takes values in an arbitrary partially ordered set. One can then
give a number of extensions of the Banach contraction mapping theorem, at
least in the case of spherically complete metric spaces. For instance, Priess-
Crampe has proved that if X is a spherically complete metric space with
distance function d, and f : X → X is a function such that d( f (x), f (y)) <
d(x, y) for all x, y ∈ X with x �= y, then f has a fixed point. See [197] for an
exposition of a number of results of this type.

Exercises

(1) With notation as in Example 2.1.6, rederive (2.1.6.1) as follows. First note
that for j coprime to p, 1 − ζph and 1 − ζ j

ph are multiples of each other in

the ring Z[ζph ], so that |1 − ζph |p ≥ |1 − ζ
j
ph |p and vice versa. Then note

that the product of 1− ζ j
ph over those j ∈ {0, . . . , ph − 1} not divisible by

p equals Q(0) = p.
(2) Prove that equality holds in (2.2.1.1). (Hint: split S − T m into (P −1)Q +

(Q − T m).)
(3) Prove the claim in Remark 2.2.3. (Hint: since Q and R are coprime, we

can choose S, T ∈ κF [x] such that QS + RT = 1. We can also ensure
that deg(S) < deg(R) and deg(T ) < deg(Q). Use lifts of these to set up
the conditions of Theorem 2.2.2.)

(4) Prove Lemma 2.3.1. (Hint: separate P as a sum P1 + P2 in which vr (P)
is achieved by the leading coefficient of P1, while vr (P2) > vr (P).)
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(5) Prove the Banach contraction mapping theorem (used in the proof of
Theorem 2.2.2). That is, suppose that X is a nonempty complete metric
space (not necessarily nonarchimedean) with distance function d, and let
g : X → X be a map for which there exists μ ∈ (0, 1) such that
d(g(x), g(y)) ≤ μd(x, y) for all x, y ∈ X . Prove that g has a unique fixed
point. (Hint: show that, for any x ∈ X , the sequence x, g(x), g(g(x)), . . .
is Cauchy and that its limit is the desired fixed point.)
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Ramification theory

Recall (Theorem 1.4.9) that any finite extension of a complete nonarchime-
dean field carries a unique extension of the norm and is also complete. In
this chapter, we study the relationship between a complete nonarchimedean
field and its finite extensions; this relationship involves the residue fields, value
groups, and Galois groups of the fields in question. We distinguish some impor-
tant types of extensions, the unramified and tamely ramified extensions. See
[187] (especially Chapter 6) for a more thorough treatment.

We also briefly discuss the special case of a discretely valued field with
a perfect residue field, in which one can say much more. We introduce the
standard ramification filtrations on the Galois groups of extensions of local
fields; these will not reappear again until Part IV, at which point they will relate
to the study of the convergence of solutions of p-adic differential equations
made in Part III. We make no attempt to be thorough in our treatment; instead
we refer the reader to the standard text [198] for more details.

Notation 3.0.1. For E/F a Galois extension of fields, write G E/F for
Gal(E/F). If E = F sep, the separable closure of E , write G F for the absolute
Galois group G Fsep/F . Of course, if F has characteristic 0 (or is perfect, e.g.,
if F is a finite field) then F sep coincides with the algebraic closure Falg. (We
avoid the usual notation F for the latter because we prefer to reserve the over-
bar to denote reduction modulo the maximal ideal of a local ring, e.g., from
Zp to Fp.)

Remark 3.0.2. Throughout this chapter, when a nonarchimedean field F is
assumed to be complete it will be sufficient to assume it is only henselian
instead. One of many equivalent formulations of this condition (for which see
[175, 43.2]) is as follows: for any monic polynomial P(x) ∈ oF [x] and any
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simple root r ∈ κF of P ∈ κF [x] there exists a unique root r ∈ oF of P
lifting r .

3.1 Defect

Let F be a complete nonarchimedean field, and let E be a finite extension
of F . Then the value group |E×| contains |F×|, while the residue field κE may
naturally be viewed as an extension of κF . The first fundamental fact about the
extension E/F is that both these containments are finite in appropriate senses
closely related to the degree of E over F .

Lemma 3.1.1. Let F be a complete nonarchimedean field, and let E be a finite
extension of F. Then

[E : F] ≥ [κE : κF ]#(|E×|/|F×|), (3.1.1.1)

with equality at least when F is discretely valued.

Proof. Choose α1, . . . , αm ∈ oE lifting a basis of κE over κF , and choose
β1, . . . , βn ∈ E so that |β1|, . . . , |βn| form a set of coset representatives of
|F×| in |E×|. Then the αiβ j are linearly independent over F , proving (3.1.1.1).

In the case where F is discretely valued, there exists a unique ρ ∈ (0, 1) for
which |F×| = ρZ and |E×| = (ρ1/n)Z. If we choose β j to have norm ρ j−1

then it is not hard to show that the αiβ j form a basis of oE over oF (exercise).
This proves the desired equality.

If F is not discretely valued, the situation can be more complicated. One
does however have the following refinement of (3.1.1.1), which we will not
prove here.

Theorem 3.1.2 (Ostrowski). Let F be a complete nonarchimedean field, and
let E be a finite extension of F. Then the quantity

defect(E/F) = [E : F]
[κE : κF ]#(|E×|/|F×|)

is a positive integer. Moreover, if F has characteristic 0 then defect(E/F) = 1;
otherwise defect(E/F) is a power of the characteristic of F.

Proof. See [187, Theorem 6.2].

Definition 3.1.3. The quantity defect(E/F) in Theorem 3.1.2 is called the
defect of E over F . (Note that some sources instead define the defect as
logp defect(E/F), where p is the characteristic of F .) An extension for
which defect(E/F) = 1 is said to be defectless. For example, any finite
extension of a spherically complete field is defectless (see Remark 3.3.11
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below). For an example of an extension with nontrivial defect, see [187,
§6.3].

3.2 Unramified extensions

The easiest finite extensions of a complete nonarchimedean field to describe
are the unramified extensions, which have a particularly simple effect on the
residue field and the value group.

Definition 3.2.1. Let F be a complete nonarchimedean field. A finite extension
E of F is unramified if κE is separable over κF and [E : F] = [κE : κF ]. This
forces E itself to be separable over F ; see Proposition 3.2.3.

Lemma 3.2.2. Let F be a complete nonarchimedean field, and let U be a finite
extension of F. Then, for any subextension E of U over F, U is unramified over
F if and only if U is unramified over E and E is unramified over F.

Proof. Since κE sits between κU and κF , having κU separable over κF is
equivalent to having both κU separable over κE and κE separable over κF .
By Lemma 3.1.1

[U : F] ≥ [κU : κF ], [U : E] ≥ [κU : κE ], [E : F] ≥ [κE : κF ];
since [U : F] = [U : E][E : F] and [κU : κF ] = [κU : κE ][κE : κF ], the first
of the three inequalities is an equality if and only if the other two are.

What makes unramified extensions so simple to describe is that they are
uniquely determined by their residue field extensions. Here is a precise
statement to this effect.

Proposition 3.2.3. Let F be a complete nonarchimedean field, and let E be a
finite extension of F. Then, for any separable subextension λ of κF over κE ,
there exists a unique unramified extension U of F contained in E with κU ∼= λ;
moreover, U is separable over F.

Proof. By the primitive element theorem, one can always write λ∼=
κF [x]/(P(x)) for some monic irreducible separable polynomial P ∈ κF [x].
Lift P to a monic polynomial P ∈ oF [x]. Choose t ∈ oE such that the image
of t in κE corresponds to x in κF [x]/(P(x)); then the reduction of P(x + t)
into κE [x] is divisible by x but not by x2. We may thus apply the slope factor-
ization theorem (Theorem 2.2.1) to deduce that P(x + t) has a root in oE . This
proves the existence and separability of U over F .

To prove uniqueness, let U ′ be another such extension. Then the previous
argument applied to U ′ in place of E shows that oU ′ contains a root of P(x+t)
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congruent to 0 modulo mU ′ . However, there can only be one such root in U ′
because the Newton polygon of P(x + t) has only one positive slope (since P
is a separable polynomial), so in fact U ⊆ U ′. Again, by comparing degrees
we have U = U ′.

Corollary 3.2.4. For each finite separable extension λ of κF , there exists a
unique unramified extension E of F with κE ∼= λ.

Proof. Choose P(x) as in the proof of Proposition 3.2.3. Then E =
F[x]/(P(x)) is an unramified extension of F with residue field λ. The proof
of Proposition 3.2.3 shows that any other unramified extension with residue
field λ must contain E ; by once again comparing degrees we see that this
containment must be an equality.

Lemma 3.2.5. Let F be a complete nonarchimedean field, and let E be a
finite extension of F. Let U1,U2 be unramified subextensions of E over F.
Then the compositum U = U1U2 is also unramified over F, and κU = κU1κU2

inside κE .

Proof. Put U3 = U1 ∩ U2 inside E ; by Lemma 3.2.2, U3 is unramified over
F and U1 is unramified over U3. By Proposition 3.2.3, inside κE we have
κU1 ∩ κU2 = κU3 . Consequently

[κU : κU2 ] ≤ [U : U2] (by Lemma 3.1.1)

= [U1 : U3]
= [κU1 : κU3 ] (because U1 is unramified over U3)

= [κU1κU2 : κU2 ]
≤ [κU : κU2 ] (because κU1κU2 ⊆ κU ).

We deduce first that κU = κU1κU2 and second that [U : U2] = [κU : κU2 ].
Hence U is unramified over U2, hence also over F by Lemma 3.2.2 again.

Definition 3.2.6. Let F be a complete nonarchimedean field, and let E be a
finite extension of F . By Lemma 3.2.5 there is a maximal unramified subex-
tension U of E over F ; by Proposition 3.2.3, κU is the maximal separable
subextension of κE over κF . (We will also say that oU is the “maximal unram-
ified subextension” of oE over oF .) We say E is totally ramified over F if
U = F .
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3.3 Tamely ramified extensions

For Galois extensions of complete nonarchimedean fields, we can refine the
ramification theory introduced in the previous section. In the case of a dis-
cretely valued base field, this material may be familiar from [198]; we will
continue the review of that case in Section 3.4.

Hypothesis 3.3.1. In this section, let F be a complete nonarchimedean field,
and let E be a finite Galois extension of F .

Definition 3.3.2. The inertia subgroup IE/F of G E/F is the kernel of the map
G E/F → Aut(κE ); it may be interpreted as G E/U , where U is the maximal
unramified subextension of E over F . In particular, E is unramified over F if
and only if IE/F is trivial, whereas E is totally ramified over F if and only if
IE/F = G E/F .

Definition 3.3.3. Given g ∈ IE/F and x ∈ E×, let 〈g, x〉 denote the image of
g(x)/x in κ×E . For fixed g, this is a homomorphism from E× → κ×E ; more-
over, it is trivial on o×E because g ∈ IE/F . We thus obtain a homomorphism
IE/F → Hom(|E×|, κ×E ); let WE/F denote the kernel of this map, called the
wild inertia subgroup of G E/F . Note that κ×E has no p-torsion, so neither does
Hom(|E×|, κ×E ); hence IE/F/WE/F is abelian and of order not divisible by p.

Remark 3.3.4. Some readers may recall that if F is discretely valued then
IE/F/WE/F is cyclic of order not divisible by p. This can be seen as follows.
First, let μ denote the group of roots of unity in κ×E of order dividing [E : F],
and note that the image of IE/F/WE/F in Hom(|E×|, κ×E ) includes only maps
from |E×| into μ. Second, note that μ is a finite cyclic group. Finally, note
that |F×| ∼= Z implies |E×| ∼= Z. (This last step does not apply if F is not
discretely valued, and indeed IE/F/WE/F need not be cyclic in general.)

Definition 3.3.5. We say E is tamely ramified over F if WE/F is trivial; in
this case, the degree of E over its maximal unramified subextension is not
divisible by p, and we call this the tame degree of E over F . Otherwise, we
say E is wildly ramified over F ; if WE/F = G E/F , we say E is totally wildly
ramified over F . Note that if p = 0 then every finite extension of F is tamely
ramified.

The structure of tamely ramified extensions is almost as simple as that
of unramified extensions, by an observation due at this level of general-
ity to Abhyankar (although the special case of discrete F was known long
previously).
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Proposition 3.3.6 (Abhyankar). Suppose that E/F is tamely ramified (so
that its inertia group IE/F is abelian of order not divisible by p). Let m be
an integer not divisible by p and annihilating IE/F (e.g., its order). Suppose
that t1, . . . , th ∈ F× have images in |F×| which generate |F×|/|F×|m. Then
E(t1/m

1 , . . . , t1/m
h ) is unramified over F(t1/m

1 , . . . , t1/m
h ).

Proof. Since m is not divisible by p, F(ζm) is unramified over F ; here ζm

denotes a primitive mth root of unity. It is thus harmless to assume ζm ∈ F (by
Lemma 3.2.2). We may also assume that E is totally ramified over F .

In this case, by Kummer theory, E is contained in an extension of F
of the form F(x1/m

1 , . . . , x1/m
n ) for some x1, . . . , xn ∈ F×. To prove the

claim, it suffices to check that F(x1/m
1 , t1/m

1 , . . . , t1/m
h ) is unramified over

F(t1/m
1 , . . . , t1/m

h ). Since |t1|, . . . , |th | generate |F×|/|F×|m , we can choose

integers �1, . . . , �h and an element z ∈ F× such that x1t�1
1 · · · t�h

h zm ∈ o×F , and
we can write

F(x1/m
1 , t1/m

1 , . . . , t1/m
h ) = F(t1/m

1 , . . . , t1/m
h )((x1t�1

1 · · · t�h
h zm)1/m).

It now suffices to check that if m is an integer not divisible by p and y ∈
o×F then F(y1/m) is unramified over F . Again, it is safe to replace F by an
unramified extension before checking this, so we may assume that y reduces
to an mth power in κF . In this case, we will show that y already has an mth root
in F . Namely, we may now assume that y ≡ 1 (mod mF ); then the binomial
series

(1 + (y − 1))1/m =
∞∑

i=0

(
1/m

i

)
(y − 1)i

converges (since its coefficients are p-adically integral, given that m is not
divisible by p) to an mth root of y in F .

Our next argument may be viewed as a preview of the filtration construction
of the next section.

Proposition 3.3.7. The group WE/F is a p-group.

Proof. We proceed by induction on [E : F]; we may assume that E is totally
wildly ramified over F (so WE/F = G E/F ) and that E �= F . Let vE denote
the valuation on E . Pick any x ∈ oE \ oF , and set

j = min{vE (1 − g(x)/x) : g ∈ G E/F }.
Note that j < +∞ because x /∈ F , and j > 0 because E is totally wildly
ramified over F .
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The map g �→ g(x)/x from G E/F to o×E is not a homomorphism; however,
it does induce a nonzero homomorphism

G E/F → {y ∈ o×E : vE (y − 1) ≥ j}
{y ∈ o×E : vE (y − 1) > j} .

Since j > 0, the group on the right is isomorphic to the additive group of κE

and so is a p-torsion group. Hence G E/F surjects onto a nontrivial p-group;
let E ′ be the fixed field of the kernel of this surjection. It is clear that E is again
totally wildly ramified over E ′, so that G E/E ′ is also a p-group; hence G E/F

is an extension of two p-groups and is thus a p-group itself.

The following are easily verified using Proposition 3.3.6.

Lemma 3.3.8. Let E ′ be a subextension of E over F. Then E is tamely rami-
fied over F if and only if E is tamely ramified over E ′ and E ′ is tamely ramified
over F.

Lemma 3.3.9. Let F be a complete nonarchimedean field, let E be a finite
extension of F, and let T1, T2 be tamely ramified subextensions of E over F.
Then T = T1T2 is also tamely ramified over F.

Remark 3.3.10. Let T be the maximal tamely ramified subextension of E
over F , so that G E/T = WE/F is a p-group by Proposition 3.3.7. A fact from
elementary group theory (exercise) allows us to construct a tower E0 = T ⊂
E1 ⊂ · · · ⊂ Em = E such that each Ei is Galois over T , and each group
G Ei /Ei−1 is isomorphic to Z/pZ. This is particularly important if F is of char-
acteristic p, because every Z/pZ-extension of a field L of characteristic p > 0
is isomorphic to L[z]/(z p−z−x) for some x ∈ L . (Such an extension is called
an Artin–Schreier extension.)

Remark 3.3.11. Using the result of Kaplansky mentioned in the proof of
Theorem 1.5.3 (i.e., the fact that maximal completeness is equivalent to spher-
ical completeness), it is possible to show that any finite extension E of a
spherically complete field F is defectless. It suffices to check this first for E
separable over F and then for E purely inseparable over F (since any E can
be obtained by first making a separable extension and then a purely insepa-
rable extension on top of that). As we go along, keep in mind that any finite
extension of F is also spherically complete (Example 1.5.2).

The key initial observation is that if [E : F] = p then by Theorem 3.1.2
either E is defectless over F or [κE : κF ] = [|E×| : |F×|] = 1. If F is
spherically complete, the latter case is ruled out by Kaplansky’s theorem.
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We now consider the separable case. Since it suffices to check defectlessness
for an extension containing E (by Theorem 3.1.2), we may replace E by its
Galois closure. Let T be the maximal tamely ramified subextension, so that T
is defectless over F . By Remark 3.3.10 we can form E from T by a sequence
of Z/pZ-extensions; by the previous paragraph, each of these is defectless.
Hence E is defectless over F .

We next consider the purely inseparable case (which of course only applies
if F has characteristic p). This case is even easier: we can obtain E from F by
a sequence of extensions, each of which simply involves adjoining a pth root;
as above, each such extension is defectless.

3.4 The case of local fields

We now specialize the discussion of ramification theory to local fields, follow-
ing [198, Chapter IV]. This material will not be used until Chapter 19, where
we will relate ramification theory to the convergence of solutions of p-adic
differential equations.

Hypothesis 3.4.1. In this section, let F be a complete discretely valued nonar-
chimedean field whose residue field κF is perfect. (For more on what happens
when the perfectness hypothesis is lifted, see the notes.) Let E be a finite Galois
extension of F .

Definition 3.4.2. The lower numbering filtration of G E/F is defined as
follows. For i ≥ −1 an integer, put

G E/F,i = ker(G E/F → Aut(oE/m
i+1
E )).

In particular,

G E/F,−1 = G E/F ,

G E/F,0 = IE/F ,

G E/F,1 = WE/F .

For i ≥ −1 real, we define G E/F,i = G E/F,�i�. The lower numbering filtra-
tion behaves nicely with respect to subgroups of G E/F but not with respect to
quotients; thus it cannot be defined on the absolute Galois group G F .

Definition 3.4.3. The upper numbering filtration of G E/F is defined by the

relation G
φE/F (i)
E/F = G E/F,i , where

φE/F (i) =
∫ i

0

1

[G E/F,0 : G E/F,t ] dt.
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Note that the indices where the filtration jumps are now rational numbers but
not necessarily integers. In any case, Proposition 3.4.4 below implies that there
is a unique filtration Gi

F on G F which induces the upper numbering filtration
on each G E/F ; that is, Gi

E/F is the image of Gi
F under the surjection G F →

G E/F . It is this filtration which plays the more important role in, e.g., class
field theory.

Proposition 3.4.4 (Herbrand). Let E ′ be a Galois subextension of E over F
and put H = G E/E ′ , so that H is normal in G E/F and G E/F/H = G E ′/F .
Then Gi

E ′/F = (Gi
E/F H)/H; that is, the upper numbering filtration is

compatible with the formation of quotients of G E/F .

Proof. The proof is elementary but slightly involved, so we will not give it
here. See [198, § IV.3].

Notes

Ramification theory originally emerged in the study of algebraic number fields;
the formalism we see nowadays is due largely to Hilbert. The upper and
lower numbering filtrations were originally introduced by Hilbert as part of
class field theory (the study of abelian extensions of number fields and their
Galois groups), but not in the form we see today; the modern definitions were
introduced slightly later by Herbrand. See [198] for more discussion.

Ramification theory for a complete discrete nonarchimedean field becomes
substantially more complicated when one drops the requirement of a perfect
residue field. However, the case of an imperfect residue field is of great interest
in the study of finite covers of schemes of dimension greater than 1. A satisfac-
tory theory for abelian extensions was introduced by Kato [119]. A generaliza-
tion to nonabelian extensions was later introduced by Abbes and Saito [1, 2].
However, a number of alternate approaches exist, the relationships among
which are not fully understood. These include Borger’s theory of residual per-
fection [29], Kedlaya’s differential Swan conductor [133], and methods from
higher local class field theory [224, 225]. See also the notes for Chapter 19.

A henselian-valued field is called stable if every finite extension of it is
defectless. A deep theorem of Kuhlmann [152, Theorem 1] (generalizing ear-
lier theorems of Grauert-Remmert and Gruson) states that if F is a stable
henselian field, and E is a henselian extension of F of finite transcendence
degree with transcendence defect equal to 0, then E is also stable. In this
statement, the transcendence defect of E/F is defined as

trdeg(E/F)− dimQ(|E×|Q/|F×|Q)− trdeg(κE/κF ),
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where trdeg denotes transcendence degree. A theorem of Abhyankar [215,
Théorème 9.2] implies that the transcendence defect is always nonnegative;
moreover, when the transcendence defect is 0, the group |E×|/|F×| and the
extension κE/κF are both finite. By contrast, both of these can fail when the
transcendence degree is positive.

Exercises

(1) Complete the proof of Lemma 3.1.1. (Hint: construct a sequence of ele-
ments, in the span of the purported basis, converging to a given element
of oE .)

(2) Let G be a group of order pn . Prove that there exists a chain of subgroups
G0 = {e} ⊂ G1 ⊂ · · · ⊂ Gn = G such that each inclusion is proper
and each Gi is normal in G. Deduce that, for any finite Galois extension
L/K of fields of characteristic p of pth degree, there exists a sequence
K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L of subextensions such that each inclusion
is an extension of degree p and each Ki is Galois over K . (A somewhat
easier exercise is to produce such a sequence in which each Ki is only
Galois over Ki−1.)
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Matrix analysis

We come now to the subject of metric properties of matrices over a field
complete for a given norm. While this topic is central to our study of differen-
tial modules over nonarchimedean fields, it is based on ideas which have their
origins largely outside number theory. We have thus opted to present the main
points first in the archimedean setting and then to repeat the presentation for
nonarchimedean fields.

The main theme is the relationship between the norms of the eigenvalues
of a matrix, which are core invariants but depend on the entries of the matrix
in a somewhat complicated fashion, and some less structured but more readily
visible invariants. The latter are the singular values of a matrix, which play a
key role in numerical linear algebra in controlling the numerical stability of
certain matrix operations (including the extraction of eigenvalues). Their role
in our work is similar.

Before proceeding, we set some basic notation and terminology for matrices.

Notation 4.0.1. Let Diag(σ1, . . . , σn) denote the n×n diagonal matrix D with
Dii = σi for i = 1, . . . , n.

Notation 4.0.2. For A a matrix, let AT denote the transpose of A. For A an
invertible square matrix, let A−T denote the inverse transpose of A.

Definition 4.0.3. An n × n elementary matrix over a ring R is an n × n
matrix obtained from the identity matrix by performing one of the following
operations:

(a) exchanging two rows;
(b) adding c times one row to another row, for some c ∈ R;
(c) multiplying one row by some c ∈ R×.

55
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If B is an elementary matrix, multiplying another n × n matrix C on the left
by B effects the corresponding operation on C ; such an operation is called
an elementary row operation. Multiplying on the right by B instead effects
an elementary column operation. (It is possible to omit type (a); see the
exercises.)

4.1 Singular values and eigenvalues (archimedean case)

Hypothesis 4.1.1. In this section and the next, let A be an n×n matrix over C.
Identify Cn with the space of column vectors equipped with the L2 norm, i.e.,

|(z1, . . . , zn)| = (|z1|2 + · · · + |zn|2)1/2.
View A as a linear transformation on Cn , and write

|A| = sup
v∈Cn\{0}

{|Av|/|v|};

that is, |A| is the operator norm of A, as will be defined in Definition 6.1.2.

As mentioned above, we are interested in two sets of numerical invariants of
A. One of these is the familiar set of eigenvalues.

Definition 4.1.2. Let λ1, . . . , λn be the list of eigenvalues of A, arranged so
that |λ1| ≥ · · · ≥ |λn|.

A second set of numerical invariants of A, which is better behaved from the
point of view of numerical analysis, is the set of singular values.

Definition 4.1.3. Let A∗ denote the conjugate transpose (or Hermitian trans-
pose) of A. The matrix A∗ A is Hermitian and nonnegative definite and so has
nonnegative real eigenvalues. The (nonnegative) square roots of these eigen-
values comprise the singular values of A; we denote them σ1, . . . , σn with
σ1 ≥ · · · ≥ σn . These are not invariant under conjugation, but they are invariant
under the multiplication of A on either side by a unitary matrix.

Theorem 4.1.4 (Singular value decomposition). There exist unitary n × n
matrices U, V such that U AV = Diag(σ1, . . . , σn).

Proof. This is equivalent to showing that there is an orthonormal basis of Cn

which remains orthogonal upon applying A. To construct it, start with a vector
v ∈ Cn maximizing |Av|/|v| and then show that, for any w ∈ Cn orthogonal
to v, Aw is also orthogonal to Av. For further details, see the references in the
notes.
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Corollary 4.1.5. The singular values of A−1 are σ−1
n , . . . , σ−1

1 .

From the singular value decomposition, we may infer a convenient interpre-
tation of σi .

Corollary 4.1.6. The number σi is the smallest value of λ for which the follow-
ing holds: for any i-dimensional subspace V of Cn, there exists v ∈ V which
is nonzero and such that |Av| ≤ λ|v|.
Proof. Theorem 4.1.4 provides an orthonormal basis v1, . . . , vn of V such that
Av1, . . . , Avn is again orthogonal and |Avi | = σi |vi | for i = 1, . . . , n. Let
W be the span of vi , . . . , vn ; then, on the one hand, for any i-dimensional
subspace V of Cn , V ∩ W is nonzero, and any nonzero v ∈ V ∩ W satisfies
|Av| ≤ σi |v|. On the other hand, if we take V to be the span of v1, . . . , vi , then
we have |Av| ≥ σi |v| for all v ∈ V . This proves the claim.

The relationship between the singular values and the eigenvalues is con-
trolled by the following inequality of Weyl [218].

Theorem 4.1.7 (Weyl). We have

σ1 · · · σi ≥ |λ1 · · · λi | (i = 1, . . . , n),

with equality for i = n.

For the proof, we need a construction that will recur frequently in what
follows.

Definition 4.1.8. Let M be a module over a ring R. The i th exterior power
or wedge power ∧i

R M (or ∧i M if there is no ambiguity about R) of M is
the R-module generated by the symbols m1 ∧ · · · ∧ mi for m1, . . . ,mi ∈ M ,
modulo those relations that force the map (m1, . . . ,mi ) �→ m1 ∧ · · · ∧ mi to
be R-linear in each variable (while the others are held fixed) and alternating.
The latter means that m1 ∧ · · · ∧ mi = 0 if m1, . . . ,mi are not all distinct.

Any element of ∧i M of the form m1 ∧ · · · ∧ mi is said to be decomposable;
it is also called the exterior product of m1, . . . ,mi . The set of decomposable
elements is not closed under addition and consequently will not necessarily
form a basis for ∧i M (see the exercises). However, if M is freely gener-
ated by e1, . . . , en then it is true that the decomposable elements of the form
e j1 ∧ · · · ∧ e ji with 1 ≤ j1 < · · · < ji ≤ n do form a basis of ∧i M .

Note also that the exterior power is a functor on the category of R-modules;
in particular, any linear transformation T : M → N induces a linear transfor-
mation ∧i T : ∧i M → ∧i N . In the special case where M = N is free and of
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rank i , ∧i M is a one-dimensional space and ∧i T turns out to be multiplication
by det(T ).

One easily checks that the formula

(m1 ∧ · · · ∧ mi ,m′
1 ∧ · · · ∧ m′

j ) �→ m1 ∧ · · · ∧ mi ∧ m′
1 ∧ · · · ∧ m′

j

gives a well-defined bilinear map ∧i M×∧ j M → ∧i+ j M . This map is usually
denoted by ∧, since it corresponds to adding an extra wedge between an i-fold
and a j-fold wedge product.

Lemma 4.1.9. The singular values (resp. eigenvalues) of ∧i A are the i-fold
products of the singular values (resp. eigenvalues) of A.

Proof. Remember that, starting with any basis of Cn , we can obtain a basis of
∧i A by taking i-fold exterior products of basis elements. In particular, if we
choose U ∈ GLn(C), so that U−1 AU is upper triangular with its eigenvalues
on the diagonal, then

∧i (U−1 AU ) = (∧iU )−1(∧i A)(∧iU )

will be upper triangular with the i-fold products of the eigenvalues on the diag-
onal. Similarly, if we apply Theorem 4.1.4 to construct unitary matrices U, V
such that U AV is diagonal with its singular values on the diagonal then

∧i (U AV ) = (∧iU )(∧i A)(∧i V )

will be diagonal with the i-fold products of its singular values on the diagonal.

We now return to Theorem 4.1.7.

Proof of Theorem 4.1.7. The equality for i = n holds because det(A∗ A) =
|det(A)|2. We check the inequality first for i = 1. Note that σ1 = |A| is the
operator norm. Since there exists v ∈ Cn \ {0} with Av = λ1v, we deduce that
σ1 ≥ |λ1|.

To handle the general case, we consider an exterior power ∧i Cn having the
action of ∧i A. By Lemma 4.1.9, the largest singular value (resp. eigenvalue) of
∧i A is equal to the product of the i largest singular values (resp. eigenvalues)
of A. Consequently, the previous inequality applied to ∧i A gives exactly the
desired result.

We mention in passing the following converse of Theorem 4.1.7, due to
Horn [114, Theorem 4].
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Theorem 4.1.10. For λ1, . . . , λn ∈ C and σ1, . . . , σn ∈ R≥0 satisfying

σ1 · · · σi ≥ |λ1 · · · λi | (i = 1, . . . , n),

with equality for i = n, there exists an n × n matrix A over C with singular
values σ1, . . . , σn and eigenvalues λ1, . . . , λn.

Equality in Weyl’s theorem at an intermediate stage has a structural
meaning.

Lemma 4.1.11. Let F be any field. If v1, . . . , vi , w1, . . . , wi ∈ Fn are such
that v1 ∧ · · · ∧ vi and w1 ∧ · · · ∧ wi are nonzero and equal, then the F-span
of v1, . . . , vi equals the F-span of w1, . . . , wi .

Proof. If v1 ∧· · ·∧vi is nonzero then v1, . . . , vi must be linearly independent.
We may thus extend v1, . . . , vi to a basis v1, . . . , vn of Fn .

Consider the bilinear map

∧ : ∧i Fn × Fn → ∧i+1 Fn .

Suppose that w ∈ Fn pairs to zero with v1 ∧ · · · ∧ vi . If we write w = c1v1 +
· · ·+cnvn , we must then have ci+1 = 0 or else the coefficient of v1∧· · ·∧vi+1

in v1 ∧ · · · ∧ vi ∧ w will be nonzero. Similarly ci+2 = · · · = cn = 0, so w
belongs to the F-span of v1, . . . , vi .

Since (v1 ∧ · · · ∧ vi ) ∧ w1 = (w1 ∧ · · · ∧ wi ) ∧ w1 = 0, w1 must
belong to the F-span of v1, . . . , vi and likewise for w2, . . . , wi . Consequently,
one of the two spans is contained in the other, and vice versa by the same
argument.

Theorem 4.1.12. Suppose that for some i ∈ {1, . . . , n − 1} we have

σi > σi+1, |λi | > |λi+1|,
σ1 · · · σi = |λ1 · · · λi |.

Then there exists a unitary matrix U such that U−1 AU is block diagonal, the
first block accounting for the first i singular values and eigenvalues and the
second block accounting for the others.

Proof. Let v1, . . . , vn be a basis of Cn such that v1, . . . , vi span the gener-
alized eigenspaces having eigenvalues λ1, . . . , λi and vi+1, . . . , vn span the
generalized eigenspaces having eigenvalues λi+1, . . . , λn . Apply the singular
value decomposition (Theorem 4.1.4) to construct an orthonormal basis
w1, . . . , wn such that Aw1, . . . , Awn are also orthogonal and |Awi | = σi |wi |.

Since σi > σi+1, the only nonzero vectors v ∈ ∧i Cn for which |Av|/|v|
achieves its maximum value σ1 · · · σi are the nonzero multiples ofw1∧· · ·∧wi .
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However, this is also true for v1 ∧ · · · ∧ vi . By Lemma 4.1.11, w1, . . . , wi

span V ; this implies that the orthogonal complement of V is spanned by
wi+1, . . . , wn , and so it is also preserved by A. This yields the desired
result.

Theorem 4.1.13. The following are equivalent.
(a) There exists a unitary matrix U such that U−1 AU is diagonal.
(b) The matrix A is normal, i.e., A∗ A = AA∗.
(c) The eigenvalues λ1, . . . , λn and singular values σ1, . . . , σn of A satisfy

|λi | = σi for i = 1, . . . , n.

Proof. It is clear that (a) implies both (b) and (c), because U , being unitary, is
equivalent to U∗ = U−1. Given (b), we can perform a joint eigenspace decom-
position for the commuting matrices A and A∗. On any common generalized
eigenspace, A has some eigenvalue λ, A∗ has eigenvalue λ, and so A∗ A has
eigenvalue |λ|2. This implies (c).

Given (c), Theorem 4.1.12 implies that A can be conjugated by a unitary
matrix into a block diagonal matrix in which each block has a single eigen-
value λ and a single singular value σ , such that |λ| = σ . Let B be such
a block, corresponding to a subspace V of Cn . If σ = 0 then B = 0.
Otherwise, λ �= 0 and λ−1 B is unitary. Hence given orthogonal eigenvectors
v1, . . . , vi ∈ V of B, the orthogonal complement in V of their span is pre-
served by B, so is either zero or contains another eigenvector vi+1. This shows
that B is diagonalizable with a single eigenvalue and thus is itself a scalar
matrix. (One can also argue this last step using the compactness of the unitary
group.)

In general, we can conjugate any matrix into an almost normal matrix; the
“almost” only applies when the matrix is not semisimple.

Lemma 4.1.14. For any η > 1, we can choose U ∈ GLn(C) such that,
for i = 1, . . . , n, the i th singular value of U−1 AU is at most η|λi |. If A is
semisimple (i.e., diagonalizable), we can also take η = 1.

Proof. Put A in Jordan normal form, then rescale so that, for each eigenvalue
λ, the superdiagonal terms have absolute value at most (η2 − 1)1/2|λ| and all
other terms are zero.

4.2 Perturbations (archimedean case)

Another inequality of Weyl [217] shows that the singular values do not change
much under a small (additive) perturbation.
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Theorem 4.2.1 (Weyl). Let B be an n × n matrix, and let σ ′
1, . . . , σ

′
n be the

singular values of A + B. Then

|σ ′
i − σi | ≤ |B| (i = 1, . . . , n).

It is more complicated to describe what happens to the eigenvalues under a
small additive perturbation. The best we can do here is to quantify the effect of
an additive perturbation on the characteristic polynomial.

Theorem 4.2.2. Let B be an n × n matrix. Let P(T ) = T n +∑n−1
i=0 Pi T i and

Q(T ) = T n +∑n−1
i=0 Qi T i be the characteristic polynomials of A and A + B.

Then

|Pn−i − Qn−i | ≤
∣∣∣∣2i
(

n

i

)∣∣∣∣ |B|
i−1∏
j=1

max{σ j , |B|} (i = 1, . . . , n).

The superfluous enclosure of the integer 2i
(n

i

)
in absolute value signs is quite

deliberate; it will become relevant in the nonarchimedean setting.

Proof. Note that Qn−i is the sum of the
(n

i

)
principal i × i minors of A + B.

(A minor is the determinant of the i × i submatrix obtained by choosing a
set of i rows and i columns. A principal minor is a minor in which the rows
and columns correspond; for instance, if the first row is included, then the
first column must also be included.) By multilinearity of the determinant,
each principal minor can be written as a sum of 2i terms, each of which
is the product of a sign, a k × k minor of A, and an (i − k) × (i − k)
minor of B. The terms with k = i sum to Pn−i itself; the others all have
k < i and so the norm of each is bounded by σ1 · · · σk |B|i−k . This proves the
claim.

We also need to consider multiplicative perturbations. For a considerable
generalization of the following inequality, see Theorem 4.5.2.

Proposition 4.2.3. Let B ∈ GLn(C) satisfy |B| ≤ η. Let σ ′
1, . . . , σ

′
n be the

singular values of B A. Then

σ ′
i ≤ ησi (i = 1, . . . , n).

(The analogous result with B A replaced by AB follows from this, since
transposal does not change singular values.)

Proof. We use the interpretation of singular values given by Corollary 4.1.6.
Choose an i-dimensional subspace V of Cn such that |B Av| ≥ σ ′

i |v| for all
v ∈ V . Then choose a nonzero v ∈ V such that |Av| ≤ σi |v|. We have
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σ ′
i |v| ≤ |B Av| ≤ |B||Av| ≤ σi |B||v|,

proving the claim.

This implies that the norms of the eigenvalues can be recovered from the
singular values, provided that we consider not just the matrix A but also its
powers.

Proposition 4.2.4. Let σk,1, . . . , σk,n be the singular values of Ak. Then

lim
k→∞ σ

1/k
k,i = |λi | (i = 1, . . . , n).

Proof. Pick η > 1, and choose U as in Lemma 4.1.14; that is, U−1 AU is
upper triangular and each block of eigenvalue λ differs from the scalar matrix
Diag(λ, . . . , λ) by a matrix of norm at most (η2 − 1)1/2|λ|. In a block with
eigenvalue λ, the singular values of the kth power are bounded below by
|λ|k and above by ηk |λ|k . Consequently, we may apply Proposition 4.2.3 to
deduce that

|λi |k |U |−1|U−1|−1 ≤ σk,i ≤ ηk |λi |k |U ||U−1|.
Taking kth roots and then taking k → ∞, we deduce

|λi | ≤ lim inf
k→∞ σ

1/k
k,i , lim sup

k→∞
σ

1/k
k,i ≤ η|λi |.

Since η > 1 was arbitrary, we obtain the desired result.

Remark 4.2.5. The case i = 1 of Proposition 4.2.4, and the corresponding
case for its nonarchimedean analogue (Proposition 4.4.10), are instances of
a general fact about the spectra of bounded operators on Banach spaces. See
Remark 6.1.7.

4.3 Singular values and eigenvalues (nonarchimedean case)

We now pass to nonarchimedean analogues.

Hypothesis 4.3.1. Throughout this section and the next, let F be a complete
nonarchimedean field, and let A be an n × n matrix over F . View A as a linear
transformation on Fn , equip Fn with the supremum norm

|(z1, . . . , zn)| = max{|z1|, . . . , |zn|},
and again define the operator norm

|A| = sup
v∈Fn\{0}

{|Av|/|v|}.
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Note, however, that we also have the simpler expression

|A| = max
i, j

{|Ai j |}.

Definition 4.3.2. Given a sequence s1, . . . , sn , we define the associated
polygon for this sequence to be the polygonal line joining the points

(−n + i, s1 + · · · + si ) (i = 0, . . . , n).

This polygon is the graph of a convex function on [−n, 0] if and only if
s1 ≤ · · · ≤ sn .

Definition 4.3.3. Let s1, . . . , sn be the sequence with the property that, for
i = 1, . . . , n, s1 + · · · + si is the minimum valuation of an i × i minor
of A; that is, the si are the elementary divisors (or invariant factors) of A.
The associated polygon is called the Hodge polygon of A (see the notes
for an explanation of the terminology). Define the singular values of A as
σ1, . . . , σn = e−s1 , . . . , e−sn ; these are invariant under multiplication on either
side by a matrix in GLn(oF ). Note that, as in the nonarchimedean case,

σ1 = |A|.
We also have an analogue of the singular value decomposition.

Theorem 4.3.4 (Smith normal form). There exist U, V ∈ GLn(oF ) such that
U AV is a diagonal matrix whose entries have norms σ1, . . . , σn.

Proof. It is equivalent to prove that, starting with A, one can perform elemen-
tary row and column operations defined over oF so as to produce a diagonal
matrix (this amounts to a limited Gauss–Jordan elimination over A). To do
this, find the largest entry of A, permute rows and columns to put this entry at
the top left, and then use it to clear the remainder of the first row and column.
Repeat with the matrix obtained by removing the first row and column, and
so on.

Corollary 4.3.5. The slopes s1, . . . , sn of the Hodge polygon satisfy
s1 ≤ · · · ≤ sn.

Proof. The i th slope si is evidently the i th smallest valuation of a diagonal
entry of the Smith normal form.

We again have a characterization as in Corollary 4.1.6.

Corollary 4.3.6. The number σi is the smallest value of λ for which the fol-
lowing holds: for any i-dimensional subspace V of Fn, there exists v ∈ V
nonzero and such that |Av| ≤ λ|v|.
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Definition 4.3.7. Let λ1, . . . , λn be the eigenvalues of A in some algebraic
extension of F equipped with the unique extension of | · |, arranged so that
|λ1| ≥ · · · ≥ |λn|. The associated polygon is the Newton polygon of A; this is
invariant under conjugation by any element of GLn(F).

The nonarchimedean analogue of Weyl’s inequality is the following.

Theorem 4.3.8 (Newton polygon above Hodge polygon). We have

σ1 · · · σi ≥ |λ1 · · · λi | (i = 1, . . . , n),

with equality for i = n. In other words, the Hodge and Newton polygons have
the same endpoints and the Newton polygon is everywhere on or above the
Hodge polygon.

Proof. Again, the case i = 1 is clear because σ1 is the operator norm of A,
and the general case follows by considering exterior powers (using the obvious
analogue of Lemma 4.1.9).

Like its archimedean analogue, Theorem 4.3.8 also has a converse, but in
this case we can write the construction down quite explicitly.

Definition 4.3.9. For P = T n +∑n−1
i=0 Pi T i a monic polynomial of degree n

over a ring R, the companion matrix of P is defined as the matrix

⎛⎜⎜⎜⎝
0 · · · 0 −P0

1 · · · 0 −P1
...

. . .
...

0 · · · 1 −Pn−1

⎞⎟⎟⎟⎠
with 1’s on the subdiagonal, the negated coefficients of P in the far right-hand
column, and 0’s elsewhere. The companion matrix is constructed to have its
characteristic polynomial equal to P (exercise).

Proposition 4.3.10. Choose λ1, . . . , λn ∈ Falg such that |λ1| ≥ · · · ≥ |λn|,
and such that the polynomial P(T ) = (T−λ1) · · · (T−λn) = T n+∑n−1

i=0 Pi T i

has coefficients in F. Choose c1, . . . , cn ∈ F with σi = |ci | such that σ1 ≥
· · · ≥ σn and

σ1 · · · σi ≥ |λ1 · · · λi | (i = 1, . . . , n),
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with equality for i = n. Then the matrix⎛⎜⎜⎜⎝
0 · · · 0 −c−1

1 · · · c−1
n−1 P0

cn−1 · · · 0 −c−1
1 · · · c−1

n−2 P1
...

. . .
...

0 · · · c1 −Pn−1

⎞⎟⎟⎟⎠
has singular values σ1, . . . , σn and eigenvalues λ1, . . . , λn.

Proof. The given matrix is conjugate to the companion matrix of P , so its
eigenvalues are also λ1, . . . , λn . To compute the singular values, we note that,
for i = 1, . . . , n − 1,∣∣∣−c−1

1 · · · c−1
n−i−1 Pi

∣∣∣ = σ−1
1 · · · σ−1

n−i−1|Pi |
≤ σ−1

1 · · · σ−1
n−i−1|λ1 · · · λn−i |

≤ σn−i .

Thus we can perform column operations over oF to clear everything
in the far right-hand column except −c−1

1 · · · c−1
n−1 P0, which has norm

σ−1
1 · · · σ−1

n−1|λ1 · · · λn| = σn . By permuting the rows and columns we obtain
a diagonal matrix with entries that are the norms σ1, . . . , σn . This proves the
claim.

Again equality has a structural meaning, but the proof requires a bit
more work than in the archimedean case since we no longer have access to
orthogonality. However, this extra work is rewarded by a slightly stronger
result.

Theorem 4.3.11 (Hodge–Newton decomposition). Suppose that for some i ∈
{1, . . . , n − 1} we have

|λi | > |λi+1|, σ1 · · · σi = |λ1 · · · λi |.
(That is, the Newton polygon has a vertex with x-coordinate −n + i and this
vertex also lies on the Hodge polygon.) Then there exists U ∈ GLn(oF ) such
that U−1 AU is block upper triangular, with the top left block accounting for
the first i singular values and eigenvalues and the bottom right block account-
ing for the others. Moreover, if σi > σi+1 then we can ensure that U−1 AU is
block diagonal.

Proof. We first note that, by Theorem 2.2.1 applied to the characteristic poly-
nomial of A, P(T ) = (T −λ1) · · · (T −λi ) and Q(T ) = (T −λi+1) · · · (T −λn)

have coefficients in F . Since P and Q have no common roots, we can write



66 Matrix analysis

1 = P B + QC for some B,C ∈ F[T ], and then the products P(A)B(A) and
Q(A)C(A) give the projectors for a direct sum decomposition separating the
first i generalized eigenspaces from the others.

In other words, we can find a basis v1, . . . , vn of Fn such that v1, . . . , vi

span the generalized eigenspaces with eigenvalues λ1, . . . , λi and vi+1, . . . , vn

span the generalized eigenspaces with eigenvalues λi+1, . . . , λn . Choose a
basis w1, . . . , wn of on

F such that w1, . . . , wi is a basis of on
F ∩ (Fv1 + · · · +

Fvi ). Let e1, . . . , en be the standard basis of Fn , and define U ∈ GLn(oF ) by
w j = ∑

i Ui j ei . Then

U−1 AU =
(

B C
0 D

)
is block upper triangular. By Cramer’s rule, each entry of B−1C is an i × i
minor of A divided by the determinant of B. Since |det(B)| = σ1 · · · σi , B−1C
must thus have entries in oF . Writing

U−1 AU =
(

B 0
0 D

)(
Ii B−1C
0 In−i

)
,

we see that the singular values of B and D together must comprise σ1, . . . , σn .
The only way for this to happen, given the constraint that the product of the
singular values of B equals σ1 · · · σi , is for B to account for σ1, . . . , σi and for
D to account for σi+1, . . . , σn .

This proves the first claim; we may thus assume now that σi > σi+1. In that
case, conjugating by the matrix(

Ii −B−1C
0 In−i

)
gives a new matrix, (

B C1

0 D

)
,

with C1 = B−1C D. Since

|C1| ≤ |B−1||C ||D| = σ−1
i |C |σi+1 < |C |,

this process converges. More explicitly, we obtain a sequence of matrices Ui ∈
GLn(oF ) converging to the identity, such that the convergent product U =
U1U2 · · · satisfies

U−1 AU =
(

B 0
0 D

)
,

as desired.
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Note that the slopes of the Hodge polygon are forced to be in the additive
value group of F , whereas the slopes of the Newton polygon need only lie in
the divisible closure of the additive value group. Consequently, it is possible for
a matrix to have no conjugates over GLn(F) for which the Hodge and Newton
polygons coincide. However, the following is true; see also Corollary 4.4.8
below.

Lemma 4.3.12. Suppose that one of the following holds.
(a) The value group of |F×| is dense in R>0, and η > 1.
(b) We have |λi | ∈ |F×| for i = 1, . . . , n (so in particular λi �= 0), and

η ≥ 1.
Then there exists U ∈ GLn(F) such that the i th singular value of U−1 AU is
at most η|λi |.
Proof. Case (a) will follow from Corollary 4.4.8 below. Case (b) is directly
analogous to Lemma 4.1.14.

One also has the following variant.

Lemma 4.3.13. Suppose that |F×| is discrete. Then there exists U ∈ GLn(F)
such that, for each positive integer m, |U−1 AmU | is the least element of |F×|
greater than or equal to |λm

1 |.
Proof. We may normalize the valuation on F for convenience so that
log |F×| = Z. As in the proof of Theorem 4.3.11, we may also reduce to
the case where all the eigenvalues of A have the same norm.

Let E be a finite extension of F containing an element λ with |λ| = |λ1|.
(For instance, we could take E = F(λ1) and λ = λ1, but any other choice
would also work.) By Lemma 4.3.12, there exists U0 ∈ GLn(E) such that
λ−1U−1

0 AU0 ∈ GLn(oE ); in other words, there exists a supremum norm | · |0
on En such that |λ−1 Av|0 = |v|0 for all v ∈ En .

Put V = {v ∈ Fn : |v|0 ≤ 1}. Let v1, . . . , vn be a basis of V over oF , and
let | · |1 be the supremum norm on Fn defined by v1, . . . , vn . Given a nonzero
v ∈ Fn , choose μ ∈ F× with − log |μv|0 ∈ [0, 1); then μv is an element of
V which is not divisible by mF , so |μv|1 = 1. We conclude that

e−1|v|1 < |v|0 ≤ |v|1 (v ∈ Fn). (4.3.13.1)

Let e1, . . . , en be the standard basis of Fn , and define U ∈ GLn(F) by
v j = ∑

i Ui j ei . Then, for each positive integer m, − log |U−1 AmU | ∈ Z is at
most −m log |λ1| by Theorem 4.3.8 but is strictly greater than −m log |λ1| − 1
by (4.3.13.1). We thus obtain the desired equality.
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4.4 Perturbations (nonarchimedean case)

Again, we can ask about the effect of perturbations. The analogue of Weyl’s
second inequality is more or less trivial.

Proposition 4.4.1. If B is a matrix with |B| < σi then the first i singular
values of A + B are σ1, . . . , σi .

Proof. Exercise.

We next consider the effect on the characteristic polynomial.

Theorem 4.4.2. Let B be an n × n matrix. Let P(T ) = T n +∑n−1
i=0 Pi T i and

Q(T ) = T n +∑n−1
i=0 Qi T i be the characteristic polynomials of A and A + B.

Then

|Pn−i − Qn−i | ≤ |B|
i−1∏
j=1

max{σ j , |B|} (i = 1, . . . , n).

Proof. The proof is as for Theorem 4.2.2, except that now the factor |2i
(n

i

)| is
dominated by 1.

Question 4.4.3. Is the inequality in Theorem 4.4.2 the best possible?

We may also consider multiplicative perturbations.

Proposition 4.4.4. Let B ∈ GLn(F) satisfy |B| ≤ η. Let σ ′
1, . . . , σ

′
n be the

singular values of AB. Then

σ ′
i ≤ ησi (i = 1, . . . , n).

Proof. As for Proposition 4.2.3 but using the Smith normal form
(Theorem 4.3.4) instead of the singular value decomposition.

Corollary 4.4.5. Suppose that the Newton and Hodge slopes of A coincide
and that U ∈ GLn(F) satisfies |U | |U−1| ≤ η. Then each Newton slope of
U−1 AU differs by at most log η from the corresponding Hodge slope.

Here is a weak converse to Corollary 4.4.5. (We leave the archimedean
analogue to the reader’s imagination.)

Proposition 4.4.6. Suppose that the Newton slopes of A are nonnegative and
that σ1 ≥ 1. Then there exists U ∈ GLn(F) such that

|U−1 AU | ≤ 1, |U−1| ≤ 1, |U | ≤ σ n−1
1 .

Proof. Let e1, . . . , en denote the standard basis vectors of Fn . Let M be the
smallest oF -submodule of Fn containing e1, . . . , en and stable under A. For
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each i , if j = j (i) is the least integer such that ei , Aei , . . . , A j ei are lin-
early dependent then we have A j ei = ∑ j−1

h=0 ch Ahei for some ch ∈ F . The

polynomial T j −∑ j−1
h=0 ch T h has roots which are eigenvalues of A, so the non-

negativity of the Newton slopes forces |ch | ≤ 1. Hence M is finitely generated,
and thus free, over oF .

Let v1, . . . , vn be a basis of M , and let U be the change-of-basis matrix
v j = ∑

i Ui j ei ; then |U−1 AU | ≤ 1 because M is stable under A and |U−1| ≤
1 because M contains e1, . . . , en . The desired bound on |U | follows from the
fact that, for any x = c1e1 + · · · + cnen ∈ M , we have

max
i

{|ci |} ≤ σ n−1
1 . (4.4.6.1)

It suffices to check (4.4.6.1) for x = Ahei for i = 1, . . . , n and h =
0, . . . , j (i) − 1, as these generate M over oF . But it is evident that |Ahei | ≤
σ h

1 |ei | = σ h
1 ; since j (i) ≤ n, we are done.

Example 4.4.7. The example

A =
⎛⎝1 c 0

0 1 c
0 0 1

⎞⎠
with |c| > 1 shows that the bound of Proposition 4.4.6 is sharp; in particular,
the bound |U | ≤ σ n−1

1 cannot be improved to |U | ≤ σ1, as one might ini-
tially have expected. However, one should be able to get a more precise bound
(which agrees with the bound given in this example) by accounting for the
other singular values; see the exercises.

Corollary 4.4.8. There exists a continuous function

fn(σ1, . . . , σn, σ
′
1, . . . , σ

′
n, δ) : (0,+∞)2n × [0,+∞)→ (0,+∞)

(independent of F) with the following properties.
(a) Suppose that, for each i = 1, . . . , n, either σi = σ ′

i or δ ≥ max{σi , σ
′
i }.

Then

fn(σ1, . . . , σn, σ
′
1, . . . , σ

′
n, δ) = 1.

(b) If A has singular values σ1, . . . , σn and eigenvalues λ1, . . . , λn, if σ ′
i =

|λi | for i = 1, . . . , n, and if σ ′
i ∈ |F×| whenever σ ′

i > δ then there
exists U ∈ GLn(F) such that

|U−1| ≤ 1, |U | ≤ fn(σ1, . . . , σn, σ
′
1, . . . , σ

′
n, δ),

for which the multiset of singular values of U−1 AU matches
σ ′

1, . . . , σ
′
n in its values greater than δ.
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Proof. This follows by induction on n as follows. If σ ′
1 ≤ δ, we can deduce

the whole claim by Proposition 4.4.6 (after rescaling in the case δ �= 1). Other-
wise, again by Proposition 4.4.6 (and again after rescaling), we can find U1 ∈
GLn(F) such that

|U−1
1 A1U1| ≤ σ ′

1, |U−1
1 | ≤ 1, |U1| ≤ (σ1/σ

′
1)

n−1.

Let i be the largest index such that σ ′
i = σ ′

1. Then the first i singular val-
ues of U−1

1 AU1 are all at most σ ′
1 but at least σ ′

i . Hence they are all equal,
and A1 = U−1

1 AU1 satisfies the hypothesis of Theorem 4.3.11. We may thus
choose U2 ∈ GLn(oF ) such that A2 = U−1

2 A1U2 is block upper triangular, the
top left block accounting for the first i singular values and eigenvalues and the
bottom right block accounting for the others.

If i = n then we may take U = U1U2 and be done. Otherwise, note that by
applying Proposition 4.4.4 we may bound the singular values of A2 by a con-
tinuous function of σ1, . . . , σn, σ

′
1, . . . , σ

′
n, δ. We may then apply the induction

hypothesis to construct a block diagonal matrix U3, where the top left block
of U3 is the identity, |U−1

3 | ≤ 1, |U3| is bounded by a continuous function
of σ1, . . . , σn, σ

′
1, . . . , σ

′
n, δ, and the multiset of singular values of the bottom

right block of A3 = U−1
3 A2U3 agrees with σ ′

i+1, . . . , σ
′
n in its values greater

than δ.
We may bound the norm of the top right block of A3 by a continuous func-

tion of σ1, . . . , σn, σ
′
1, . . . , σ

′
n, δ. We can then conjugate by a suitable block

diagonal matrix U4, with scalar matrices in the diagonal blocks, to ensure that
the multiset of singular values of A4 = U−1

4 A3U4 agrees with σ ′
1, . . . , σ

′
n in

its values greater than δ. We then take U = U1 · · ·U4.

For the purposes of this book, it is immaterial what the function fn is, as
long as it is continuous. However, for numerical applications it may be quite
helpful to identify a good function fn ; here is a conjectural best possible result
in the case δ = 0, phrased in a somewhat stronger form. (One can formulate
an archimedean analogue. It should also be possible to prove, using the Horn
inequalities, that this conjecture cannot be improved; see the next section.)

Conjecture 4.4.9. If A has singular values σ1, . . . , σn and eigenvalues
λ1, . . . , λn, none of which is equal to 0, and if σ ′

1, . . . , σ
′
n ∈ |F×| satisfy

σ1 · · · σi ≥ σ ′
1 · · · σ ′

i ≥ |λ1 · · · λi | (i = 1, . . . , n),

then there exists U ∈ GLn(F) such that

|U−1| ≤ 1, |U | ≤ max
i

{(σ1 · · · σi )/(σ
′
1 · · · σ ′

i )},

for which U−1 AU has singular values σ ′
1, . . . , σ

′
n.
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By imitating the proof of Proposition 4.2.4 (after enlarging F to contain the
eigenvalues of A), we obtain the following.

Proposition 4.4.10. Let σk,1, . . . , σk,n be the singular values of Ak. Then

lim
k→∞ σ

1/k
k,i = |λi | (i = 1, . . . , n).

4.5 Horn’s inequalities

Although they will not be needed in this book, it is quite natural to mention
here some stronger versions of the perturbation inequalities in the archime-
dean and nonarchimedean cases, introduced conjecturally by Horn [115] in
the archimedean case and resolved in the work of Klyachko, Knutson, Speyer,
Tao, Woodward, and others. See the beautiful survey article of Fulton [95] for
more information.

Definition 4.5.1. To introduce these stronger inequalities, we must set up some
notation. Put

U n
r =

⎧⎨⎩(I, J, K ) : I, J, K ⊆ {1, . . . , n}, #I = #J = #K = r,

∑
i∈I

i +
∑
j∈J

j =
∑
k∈K

k + r(r + 1)

2

⎫⎬⎭ .
For (I, J, K ) ∈ U n

r , write I = {i1 < · · · < ir } and similarly for J, K . For
r = 1, put T n

1 = U n
1 . For r > 1, put

T n
r =

⎧⎨⎩(I, J, K ) ∈ U n
r : for all p < r and (F,G, H) ∈ T r

p ,

∑
f ∈F

i f +
∑
g∈G

jg ≤
∑
h∈H

kh + p(p + 1)

2

⎫⎬⎭ .
For multiplicative perturbations, we obtain the following results, which

include Propositions 4.2.3 and 4.4.4. It is important for the proofs that one can
rephrase the Horn inequalities in terms of Littlewood–Richardson numbers;
see [95, §3].
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Theorem 4.5.2. For ∗ ∈ {A, B,C}, let σ∗,1, . . . , σ∗,n be a nonincreasing
sequence of nonnegative real numbers. Then the following are equivalent.

(a) There exist n × n matrices A, B,C over C with AB = C such that, for
∗ ∈ {A, B,C}, ∗ has singular values σ∗,1, . . . , σ∗,n.

(b) We have
∏n

i=1 σA,i
∏n

j=1 σB, j = ∏n
k=1 σC,k and, for all r < n and

(I, J, K ) ∈ T n
r , ∏

k∈K

σC,k ≤
∏
i∈I

σA,i

∏
j∈J

σB, j .

Proof. See [95, Theorem 16]. Note that the first condition in (b) is omitted in
the statement given in [95], but this was a typographical error.

Theorem 4.5.3. Let F be a complete nonarchimedean field. For ∗ ∈
{A, B,C}, let σ∗,1, . . . , σ∗,n be a nonincreasing sequence of elements of |F |.
Then the following are equivalent.

(a) There exist n × n matrices A, B,C over F with AB = C such that, for
∗ ∈ {A, B,C}, ∗ has singular values σ∗,1, . . . , σ∗,n.

(b) We have
∏n

i=1 σA,i
∏n

j=1 σB, j = ∏n
k=1 σC,k and, for all r < n and

(I, J, K ) ∈ T n
r , ∏

k∈K

σC,k ≤
∏
i∈I

σA,i

∏
j∈J

σB, j .

Proof. See [95, Theorem 7].

Example 4.5.4. Let us see explicitly how Theorem 4.5.2 implies
Proposition 4.2.3. Since T n

1 = U n
1 , condition (b) of Theorem 4.5.2 includes

all cases with (I, J, K ) ∈ U n
1 . In particular, we may take

I = {i}, J = {1}, K = {i}
to obtain the inequality σC,i ≤ σA,iσB,1; this is precisely Proposition 4.2.3.

Remark 4.5.5. For additive perturbations, one has an analogous result in the
archimedean case; see [95, Theorem 15]. We are not aware of an additive result
in the nonarchimedean case. Also, in the archimedean case one has analogous
results (with slightly different statements) in which one restricts to Hermitian
matrices.

Notes

The subject of archimedean matrix inequalities is an old one, with many impor-
tant applications. A good reference for this is [28]; for instance, see [28,
§I.2] for the singular value decomposition, [28, Theorem II.3.6] for the Weyl
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inequalities, in a much stronger form known as Weyl’s majorant theorem, [28,
Theorem III.4.5] for a strong form of Proposition 4.2.3 (also a consequence of
the Horn inequalities), and so on. (A variant of our Theorem 4.2.2 appears as
[28, Problem I.6.11].)

The strong analogy between archimedean and p-adic matrix inequalities
appears to be a little-known piece of folklore. As a result, we have been unable
to locate a suitable reference.

It should be pointed out that most of what we have done here is the special
case for GLn of a more general theory encompassing the other reductive alge-
braic groups. This point of view can be seen in [95], where GLn makes some
explicit appearances for which other groups can be substituted.

In Theorem 4.1.13, the equivalence of (a) and (b) is standard. We do not
have a reference for the equivalence with (c), although it is implicit in most
proofs of the equivalence of (a) and (b).

The reader familiar with the notions of elementary divisors or invariant fac-
tors may be wondering why the terminology “Hodge polygon” is necessary
or reasonable. The answer is that the Hodge numbers of a variety over a p-
adic field are reflected by the elementary divisors of the action of Frobenius
groups on crystalline cohomology. The fact that the Newton polygon lies
above the Hodge polygon then implies a relation between the characteristic
polynomial of Frobenius and the Hodge numbers of the original variety; this
relationship was originally conjectured by Katz and proved by Mazur. See
[27] for further discussion of this point and of crystalline cohomology as a
whole.

Much of the work in this chapter can be carried over to the case of a transfor-
mation which is only semilinear for some isometric endomorphism of F . We
will adopt that point of view in Chapter 14; for instance, this will lead to a gen-
eralization (in Theorem 14.5.5) of the Hodge–Newton decomposition theorem
(Theorem 4.3.11). In this case, the carrying over is really in the other direc-
tion: it is the latter result (due to Katz; see the notes for Chapter 14) which
inspired our presentation of Theorem 4.3.11 and its archimedean analogue
(Theorem 4.1.12). Similarly, our treatment of Proposition 4.4.10 and its archi-
medean analogue (Proposition 4.2.4) are modeled on [120, Corollary 1.4.4].

The question of quantifying the sensitivity to perturbation of the charac-
teristic polynomial of a square matrix arises in numerical applications. The
question is familiar in the archimedean case but perhaps less so in the non-
archimedean case; numerical applications of the latter include using p-adic
cohomology to compute zeta functions of varieties over finite fields. See for
instance [3, §1.6] and [96, §3].
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Exercises

(1) Prove that any elementary matrix of type (a) (swapping two rows) can
be factored as a product of elementary matrices of types (b) and (c); see
Definition 4.0.3.

(2) Let e1, . . . , e4 be a basis of C4. Prove that in ∧2C4 the element e1 ∧ e2 +
e3 ∧ e4 is not decomposable.

(3) Check that the characteristic polynomial of the companion matrix of a
polynomial P (Definition 4.3.9) is equal to P .

(4) Prove Proposition 4.4.1. (Hint: use Corollary 4.3.6.)
(5) With notation as in Theorem 4.3.11, suppose that U, V ∈ GLn(oF ) are

congruent to the identity matrix modulo mF . Prove that the product of
the i largest eigenvalues of U AV again has norm |λ1 · · · λi |. (Hint: use
exterior powers to reduce to the case i = 1.) This yields as a corollary
[34, Lemma 5]: if D ∈ GLn(F) is diagonal and U, V ∈ GLn(oF ) are
congruent to the identity matrix modulo mF then the Newton polygons of
D and U DV coincide.

(6) State and prove an archimedean analogue of the previous problem.
(7) Prove the following improved version of Proposition 4.4.6. Suppose that

the Newton slopes of A are nonnegative. Then there exists U ∈ GLn(F)
such that

|U−1 AU | ≤ 1, |U−1| ≤ 1, |U | ≤
n−1∏
i=1

max{1, σi }.

We do not know of an appropriate archimedean analogue.
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5

Formalism of differential algebra

In this chapter, we introduce some basic formalism of differential algebra.
This may be viewed as a mild perturbation of commutative algebra in which
we consider commutative rings equipped with the additional noncommutative
structure of a derivation. This allows us to manipulate differential equations
and differential systems in a manner that keeps the more useful structure visi-
ble, though we will need to convert back and forth from this point of view. (One
thing we will not do is generalize further, to the realm of differential schemes
and sheaves; we leave this as a thought exercise for the curious reader.)

A particularly important result that we introduce is the cyclic vector theorem,
which gives a compact but highly noncanonical way to represent a finite dif-
ferential module over a field. While the cyclic vector theorem will prove
indispensable at a few key points in our treatment of p-adic differential
equations, we will ultimately make more progress by limiting its use. See
Remark 5.7.1 for further discussion.

5.1 Differential rings and differential modules

Definition 5.1.1. A differential ring is a commutative ring R equipped with a
derivation d : R → R; the latter is an additive map satisfying the Leibniz rule

d(ab) = ad(b)+ bd(a) (a, b ∈ R).

We expressly allow d = 0 unless otherwise specified; this will be useful in
some situations. A differential ring which is also a domain or field, etc., will
be called a differential domain, field, etc. Note that there is a unique extension
of d to any localization of R, using the quotient rule; in particular, if R is a
domain then there is a unique extension of d to Frac(R).

77
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Definition 5.1.2. A differential module over a differential ring (R, d) is a
module M equipped with an additive map D : M → M satisfying

D(am) = aD(m)+ d(a)m;
such a D will also be called a differential operator on M relative to d. For
example, (R, d) is a differential module over itself; any differential module
isomorphic to a direct sum of copies of (R, d) is said to be trivial. (If we
refer to “the trivial differential module”, though, we mean (R, d) itself.) A
differential module which is a successive extension of trivial modules is said
to be unipotent (see Proposition 7.2.5 for the reason why). A differential ideal
of R is a differential submodule of R itself, i.e., an ideal stable under d.

Definition 5.1.3. For (M, D) a differential module, define

H0(M) = ker(D), H1(M) = coker(D) = M/D(M).

The latter computes Yoneda extensions; see Lemma 5.3.3 below. Elements of
H0(M) are said to be horizontal (see the notes). Note that H0(R) = ker(d)
is a subring of R; if R is a field then ker(d) is a subfield. We call them the
constant subring and constant subfield of R.

We now make an observation about base changes of the constant subring.
For the definition of a more general base change, see Definition 5.3.2. (See
also Proposition 6.9.1.)

Lemma 5.1.4. Let R0 be the constant subring of the differential ring (R, d),
and let R′

0 be an R0-algebra. Let (M, D) be a differential module over (R, d).
View R′ = R ⊗R0 R′

0 as a differential ring by defining the derivation d ′ by

d ′
(∑

i

ai ⊗ ri

)
=
∑

i

d(ai )⊗ ri (ai ∈ R, ri ∈ R′
0).

Similarly, view M ′ = M ⊗R0 R′
0 as a differential module over (R′, d ′) by

defining the differential operator

D′
(∑

i

mi ⊗ ri

)
=
∑

i

D(mi )⊗ ri (mi ∈ M, ri ∈ R′
0).

(a) There are natural maps Hi (M)⊗R0 R′
0 → Hi (M ′) for i = 0, 1.

(b) The map in (a) is always an isomorphism for i = 1.
(c) If R′

0 is flat over R0 then the map in (a) is an isomorphism for i = 0.
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Proof
(a) Tensoring the structure morphism R0 → R′

0 with M induces a map
M → M ′. This in turn induces maps Hi (M) → Hi (M ′) of R0-
modules; using the R′-module structure on Hi (M ′), we also obtain
maps Hi (M)⊗R0 R′

0 → Hi (M ′).
(b) Tensoring with R′

0 is always a right exact functor on R0-modules.
Since

M
D→ M → H1(M)→ 0

is an exact sequence in the category of R0-modules,

M ′ D′→ M ′ → H1(M)⊗R0 R′
0 → 0

is also exact. Hence the induced map H1(M)⊗R0 R′
0 → H1(M ′) is an

isomorphism.
(c) Recall that, by definition, R′

0 is flat over R0 if and only if tensoring with
R′

0 is an exact functor on R0-modules. Since

0 → H0(M)→ M
D→ M

is an exact sequence in the category of R0-modules,

0 → H0(M)⊗R0 R′
0 → M ′ D′→ M ′

is also exact. Hence the induced map H0(M)⊗R0 R′
0 → H0(M ′) is an

isomorphism.

Another frequently used observation is the following.

Lemma 5.1.5. Let (R, d) be a differential field with constant subfield R0.
Then, for any differential module (M, D) over (R, d), the natural map
H0(M)⊗R0 R → M is injective. In particular, dimR0 H0(M) ≤ dimR M.

Proof. An equivalent statement is that if m1, . . . ,mn ∈ H0(M) are linearly
dependent over R then they are also linearly dependent over R0. Suppose on
the contrary that, for some positive integer n, there exist m1, . . . ,mn ∈ H0(M)
which are linearly dependent over R but linearly independent over R0. Choose
n as small as possible with this property; then there exist c1, . . . , cn ∈ R all
nonzero such that c1m1+· · ·+cnmn = 0. We may rescale the ci so that c1 = 1.

Since m1, . . . ,mn ∈ H0(M), we also have

d(c1)m1 + · · · + d(cn)mn = 0.
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That is, d(c1), . . . , d(cn) form another linear dependence relation between
m1, . . . ,mn . But d(c1) = d(1) = 0, so to avoid contradicting the choice of
n we must have d(c2) = · · · = d(cn) = 0. That is, c1, . . . , cn ∈ R0, contra-
dicting the hypothesis that m1, . . . ,mn are linearly independent over R0. This
contradiction proves the claim.

Definition 5.1.6. Let M be a differential module over a differential ring R
admitting a finite exhaustive filtration with irreducible successive quotients.
(For instance, R could be a differential field and M could be a finitely gen-
erated differential module over R.) Then the multiset of these quotients is
independent of the choice of the filtration; we call them the (Jordan–Hölder)
constituents of M .

5.2 Differential modules and differential systems

We now describe the link between differential modules and linear differential
systems.

Definition 5.2.1. Let R be a differential ring, and let M be a finite free differ-
ential module of rank n over R. Let e1, . . . , en be a basis of M . Then, for any
v ∈ M , we can write v = v1e1 + · · · + vnen for some v1, . . . , vn ∈ R and
compute

D(v) = v1 D(e1)+ · · · + vn D(en)+ d(v1)e1 + · · · + d(vn)en .

Define the matrix of action of D (i.e., the matrix representing the action of D)
on the basis e1, . . . , en to be the n × n matrix N over R given by the formula

D(e j ) =
n∑

i=1

Ni j ei .

We then have

D(v) =
n∑

i=1

⎛⎝d(vi )+
n∑

j=1

Ni jv j

⎞⎠ ei .

That is, if we identify v with the column vector [v1 · · · vn] then

D(v) = Nv + d(v).

Conversely, it is clear that, given the underlying finite free R-module, any
differential module structure is given by such an equation.
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Definition 5.2.2. With notation as in Definition 5.2.1, let v1, . . . , vn be a sec-
ond basis of M . The change-of-basis matrix from e1, . . . , en to v1, . . . , vn is
the n × n matrix U defined by

v j =
∑

i

Ui j ei .

The effect of changing basis is that the matrix of action of D on v1, . . . , vn is

U−1 NU + U−1d(U ).

Remark 5.2.3. In other words, differential modules are a coordinate-free ver-
sion of differential systems. If you are a geometer, you may wish to go further
and think of differential bundles, i.e., vector bundles equipped with a differ-
ential operator. A differential operator on a vector bundle is usually called a
connection.

5.3 Operations on differential modules

We now describe the basic operations in the category of differential modules
over a differential ring.

Definition 5.3.1. For R a differential ring, we regard the differential modules
over R as a category in which the morphisms (or homomorphisms) from M1

to M2 are R-module homomorphisms f : M1 → M2 satisfying D( f (m)) =
f (D(m)) (we sometimes say these maps are horizontal).

Definition 5.3.2. The category of differential modules over a differential ring
admits certain functors corresponding to familiar functors on the category of
modules over an ordinary ring, such as the following. (Be aware that in the
following notation the subscripted R on such symbols as the tensor product
will often be suppressed when it is unambiguous. Our habit tends to be to
drop the subscript when tensoring modules over a single ring but not when
performing a base change.)

Given two differential modules M1,M2, the tensor product M1 ⊗R M2

in the category of rings may be viewed as a differential module via the
formula

D(m1 ⊗ m2) = D(m1)⊗ m2 + m1 ⊗ D(m2).

This in particular gives meaning to the base change M ⊗R R′ of a differential
R-module M to a differential R-algebra R′; we also denote this by f ∗M if f
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is the map from R to R′. Similarly, the exterior power ∧n
R M may be viewed as

a differential module via the formula

D(m1 ∧ · · · ∧ mn) =
n∑

i=1

m1 ∧ · · · ∧ mi−1 ∧ D(mi ) ∧ mi+1 ∧ · · · ∧ mn .

(A similar fact is true for the symmetric power Symn
R M , but we will have

no need of this.) The module of R-homomorphisms HomR(M1,M2) may be
viewed as a differential module via the formula

D( f )(m) = D( f (m))− f (D(m));
the homomorphisms from M1 to M2 as differential modules are precisely the
horizontal elements of HomR(M1,M2). (In this case, the subscript is quite
crucial: we have Hom(M1,M2) = H0(HomR(M1,M2)).)

We write M∨
1 for HomR(M1, R) and call it the dual of M1; if M1 is finite

free then HomR(M1,M2) ∼= M∨
1 ⊗ M2 and the natural map M1 → (M∨

1 )
∨

is an isomorphism. In particular, M∨
1 ⊗ M1 contains a horizontal element cor-

responding to the identity map M1 → M1; we call this the trace (element) of
M∨

1 ⊗M1, and we call the trivial submodule generated by the trace element the
trace component of M∨

1 ⊗ M1. If R is a Q-algebra then M∨
1 ⊗ M1 splits as the

direct sum of the trace component with the set of elements of HomR(M1,M2)

of trace zero; we call the latter the trace-zero component of M∨
1 ⊗ M1. Even

if R is not a Q-algebra, we can still view the trace component as a quotient of
M∨

1 ⊗ M1 by duality, but the map given by embedding the trace component
into M∨

1 ⊗ M1 and then projecting onto the trace component need not be an
isomorphism.

Lemma 5.3.3. Let M, N be differential modules with M finite free. Then the
group H1(M∨ ⊗ N ) is canonically isomorphic to the Yoneda extension group
Ext(M, N ).

Proof. The group Ext(M, N ) consists of equivalence classes of exact seq-
uences 0 → N → P → M → 0 under the relation that this sequence
is equivalent to a second sequence 0 → N → P ′ → M → 0 if there
is an isomorphism P ∼= P ′ that induces the identity maps on M and N .
Addition consists of taking two such sequences and returning the Baer sum
0 → N → Q/�→ M → 0, where Q is the set of elements in P ⊕ P ′ whose
images in M coincide and � = {(n,−n) ∈ Q : n ∈ N }. The identity element
is the split sequence 0 → N → M ⊕ N → M → 0. The inverse of a sequence
0 → N → P → M → 0 is the same sequence with the map N → P negated.
(See [216, §3.4] for the proof that this indeed gives a group.)
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We first construct a canonical isomorphism Ext(M, N )→ Ext(R,M∨⊗N ).
Given an extension 0 → N → P → M → 0, tensor with M∨ to get

0 → M∨ ⊗ N → M∨ ⊗ P → M∨ ⊗ M → 0.

Let Q be the inverse image of the trace component of M∨ ⊗ M ; we then get
an extension

0 → M∨ ⊗ N → Q → R → 0,

yielding a map Ext(M, N ) → Ext(R,M∨ ⊗ N ), which is easily shown to be
a homomorphism. In the other direction, given an extension

0 → M∨ ⊗ N → Q → R → 0,

tensor with M to get

0 → M ⊗ M∨ ⊗ N → M ⊗ Q → M → 0,

then quotient M ⊗ Q by the kernel of the projection M ⊗ M∨ → R tensored
with N . These are seen to be inverses by a diagram-chasing argument, which
we omit.

By the previous paragraph, we may reduce the statement of the lemma
to the case M = R. (One can also describe the construction without first
making this reduction, but it is a bit harder to follow.) Given an extension
0 → N → P → R → 0, compute H0 and H1 and apply the snake lemma to
obtain a connecting homomorphism H0(R) → H1(N ). The image of 1 ∈ R
under this homomorphism determines an element of H1(N ), thus giving a
map Ext(R, N ) → H1(N ). This map is easily shown to be a homomorphism
(exercise).

It remains to construct an inverse map. Given an element of H1(N ) repre-
sented by x ∈ N , we equip N ⊕ R with the structure of a differential module
by setting

D(n, r) = (D(n)+ r x, d(r)).

This module is indeed an extension of the desired form, and the image of 1 ∈ R
under the resulting connecting homomorphism is precisely the class of x in
H1(N ). In the other direction, any extension splits at the level of modules and
so must have this form for some x ∈ N . This yields the claim.

Remark 5.3.4. Although we will not need this, we note that the isomor-
phisms HomR(M1,M2) ∼= M∨

1 ⊗ M2 and M1 → (M∨
1 )

∨, and the assertion
of Lemma 5.3.3, also carry over to the case where M1 is a finite projective
R-module, i.e., a direct summand of a finite free R-module. Such a module is
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always flat. If R is noetherian then a finitely generated R-module M is projec-
tive if and only if it is locally free, i.e., if there exists a finite subset f1, . . . , fm

of R, generating the unit ideal, such that M[ f −1
i ] is free over R[ f −1

i ] for each
i [84, Exercise 4.12].

5.4 Cyclic vectors

Definition 5.4.1. Let R be a differential ring, and let M be a finite free differ-
ential module of rank n over R. A cyclic vector for M is an element m ∈ M
such that m, D(m), . . . , Dn−1(m) form a basis of M .

Theorem 5.4.2 (Cyclic vector theorem). Let R be a differential field of char-
acteristic 0 with nonzero derivation. Then every finite differential module over
R has a cyclic vector.

Many proofs are possible; we give here the proof from [80, Theorem
III.4.2]. For another proof that applies over some rings other than fields, see
Theorem 5.7.3 below. See also the notes for further discussion. (For a comment
on characteristic p, see the exercises.)

Proof. We start by normalizing the derivation. For u ∈ R×, given one differen-
tial module (M, D) over (R, d), we get another differential module (M, u D)
over (R, ud), and m is a cyclic vector for one of these modules if and only if it
is a cyclic vector for the other (because the image of m under (u D) j is in the
span of m, D(m), . . . , D j (m)). We may thus assume (thanks to the assump-
tion that the derivation is nontrivial) that there exists a nonzero element x ∈ R
such that d(x) = x .

Let M be a differential module of dimension n, and choose m ∈ M such
that the dimension μ of the span of m, D(m), . . . is as large as possible. We
derive a contradiction under the hypothesis μ < n.

For z ∈ M and λ ∈ Q, we have

(m + λz) ∧ D(m + λz) ∧ · · · ∧ Dμ(m + λz) = 0

in the exterior power ∧μ+1 M . If we write this expression as a polyno-
mial in λ, it vanishes for infinitely many values so must be identically zero.
Hence each coefficient must vanish separately, including the coefficient of λ1,
which is

μ∑
i=0

m ∧ · · · ∧ Di−1(m) ∧ Di (z) ∧ Di+1(m) ∧ · · · ∧ Dμ(m). (5.4.2.1)
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Pick s ∈ Z, substitute xs z for z in (5.4.2.1), divide by xs , and set the result
equal to zero. We get

μ∑
i=0

si�i (m, z) = 0 (s ∈ Z) (5.4.2.2)

for

�i (m, z)=
μ−i∑
j=0

(
i+ j

i

)
m∧· · ·∧Di+ j−1(m)∧D j (z)∧Di+ j+1(m)∧· · ·∧Dμ(m).

Again because we are in characteristic zero, we may conclude that (5.4.2.2),
viewed as a polynomial in s, has all coefficients equal to zero; that is,
�i (m, z) = 0 for all m, z ∈ M .

We now take i = μ to obtain

(m ∧ · · · ∧ Dμ−1(m)) ∧ z = 0 (m, z ∈ M);
since μ < n, we may use this to deduce that

m ∧ · · · ∧ Dμ−1(m) = 0 (m ∈ M).

But this means that the dimension of the span of m, D(m), . . . is at most μ−1,
contradicting the definition of μ.

5.5 Differential polynomials

We now give the interpretation of differential modules as modules over a
mildly noncommutative ring.

Definition 5.5.1. Let (R, d) be a differential ring. The ring of twisted
polynomials R{T } over R in the variable T is the additive group

R ⊕ (R · T )⊕ (R · T 2)⊕ · · · ,
with noncommuting multiplication given by the formula( ∞∑

i=0

ai T
i

)⎛⎝ ∞∑
j=0

b j T
j

⎞⎠ =
∞∑

i, j=0

j∑
h=0

(
j

h

)
ai d

h(b j )T
i+ j−h .

In other words, we impose the relation

T a = aT + d(a) (a ∈ R)

and then check that the result is a not necessarily commutative ring (see the
exercises). We define the degree of a twisted polynomial, in the usual way,
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as the exponent of the largest power of T with a nonzero coefficient; the
degree of the zero polynomial may be taken to be any particular negative
value.

Proposition 5.5.2 (Ore). For R a differential field, the ring R{T } admits a left
division algorithm. That is, if f, g ∈ R{T } and g �= 0 then there exist unique
q, r ∈ R{T } with deg(r) < deg(g) and f = gq + r . (There is also a right
division algorithm.)

Proof. Exercise.

Using the Euclidean algorithm, this yields the following consequence as in
the untwisted case.

Theorem 5.5.3 (Ore). Let R be a differential field. Then R{T } is both left
principal and right principal; that is, any left ideal (resp. right ideal) has the
form R{T } f (resp. f R{T }) for some f ∈ R{T }.
Definition 5.5.4. Note that the ring opposite to R{T }, i.e., the ring in which
multiplication is performed by first switching the order of the factors, is again
a twisted polynomial ring except that the derivation is −d instead of d. Given
f ∈ R{T }, we define the formal adjoint of f as the element f in the opposite
ring. This operation looks a bit less formal if we also take the coefficients over
to the other side, giving what we will call the adjoint form of f . For instance,
the adjoint form of T 3 + aT 2 + bT + c is

T 3 + T 2a + T (b − 2d(a))+ d2(a)− d(b)+ c.

Remark 5.5.5. The twisted polynomial ring is engineered precisely so that, for
any differential module M over R, we obtain an action of R{T } on M under
which T acts like D. In particular, R{T } acts on R itself with T acting like d.
In fact, the category of differential modules over R is equivalent to the category
of left R{T }-modules. Moreover, if M is a finite differential module over R,
any cyclic vector m ∈ M corresponds to an isomorphism M ∼= R{T }/R{T }P
for some monic twisted polynomial P , where the isomorphism carries m to
the class of 1. (We can think of f as a sort of “characteristic polynomial” for
M , except that it depends strongly on the choice of the cyclic vector.) Under
such an isomorphism, a factorization P = P1 P2 corresponds to a short exact
sequence 0 → M1 → M → M2 → 0 with

M1 ∼= R{T }P2/R{T }P ∼= R{T }/R{T }P1, M2 ∼= R{T }/R{T }P2.
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5.6 Differential equations

You may have been wondering when differential equations will appear, as these
purport to be the objects of study of this book. If so, your wait is over.

Definition 5.6.1. A differential equation of order n over the differential ring
(R, d) is an equation of the form

(andn + · · · + a1d + a0)y = b,

with a0, . . . , an, b ∈ R, and y indeterminate. We say the equation is homo-
geneous if b = 0 and inhomogeneous otherwise.

Remark 5.6.2. Using our setup, we may write this equation as f (d)y = b
for some f ∈ R{T }. Similarly, we may view systems of differential equations
as being equations of the form f (D)y = b, where b lives in some differential
module (M, D). By the usual method (i.e. introducing extra variables corre-
sponding to derivatives of y), we can convert any differential system into a
first-order system Dy = b. We can also convert an inhomogeneous system
into a homogeneous one by adding an extra variable, with the understanding
that we would like the value of that last variable to be 1 in order to get back a
solution of the original equation.

Remark 5.6.3. Here is a more explicit relationship between adjoint polyno-
mials and the process of solving differential equations. Suppose that you start
with the cyclic differential module M ∼= R{T }/R{T } f and you want to find
a horizontal element. That means that you want to find some g ∈ R{T } such
that T g ∈ R{T } f ; we may as well assume that deg(g) < deg( f ). Then, by
comparing degrees, we see that in fact T g = r f for some r ∈ R. Write f in
adjoint form as f0 + T f1 + · · · + T n ; then

r f ≡ r f0 − d(r) f1 + d2(r) f2 − · · · + (−1)ndn(r) (mod T R{T }).
In this manner, finding a horizontal element becomes equivalent to solving a
differential equation.

5.7 Cyclic vectors: a mixed blessing

The reader may at this point be wondering why so many points of view are
necessary, since the cyclic vector theorem can be used to transform any differ-
ential module into a differential equation, and ultimately differential equations
are the things one writes down and wants to solve. Permit me to interject here
a countervailing opinion.
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Remark 5.7.1. In ordinary linear algebra (or in other words, when consider-
ing differential modules for the trivial derivation), one can pass freely between
linear transformations on a vector space and square matrices if one is willing to
choose a basis. The merits of doing this depend on the situation, so it is valu-
able to have both the matricial and coordinate-free viewpoints well in hand.
One can then pass to the characteristic polynomial, but not all information is
retained (one loses information about nilpotency) and even information that
in principle is retained is sometimes not so conveniently accessed. In short,
no one would seriously argue that one can dispense with studying matrices
because of the existence of the characteristic polynomial.

The situation is not so different in the differential case. The difference
between a differential module and a differential system is merely the choice of
a basis, and again it is valuable to have both points of view in mind. However,
the cyclic vector theorem may seduce one into thinking that collapsing a differ-
ential system into a differential polynomial is an operation without drawbacks,
but this is far from the case. For instance, determining whether two differential
polynomials correspond to the same differential system is not straightforward.

More seriously for our purposes, the cyclic vector theorem only applies
over a differential field. Many differential modules are more naturally defined
over some ring which is not a field. For instance, differential modules aris-
ing from geometry (such as Picard–Fuchs modules) are usually defined over
a ring of functions on some geometric space. While there are forms of the
cyclic vector theorem available over nonfields (see for instance Theorem 5.7.3
below), these do not suffice for our purposes. We also find that working with
differential modules instead of differential polynomials has a tremendously
clarifying effect, partly because it improves the parallelism with difference
algebra, where there is no good analogue of the cyclic vector theorem even
over a field. (See Part IV.)

We find it unfortunate that much literature on complex ordinary differ-
ential equations, and nearly all the literature on p-adic ordinary differential
equations, is mired in the language of differential polynomials. By switching
instead between differential modules and differential polynomials, as appro-
priate, we will be able to demonstrate strategies that lead to a more systematic
development of p-adic theory.

As promised, we offer some results concerning cyclic vectors over rings,
due to Katz [122].

Theorem 5.7.2. Let R be a differential local Q-algebra. Suppose that the max-
imal ideal of R contains an element t such that d(t) = 1. Let M be a finite free
differential module over R, and let e1, . . . , en be a basis of M. Then
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v =
n−1∑
j=0

t j

j !
j∑

k=0

(−1)k
(

j

k

)
Dk(e j+1−k)

is a cyclic vector of M.

Proof. For i, j ≥ 0, put

c(i, j) =
j∑

k=0

(−1)k
(

j

k

)
Dk(ei+ j+1−k)

with the convention that eh = 0 for h > n. It is easily checked that

c(i + 1, j) = D(c(i, j))+ c(i, j + 1).

By induction on i , we find that

Di (v) =
n−1∑
j=0

t j

j !c(i, j) ≡ ei+1 (mod t).

Hence v, D(v), . . . , Dn−1(v) freely generate M modulo the maximal ideal
of R. They thus freely generate M itself by Nakayama’s lemma [84,
Corollary 4.8].

Theorem 5.7.3. Let R be a differential Q-algebra containing an element t for
which d(t) = 1. Let M be a finite free differential module over R, and let I
be a prime ideal of R. Then there exists f ∈ R \ I such that M ⊗R R[ f −1]
contains a cyclic vector.

Proof. Choose a basis e1, . . . , en of M , and define c(i, j) as in the proof of
Theorem 5.7.2. For x ∈ R, put

ci (x) =
n−1∑
j=0

x j

j ! c(i, j).

Then there exists a polynomial P(T ) ∈ R[T ] such that

c0(x) ∧ · · · ∧ cn−1(x) = P(x)(e1 ∧ · · · ∧ en) (x ∈ R).

Since c(i, 0) = ei+1, we have P(0) = 1. In particular, the image Q(T ) ∈
(R/I )[T ] of P(T ) is not identically zero.

Since R contains Q, the images of t − a for a ∈ Z are all distinct, so only
finitely many of them are roots of Q(T ). We can thus choose a ∈ Z such that
P(t − a) /∈ I . Since

Di (c0(t − a)) = ci (t − a)
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as in the previous proof, c0(t − a) is a cyclic vector of M ⊗R R[ f −1] for
f = P(t − a), as desired.

5.8 Taylor series

Definition 5.8.1. Let R be a topological differential ring, i.e., a ring equipped
with a topology and a derivation such that all operations are continuous.
Assume also that R is a Q-algebra. Let M be a topological differential module
over R, i.e., a differential module such that all operations are continuous. For
r ∈ R and m ∈ M , we define the Taylor series T (r,m) as the infinite sum

∞∑
i=0

r i

i ! Di (m)

whenever the sum converges absolutely (i.e., all rearrangements converge to
the same value).

Remark 5.8.2. The expression T (r,m) is de facto additive in m: if
m1,m2 ∈ M then

T (r,m1)+ T (r,m2) = T (r,m1 + m2)

whenever all three terms are well-defined. For s ∈ R, T (r, s) is also de facto
multiplicative: if s1, s2 ∈ R, then (by the Leibniz rule)

T (r, s1)T (r, s2) = T (r, s1s2)

whenever all three terms are well-defined. More generally, for m ∈ M , T (r,m)
is de facto semilinear: if s ∈ R, m ∈ M then

T (r, s)T (r,m) = T (r, sm)

whenever all three terms are well-defined.

Example 5.8.3. A key instance of the previous remark is the case where R is
a completion of a rational function field F(t) and d is the differential operator
d/dt . In this case, the ring homomorphism T (r, ·) is the substitution t �→ t+r ;
note that this makes sense only if |r | ≤ 1.

Remark 5.8.4. Another use for Taylor series is to construct horizontal
sections. Note that

D(T (r,m)) =
∞∑

i=1

d(r)
r i−1

(i − 1)! Di (m)+
∞∑

i=0

r i

i ! Di+1(m)

= (1 + d(r))T (r,m)
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if everything converges absolutely. In particular, if d(r) = −1 then T (r,m) is
horizontal.

Notes

The subject of differential algebra is rather well developed; a classic treatment,
though possibly too dry to be useful to the casual reader, is the book of Ritt
[188]. As in abstract algebra in general, the development of differential algebra
was partly driven by differential Galois theory, i.e., the study of the expression
of solutions of differential equations in terms of solutions to ostensibly simpler
differential equations. A relatively lively introduction to the latter is [202].

Calling an element of a differential module horizontal when it is killed by
the derivation makes sense if you consider connections in differential geome-
try. In that setting, the differential operator is measuring the extent to which a
section of a vector bundle deviates from some prescribed “horizontal” direction
identifying points on one fibre with points on nearby fibres.

The history of the cyclic vector theorem is rather complicated. It appears
to have been first proved by Loewy [162] in the case of meromorphic func-
tions, and (independently) by Cope [60] in the case of rational functions. For a
detailed historical discussion, see [53].

Twisted polynomials were introduced by Ore [177]. They are actually some-
what more general than we have discussed; for instance, one can also twist
by an endomorphism τ : R → R by imposing the relation T a = τ(a)T .
(This enters the realm of the analogue of differential algebra called difference
algebra, which we will treat in Part IV.) Moreover, one can twist by both an
endomorphism and a derivation if they are compatible in an appropriate way,
and one can even study differential or difference Galois theory in this set-
ting. A unifying framework for doing so, which is also suitable for considering
multiple derivations and automorphisms, was given by André [4].

Differential algebra in positive characteristic has a rather different flavor
than in characteristic 0; for instance, the pth power of the derivation d/dt on
Fp(t) is the zero map. A brief discussion of the characteristic-p situation is
given in [80, §III.1].

Exercises

(1) Prove that if M is a locally free differential module over R of rank 1 then
M∨ ⊗ M is trivial (as a differential module).

(2) Check that the bijection Ext(R, N ) → H1(N ) constructed in the proof of
Lemma 5.3.3 is indeed a homomorphism.
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(3) Check that, in characteristic p > 0, the cyclic vector theorem holds for
modules of rank at most p but may fail for modules of rank p + 1.

(4) Give a counterexample to the cyclic vector theorem for a differential field
of characteristic 0 with trivial derivation.

(5) Verify that R{T } is indeed a not necessarily commutative ring; the content
in this exercise is to check the associativity of multiplication.

(6) Prove the division algorithm (Proposition 5.5.2).
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Metric properties of differential modules

In this chapter, we study the metric properties of differential modules over non-
archimedean differential rings. The principal invariant that we will identify is
a familiar quantity from functional analysis known as the spectral radius of a
bounded endomorphism. When applied to the derivation acting on a differen-
tial module, we obtain a quantity which can be related to the least slope of the
Newton polygon of the corresponding twisted polynomial.

We can give meaning to the other slopes as well, by proving that over a
complete nonarchimedean differential field any differential module decom-
poses into components whose spectral radii are computed by the various
slopes of the Newton polygon. However, this theorem will provide some-
what incomplete results when we apply it to p-adic differential modules in
Part III; we will have to remedy the situation using Frobenius descendants and
antecedents.

This chapter provides important foundational material for much of what
follows, but on its own it may prove indigestably abstract at first. The reader
arriving at this opinion is advised to read Chapter 7 in conjunction with this
one, to see how the constructions of this chapter become explicit in a simple
but important class of examples.

6.1 Spectral radii of bounded endomorphisms

Before considering differential operators, let us recall the difference between
the operator norm and the spectral radius of a bounded endomorphism of an
abelian group.

Hypothesis 6.1.1. Throughout this section, let G be a nonzero abelian group
equipped with a norm | · |, and let T : G → G be a bounded endomorphism

93
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of G. Recall that this means that there exists c ≥ 0 such that |T (g)| ≤ c|g| for
all g ∈ G.

Definition 6.1.2. The operator norm |T |G of T is defined to be the least c ≥ 0
for which |T (g)| ≤ c|g| for all g ∈ G, i.e.,

|T |G = sup
g∈G,g �=0

{|T (g)|/|g|}.

Recall that, if M is a finite free module over a nonarchimedean ring R, | · |M is
the supremum norm for some basis, and T is an R-linear transformation, then
|T | = |A|, where A is the matrix of action of T on the chosen basis of M and
|A| = supi j {|Ai j |} as in Chapter 4.

One can similarly define the operator norm for a map between two different
abelian groups, each equipped with a norm. We may even allow seminorms as
long as we take the supremum over elements of the source group which are not
in the kernel of the seminorm.

Although the condition that T is bounded is preserved on replacing the norm
by a metrically equivalent norm, the operator norm is not preserved. To obtain
a less fragile numerical invariant, we introduce the spectral radius.

Definition 6.1.3. The spectral radius of T is defined as

|T |sp,G = lim
s→∞ |T s |1/sG ;

the existence of the limit follows from the fact |T m+n|G ≤ |T m |G |T n|G and
from the following lemma.

Lemma 6.1.4 (Fekete). Let {an}∞n=1 be a sequence of real numbers such that
am+n ≥ am + an for all m, n. Then the sequence {an/n}∞n=1 either converges
to its supremum or diverges to +∞.

Proof. Exercise.

Proposition 6.1.5. The spectral radius of T depends on the norm | · | only up
to metric equivalence.

Proof. Suppose that | · |′ is a norm metrically equivalent to | · |. We can then
choose c > 0 such that c−1|g| ≤ |g|′ ≤ c|g| for all g ∈ G. We then have
|T (g)|/|g| ≤ c2|T (g)|′/|g|′ for all g ∈ G \ {e}. Applying this with T replaced
by T s gives |T s |G ≤ c2|T s |′G , so

|T s |sp,G ≤ lim
s→∞ c2/s(|T s |′sp,G)

1/s .
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Since c2/s → 1 as s → ∞, this gives |T s |sp,G ≤ |T s |′sp,G . The reverse
inequality is found to hold on reversing the roles of the norms.

We have the following relationship to the concepts studied in Chapter 4.

Remark 6.1.6. Let F be a field equipped with a norm, and let V be a finite-
dimensional vector space over F . Pick a basis for V , and equip V with either
the L2 norm or the supremum norm defined by this basis, according to whether
F is archimedean or nonarchimedean. Let A be the matrix of action of T on
this basis. Then |T |V equals the largest singular value of A, whereas |T |sp,V

equals the largest norm of an eigenvalue of A (by Proposition 4.2.4 in the
archimedean case, and Proposition 4.4.10 in the nonarchimedean case).

Remark 6.1.7. The spectral radius derives its name from the fact that, by a
celebrated theorem of Gelfand, for a bounded endomorphism of a commutative
Banach algebra over R or C the spectral radius computes the radius of the
smallest disc containing the entire spectrum of the operator. (This includes the
archimedean case of the previous remark.)

When dealing with the spectral radius we will frequently use the following
observation.

Lemma 6.1.8. For any ε > 0 there exists c = c(ε) such that for all s ≥ 0,

|T s |G ≤ c(|T |sp,G + ε)s .

Proof. For c = 1, the claim already holds for all but finitely many s. It thus
suffices to increase c in order to cover the finite set of exceptions.

Remark 6.1.9. Some authors writing about p-adic differential equations
(including the present author) tend to refer to the spectral radius as the spec-
tral norm. On the one hand, this is somewhat dangerous, because the spectral
radius is not in general a norm or even a seminorm, even for matrices over
a complete field (exercise). On the other hand, we will be using the spectral
radius as a measure of size and so the normlike notation | · |sp,V is useful. We
will compromise by keeping this notation but referring to spectral radii rather
than spectral norms.

6.2 Spectral radii of differential operators

We now specialize the previous discussion to the case of differential modules.

Definition 6.2.1. By a nonarchimedean differential ring or field, we mean
a nonarchimedean ring equipped with a bounded derivation. For F a
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nonarchimedean differential field, we can define the operator norm |d|F and
the spectral radius |d|sp,F ; by hypothesis the former is finite, so the latter is too.

Definition 6.2.2. Let F be a nonarchimedean differential field. By a normed
differential module over F we mean a vector space V over F equipped with a
compatible norm | · |V and a derivation D with respect to d which is bounded
as a endomorphism of the additive group of V . For V nonzero, we may then
consider the operator norm |D|V and the spectral radius |D|sp,V .

Remark 6.2.3. If V is finite-dimensional over F and F is complete then the
spectral radius does not depend on the norm on V , since by Theorem 1.3.6 any
two norms on V compatible with the norm on F are metrically equivalent.

In general, one cannot have differential modules with arbitrarily small
spectral radius.

Lemma 6.2.4. Let F be a nonarchimedean differential field, and let V be a
nonzero normed differential module over F. Then

|D|sp,V ≥ |d|sp,F .

Proof. (This proof was suggested by Liang Xiao.) For a ∈ F and v ∈ V
nonzero, the Leibniz rule gives

Ds−i (aDi (v))= ds−i (a)Di (v)+
s−i∑
j=1

(
s−i

j

)
ds−i− j (a)Di+ j (v) (0 ≤ i ≤ s).

Inverting this system of equations gives an identity of the form

ds(a)v =
s∑

i=0

cs,i Ds−i (aDi (v))

for certain universal constants cs,i ∈ Z. Consequently,

|ds(a)v|V ≤ max
0≤i≤s

{|Ds−i (aDi (v))|V }. (6.2.4.1)

By Lemma 6.1.8, given ε > 0 we can choose c = c(ε) such that, for all s ≥ 0,

|Ds |V ≤ c(|D|sp,V + ε)s .

Using (6.2.4.1), we deduce that

|ds(a)v|V ≤ c2(|D|sp,V + ε)s |a||v|V .
Dividing by |a||v|V and taking the supremum over a ∈ F , we obtain

|ds |F ≤ c2(|D|sp,V + ε)s .
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Taking sth roots and then letting s → ∞, we get

|d|sp,F ≤ |D|sp,V + ε.

Since ε > 0 was arbitrary, this yields the claim.

It is sometimes useful to compute in terms of a basis of V over F .

Lemma 6.2.5. Let F be a complete nonarchimedean differential field, and
let V be a nonzero finite differential module over F. Fix a basis e1, . . . , en

of V , and let Ds be the matrix of action of Ds on this basis (i.e., Ds(e j ) =∑
i (Ds)i j ei ). Then

|D|sp,V = max{|d|sp,F , lim sup
s→∞

|Ds |1/s}. (6.2.5.1)

Proof. (Compare [49, Proposition 1.3].) Equip V with the supremum norm
defined by e1, . . . , en ; then |Ds |V ≥ maxi, j |(Ds)i, j |. This plus Lemma 6.2.4
imply that the left-hand side of (6.2.5.1) is greater than or equal to the the
right-hand side.

Conversely, for any x ∈ V , if we write x = x1e1 + · · · + xnen with
x1, . . . , xn ∈ F then

Ds(x) =
n∑

i=1

s∑
j=0

(
s

j

)
d j (xi )D

s− j (ei ),

so

|Ds |1/sV ≤ max
0≤ j≤s

{
|d j |1/sF |Ds− j |1/s

}
. (6.2.5.2)

Given ε > 0, apply Lemma 6.1.8 to choose c = c(ε) such that, for all s ≥ 0,

|ds |F ≤ c
(|d|sp,F + ε

)s
,

|Ds |V ≤ c

(
lim sup

s→∞
|Ds |1/s + ε

)s

.

Then (6.2.5.2) implies that

|Ds |1/sV ≤ c2/s max

{
|d|sp,F + ε, lim sup

s→∞
|Ds |1/s + ε

}
.

As in the previous proof, the factor c2/s tends to 1 as s → ∞. From this it
follows that the right-hand side of (6.2.5.1) is greater than or equal to the left-
hand side minus ε; since ε > 0 was arbitrary, we get the same inequality with
ε = 0.

Remark 6.2.6. In Lemma 6.2.5, if |D|sp,V > |d|sp,F then the limit superior
can be replaced by a limit; see the exercises.
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Using Lemma 6.2.5, we may infer the following base-change property for
the spectral radius. We will need to refine this result later; see Corollary 6.5.5
and Proposition 10.6.6 below.

Corollary 6.2.7. Let F → F ′ be an isometric embedding of complete nonar-
chimedean differential fields. (In particular, the differential on F ′ must restrict
to the differential on F.) Then, for any nonzero finite differential module V
over F,

|D|sp,V ′ = max{|d|sp,F ′ , |D|sp,V }.
Consequently, if |d|sp,F ′ = |d|sp,F then |D|sp,V ′ = |D|sp,V by Lemma 6.2.4.

Proof. Choose a basis of V , and use Lemma 6.2.5 to compute both |D|sp,V

and |D|sp,V ′ in terms of this basis. This yields the desired formula.

Here is how the spectral radius behaves with respect to basic operations on
the category of differential modules.

Lemma 6.2.8. Let F be a complete nonarchimedean differential field.
(a) For a short exact sequence 0 → V1 → V → V2 → 0 of nonzero finite

differential modules over F,

|D|sp,V = max{|D|sp,V1 , |D|sp,V2}.
(b) For V a nonzero finite differential module over F,

|D|sp,V ∨ = |D|sp,V .

(c) For V1, V2 nonzero finite differential modules over F,

|D|sp,V1⊗V2 ≤ max{|D|sp,V1 , |D|sp,V2},
with equality when |D|sp,V1 �= |D|sp,V2 .

Proof. To prove (a), choose a splitting V = V1⊕V2 of the short exact sequence
in the category of vector spaces over F . The action of D on V is then given
by D(v1, v2) = (D(v1)+ f (v2), D(v2)) for some F-linear map f : V2 → V1

(as in the proof of Lemma 5.3.3). From this, the rest of the proof of (a) is an
exercise in the spirit of the proofs of Lemmas 6.2.4 and 6.2.5.

We next recall from Definition 5.3.2 that for any finite differential modules
V1, V2 over F , the action of D on V = HomF (V1, V2) is given by

D( f )(v1) = D( f (v1))− f (D(v1)).
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The Leibniz rule in this setting is that, for any nonnegative integer s,

Ds( f )(v1) =
s∑

i=0

(−1)i
(

i

s

)
Di

(
f (Ds−i (v1))

)
.

We may again (as an exercise) deduce that |D|sp,V ≤ max{|D|sp,V1 , |D|sp,V2}.
This implies first (b) (since we get |D|sp,V ∨ ≤ |D|sp,V by Lemma 6.2.4 and
similarly for the opposite inequality) and then the first assertion of (c) (since
V1 ⊗F V2 = HomF (V ∨

1 , V2)).
It remains to prove the second assertion of (c). Suppose that |D|sp,V1 >

|D|sp,V2 . Then by (b) and the first assertion of (c),

|D|sp,V1 = max{|D|sp,V1 , |D|sp,V2}
≥ max{|D|sp,V1⊗V2 , |D|sp,V ∨

2
}

≥ |D|sp,V1⊗V2⊗V ∨
2
.

Moreover, V2 ⊗ V ∨
2 contains a trivial submodule (the trace), so V1 ⊗ V2 ⊗

V ∨
2 contains a copy of V1. Hence, by (a), |D|sp,V1⊗V2⊗V ∨

2
≥ |D|sp,V1 .

We thus obtain a chain of inequalities leading to |D|sp,V1 ≥ |D|sp,V1 ; this
forces the intermediate equality |D|sp,V1 = max{|D|sp,V1⊗V2 , |D|sp,V ∨

2
}. Since

|D|sp,V1 �= |D|sp,V2 = |D|sp,V ∨
2

we have |D|sp,V1 = |D|sp,V1⊗V2 , as
desired.

Corollary 6.2.9. If V1, V2 are irreducible finite differential modules over
a complete nonarchimedean differential field and if |D|sp,V1 �= |D|sp,V2

then every irreducible submodule W of V1 ⊗ V2 satisfies |D|sp,W =
max{|D|sp,V1 , |D|sp,V2}.
Proof. Suppose the contrary; we may assume that |D|sp,V1 > |D|sp,V2 . The
inclusion W ↪→ V1 ⊗V2 corresponds to a nonzero horizontal section of W∨⊗
V1 ⊗ V2 ∼= (W ⊗ V ∨

2 )
∨ ⊗ V1, which in turn corresponds to a nonzero map

W ⊗V ∨
2 → V1. Since V1 is irreducible, the map has image V1; that is, W ⊗V ∨

2
has a quotient isomorphic to V1.

However, we can contradict this using Lemma 6.2.8. Namely,

|D|sp,W⊗V ∨
2

≤ max{|D|sp,W , |D|sp,V2} < |D|sp,V1 ,

so each nonzero subquotient of W ⊗ V ∨
2 has spectral radius strictly less than

|D|sp,V1 .

Remark 6.2.10. By contrast, when |D|sp,V1 = |D|sp,V2 it is entirely pos-
sible for an irreducible submodule W of V1 ⊗ V2 to satisfy |D|sp,W �=
max{|D|sp,V1 , |D|sp,V2}. For instance, take V1 with |D|sp,V1 > |d|sp,F , put
V2 = V ∨

1 , and let W be the trace component of V1 ⊗ V2.
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Remark 6.2.11. It would be convenient to have the analogue of
Corollary 6.2.9 also for irreducible subquotients of V1 ⊗ V2. We will prove
something slightly weaker later (Corollary 6.6.3).

We now refine the notion of the spectral radius to give a working notion of
the spectrum of a differential operator.

Definition 6.2.12. For V a finite differential module over a nonarchimedean
differential field F , let V1, . . . , Vl be the Jordan–Hölder constituents of V
(listed with multiplicity). Define the full spectrum of V to be the multiset con-
sisting of |D|sp,Vi with multiplicity dimF Vi , for i = 1, . . . , l. We say V is pure
if its full spectrum consists of a single element (with multiplicity). We say V
is refined if V is pure and |D|sp,V ∨⊗V < |D|sp,V . If V and W are two refined
finite differential modules over F , we write V ∼ W if

|D|sp,V = |D|sp,W > |D|sp,V ∨⊗W .

We will see that this is an equivalence relation (Lemma 6.2.14).

Remark 6.2.13. It may be helpful to keep in mind how the above notions
behave when the derivation on F is zero. In this case, a finite differential mod-
ule over F is simply a finite-dimensional vector space V equipped with a linear
transformation. The full spectrum consists of the norms of the eigenvalues in
Falg of this linear transformation. The module V is pure if these eigenvalues
all have the same norm. The module V is refined if it is pure and, moreover,
the ratio of any two eigenvalues is congruent to 1 modulo mF . In particular,
we can always decompose a finite differential module into pure summands,
but not necessarily into refined summands; for instance, one cannot separate a
linear transformation over Qp with characteristic polynomial T 2 − p.

However, we can achieve a refined decomposition after a finite tamely ram-
ified extension. We may see this from Definition 3.3.3 as follows. Let E be
a finite Galois extension of F containing the eigenvalues of the linear trans-
formation. Then, for any g in the wild inertia subgroup WE/F of G E/F and
any eigenvalue λ, we have |g(λ)/λ − 1| < 1. We thus obtain a refined
decomposition over the fixed field of WE/F .

We can also describe a suitable tamely refined extension F ′ of F explic-
itly, by ensuring that it satisfies the following conditions in terms of the
characteristic polynomial Q of the linear transformation.

(a) For each root λ of Q we have

|λ| ∈
{
|(F ′)×| p = 0,⋃

h≥0 |(F ′)×|1/ph
p > 0,

where p is the characteristic of κF .
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(b) For any two roots λ,μ of Q, we have

λ/μ ∈ κF ′ .

Lemma 6.2.14. Let F be a nonarchimedean differential field. Then the
relation ∼ on refined finite differential modules over F is an equivalence
relation.

Proof. The reflexivity of ∼ holds because we are considering only refined
modules. The symmetry of ∼ holds because |D|sp,V ∨⊗W = |D|sp,W∨⊗V by
Lemma 6.2.8(b). To check the transitivity, suppose that V ∼ W and W ∼ X .
Since V ∨ ⊗ X occurs as a direct summand of (V ∨ ⊗ W ) ⊗ (W∨ ⊗ X), by
Lemma 6.2.8(a) and (c) we have

|D|sp,V ∨⊗X ≤ |D|sp,V ∨⊗W⊗W∨⊗X

≤ max{|D|sp,V ∨⊗W , |D|sp,W∨⊗X }
< |D|sp,V = |D|sp,W = |D|sp,X .

Hence V ∼ X .

Lemma 6.2.15. Let F be a complete nonarchimedean differential field, and
let F ′ be a finite tamely ramified extension of F. Then d extends uniquely to
F ′, and |d|F ′ = |d|F .

Proof. Suppose first that F ′ is unramified over F . For α ∈ F ′, let P(T ) =∑
i Pi T i ∈ F[T ] be the minimal polynomial of α. Then the unique extension

of d to F ′ is characterized by

0 = d(α)P ′(α)+
∑

i

d(Pi )α
i . (6.2.15.1)

If α ∈ o×F ′ then the unramified condition implies that |P ′(α)| = 1, so that

|d(α)| ≤ max
i

{|d(Pi )||α|i } ≤ |d|F .

In general, we can write any α ∈ F ′ as βγ with β ∈ o×F ′ and γ ∈ F . We then
have d(α) = γ d(β)+ βd(γ ), so that

|d(α)| ≤ max{|γ ||d(β)|, |β||d(γ )|} ≤ |d|F |β||γ | = |d|F |α|.
This proves the claim.

We next verify the claim in the case F ′ = F(t1/m) for some t ∈ F and some
integer m, not divisible by the characteristic p of κF , such that |t |1/e /∈ |F×|
for any divisor e > 1 of m. Again, the unique extension of d to F ′ is given
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by (6.2.15.1). Also, each element of F ′ has a unique expression of the form∑m−1
i=0 ci t i/m with ci ∈ F , and the norm on F ′ is given by∣∣∣∣∣

m−1∑
i=0

ci t
i/m

∣∣∣∣∣ = max
i

{|ci ||t |i/m}.

It thus suffices to check that |d(ci t i/m)| ≤ |d|F |ci t i/m | for i = 0, . . . ,m − 1.
By the Leibniz rule, this reduces to checking |d(t i/m)| ≤ |d|F |t i/m |. But

|d(t i/m)| = |t i/m−1d(t)| ≤ |t i/m ||t |−1|d|F |t | = |d|F |t i/m |,
so the claim follows.

To treat the general case, we may choose an integer m not divisible by p and
annihilating IE/F and some t1, . . . , th ∈ F× such that |t1|, . . . , |th | generate

|F×|/|F×|m . Put F ′′ = F(t1/m
1 , . . . , t1/m

h ). By the two previous paragraphs,

we have |d|F ′′ = |d|F . (More precisely, when adjoining t1/m
i we split the

reasoning into two cases: first, for e the largest divisor of m such that |ti |1/e is
already present, adjoining t1/e

i gives an unramified extension, as in the proof
of Proposition 3.3.6, so the operator norm of d does not change. After that,
adjoining t1/m

i proceeds as in the second paragraph.) By Proposition 3.3.6, F ′
is contained in an unramified extension of F ′′ so the claim follows by applying
the first paragraph again.

6.3 A coordinate-free approach

We note in passing that our definition of the spectral radius is rather sensitive
to the choice of the derivation d. (See the exercises for Chapter 9 for an explicit
example.) A coordinate-free approach is suggested by the work of Baldassarri
and Di Vizio.

Proposition 6.3.1. Let F be a nonarchimedean differential field. Let F{T }(s)
be the set of twisted polynomials, of degree at most s, equipped with the
seminorm |P| = |P(d)|F compatible with F (that is, consider P(d) as an
operator on F). Let V be a nonzero finite differential module over F, and fix
a norm on V compatible with F. Let L(V ) be the space of bounded endo-
morphisms of the additive group of V , equipped with the operator norm. Let
Ds : F{T }(s) → L(V ) be the map P �→ P(D). Then

|D|sp,V ≤ |d|sp,F lim inf
s→∞ |Ds |1/s . (6.3.1.1)

Conversely, suppose that, for any nonnegative integer s and any c0, . . . , cs ∈
F, we have
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|c0 + c1d + · · · + csds |F = max{|c0|F , |c1d|F , . . . , |csds |F }. (6.3.1.2)

Then equality holds in (6.3.1.1), and if |d|sp,F > 0 then the limit inferior on
the right is also a limit.

The condition (6.3.1.2) is satisfied in the situation of greatest interest to us;
see Proposition 9.10.2.

Proof. By taking T s ∈ F{T }(s) we obtain the inequality |Ds |V ≤ |ds |F |Ds |.
Taking sth roots of both sides and then taking limits as s → ∞ yields (6.3.1.1).

Conversely, suppose that (6.3.1.2) holds. Given ε > 0, apply Lemma 6.1.8
to choose c > 0 such that, for all s ≥ 0,

|Ds |V ≤ c(|D|sp,V + ε)s .

Given a nonnegative integer s such that |Ds | > ε, choose P = ∑s
i=0 Pi T i ∈

F{T }(s) nonzero and such that |P(D)|V ≥ |P(d)|F (|Ds | − ε). (This could
only fail to hold if we had |P(d)|F = 0 for all P ∈ F{T }(s), but the presence
of constant polynomials eliminates this possibility.) Then

max
i≤s

{|Pi ||d|isp,F (|Ds | − ε)} ≤ max
i≤s

{|Pi d
i |F (|Ds | − ε)}

= |P(d)|F (|Ds | − ε)

≤ |P(D)|V
≤ max

i≤s
{|Pi Di |V }

≤ max
i≤s

{|Pi |c(|D|sp,V + ε)i }.

For the index i which maximizes the right-hand side, we have

|d|isp,F (|Ds | − ε) ≤ c(|D|sp,V + ε)i .

Since |d|sp,F < |D|sp,V + ε by Lemma 6.2.4, we can increase the exponent
from i to s on both sides while maintaining the inequality; we may then also
include values of s for which |Ds | < ε. Taking sth roots and then taking the
limit as s → ∞ yields

|d|sp,F lim sup
s→∞

(|Ds | − ε)1/s ≤ |D|sp,V + ε.

Since this holds for any ε > 0, we obtain the inequality

|D|sp,V ≥ |d|sp,F lim sup
s→∞

|Ds |1/s .

This forces equality in (6.3.1.1) and forces the limit inferior therein to be a
limit provided that |d|sp,F > 0.
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6.4 Newton polygons for twisted polynomials

Twisted polynomials admit a partial analogue of the theory of Newton poly-
gons; we will use these polygons in the next section to compute spectral radii
of differential operators.

Definition 6.4.1. Let R be a nonarchimedean differential field domain. For
ρ ≥ |d|R , define the ρ-Gauss norm on the twisted polynomial ring R{T } by∣∣∣∣∣∑

i

Pi T
i

∣∣∣∣∣ = max
i

{|Pi |ρi };

thus it is the same as the ρ-Gauss norm of the untwisted polynomial
∑

i Pi T i ∈
R[T ]. For r ≤ − log |d|R we obtain a corresponding r-Gauss valuation
vr (P) = − log |P|e−r .

Lemma 6.4.2. For ρ ≥ |d|R the ρ-Gauss norm is multiplicative. Moreover,
any polynomial and its formal adjoint have the same ρ-Gauss norm.

Proof. It suffices to check the statement for ρ > |d|R , as the boundary case
may be inferred from the continuity of the map ρ �→ |P|ρ for fixed P . The key
observation (and the source of the restriction on ρ) is that, for P, Q ∈ R{T }
and ρ > |d|R ,

|P Q − Q P|ρ ≤ ρ−1|d|R |P|ρ |Q|ρ < |P|ρ |Q|ρ.
(The first inequality is evident in the case P = T and Q ∈ R; the reduction
of the general case to this one is an exercise.) This allows us to deduce mul-
tiplicativity on R{T } from multiplicativity on R[T ] (Proposition 2.1.2). The
claim about the adjoint follows by a similar argument.

Definition 6.4.3. We define the Newton polygon of P = ∑
i Pi T i ∈ R{T }

by taking the Newton polygon of the corresponding untwisted polynomial∑
Pi T i ∈ R[T ] and then omitting all slopes greater than or equal to

− log |d|R . We define similarly the multiplicity for slopes less than − log |d|R .
By Lemma 6.4.2 and an argument as in Remark 2.1.7, the multiplicity of a
slope r < − log |d|R in a product P Q is equal to the sum of the multiplicities
of r as a slope of P and as a slope of Q. However, this fails for r = − log |d|R
because we are only controlling the left endpoint of the segment of the Newton
polygon with this slope (see the exercises); hence we will omit − log |d|R and
all larger slopes from the Newton polygon.

By another application of the master factorization theorem (Theorem 2.2.2),
we obtain the following.
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Theorem 6.4.4. Let R be a complete nonarchimedean differential domain.
Suppose that S ∈ R{T }, r < − log |d|R, and m ∈ Z≥0 satisfy

vr (S − T m) > vr (T
m).

Then there exists a unique factorization S = P Q satisfying the following
conditions.

(a) The polynomial P ∈ R{T } has degree deg(S) − m, and its slopes are
all less than r.

(b) The polynomial Q ∈ R{T } is monic of degree m, and its slopes are all
greater than r.

(c) We have vr (P − 1) > 0 and vr (Q − T m) > vr (T m).
Moreover, for this factorization,

min{vr (P − 1), vr (Q − T m)− vr (T
m)} ≥ vr (S − T m)− vr (T

m).

Similarly, we can make a factorization S = Q P having the same properties
(but the factors themselves may differ).

Proof. Use the same procedure as in Theorem 2.2.1.

Corollary 6.4.5. Let F be a complete nonarchimedean differential field. If
P ∈ F{T } is irreducible, then either it has no slopes or all its slopes are equal
to some value less than − log |d|F .

Remark 6.4.6. Instead of defining the Newton polygon as above and then
truncating, one may prefer to declare all the missing slopes to be equal to
− log |d|R . One can achieve this by modifying the set whose lower convex hull
is used to define the Newton polygon, in order to build in the right truncation
behavior. The correct modified set is

n⋃
i=0

{
(x, y) ∈ R2 : x ≥ −i, y ≥ v(Pi )− (x + i) log |d|F

}
,

provided that d is nonzero. (If d = 0 then −(x+i) log |d|F must be interpreted
to mean 0 if x + i = 0 and +∞ if x + i > 0.)

6.5 Twisted polynomials and spectral radii

One can use twisted polynomials over nonarchimedean differential fields to
detect part of the full spectrum of a normed differential module.

Definition 6.5.1. For V a finite differential module over a nonarchimedean
differential field F , define the visible spectrum of V to be the submultiset of
the full spectrum of V consisting of those values greater than |d|F .
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Remark 6.5.2. In the application to regular singularities (Chapter 7), we will
consider the case where |d|F = |d|sp,F . In such a case, there is no real loss
in restricting to the visible spectrum: the only missing norm is |d|F itself,
and one can infer its multiplicity from the dimension of the module. How-
ever, in the applications to p-adic differential equations in Part III we will
have |d|F > |d|sp,F , so restriction to the visible spectrum will cause real prob-
lems; these will have to be remedied using pullback and pushforward along a
Frobenius map.

The key theorem relating spectral radii to Newton polygons is the following.

Theorem 6.5.3 (Christol–Dwork). Let F be a complete nonarchimedean dif-
ferential field. For nonconstant P ∈ F{T }, put V = F{T }/F{T }P. Let r
be the least slope of the Newton polygon of P or − log |d|F if no such slope
exists. Then

max{|d|F , |D|sp,V } = e−r .

Proof. Let r1 ≤ · · · ≤ rk be the slopes of P counted with multiplicity, and
define rk+1 = · · · = rn = − log |d|F . Equip V with the norm∣∣∣∣∣

n−1∑
i=0

ai T
i

∣∣∣∣∣
V

= max
i

{|ai |e−rn−1−···−rn−i }.

As in the proof of Proposition 4.3.10, we then have |D|V = e−r1 and so
|D|sp,V ≤ e−r1 .

To finish, we must check that if r1 < − log |d|F then |D|sp,V = e−r1 . Let δ
be the operation defined by

δ

(
n−1∑
i=0

ai T
i

)
=

n−1∑
i=0

d(ai )T
i ;

then |δ|V = |d|F , D−δ is F-linear, and |D−δ|V = e−r1 . Then, for all positive
integers s,

|(D − δ)s |V = e−r1s, |Ds − (D − δ)s |V ≤ e−r1(s−1)|d|F < e−r1s,

so |Ds |V = e−r1s and |D|sp,V = e−r1 as desired.

Corollary 6.5.4. Let F be a complete nonarchimedean differential field. For
any P ∈ F{T }, the visible spectrum of the differential module F{T }/F{T }P
consists of e−r , where r runs over the slope multiset of the Newton polygon
of P.
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Proof. Write down a maximal factorization of P; it corresponds to a maximal
filtration of F{T }/F{T }P . By Corollary 6.4.5, each factor in the factorization
has only a single slope, so Theorem 6.5.3 gives us what we want.

We now obtain a partial refinement of Corollary 6.5.4. For a further
refinement, see Proposition 10.6.6.

Corollary 6.5.5. Let F → F ′ be an isometric embedding of complete nonar-
chimedean differential fields. For any finite differential module V over F, the
visible spectrum of V ⊗F F ′ is the submultiset of the visible spectrum of V
consisting of those values greater than |d|F ′ .

Proof. We may reduce to the case where V is irreducible (but V ⊗F F ′ need
not be). In this case any nonzero element of V is a cyclic vector, so we may
apply Corollary 6.5.4 to deduce the claim.

Using Theorem 6.5.3, we can give a differential version of Proposition 4.4.6.

Proposition 6.5.6. Let F be a complete nonarchimedean differential field
with |d|F ≤ 1. Let V be a finite differential module of rank n > 0 over
F with |D|sp,V ≤ 1. Let | · |V be the supremum norm on V defined by a
basis e1, . . . , en, and suppose that |D|V = c ≥ 1. Then there exists a basis
of V defining a second supremum norm | · |′V , for which |D|′V ≤ 1 and
|x |′V ≤ |x |V ≤ cn−1|x |′V for all x ∈ V .

Proof. We proceed as in Proposition 4.4.6. Let M be the smallest
oF -submodule of V containing e1, . . . , en and stable under D. For each i ,
if j = j (i) is the least integer such that ei , D(ei ), . . . , D j (ei ) are linearly
dependent then we have D j (ei ) = ∑ j−1

h=0 ch Dh(ei ) for some ch ∈ F . Since
|D|sp,V ≤ 1 and |d|F ≤ 1, Theorem 6.5.3 implies that |ch | ≤ 1 for each h.
Hence M is finitely generated, and thus free, over oF .

Let | · |′V be the supremum norm on V defined by a basis of M . Then
|x |′V ≤ |x |V because e1, . . . , en ∈ M . Conversely, for i = 1, . . . , n and
h = 0, . . . , j (i) − 1, we have |Dh(ei )|V ≤ |D|hV ≤ ch ≤ cn−1. Since the
Dh(ei ) generate M , this implies that |x |V ≤ cn−1|x |′V for all x ∈ V .

6.6 The visible decomposition theorem

Using twisted polynomials, we can split V into components corresponding to
the elements of the visible spectrum (see Definition 6.5.1).

Theorem 6.6.1 (Visible decomposition theorem). Let F be a complete
nonarchimedean differential field of characteristic 0, and let V be a finite
differential module over F. Then there exists a unique decomposition
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V = V0 ⊕
⊕

s>|d|F
Vs

of differential modules, such that every subquotient of Vs has spectral radius s
and every subquotient of V0 has spectral radius at most |d|F .

Proof. If the derivation on F is zero then we are just considering a vector
space equipped with an endomorphism, and the claim becomes an elementary
exercise in linear algebra (as noted in Remark 6.2.13). Thus we may assume
hereafter that the derivation is nonzero.

We will induct on dim(V ). By Theorem 5.4.2 and our hypothesis that
d �= 0, there exists a cyclic vector for V . We thus obtain an isomorphism
V ∼= F{T }/F{T }P for some P ∈ F{T }. If the Newton polygon of P is empty,
we may put V = V0 and be done. Otherwise, let r < − log |d|F be the least
slope. By applying Theorem 6.4.4 once to P , we obtain a short exact sequence
0 → V1 → V → V2 → 0 in which (by Theorem 6.5.3) every subquotient
of V1 has spectral radius e−r , and every subquotient of V2 has spectral radius
less than e−r . Applying Theorem 6.4.4 again to P but with the factors in the
opposite order, we obtain a short exact sequence 0 → V ′

2 → V → V ′
1 → 0 in

which every subquotient of V ′
1 has spectral radius e−r and every subquotient

of V ′
2 has spectral radius less than e−r . This yields V1 ∩ V ′

2 = 0, so V1 ⊕ V ′
2

injects into V . Moreover, dim V1 = dim V ′
1 and dim V2 = dim V ′

2 because P
and its formal adjoint have the same Newton polygon (Lemma 6.4.2). By a
dimension count V1 ⊕ V ′

2 must equal V . Applying the induction hypothesis to
V ′

2 gives the claim.

Corollary 6.6.2. Let F be a complete nonarchimedean differential field of
characteristic 0. Let V be a finite differential module over F such that every
subquotient of V has spectral radius greater than |d|F . Then H0(V ) =
H1(V ) = 0.

Proof. The claim about H0 is clear: a nonzero element of H0(V ) would gen-
erate a differential submodule of V which would be trivial and thus would have
spectral radius |d|sp,F ≤ |d|F . In the case of H1, let 0 → V → W → F → 0
be a short exact sequence of differential modules. Decompose W = W0 ⊕ W1

according to Theorem 6.6.1, so that every subquotient of W0 has spectral radius
at most |d|F and every subquotient of W1 has spectral radius greater than |d|F .
The map V → W0 must vanish (its image is a subquotient of both V and W0),
so V ⊆ W1. But W1 �= W , as otherwise W could not surject onto a trivial mod-
ule, so for dimensional reasons we must have V = W1. Hence the sequence
splits, proving that H1(V ) = 0 by Lemma 5.3.3.
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In this setting we can obtain a refinement of Corollary 6.2.9 in which we
allow subquotients rather than just submodules.

Corollary 6.6.3. Let F be a complete nonarchimedean differential field of
characteristic 0. If V1, V2 are finite irreducible differential modules over F,
|D|sp,V1 > |d|F , and |D|sp,V1 > |D|sp,V2 , then every irreducible subquotient
W of V1 ⊗ V2 satisfies |D|sp,W = |D|sp,V1 .

Proof. Decompose V1⊗V2 as V0⊕⊕s>|d|F Vs according to Theorem 6.6.1; we
have Vs = 0 whenever s > |D|sp,V1 . If either V0 were nonzero or some Vs with
s < |D|sp,V1 were nonzero, then V1⊗V2 would have an irreducible submodule
of spectral radius less than |D|sp,V1 , in violation of Corollary 6.2.9.

These results are quite sufficient for applications to the study of the singu-
larities of complex meromorphic differential equations, at which we hint in
Chapter 7. However, in the p-adic situation we have to decompose V0 further;
we will do this using Frobenius antecedents in Chapter 10.

6.7 Matrices and the visible spectrum

The proof of Theorem 6.5.3 relied on the fact that one can detect the spectral
radius of a differential module admitting a cyclic vector by using the char-
acteristic polynomial of the matrix of action of D (see Definition 5.2.1) on
the cyclic basis. For some applications we need to extend this to certain bases
not necessarily generated by cyclic vectors; for this, the relationship between
singular values and eigenvalues considered in Chapter 4 will be crucial.

Lemma 6.7.1. Let R be a complete nonarchimedean differential domain. Let
N be a 2 × 2 block matrix over R with the following properties.

(a) The matrix N11 has an inverse A over R.
(b) We have |A|max{|d|F , |N12|, |N21|, |N22|} < 1.

Then there exists a block upper triangular unipotent matrix U over R, such
that |U12| ≤ |A|max{|N12|, |N21|, |N22|} and U−1 NU + U−1d(U ) is block
lower triangular.

Proof. Put

δ = |A|max{|N12|, |N21|, |N22|} < 1, ε = |A||N12| ≤ δ.

Let X be the block upper triangular nilpotent matrix with X12 = AN12, put
U = I − X , and put

N ′ = U−1 NU + U−1d(U ).
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Since U−1 = I + X , we have N ′ = N + X N − N X − X N X −d(X). In block
form,

N ′ =
(

N11 + X12 N21 N12 − N11 X12 + X12 N22 − X12 N21 X12 − d(X12)

N21 N22 − N21 X12

)
.

We now claim that

|N ′
12| ≤ εmax{δ, |d|F |A|}|A|−1,

|N ′
21| ≤ δ|A|−1,

|N ′
22| ≤ δ|A|−1.

The second and third lines hold because

|(U−1 NU − N )2 j | = |(−N X)2 j | ≤ εδ|A|−1 ( j = 1, 2).

The first line holds because N12 − N11 X12 = 0, so we can write

N ′
12 = X12 N22 − X12 N21 X12 − d(X12),

in which the first two terms have norm at most εδ|A|−1 and the third has norm
at most |d|Fε.

To analyze N ′
11, we write it as (I + X12 N21 A)N11. Because |X12 N21 A| ≤

|X12|(|N21||A|) < ε < 1 the first factor is invertible, and it and its inverse both
have norm 1. Hence N ′

11 is invertible, |N ′
11| = |N11|, and |(N ′

11)
−1| = |A|.

Since max{δ, |d|F |A|} ≤ μ for some fixed μ < 1, iterating the construction
of N ′ from N yields a convergent sequence of conjugations whose limit has
the desired property.

We need a version of the argument used in the proof of Theorem 6.5.3 that
is no longer restricted to cyclic vectors.

Lemma 6.7.2. Let F be a complete nonarchimedean differential field. Let V
be a nonzero finite differential module over F. Let e1, . . . , en be a basis of
V , and let N be the matrix of the action of D on e1, . . . , en. Suppose that
|N | = σ > |d|F and |N−1| = σ−1. Then the full spectrum of V consists
entirely of σ .

Proof. As in the proof of Theorem 6.5.3, we find that for the supremum norm
for e1, . . . , en we have |Ds(v)|V = σ s |v|V for all nonnegative integers s and
all v ∈ V . Consequently, for any nonzero differential submodule W of V ,
we have |D|sp,W = σ . By Theorem 6.6.1, it follows that every irreducible
subquotient of V also has spectral radius σ , as desired.
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By combining what we have so far, we can obtain a further refinement of
Lemma 6.7.2 in which we can detect elements of the visible spectrum, which
need not all be equal.

Lemma 6.7.3. Let F be a complete nonarchimedean differential field. Let V
be a finite differential module over F. Let e1, . . . , en be a basis of V , and
let N be the matrix of action of D on e1, . . . , en. Let σ1 ≥ · · · ≥ σn be the
singular values of N , and let λ1, . . . , λn be the eigenvalues of N , arranged so
that |λ1| ≥ · · · ≥ |λn|. Suppose that the following conditions hold for some
i = 1, . . . , n and some δ ≥ |d|F .

(a) We have σi > δ.
(b) Either i = n or σi+1 ≤ δ.
(c) We have σ j = |λ j | for j = 1, . . . , i .

Then the elements of the full spectrum that are greater than δ are precisely
σ1, . . . , σi .

Proof. We first check that conditions (a)–(c) are invariant under the change of
basis

N �→ U−1 NU + U−1d(U ) = U−1(N + d(U )U−1)U

for U ∈ GLn(oF ). Note that, by Proposition 4.4.1, N and N + d(U )U−1 have
the same singular values greater than δ. Thanks to conditions (a)–(c) we may
apply Theorem 4.4.2 to deduce that N and N + d(U )U−1 also have the same
eigenvalue norms for eigenvalues greater than δ. Since neither the singular
values nor the eigenvalues are altered upon conjugating by U , we may draw
the same conclusion about N and U−1 NU +U−1d(U ). In particular, the truth
of (a)–(c) is not affected by this change of basis.

If σ1 ≤ |d|F then we have nothing to check. If σ1 = · · · = σn > |d|F
then Lemma 6.7.2 implies the claim. If neither of these cases applies, we
may induct on n: choose i with σ1 = · · · = σi > σi+1, so that necessar-
ily σ1 > |d|F . View N as a 2 × 2 block matrix with block sizes i, n − i .
Apply Lemma 6.7.1 to obtain an upper triangular unipotent block matrix U
over oF such that N ′ = U−1 NU + U−1d(U ) is lower triangular. We may
then reduce to checking the claim with N replaced by the two diagonal blocks
of N ′.

To put everything together, we relax the condition on the singular values.

Theorem 6.7.4. Let F be a complete nonarchimedean differential field. Let
V be a finite differential module over F. Let e1, . . . , en be a basis of V ,
and let N be the matrix of action of D on e1, . . . , en. Let σ1 ≥ · · · ≥
σn be the singular values of N , and let λ1, . . . , λn be the eigenvalues of
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N arranged so that |λ1| ≥ · · · ≥ |λn|. Define fn as in Corollary 4.4.8
and put θ = fn(σ1, . . . , σn, |λ1|, . . . , |λn|, |d|F ). Suppose that the following
conditions hold for some i = 1, . . . , n and some δ ≥ |d|Fθ .

(a) We have |λi | > δ.
(b) Either i = n or |λi+1| ≤ δ.

Then the elements of the full spectrum greater than δ are precisely
|λ1|, . . . , |λi |.
Proof. By Corollary 6.5.5 we can replace F by a larger complete nonarchime-
dean differential field F ′, provided that |d|F ′ = |d|F . In particular we may take
F ′ to be the completion of F(t) for the ρ-Gauss norm for any ρ > 0, extend-
ing d so that d(t) = 0 (exercise). After enlarging F suitably in this manner, by
Corollary 4.4.8 we can choose a matrix U ∈ GLn(F) such that the following
conditions hold.

(a) We have |U−1| ≤ 1 and |U | ≤ θ .
(b) The first i singular values of U−1 NU are |λ1|, . . . , |λi |.
(c) Either i = n or the (i + 1)th singular value of U−1 NU is at most δ.

Since |U−1d(U )| ≤ θ |d|F ≤ δ, by Proposition 4.4.1 the new conditions
(b) and (c) hold when U−1 NU is replaced by U−1 NU + U−1d(U ). We may
thus apply Lemma 6.7.3 to obtain the desired result.

6.8 A refined visible decomposition theorem

We give a refinement of the visible decomposition theorem (Theorem 6.6.1).
This can be used to obtain the Turrittin–Hukuhara–Levelt decomposition
theorem; see Theorem 7.5.1. We first give an extension of Remark 6.2.13.

Lemma 6.8.1. Let F be a complete nonarchimedean differential field of char-
acteristic 0. Suppose that P = ∑

i Pi T i ∈ F{T } and P̃ = ∑
i P̃i T i ∈ F{T }

are nonconstant twisted polynomials such that, for some s < − log |d|F ,
the slopes of P and P̃ are all equal to s. Put V = F{T }/F{T }P and
W = F{T }/F{T }P̃. Let Q = ∑

i QiUi ∈ F[T ] and Q̃ = ∑
i Q̃iU i ∈ F[T ]

be the untwisted polynomials having the same coefficients as P and P̃, respec-
tively. Then |D|sp,V ∨⊗W < |D|sp,V if and only if for any root λ ∈ Falg of Q
and any root μ ∈ Falg of Q̃ we have |λ/μ− 1| < 1.

Proof. As in the proof of Theorem 6.7.4, we may enlarge F to reduce to the
case where |D|sp,V = |η| for some η ∈ F×. Equip each of V and W with
the basis given by 1, η−1T, η−2T 2, . . . , equip V ∨ with the dual basis, and use
these bases to define supremum norms. As in the proof of Theorem 6.5.3, we
have |D|V = |D|W = |η|.
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The matrix of action of D on the resulting basis of V ∨ ⊗ W has eigenvalues
of the formμ−λ, where λ is a root of Q andμ is a root of Q̃. By Theorem 6.7.4
we have |D|sp,V ∨⊗W < |η| if and only if each eigenvalue has norm strictly less
than |η|, which occurs if and only if |λ/μ− 1| < 1 for all λ,μ.

Theorem 6.8.2 (Refined visible decomposition theorem). Let F be a com-
plete nonarchimedean differential field of characteristic 0, and let V be a finite
differential module over F such that no subquotient of Vs has norm less than
or equal to |d|F . Then, for some finite tamely ramified extension F ′ of F, there
exists a (unique) decomposition

V ⊗F F ′ =
⊕

i

Vi

of V ⊗F F ′ into refined differential modules Vi , such that for i �= j we have
Vi �∼ Vj in the sense of Definition 6.2.12.

Proof. Uniqueness follows directly since ∼ is an equivalence relation (by
Lemma 6.2.14). To check existence, by Theorem 6.6.1 we may reduce to the
case where V is pure (see Definition 6.2.12). We may also assume that d �= 0,
as otherwise the result follows from Remark 6.2.13. Note that for any finite
tamely ramified extension F ′ of F we have |d|F ′ = |d|F by Lemma 6.2.15.

Apply Theorem 5.4.2 to choose an isomorphism V ∼= F{T }/F{T }P . By
Corollary 6.5.4, all the slopes of P are the same. Let Q ∈ F[U ] be the
untwisted polynomial with the same coefficients as P . By Remark 6.2.13, we
can choose a finite tamely ramified extension F ′ of F such that Q can be fac-
torized in F ′[U ] into factors Qi such that, for any two roots λ,μ of any Qi ,
we have |λ/μ − 1| < 1. By applying Theorem 2.2.2 (as in Remark 2.2.3) we
may correspondingly factorize P in F ′{T } so that each factor corresponds to
a refined differential module. By performing this factorization again with the
residual roots in the opposite order and then arguing as in Theorem 6.6.1, we
obtain the desired splitting.

Remark 6.8.3. From the proof of Theorem 6.8.2 one may extract a map from
the classes of refined finite differential modules V with |D|sp,V = s > |d|F to
the quotient

{x ∈ oFalg : |x | ≤ s}
{x ∈ oFalg : |x | < s} ;

namely, given an isomorphism V ∼= F{T }/F{T }P , one associates with V the
class of the roots of the untwisted polynomial having the same coefficients
as P . However, one must check with some care that this map does not depend
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on the initial choice of cyclic vector. A better approach is to identify certain
“test objects” for which one can deduce the map more easily; this has been
done by Xiao [221].

From the proof of Theorem 6.8.2, we may also deduce the following sim-
ple but important observations. They will be used in the proofs of both
the Turrittin–Levelt–Hukuhara decomposition (Theorem 7.5.1 below) and the
p-adic local monodromy theorem (Theorem 20.1.4).

Proposition 6.8.4. Let F be a complete nonarchimedean differential field of
characteristic 0. Let V be a finite differential module over F of rank n > 0
which is refined and has spectral radius s > |d|F .

(a) For any positive integer m which is nonzero in κF , V ⊗m is again refined
with spectral radius s.

(b) The spectral radius of (∧n V ∨)⊗ V ⊗n is strictly less than s.

Proof. The result is elementary (as discussed in Remark 6.2.13) if d = 0, so
we may assume that d �= 0. By Theorem 5.4.2 we may choose an isomor-
phism V ∼= F{T }/F{T }P . Let Q be the untwisted polynomial with the same
coefficients as P , and let μ be a root of Q.

As in the proof of Theorem 6.7.4 we may enlarge F in such a way that
we reduce to the case where |D|sp,V = |η| for some η ∈ F×. Equip V with
the basis given by 1, η−1T, . . . , η−n+1T n−1 and the corresponding supremum
norm. Equip V ⊗m and (∧n V ∨) ⊗ V ⊗n with the corresponding induced bases
and norms.

On V ⊗m the matrix of action of D has eigenvalues which are m-fold sums
of roots of Q. In particular, each eigenvalue λ satisfies |λ/(mμ)− 1| < 1. We
can then deduce (a) from Theorem 6.7.4.

On (∧n V ∨)⊗V ⊗n , the matrix of action of D has eigenvalues each of which
is an n-fold sum of certain roots of Q minus the sum of all the roots of Q. In
particular, each eigenvalue λ satisfies |λ/μ| < 1. Finally we deduce (b) from
Theorem 6.7.4.

6.9 Changing the constant field

We will now check that, in many cases, the operation of computing horizon-
tal sections of a differential module commutes with the operation of forming
completed tensor products.

Proposition 6.9.1. Let R be a complete nonarchimedean differential domain
such that R and Frac(R) have the same constant ring R0 (which is necessarily
a complete nonarchimedean field). Let R′

0 be a complete field extension of R0.
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Let R′ be the completed tensor product of R ⊗R0 R′
0 for the product norm

(which is a norm by Lemma 1.3.11). View R′ as a differential ring by equipping
it with the unique continuous extension of d with R′

0 in its kernel. Then, for any
differential module M over R, the natural map

H0(M)⊗R0 R′
0 → H0(M ⊗R R′)

is an isomorphism of R′
0-modules.

Proof. We first check injectivity. Since R′
0 is flat over R0, the map H0(M)⊗R0

R′
0 → H0(M ⊗R0 R′

0) is bijective by Lemma 5.1.4. Since M is finite over
R, we may identify M ⊗R R′ with the completed tensor product of M ⊗R

(R ⊗R0 R′
0) = M ⊗R0 R′

0, on which the product seminorm is a norm by
Lemma 1.3.11. In particular M ⊗R0 R′

0 injects into M ⊗R R′, so the map
H0(M ⊗R0 R′

0)→ H0(M ⊗R R′) is also injective.
We next check surjectivity in the case where R′

0 is the completion of a
finitely generated field extension S0 of R0. Then S0 is of countable dimension
over R0, so the hypothesis of Lemma 1.3.8 is satisfied by F = R0, V = R′

0.
Let m1,m2, . . . be the sequence of elements of R′

0 given by Lemma 1.3.8. As
in the proof of Lemma 1.3.11 these define projection maps λ j,R : R′ → R and
λ j,M : M ⊗R R′ → M ; these maps are both horizontal.

Given an element x ∈ H0(M⊗R R′), choose a presentation x =∑s
k=1 yk⊗zk

with yk ∈ M and zk ∈ R′. Then

λ j,M (x) =
s∑

k=1

λ j,R(zk)yk

is an element of H0(M) for each j . Moreover, we can write x as a conver-
gent sum

x =
∞∑
j=1

λ j,M (x)⊗ m j .

Hence x lies in the closure of H0(M)⊗R0 R′
0 under the product norm. However,

since H0(M) is finite-dimensional over R0 by Lemma 5.1.5, H0(M) ⊗R0 R′
0

is complete under the product norm, hence closed. Thus x ∈ H0(M) ⊗R0 R′
0

as desired.
We next check surjectivity in general. Pick any x ∈ H0(M ⊗R R′). As noted

earlier, we may identify M ⊗R R′ with the completion of M ⊗R0 R′
0 under the

product norm. We can thus choose a convergent series

x =
∞∑

k=1

yk ⊗ zk (yk ∈ M, zk ∈ R′
0).
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Let R′′
0 be the completion of the subfield of R′

0 generated over R0 by z1, z2, . . .

Then x is a horizontal element of the completion of M ⊗R0 R′′
0 , so the previous

paragraph shows that x ∈ H0(M)⊗R0 R′′
0 . This proves the claim.

Notes

Lemma 6.2.5 is tacitly assumed at various places in the literature (including
by the present author) but we were unable to locate even an explicit state-
ment, let alone a proof. We thank Liang Xiao for contributing the proof given
here.

Proposition 6.3.1 is modeled on some ongoing work of Baldassarri and Di
Vizio (a promised sequel to [11]), which gives a development of much of the
material we are discussing from the point of view of Berkovich analytic spaces.
This point of view will probably be vital for the study of differential modules
on higher-dimensional spaces. However, there are some key differences from
our approach; see the notes for Chapter 9.

Newton polygons for differential operators were considered by Dwork and
Robba [81, §6.2.3]; the first systematic treatment seems to have been given by
Robba [189]. Our treatment using Theorem 2.2.2 follows [42].

The proof of Theorem 6.5.3 given here is close to the original proof of Chris-
tol and Dwork [49, Théorème 1.5], save that we avoid a small logical gap in the
latter. The gap is in the implication 1 �⇒ 2; there one made a finite extension
of the differential field without accounting for the possibility that this might
increase |d|F to the point where Corollary 6.2.7 fails to show that |D|V is pre-
served. (It would be obvious that this does not occur if the finite extension were
being made in the constant subfield, but that was not the case.) Compare also
[80, Lemma VI.2.1].

Proposition 6.5.6 answers a conjecture of Christol and Dwork [48, Intro-
duction, Conjecture A]. This conjecture was posed in the context of giving
effective convergence bounds, and that is one use to which we will put it here;
see Theorem 18.2.1 and its proof.

The use in Lemma 6.7.3 of a well-chosen norm (meaning a norm in which at
least some singular values match eigenvalues of the matrix of action of d) is an
extension of the notion of the canonical lattice (or Deligne–Malgrange lattice)
introduced by Malgrange in the study of irregular meromorphic connections.
See [165].

The refined visible decomposition theorem is due to Liang Xiao [221]. It
was motivated by applications to refined Swan conductors of étale sheaves
and overconvergent isocrystals, as suggested by the work of Kato [119] in the
rank 1 case.
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We thank Andrea Pulita for the suggestion that Proposition 6.9.1 should be
included.

Exercises

(1) Prove Fekete’s lemma (Lemma 6.1.4).
(2) (a) Let A, B be commuting bounded endomorphisms on an abelian group

G equipped with a norm. Prove that

|A + B|sp,G ≤ |A|sp,G + |B|sp,G .

(b) Prove that if the norm on G is nonarchimedean then the inequality in
(a) can be improved to

|A + B|sp,G ≤ max{|A|sp,G , |B|sp,G}
and that equality occurs when the maximum is achieved only once.

(c) Prove that both these assertions may fail in the case where A and B
do not commute. (Hint: write an identity matrix as a sum of nilpotent
matrices.)

(3) Prove that, in Lemma 6.2.5, if |D|sp,V > |d|sp,F then |Ds |1/s converges to
a limit as s → ∞. (Hint: again reduce to Lemma 6.1.4.)

(4) Fill in the missing arguments in the proofs of Lemma 6.2.8(a), (b), using
Lemma 6.1.8.

(5) Prove the claim from the proof of Lemma 6.4.2 that, for R a nonarchi-
medean differential domain, ρ > |d|R , and P, Q ∈ R{T }, we have
|P Q − Q P|ρ ≤ ρ−1|d|R |P|ρ |Q|ρ . (Hint: reduce to the case where P
and Q are monomials and then to the case where P = T and Q ∈ R.)

(6) Exhibit an example to show that, in Definition 6.4.3, if we had not omitted
slopes greater than or equal to − log |d|R then it would no longer be the
case that the multiplicity of a slope r in a product P Q is the sum of the
multiplicities of r as a slope of P and as a slope of Q. (Hint: this can
already be seen using the t-adic valuation on Q(t) with d = d/dt .)

(7) Let (F, d) be a complete nonarchimedean differential field. Let Fρ be the
completion of F(t) for the ρ-Gauss norm. Prove that there is a unique
continuous extension of d to Fρ with d(t) = 0 and that it satisfies

|d|Fρ = |d|F , |d|sp,Fρ = |d|sp,F .

(Hint: first check everything on F[t].)
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Regular singularities

In the next part of the book, which begins with Chapter 8, we will use the
results from the previous chapters to make a detailed analysis of ordinary
differential equations over nonarchimedean fields of characteristic 0, the moti-
vating case being that of positive residual characteristic. However, before doing
so it may be helpful to demonstrate how the results apply in a somewhat
simpler setting.

In this chapter, we reconstruct some of the traditional Fuchsian theory of
regular singular points of meromorphic differential equations. (The treatment
is modeled on [80, §3].) We first introduce a quantitative measure of the
irregularity of a singular point. We then recall how, in the case of a regu-
lar singularity (i.e., a singularity with irregularity equal to zero), one has an
algebraic interpretation, using the notion of exponents, of the eigenvalues of
the monodromy operator around the singular point. We then describe how to
compute formal solutions of meromorphic differential equations and go on
to sketch the proof of Fuchs’s theorem, that the formal solutions of a regular
meromorphic differential equation actually converge in some disc. We finally
establish the Turrittin–Levelt–Hukuhara decomposition theorem, which gives
a decomposition of an arbitrary formal differential module that is analogous to
the eigenspace decomposition of a complex linear transformation. The search
for an appropriate p-adic analogue of this result will lead us in Part V to the
p-adic local monodromy theorem.

Although this chapter focuses on issues different from much of the rest of
the book, it should not be considered entirely optional. It is referenced in the
discussions of p-adic exponents in Chapter 13 and of effective convergence
bounds in Chapter 18.
Hypothesis 7.0.1. Throughout this chapter, we will view C((z)) as a complete
nonarchimedean differential field with valuation given by the z-adic valuation
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vz and derivation given by d = zd/dz; note that |d|C((z)) = 1. Let K be a field
of characteristic 0; although we do not need to think of K as a subfield of C

it is harmless to do so. (The reason is the Lefschetz principle: every statement
we make about K will refer to at most countably many elements of K , so each
individual instance of the statement can be realized over a subfield of K which
is countably generated over Q and hence embeds into C.)

7.1 Irregularity

Definition 7.1.1. Let V be a finite differential module over C((z)), and
decompose V according to Theorem 6.6.1. Define the irregularity of V as

irr(V ) =
∑
s>1

(− log s) dim(Vs).

For F a subfield of C((z)) stable under d and V a finite differential module
over F , we define the irregularity of V to be the irregularity of V ⊗F C((z)).
We say that V is regular if irr(V ) = 0.

Theorem 7.1.2. For any isomorphism V ∼= F{T }/F{T }P, the irregularity of
V is equal to minus the sum of the slopes of P; consequently, it is always an
integer. More explicitly, if P = T d +∑d−1

i=0 Pi T i then

irr(V ) = max

{
0,max

i
{−vz(Pi )}

}
.

Proof. The second assertion follows from Corollary 6.5.4, since in this case
|d|F = |d|sp,F = 1. The first assertion follows from the second because, by
Theorem 5.4.2, V always admits a cyclic vector.

Theorem 7.1.2 gives rise to several criteria for regularity.

Corollary 7.1.3. Let F be any subfield of C((z)) containing z and stable
under d, and let V be a finite differential module over F. Then the following
conditions are equivalent.

(a) The module V is regular, i.e., irr(V ) = 0.
(b) For some isomorphism V ∼= F{T }/F{T }P with P monic, P has coef-

ficients in oF .
(c) For any isomorphism V ∼= F{T }/F{T }P with P monic, P has coeffi-

cients in oF .
(d) There exists a basis of V on which D acts via a matrix over oF .
(e) For any basis B of V , the oF -span of the set {Di (v) : i ∈ {0, . . . ,

dim(V )− 1}, v ∈ B} is stable under D.
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Proof. By Theorem 7.1.2, (a) implies (c). It is obvious that (c) implies (b) and
that (b) implies (d). Given (d), let | · |V be the supremum norm defined by the
chosen basis of V ; then |D|V ≤ 1, which implies (a).

This proves that (a), (b), (c), (d) are all equivalent. To add (e) to the cir-
cle of implications, on the one hand note that (e) implies (d). On the other
hand, given (a), pick any v ∈ B; then v, D(v), D2(v), . . . generate a differ-
ential submodule W of V for which v is a cyclic vector. Since V is regular,
its submodule W is also regular by Lemma 6.2.8; since (a) implies (c), the
oF -span of {Di (v) : i ∈ {0, . . . , dim(W ) − 1}} is stable under D. This
implies (e).

Remark 7.1.4. One can also view C((z)) as a differential field with the deriva-
tion d/dz instead of zd/dz. The categories of differential modules for these
two choices of derivation are equivalent in an obvious fashion: given the action
zd/dz, we obtain the action d/dz by dividing by z. If V is a differential module
for zd/dz with spectral radius s then the spectral radius of V for d/dz is s|z|−1

(exercise). The notion of irregularity translates naturally: for instance, if V is
a differential module for d/dz that is isomorphic to F{T }/F{T }P for some
P = T n +∑n−1

i=0 Pi T i then V is regular if and only if vz(Pi ) ≥ −n + i for
i = 1, . . . , n. For example, for a, b ∈ C, the differential system corresponding
to the hypergeometric differential equation

y′′ + c − (a + b + 1)z

z(1 − z)
y′ − ab

z(1 − z)
y = 0

is regular.

Example 7.1.5. For another example from the classical theory of ordinary
differential equations, consider the Bessel equation

y′′ + 1

z
y′ + z2 − n2

z2
y = 0

for some parameter n. This gives rise to a regular differential system if we
expand around z = 0. However, if we expand around ∞, i.e., substitute 1/z
for z and then expand around z = 0, we get an irregular differential system
(exercise).

7.2 Exponents in the complex analytic setting

To see why regular singularities are so important in the complex analytic
setting (by way of motivation for our p-adic studies), let us consider the
monodromy transformation. First we recall a familiar fact.
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Theorem 7.2.1 (Cauchy). Fix ρ > 0, and let R ⊂ C�z� be the ring of
power series convergent for |z| < ρ. Let N be an n × n matrix over R. Then
the differential system D(v) = Nv + (d/dz)(v) has a basis of horizontal
sections.

Proof. This can be deduced from the fundamental theorem of ordinary differ-
ential equations; however, for future reference it will be useful to give a slightly
more detailed explanation. (Specifically, we are anticipating Definition 7.3.1.)

Note that there exists a unique n × n matrix U over C�z� such that U ≡ In

(mod z) and NU + (d/dz)(U ) = 0; this follows by writing N = ∑∞
i=0 Ni zi

and U = ∑∞
i=0 Ui zi and then rewriting the equation NU + (d/dz)(U ) = 0 as

the recurrence

(i + 1)Ui+1 =
i∑

j=0

N jUi− j (i = 0, 1, . . . ). (7.2.1.1)

Following an argument of Cauchy [80, Appendix III], we may deduce that the
entries of U converge on a disc of positive radius, as follows. (In this argument,
we use the L2 operator norm on matrices over C.) Pick any η ∈ (0, ρ). Since
N converges in the open disc of radius ρ, we have |Ni |ηi → 0 as i → ∞; in
particular, we may choose c > 1 with |Ni |ηi+1 ≤ c for all i . We then have by
induction on i that

|Ui |ηi ≤ ci (i ≥ 0):
namely, this holds for j = 0, and (7.2.1.1) implies that

|Ui+1|ηi+1 ≤ 1

i + 1

i∑
j=0

|N j |η j+1|Ui− j |ηi− j ≤ ci+1.

Consequently, the entries of U converge on the open disc of radius η/c.
The previous argument applied to the system (−N )U−T +(d/dz)(U−T )= 0

shows that the entries of U−1 also converge on an open disc. Consequently,
we can find an open neighborhood of z = 0 on which the differential sys-
tem admits a basis of horizontal sections. By translating we may derive the
same conclusion around any point of the original disc; since that disc is simply
connected, we obtain a basis of horizontal sections over the entire disc.

Remark 7.2.2. In the p-adic setting we will see that the first step of the proof
of Theorem 7.2.1 remains valid, but there is no analogue of the second step
(analytic continuation), and indeed the whole conclusion becomes false; see
Example 0.4.1.
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Let us now consider a punctured disc and look at monodromy.

Notation 7.2.3. In this chapter only, for K a subfield of C, let K {z} be the
subfield of K ((z)) consisting of formal Laurent series which represent mero-
morphic functions on some neighborhood of z = 0. The exact choice of that
neighborhood may vary with the series.

Definition 7.2.4. Let V be a finite differential module over C{z}; choose a
basis of V and let N be the matrix of action of D on this basis. On some disc
centered at z = 0, the entries of N are meromorphic with no poles away from
z = 0. On any subdisc not containing 0, by Theorem 7.2.1 we obtain a basis
of horizontal sections. If we start with a basis of horizontal sections in a neigh-
borhood of some point away from 0 and then analytically continue around a
circle, proceeding once counterclockwise around the origin, we end up with a
new basis of local horizontal sections. The linear transformation taking the old
basis to the new one is called the monodromy transformation of V (or of its
associated differential system). The (topological) exponents of V are defined
(modulo translation by Z) to be the multiset of numbers α1, . . . , αn for which
e−α1 , . . . , e−αn are the eigenvalues of the monodromy transformation.

The monodromy transformation controls our ability to construct global
horizontal sections, by the following statement whose proof is evident.

Proposition 7.2.5. In Definition 7.2.4, any fixed vector under the monodromy
transformation corresponds to a horizontal section defined on some punc-
tured disc rather than on the universal covering space of a punctured disc.
As a result, the monodromy transformation is unipotent (i.e., the exponents are
all zero) if and only if there exists a basis on which D acts via a nilpotent
matrix.

Definition 7.2.6. In Definition 7.2.4, we say that V is quasiunipotent if its
exponents are rational; equivalently, the monodromy transformation of V
becomes unipotent after V is pulled back along z �→ zm for some positive
integer m. This situation arises for Picard–Fuchs modules; see Chapter 22.

Remark 7.2.7. The relationship between the properties of the monodromy
transformation and the existence of horizontal sections of the differential mod-
ule begs the following question: is it possible to extract the monodromy
transformation for a differential module, whose definition is purely ana-
lytic, from the algebraic data that defines the differential system? The only
case in which this is straightforward is that of a regular module, which we
consider next.
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7.3 Formal solutions of regular differential equations

One can formally imitate the proof of Cauchy’s theorem (Theorem 7.2.1) in
the regular case, as follows.

Definition 7.3.1. Let N = ∑∞
i=0 Ni ti be an n × n matrix with entries in

K �z�. A fundamental solution matrix for N is an n × n matrix U with U ≡ In

(mod z) such that U−1 NU + U−1z(d/dz)(U ) = N0.

Remark 7.3.2. Note that if U is a fundamental solution matrix for N then

−U T N T U−T +U T z
d

dz
(U−T ) = −U T N T U−T −U T U−T

(
z

d

dz
(U T )

)
U−T

= −U T N T U−T −
(

z
d

dz
(U T )

)
U−T

= −N T
0 .

That is, U−T is a fundamental solution matrix for −N T . Consequently, by
proving a general result about U we also obtain a corresponding result for
U−T , and hence for U−1.

To specify when a fundamental solution matrix exists, we need the following
definition.

Definition 7.3.3. We say that a square matrix N with entries in a field of
characteristic 0 has prepared eigenvalues if the eigenvalues λ1, . . . , λn of N
satisfy the following conditions:

λi ∈ Z ⇔ λi = 0,

λi − λ j ∈ Z⇔ λi = λ j .

If only the second condition holds, we say that N has weakly prepared
eigenvalues.

We will also need the following lemma, which will come up again several
times later.

Definition 7.3.4. Let N be a nilpotent n × n matrix over K . The nilpotency
index of N is the smallest positive integer e such that N e = 0.

Lemma 7.3.5. Let N1 and N2 be matrices of respective sizes m ×m and n ×n
over K . Let λ1,1, . . . , λ1,m and λ2,1, . . . , λ2,n be the eigenvalues of N1 and
N2, respectively. Then the eigenvalues of the K -linear endomorphism X �→
N1 X + X N2 on the space of m ×n matrices over K are equal to λ1,i +λ2, j for
i = 1, . . . ,m, j = 1, . . . , n. Moreover, if N1 and N2 are themselves nilpotent,
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with respective nilpotency indices e1, e2, then the nilpotency index of X �→
N1 X + X N2 equals e1 + e2 − 1.

Proof. There is no harm in enlarging K , so we may assume that it is alge-
braically closed. Moreover, if U1 ∈ GLm(K ) and U2 ∈ GLn(K ) then it is
equivalent to calculate the eigenvalues of the conjugated endomorphism

X �→U−1
1 (N1(U1 XU−1

2 )+(U1 XU−1
2 )N2)U2 = (U−1

1 N1U1)X+X (U−1
2 N2U2).

Consequently, we may conjugate N1 and N2 into Jordan normal form. By sep-
arating X into blocks, we may reduce to the case where N1 and N2 consist of
single Jordan normal blocks with eigenvalues λ1 and λ2. By subtracting λ1 and
λ2 from the overall endomorphisms, we may reduce to the case λ1 = λ2 = 0,
for which we want to show that the map X �→ N1 X + X N2 is nilpotent with
nilpotency index at most e1 + e2 − 1. This can be done easily by hand but can
also be seen as follows: put f (X) = N1 X+X N2, and write the i th composition
of f as

f i (X) =
i∑

j=0

(
i

j

)
N j

1 X N i− j
2 .

If i ≥ e1 + e2 − 1 then in each term we have either j ≥ e1 or i − j ≥ e2,
so the whole sum vanishes. If i = e1 + e2 − 2 then similarly every term
vanishes except possibly

(e1+e2−2
e1−1

)
N e1−1

1 X N e2−1
2 . Since we are assuming that

K has characteristic 0, the binomial coefficient
(e1+e2−2

e1−1

)
is nonzero and the

matrices N e1−1
1 , N e2−1

2 must be nonzero, so we can make this product nonzero
by choosing a suitable matrix X .

Proposition 7.3.6. Let N = ∑∞
i=0 Ni ti be an n × n matrix with entries in

K �z� such that N0 has weakly prepared eigenvalues. Then N admits a unique
fundamental solution matrix.

Proof. Let λ1, . . . , λn ∈ K alg be the eigenvalues of N0. Rewrite the defining
equation as NU +z(d/dz)(U ) = U N0, then expand U as

∑∞
i=0 Ui ti and write

the new defining equation as a recurrence:

iUi = Ui N0 − N0Ui −
i∑

j=1

N jUi− j (i > 0). (7.3.6.1)

Viewing the map X �→ X N0 − N0 X as a linear transformation on the space
of n × n matrices over K ((t)), we see by Lemma 7.3.5 that its eigenvalues
are the differences λ j − λk for j, k = 1, . . . , n. Likewise, the eigenvalues
of X �→ i X − X N0 + N0 X are i − λ j + λk ; for i a positive integer, the
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condition that the λ’s are weakly prepared ensures that i − λ j + λk cannot
vanish (indeed, it cannot be an integer unless it equals i). Consequently, given
N and U0, . . . ,Ui−1 there is a unique choice of Ui satisfying (7.3.6.1); this
proves the desired result.

Remark 7.3.7. Suppose that N is an n × n matrix with entries in C�z� whose
constant term has prepared eigenvalues. If we convert the differential system
defined by N into a differential module M , the C-span of the columns of the
fundamental solution matrix forms a C-submodule of M that is stable under
D. In fact, the action of D on M is the linear transformation defined by N0.
Since this transformation may be nonzero, the elements of this span are not
all horizontal; however, one can show (exercise) that every horizontal element
of M does appear in the span. This justifies the name “fundamental solution
matrix”.

This formal argument becomes relevant in the complex analytic setting by
virtue of the following informal fact. For a proof see [80, §III.8, Appendix II]
or the exercises.

Theorem 7.3.8 (Fuchs). Let N = ∑∞
i=0 Ni ti be an n × n matrix with entries

in C{z} such that N0 has weakly prepared eigenvalues. Then the fundamen-
tal solution matrix for N over C�z� also has entries in C{z} (as does its
inverse).

Corollary 7.3.9. With notation as in Theorem 7.3.8, let λ1, . . . , λn be the
eigenvalues of N0. Then the eigenvalues of the monodromy transformation of
the system D(v) = Nv + d(v) are e−2π iλ1 , . . . , e−2π iλn .

Proof. In terms of a basis on which the matrix of action of D is N0, the matrix
exp(−N0 log(z)) provides a basis of horizontal elements. (The case N0 = 0 is
given by Theorem 7.2.1.)

In order to enforce the condition on prepared eigenvalues, we use what are
classically known as shearing transformations.

Proposition 7.3.10 (Shearing transformations). Let N be an n × n matrix
over K �z� whose entries have constant term N0. Let α1, . . . , αm ∈ K alg be
eigenvalues of N forming a single Galois orbit over K . Then there exists U ∈
GLn(K [z, z−1]) such that U−1 NU + U−1d(U ) also has entries in K �z�, and
its matrix of constant terms has the same eigenvalues as N0 except that every
instance of each αi has been replaced by αi + 1. The same conclusion holds if
αi − 1 replaces αi + 1.

Proof. Exercise.
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Corollary 7.3.11 (Fuchs). Let V be a regular finite differential module over
C{z}. Then any horizontal element of V ⊗C{z} C((z)) belongs to V itself; that
is, any formal horizontal section is convergent. (This is false in the irregular
case; see the notes.)

Proof. Using Proposition 7.3.10 we may construct a basis of V on which D
acts via a matrix in C�z� ∩ C{z} whose constant term has weakly prepared
eigenvalues. By Remark 7.3.7, any horizontal element of V ⊗C{z} C((z)) is a
C-linear combination of column vectors of the fundamental solution matrix;
by Theorem 7.3.8, any such linear combination converges in a disc.

To put everything together, we need the following result.

Proposition 7.3.12. Let V be a regular finite differential module over K ((z)).
Then there exists a basis of V on which the matrix of action of d has entries in
K and prepared eigenvalues.

Proof. By Proposition 6.5.6 we can find a K �z�-lattice L in V (i.e., a finitely
generated K �z�-submodule whose K ((z))-span is the whole of V ) which is
stable under d. By Proposition 7.3.10 we can modify L in such a way that the
constant term of the matrix of action of d on some basis of L has prepared
eigenvalues. (Because we cannot separate Galois conjugates, the previous
statement relies on the fact that no two distinct Galois conjugates α, β over
K may differ by a nonzero integer. This fact holds because the trace from the
Galois closure of K (α, β) to K vanishes on α−β but is injective on K because
K is of characteristic 0.) We may then apply Proposition 7.3.6 to deduce the
claim.

7.4 Index and irregularity

We mention very briefly an alternate interpretation of irregularity considered
by Malgrange.

Definition 7.4.1. Let F be any subfield of K ((z)) stable under d, and let V be
a finite differential module over F . We say V has an index if dimK H0(V ) and
dimK H1(V ) are both finite; in this case we define the index of V as χ(V ) =
dimK H0(V )− dimK H1(V ).

Proposition 7.4.2. For any finite differential module V over K ((z)),
dimK H0(V ) = dimK H1(V ) <∞ and so χ(V ) = 0.

Proof. Exercise.
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In the convergent case, the index carries more information.

Theorem 7.4.3. Let V be a finite differential module over C{z}. Then V has
an index, and χ(V ) = − irr(V ).

Proof. See [164, Théorème 2.1].

7.5 The Turrittin–Levelt–Hukuhara decomposition theorem

One can classify differential modules over K ((z)) rather simply, provided that
one is willing to admit finite field extensions. Note that the results do not
descend from C((z)) to C{z}, owing to the failure of Corollary 7.3.11 in the
irregular case. Nonetheless, even a formal classification is extremely useful;
see the notes.

Note the use of the refined visible decomposition theorem (Theorem 6.8.2)
in the following proof.

Theorem 7.5.1. Let V be a finite differential module over K ((z)). Then there
exist a positive integer h and a finite extension K ′ of K such that V ⊗K ((z))

K ′((z1/h)) admits a direct sum decomposition ⊕i Vi in which each V ∨
i ⊗ Vi is

regular.

Proof. We induct on the dimension of V . Let v be a generator of ∧n V , write
D(v) = sv, and let W be the differential module over K ((z)) having one
generator w satisfying D(v) = n−1sw. Note that W∨ ⊗ V cannot be refined,
as otherwise Proposition 6.8.4(a) would imply that W∨ ⊗ V has the same
spectral radius as ∧n(W∨ ⊗ V ) ∼= (W∨)⊗n ⊗∧n V , which is trivial.

By Theorem 6.8.2, either W∨⊗V is regular or refined or, for suitable h, K ′,
(W∨ ⊗ V )⊗K ((z)) K ′((z1/h)) splits as a nontrivial direct sum. Since we have
ruled out the refined case, either W∨ ⊗ V is regular, and so V ∨ ⊗ V is regular,
or we may invoke the induction hypothesis.

Remark 7.5.2. If we insist that the decomposition in Theorem 7.5.1 be min-
imal (i.e., that it should have as few summands as possible), then it is in fact
unique. Consequently, such a minimal decomposition must be respected by
any extra structures on V which respect the action of d. For instance, if K car-
ries one or more derivations, and we equip V with actions of these derivations,
then the decomposition is preserved by these actions.

From the proof of Theorem 7.5.1 we can immediately read off the following
classification of the components appearing in the direct sum decomposition
therein.
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Theorem 7.5.3. Let V be a finite differential module over K ((z)) such that
V ∨ ⊗ V is regular. Then there exists a differential module W of rank 1 such
that W∨ ⊗ V is regular.

Corollary 7.5.4. Suppose that K is algebraically closed. Let V be a finite
differential module over K ((z)) such that V ∨ ⊗ V is regular. Then there is a
unique decomposition V = ⊕i Vi such that V ∨

i ⊗ Vj has all exponents zero if
i = j and all exponents nonzero if i �= j .

Proof. If V itself is regular, the corollary follows from Proposition 7.3.12 and
the fact that a linear transformation over an algebraically closed field decom-
poses as a direct sum of generalized eigenspaces. In general we may replace
V with W∨ ⊗ V for some V as specified in Theorem 7.5.3 and reduce to the
regular case.

The strongest form of the Turrittin–Levelt–Hukuhara decomposition is
the following statement, which both eliminates the base extension in
Theorem 7.5.1 and incorporates the statement of Theorem 7.5.3.

Definition 7.5.5. Let h be a positive integer, and suppose that P =
{P1, . . . , Ph} is a Galois orbit over K ((z)). Let F be a finite Galois exten-
sion of K ((z)) containing P1, . . . , Ph . Then the differential module of rank h
over F with generators e1, . . . , eh satisfying

d(ei ) = Pi ei (i = 1, . . . , h)

descends uniquely to a differential module over K ((z)), which we denote
E(P). When the orbit is a singleton, {P1}, we also write E(P1) as shorthand
for E({P1}). (See the proof of Theorem 7.5.6 for more on the Galois descent
construction.)

Theorem 7.5.6. Let V be a finite differential module over K ((z)). Then V
admits a direct sum decomposition

V =
⊕

i

E(Pi )⊗ Xi

for some Galois orbits Pi and some regular differential modules Xi .

Proof. Suppose first that the conclusion of Theorem 7.5.1 applies with
K ′((z1/h))= K ((z)). Then Theorem 7.5.3 implies that V = E(P) ⊗ X for
some P ∈ K ((z)) and some regular differential module X . In fact, there
is a unique choice of P ∈ z−1 K [z−1] for which such an X exists, and the
decomposition is also unique.
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In general, we get a decomposition of the desired form over K ′((z1/h))

for some finite extension K ′ of K and some positive integer h. We can
deduce the desired assertion from this using a Galois descent argument. Put
G = Gal(K ′((z1/h))/K ((z))). For τ ∈ G, note that we can base change along
τ (as in Definition 5.3.2) to define τ ∗V .

As above, we choose each Pi to consist entirely of elements of
z−1/h K ′[z−1/h]. For each i and each τ ∈ G, we must then have τ(Pi ) = Pj

for some j . From the uniqueness of the decomposition, we get an isomorphism

ψτ : τ ∗(E(Pi )⊗ Xi )→ E(Pj )⊗ X j .

These isomorphisms satisfy a cocycle condition: for σ, τ ∈ G, we have

ψστ = σ ∗(ψτ ) ◦ ψσ .
We may canonically identify τ ∗E(Pi ) with E(Pj ) by matching up the gen-
erator w ⊗ 1 with the generator w. We may then canonically identify ψτ
with a horizontal element of E(Pj )

∨ ⊗ E(Pj ) ⊗ τ ∗X∨
i ⊗ X j . By project-

ing onto the trace component of E(Pj )
∨ ⊗ E(Pj ) we get a horizontal element

of τ ∗X∨
i ⊗ X j , which in turn we identify with a morphism ψ ′

τ : τ ∗Xi → X j .
These maps again satisfy the cocycle condition, so Galois descent allows us
to identify each Xi with the base extension of a differential module X ′

i over
K ((z)). Under this identification, if P ′

i denotes the Galois orbit of Pi , we get a
canonical identification

(E(P ′
i )⊗ X ′

i )⊗K ((z)) K ′((z1/h)) ∼=
⊕

j :Pj∈P ′
i

E(Pj )⊗ X j .

This proves the claim.

Remark 7.5.7. The proof of Theorem 7.5.6 shows that both the direct sum
decomposition and the identification of the tensor factors in each summand
can be made canonical, by insisting that each Pi consist of elements of
z−1/h K ′[z−1/h] for some finite extension K ′ of K and some positive inte-
ger h. However, everything still depends implicitly on the choice of the series
parameter z in the field K ((z)); in many applications, such a choice is not at
all obvious.

Notes

The notion of a regular singularity was introduced by Fuchs in the nine-
teenth century as part of a classification of those differential equations
with everywhere-meromorphic singularities on the Riemann sphere which
have algebraic solutions. Regular singularities are sometimes referred to as
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Fuchsian singularities. Much of our modern understanding of the regu-
larity condition, especially in higher dimensions, comes from the book of
Deligne [68].

As noted in the text, Corollary 7.3.11 is false for irregular modules. This was
originally noticed in numerous examples of particular differential equations
(e.g., the Bessel equation at infinity; see Example 20.2.1) and motivated the
definition of irregularity in the first place.

The relationship between the interpretations of irregularity using the Newton
polygon and using indices is due to Malgrange [164]. Our treatment, in which
the spectral radius plays a pivotal role, is based on [80, §3]; this point of view
is ultimately due to Robba.

A complex analytic interpretation of the Newton polygon, in the manner
of the relation between irregularity and index, was given by Ramis [186]. It
involves considering subrings of C{z} composed of functions having certain
extra convergence restrictions (Gevrey functions) and looking at the index of
z d/dz after tensoring the given differential module with one of these subrings.

Theorem 7.5.6 is a slight reformulation of classification results due to
Turrittin [212] (building on earlier work of Hukuhara in the rank 1 case) for the
existence aspect and to Levelt [158] for the uniqueness aspect. See [7, II.3.1]
for further discussion; we further recommend [7] for higher-dimensional
analogues of the results discussed in this chapter. See [144] for some addi-
tional higher-dimensional analogues, presented in much the same style as in
this chapter.

Exercises

(1) Let V be a differential module over K ((z)) with spectral radius s for
zd/dz. Prove that the spectral radius of V for d/dz is s|z|−1.

(2) Verify the claims of Example 7.1.5.
(3) Let N be an n × n matrix over K �z� whose constant term has prepared

eigenvalues. Prove that any vector v ∈ K ((z))n with Nv+z(d/dz)(v) = 0
is a K -linear combination of columns of the fundamental solution matrix
of N . (Hint: change basis first.)

(4) Prove Fuchs’s theorem (Theorem 7.3.8). (Hint: let U = ∑∞
i=0 Ui zi be

the fundamental solution matrix of N . Relate the norms of Ui and iUi −
Ui N0 + N0Ui by considering the singular values of the map X �→ X −
X N0 + N0 X . Then use (7.3.6.1) to obtain∣∣∣∣Ui − Ui N0 − N0Ui

i

∣∣∣∣ ≤ 1

i

i∑
j=1

|N j ||Ui− j | ≤ max
1≤ j≤i

{|N j ||Ui− j |}

and proceed as in the proof of Theorem 7.2.1.)
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(5) Prove Proposition 7.3.10. (Hint: show that, for any space V of constant
vectors stable under multiplication by N0, the set of vectors with entries
in K �z� whose reductions modulo z belong to V are closed under the
operation v �→ Nv + d(v). Then take V to be a union of generalized
eigenspaces.)

(6) Prove Proposition 7.4.2. (Hint: change basis by preparing eigenvalues and
then applying Theorem 7.3.8.)

(7) Let Q ∈ K ((z))[U ] be a polynomial whose roots λ1, . . . , λn ∈ K ((z))alg

satisfy |λi/λ j − 1| < 1 for all i, j . Prove that there exists λ ∈ K ((z)) such
that |λi/λ − 1| for all i . Then show that this fails without the hypothesis
that K has characteristic 0.





Part III

p-adic Differential Equations on Discs
and Annuli
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Rings of functions on discs and annuli

In Part III we focus our attention specifically on p-adic ordinary differential
equations (although most of our results apply also to complete nonarchime-
dean fields of residual characteristic 0). To do this with maximal generality,
one would need first to introduce a category of geometric spaces over which to
work. This would require a fair bit of discussion of either rigid analytic geome-
try, in the manner of Tate, or nonarchimedean analytic geometry in the manner
of Berkovich, neither of which we want either to assume or introduce. Fortu-
nately, since we only need to consider one-dimensional spaces, we can manage
by working completely algebraically and considering differential modules over
appropriate rings.

In this chapter, we introduce those rings and collect their basic algebraic
properties. This includes the fact that they carry Newton polygons analo-
gous to those for polynomials. Another key fact is that there is a form of the
approximation lemma (Lemma 1.3.7) valid over some of these rings.

Notation 8.0.1. Throughout this part, let K be a field of characteristic 0 that
is complete for a nontrivial nonarchimedean norm | · |. (The assumption of
characteristic 0 is not used in this chapter; it will become crucial when we start
discussing differential modules again.) Let p denote the characteristic of the
residue field κK . We do not assume p > 0 (as the case p = 0 may be useful for
some applications), but when p > 0 we do require the norm to be normalized
in such a way that |p| = p−1.

Definition 8.0.2. By a piecewise affine function on an interval I we will mean
a continuous function f : I → R such that I can be covered with intervals
of positive length, on each of which f restricts to an affine function (i.e., a
function of the form ax + b for some a, b ∈ R). By the compactness of a
closed interval (see Lemma 8.0.4), it is equivalent to require that each point of I

135
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admit a one-sided neighborhood, on each side within I , on which f restricts to
an affine function. (If I is infinite, we allow the possibility of having infinitely
many different slopes unless we say otherwise explicitly.)

Example 8.0.3. An example specifically excluded by Definition 8.0.2 is the
function f : [0, 1] → R defined by

f (x) =
⎧⎨⎩

1/2 x = 0,
1/2 − 1/(N + 1)+ N/(N + 2) (1/N − x) x ∈ [

1/(N + 1), 1/N
]
,

N = 1, 2, . . . ;
this function is piecewise affine on (0, 1] and continuous on [0, 1], but there is
no one-sided neighborhood of 0 on which f is affine.

Lemma 8.0.4. Let I = [α, β] be a (bounded) closed interval. Let S be a set
of closed subintervals of I which cover every one-sided neighborhood of every
point in I . (That is, for any γ ∈ [α, β), there exist δ ∈ (γ, β] and J ∈ S
such that [γ, δ] ⊆ J and, similarly, for any γ ∈ (α, β], there exist δ ∈ [α, γ ]
and J ∈ S such that [δ, γ ] ⊆ J .) Then there exists a finite subset of S with
union I .

Proof. Exercise.

8.1 Power series on closed discs and annuli

We start by introducing some rings that should be thought of as the analytic
functions on a closed disc |t | ≤ β or a closed annulus α ≤ |t | ≤ β. As noted
above, this is more properly done in a framework of p-adic analytic geometry,
but nevertheless we choose to avoid this framework.

Definition 8.1.1. For α, β > 0, put

K 〈α/t, t/β〉 =
{∑

i∈Z

ci t
i ∈ K �t, t−1� : lim

i→±∞ |ci |ρi = 0 (ρ ∈ [α, β])
}
.

That is, consider the set of formal bidirectional power series which converge
whenever one inserts a value for t with |t | ∈ [α, β] or, in other words, when
α/|t | and |t |/β are both at most 1; it suffices to check for ρ = α and ρ =
β. Although formal bidirectional power series do not form a ring, the subset
K 〈α/t, t/β〉 does form a ring under the expected operations. (In this and all
similar notation, we will omit β when it is equal to 1.)

Definition 8.1.2. If α = 0, the only reasonable interpretation of the previous
definition is to require ci = 0 for i < 0. When there are no negative powers
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of t , it is redundant to require convergence for ρ < β. In other words, we shall
define

K 〈0/t, t/β〉 = K 〈t/β〉 =
{ ∞∑

i=0

ci t
i ∈ K �t� : lim

i→∞ |ci |β i = 0

}
.

One can also write K 〈α/t〉, for which the implied value of β is ∞. More
succinctly put, we identify K 〈α/t, t/β〉 with K 〈β−1/t−1, t−1/α−1〉. We do
not allow both α and β to equal 0, as this case is exceptional: no condition is
then imposed on the power series except that negative indices cannot occur.
This results in the ring K �t�.

Remark 8.1.3. Note that if α ≤ γ ≤ β ≤ δ then, within K 〈γ /t, t/β〉,
K 〈α/t, t/β〉 ∩ K 〈γ /t, t/δ〉 = K 〈α/t, t/δ〉.

This will serve as the basis for some gluing arguments later.

Definition 8.1.4. We will also occasionally use the intermediate ring

K �t/β�0 =
{ ∞∑

i=0

ci t
i ∈ K �t� : sup

i
{|ci |β i } <∞

}
;

these are the power series which converge and take bounded values on the open
disc |t | < β. (The notation will make more sense once we have also defined
K �t/β�δ for δ > 0; see Definition 18.4.1.) Note that, for any δ ∈ (0, β),

K 〈t/β〉 ⊂ K �t/β�0 ⊂ K 〈t/δ〉.
We will most often use this construction with β = 1, in which case we can
also write

K �t�0 = oK �t� ⊗oK K .

Definition 8.1.5. An analogue of the previous construction for an annulus is

K 〈α/t, t/β�0 =
{∑

i∈Z

ci t
i : ci ∈ K , lim

i→−∞ |ci |αi = 0, sup
i
{|ci |β i } <∞

}
;

these are the Laurent series which converge and take bounded values on the
half-open annulus α ≤ |t | < β. For any δ ∈ [α, β), this ring satisfies

K 〈α/t, t/β〉 ⊂ K 〈α/t, t/β�0 ⊂ K 〈α/t, t/δ〉.
One can also use the boundedness condition on both sides, defining

K �α/t, t/β�0 =
{∑

i∈Z

ci t
i : ci ∈ K , sup

i
{|ci |αi } <∞, sup

i
{|ci |β i } <∞

}
.
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Remark 8.1.6. The rings of bounded series behave well only in the case where
K is discretely valued; otherwise, they are not even noetherian (exercise). For
general K it is better to work with rings of analytic elements; see Section 8.5.

8.2 Gauss norms and Newton polygons

The rings K 〈α/t, t/β〉 behave quite like polynomial rings (or Laurent polyno-
mial rings, in the case α �= 0) in one variable. The next few statements are all
instances of this analogy.

Definition 8.2.1. From the definition of K 〈α/t, t/β〉, we see that it carries a
well-defined ρ-Gauss norm∣∣∣∣∣∑

i

ci t
i

∣∣∣∣∣
ρ

= max
i

{|ci |ρi }

for any ρ ∈ [α, β]. For ρ = α = 0, this reduces to simply |c0|. The fact that
this is a multiplicative norm follows as in Proposition 2.1.2. In the additive
version (Gauss valuation) one takes r ∈ [− logβ,− logα] and puts

vr

(∑
i

ci t
i

)
= min

i
{v(ci )+ ri},

where v(c) = − log |c|. There is also a β-Gauss norm on K 〈α/t, t/β�0,
although it must be defined as a supremum that may fail to be achieved if
K is not discretely valued.

Definition 8.2.2. One may define the Newton polygon for an element
x = ∑

i xi t i ∈ K 〈α/t, t/β〉 as the boundary of the lower convex hull of the set

{(−i, v(xi )) : i ∈ Z, xi �= 0},
retaining only those slopes within [− logβ,− logα].
Proposition 8.2.3. Let x = ∑

i xi t i ∈ K 〈α/t, t/β〉 be nonzero.
(a) The Newton polygon of x has finite width.
(b) The function r �→ vr (x) on [− logβ,− logα] is continuous, piecewise

affine, and concave. Moreover, even if α = 0 there are only finitely
many different slopes.

(c) The function ρ �→ |x |ρ on [α, β] is continuous and log-convex. The
log-convexity means that if ρ, σ ∈ [α, β], c ∈ [0, 1], and τ = ρcσ 1−c

then

|x |τ ≤ |x |cρ |x |1−c
σ .
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(d) If α = 0 then vr (x) is increasing on [− logβ,+∞); in other words,
for all ρ ∈ [0, β], |x |ρ ≤ |x |β .

Part (c) should be thought of as a nonarchimedean analogue of the
Hadamard three-circle theorem.

Proof. We have (a) because there is a least i for which |ci |αi is maximal, and
there is a greatest j for which |c j |β j is maximal. This implies (b) because,
as in the polynomial case, we may interpret vr (x) as the y-intercept of the
supporting line of the Newton polygon of slope r . This in turn implies (c), and
(d) is a remark made earlier.

Remark 8.2.4. The analogue of Proposition 8.2.3 for x ∈ K 〈α/t, t/β�0 also
holds except that if K is not discretely valued then vr (x) need not be piecewise
affine in a one-sided neighborhood of r = − logβ (exercise).

When dealing with the ring K 〈α/t, t/β〉, the following completeness
property will be extremely useful.

Proposition 8.2.5. The rings K 〈α/t, t/β〉 and K 〈α/t, t/β�0 are Fréchet com-
plete for norms | · |ρ for all ρ ∈ [α, β]. That is, if {xn}∞n=0 is a sequence which
is simultaneously Cauchy under | · |ρ for all ρ ∈ [α, β] then it is convergent.
(By Proposition 8.2.3 it suffices to check the Cauchy property at ρ = α, β, or
just at ρ = β in the case α = 0.)

Proof. Exercise.

The completeness property is used in the construction of multiplicative
inverses, for instance.

Lemma 8.2.6
(a) A nonzero element f ∈ K 〈t/β〉 is a unit if and only if there exists c ∈ K×

such that | f − c|β < | f |β .
(b) A nonzero element f ∈ K 〈α/t, t/β〉 is a unit if and only if there exist

c ∈ K× and i ∈ Z such that | f − cti |ρ < | f |ρ for ρ = α, β.
(c) If α < β then a nonzero element f ∈ K 〈α/t, t/β�0 is a unit if and only

if there exist c ∈ K× and i ∈ Z such that | f − cti |ρ < | f |ρ for all
ρ ∈ [α, β).

Proof. If f is a unit then the Newton polygon of f has no slope in [α, β];
this implies the forward implication in all cases. For the reverse implication in
cases (a) and (b), it suffices to check that if | f − 1|ρ < | f |ρ , for ρ = α in
case (a) or for ρ = α, β in case (b), then f is a unit. This holds because the
series
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∞∑
j=0

(1 − f ) j (8.2.6.1)

converges by Proposition 8.2.5, and its limit is the inverse of f .
For the reverse implication in case (c), we note that the series (8.2.6.1) con-

verges in K 〈α/t, t/δ〉 for each δ ∈ [α, β). Moreover, the terms of the sum have
bounded β-norm, so the limit does also.

8.3 Factorization results

We need a number of results to the effect that elements of one ring that we
are considering can be factored into “positive” and “negative” parts. The basic
result of this form may be viewed as a form of the Weierstrass preparation
theorem.

Proposition 8.3.1 (Weierstrass preparation). Assume one of the following
two sets of conditions.

(a) Put R = K 〈α/t, t/β〉 or R = K 〈α/t, t/β�0. Given f = ∑
i∈Z fi t i ∈

R and ρ ∈ [α, β], suppose that there is a unique m ∈ Z maximizing
| fm |ρm.

(b) Put R = K 〈α/t, t/α�0 and put ρ = α. Given f = ∑
i∈Z fi t i ∈ R,

suppose that the supremum of | fi |ρi is achieved by at least one i (this
is only guaranteed to hold if K is discretely valued), and let m be the
least such i .

Then there is a unique factorization f = fmtm gh, with

g ∈ R ∩ K �t�, h ∈ R ∩ K �t−1�,

such that |g|ρ = |g0| = 1 and |h − 1|ρ < 1.

Proof. As in Theorem 2.2.1, we invoke the master factorization theorem
(Theorem 2.2.2). This gives a factorization of the desired form in the com-
pletion of R with respect to | · |ρ .

However, within this completion, define the subring R′ = K 〈ρ/t, t/β〉 if
R = K 〈α/t, t/β〉 or R′ = K 〈ρ/t, t/β�0 if R = K 〈α/t, t/β�0. Then h is a
unit in R′ ∩ K �t−1� = K 〈ρ/t〉 and hence in R′. We thus have g = f h−1 ∈
R′ ∩ K �t� = R ∩ K �t�. We may similarly deduce that h ∈ R ∩ K �t−1�.

In light of the finite-width property of the Newton polygon, the fol-
lowing should not be a surprise. (One can only replace K 〈α/t, t/β〉 with
K 〈α/t, t/β�0 if K is discretely valued; see the exercises.)
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Proposition 8.3.2 (More Weierstrass preparation). For f ∈ K 〈α/t, t/β〉
with β < +∞, there exists a polynomial P ∈ K [t] and a unit g ∈
K 〈α/t, t/β〉× such that f = Pg. In particular, K 〈α/t, t/β〉 is a principal
ideal domain (even if β = +∞).

Proof. If α > 0 then we may apply Proposition 8.3.1(b) to f since the New-
ton polygon has only finitely many slopes. We may thus factor f in R =
K 〈α/t, t/α�0 as fmtm gh with fm ∈ K , m ∈ Z, g ∈ R ∩ K �t� = K �t/α�0,
h ∈ R ∩ K �t−1� = K 〈α/t〉, |g|α = |g0| = 1, and |h − 1|α < 1. In particular
h is a unit in K 〈α/t〉 by Lemma 8.2.6, so

h−1 f ∈ K 〈α/t, t/β〉 ∩ tm K �t/α�0 ⊆ tm K 〈t/β〉.
If α = 0, the same conclusion holds with h = 1,m = 0.

Next, factor h−1 f in K 〈β−1/t−1, t−1/β−1�0 and argue as above, to get
an “associate element” of f in K 〈α/t, t/β〉 which belongs to tm K 〈t/β〉 ∩
tn K 〈α/t〉 for some integer n. This element must now belong to K [t] if α = 0
or to K [t, t−1] if α > 0; in either case we may deduce the claim.

We next wish to generalize the previous considerations to matrices, but this
will require a bit more care.

Lemma 8.3.3. Let A be an invertible n × n matrix over K 〈α/t, t/β〉. Then A
can be factored as a product of elementary matrices.

Proof. We first note that we can perform a sequence of elementary row opera-
tions after which A11 becomes a unit and Ai1 becomes zero for i = 2, . . . , n.
Namely, using Proposition 8.3.2, multiply each row by a suitable unit to replace
each Ai1 by an element of K [t]. Then perform the Euclidean algorithm in K [t]
on the Ai1 to achieve the desired result.

To finish, it suffices to note that we can now perform the usual Gauss–Jordan
elimination over A: repeatedly apply the previous paragraph to construct a
sequence of row operations putting A into upper triangular form and then
perform column operations to eliminate entries above the diagonal.

Lemma 8.3.4. Let A be an invertible n × n matrix over K 〈t/ρ〉 (resp. over
K 〈ρ/t, t/ρ〉.) Then there exists U ∈ GLn(K [t]) (resp. U ∈ GLn(K [t, t−1]))
such that |U A − In|ρ < 1.

Proof. Note that in the notation of Definition 4.0.3, conjugating an elemen-
tary matrix of type (c) (scaling a row) by one of type (a) (swapping rows)
produces another of type (c), whereas conjugating an elementary matrix of
type (b) (adding a multiple of one row to another) by one of type (c) produces
another of type (b). Consequently, any sequence of elementary row operations
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has the same effect as another sequence in which all steps of type (a) and (b)
happen before all steps of type (c).

By Lemma 8.3.3 we can perform a sequence of elementary row operations
on A that produces the identity matrix. By this, plus the previous paragraph,
we can perform another sequence of elementary row operations, of types
(a) and (b), on A that produces a diagonal matrix D. By appending additional
row operations of type (c) with c ∈ K× (resp. c ∈ K×tZ), we can force
|D − In|ρ < 1.

Let R1, . . . , Rm be elementary matrices as above with R1 · · · Rm A = D;
note that those R j of type (a) and (c) are already elementary matrices over
K [t] (resp. over K [t, t−1]), the case of type (c) being handled by the previous
paragraph. Put

δ = max{1, |A|−1}
m∏

j=1

max{1, |R j |−1}.

For R j of type (b), let R′
j be an elementary matrix of type (b) over K [t] (resp.

over K [t, t−1]) with |R j − R′
j |ρ < δ−1; for R j not of type (b), put R′

j = R j .
Then |R′

1 · · · R′
m A − In|ρ < 1, proving the claim.

We can now deduce a Weierstrass preparation theorem for matrices.

Proposition 8.3.5. Let A be an invertible n×n matrix over K 〈α/t, t/β〉. Then
there exist U ∈ GLn(K 〈t/β〉) and V ∈ GLn(K 〈α/t〉) such that A = U V .

Proof. Pick any ρ ∈ [α, β]. By Lemma 8.3.4, we can find U1 ∈
GLn(K [t, t−1]) such that |U1 A − In|ρ < 1. By applying the master factoriza-
tion theorem (Theorem 2.2.2) in the (noncommutative) ring of n × n matrices
over K 〈ρ/t, t/ρ〉 and then arguing as in Proposition 8.3.1, we can factor U1 A
as U2V2 with U2 ∈ GLn(K 〈t/β〉) and V2 ∈ GLn(K 〈α/t〉). We may then set
U = U−1

1 U2 and V = V2.

Our main application of Proposition 8.3.5 is the following gluing lemma,
which we will invoke frequently and often implicitly.

Lemma 8.3.6 (Gluing lemma). Suppose that α ≤ γ ≤ β ≤ δ. Let M1 be
a finite free module over K 〈α/t, t/β〉, let M2 be a finite free module over
K 〈γ /t, t/δ〉, and suppose that we are given an isomorphism

ψ : M1 ⊗ K 〈γ /t, t/β〉 ∼= M2 ⊗ K 〈γ /t, t/β〉.
Then we can find a finite free module M over K 〈α/t, t/δ〉 and isomorphisms
M1 ∼= M ⊗ K 〈α/t, t/β〉, M2 ∼= M ⊗ K 〈γ /t, t/δ〉 inducing ψ . Moreover, M
is determined by this requirement up to unique isomorphism.
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Proof. We will explain only the case α > 0; the case α = 0 is similar. Choose
bases v1,1, . . . , v1,n and v2,1, . . . , v2,n of M1 and M2, respectively. Let A be
the change-of-basis matrix from the v1,i to the v2,i , viewing both as bases of
M1 ⊗ K 〈γ /t, t/β〉 ∼= M2 ⊗ K 〈γ /t, t/β〉 via ψ . By Proposition 8.3.5 we can
factor A as U V with U ∈ GLn(K 〈t/β〉) and V ∈ GLn(K 〈γ /t〉).

We can then construct a finite free module M over K 〈α/t, t/δ〉 equipped
with a basis v1, . . . , vn such that the change-of-basis matrices from this basis
to the v1,i and to the v2,i are U−1 and V , respectively. This is the desired
module.

Remark 8.3.7. If α ≤ γ ≤ β < δ, one can similarly glue together a finite
free module over K 〈α/t, t/β〉 and a finite free module over K 〈γ /t, t/δ�0,
whose base extensions to K 〈γ /t, t/β〉 are isomorphic; the result is a finite
free module over K 〈α/t, t/δ�0. As we will not use this fact, we omit further
details.

8.4 Open discs and annuli

Although we have been discussing closed discs so far, it is quite natural also
to consider open discs. One important reason is that the antiderivative of an
analytic function on the closed disc of radius β is only defined on the open
disc of radius β (see exercises for Chapter 9).

Definition 8.4.1. Define the ring

K {t/β} =
{ ∞∑

i=0

ci t
i : ci ∈ K , lim

i→∞ |ci |ρi = 0 (ρ ∈ (0, β))
}
;

these are the power series convergent on the open disc |t | < β, with no
boundedness restriction. Note that we can write

K {t/β} =
⋂

δ∈(0,β)
K 〈t/δ〉;

in particular, for any δ ∈ (0, β),
K �t/β�0 ⊂ K {t/β} ⊂ K 〈t/δ〉.

Definition 8.4.2. An analogue of the previous construction for an annulus is

K 〈α/t, t/β} =
{∑

i∈Z

ci t i : ci ∈ K , lim
i→−∞ |ci |αi = 0, lim

i→+∞ |ci |ρi = 0 (ρ ∈ (0, β))
}
;

these are the Laurent series convergent on the half-open annulus α ≤ |t | < β.
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These rings behave worse than their closed counterparts (see the exercises),
so we will only make occasional use of them. More often, we will work
with the following definition, which is motivated by considerations from rigid
analytic geometry.

Definition 8.4.3. Consider the region |t | ∈ I , for any interval I ⊆ [0,+∞);
this could be a closed or open disc or a closed, open, or half-open annulus.
By a coherent locally free module M on this region, we will mean a sequence
of finite free modules Mi over K 〈αi/t, t/βi 〉, with [α1, β1] ⊆ [α2, β2] ⊆ · · ·
an increasing sequence of closed intervals with union I , together with isomor-
phisms Mi+1 ⊗ K 〈αi/t, t/βi 〉 ∼= Mi . Using Lemma 8.3.6 we check that the
construction is canonically independent of the choice of sequence. However,
the resulting object is not finite in the sense of admitting a finite generating set
over the entire annulus, except when K is spherically complete. For a special
case, see Proposition 16.1.4; the notes give further discussion.

8.5 Analytic elements

An intermediate construction between open and closed discs is the ring
K �t/β�0 of bounded power series but, as noted previously, it behaves badly
if K is not discretely valued. Another intermediate construction that behaves
somewhat better is the following.

Definition 8.5.1. Define the ring K �t/β�an by starting with the subring of
K (t) consisting of rational functions with no poles in the disc |t | < β and then
completing for the β-Gauss norm. This is the ring of analytic elements on the
open disc |t | < β; it satisfies

K 〈t/β〉 ⊂ K �t/β�an ⊂ K �t/β�0.

Analogously, we define the ring K 〈α/t, t/β�an of analytic elements on the
half-open annulus α ≤ |t | < β as follows. Start with the subring of
K (t) consisting of rational functions with no poles in the annulus α ≤
|t | < β. Then take the Fréchet completion for the ρ-Gauss norms with
α ≤ ρ ≤ β.

One may also define the ring K �α/t, t/β�an of analytic elements on the
open annulus α < |t | < β. For this, we start with the subring of K (t) consist-
ing of rational functions with no poles in the annulus α < |t | < β and then
again take the Fréchet completion for the ρ-Gauss norms with α ≤ ρ ≤ β. In
the case α = β this construction gives a field; we will see this field again in
Definition 9.4.1.
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For analytic elements, we have analogues of many properties asserted for
analytic functions.

Proposition 8.5.2. Let R be K �t/β�an, K 〈α/t, t/β�an, or K �α/t, t/β�an.
(a) For any x ∈ R, the function r �→ − log |x |e−r is continuous and

concave in r .
(b) For any x ∈ R, the Newton polygon of x has finite width.
(c) Any x ∈ R can be written as a polynomial P ∈ K [t] times a unit in R.
(d) The ring R is a principal ideal domain.

Proof. Since we are taking the Fréchet completion for norms over a closed
interval, the convergence of any Cauchy sequence must be uniform in the dif-
ferent norms. We may thus deduce (a) from the corresponding assertions when
x ∈ K (t) with no poles in the appropriate disc or annulus.

We will check (b) for K �t/β�an; the other cases are analogous. Let
x = ∑∞

i=0 xi t i ∈ K �t/β�an be any nonzero ring element. We can then choose
a rational function f ∈ K (t), with no poles in the disc |t | < β, such that
|x− f |β < |x |β . By (a), |x |ρ is continuous in ρ, so we also have |x− f |ρ < |x |ρ
for ρ in a neighborhood of β. Consequently, those slopes of x sufficiently close
to β occur with the same multiplicities as the corresponding slopes of f . But
f is a rational function, so it has no slopes in some punctured neighborhood
of β. This proves that x has no slopes in some punctured neighborhood of β
either, so its Newton polygon has finite width.

To check (c) and (d), we may use the same proof as in Proposition 8.3.2.

Corollary 8.5.3. The ring ∪α<βK 〈α/t, t/β�an is a field.

Proof. By Proposition 8.5.2 every element of K 〈α/t, t/β�an can be written as
a unit in K 〈α/t, t/β�an times a polynomial. It thus suffices to observe that, for
any P ∈ K [t], we can choose α so that none of the roots of P lie in the annulus
α ≤ |t | < β; for such an α, P is a unit in K 〈α/t, t/β�an.

We will use the following optimal approximation property.

Lemma 8.5.4. Let R be K 〈t/β〉, K 〈β/t, t/β〉, or K �t/β�an. Let F be the
completion of Frac(R) under | · |β . Then, for any f ∈ F, there exists g ∈ R
minimizing | f − g|β .

Proof. We may assume f /∈ R, as otherwise g = f fulfills the lemma. Put
c = inf{| f − g|β : g ∈ R}. Since R is complete under | · |β we have c > 0.
Since K (t) is dense in F we can choose h ∈ K (t) such that | f − h|β < c.
Let P ∈ K [t] be the (monic) denominator of h. By Theorem 2.2.1 we may
factor P as P1 P2 in such a way that no irreducible factor of P1 in K [t] is a
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unit in R whereas every irreducible factor of P2 in K [t] is a unit in R. (The
point is that each irreducible polynomial has only a single slope in its Newton
polygon, and whether the polynomial is a unit is determined entirely by this
slope.) Since the claims for f and f P2 are equivalent, we may assume that
P2 = 1. Using the division algorithm, write h P = g P + S with g, S ∈ K [t]
and deg(S) < deg(P). We claim that this choice of g works; that is, for any
g′ ∈ R we have | f − g′|β ≥ | f − g|β .

Suppose first that R = K 〈t/β〉; in this case R ∩ K [t] is dense in R. Given
g′ ∈ R, we may choose g′′ ∈ K [t] such that |g′ − g′′|β < c. Applying
Lemma 2.3.1 to the instance (h − g′′)P = (g − g′′)P + S of the division
algorithm yields

|(h − g′′)P|β = max{|(g − g′′)P|β, |S|β} ≥ |S|β.
Therefore |h − g′′|β ≥ |S/P|β = |h − g|β ; since | f − h|β, |g′ − g′′|β < c ≤
|h − g|β , we also have | f − g′|β ≥ | f − g|β as claimed.

Suppose next that R = K 〈β/t, t/β〉; in this case R ∩ K [t, t−1] is dense
in R. Given g′ ∈ R, we may choose g′′ ∈ K [t] and m ≥ 0 such that |g′ −
g′′t−m |β < c. Using the division algorithm to divide (htm − g′′)P by P now
returns the same remainder as does dividing tm S by P . We may argue as in the
previous case once we have checked that, for S ∈ K [t] with deg(S) < deg(P),
the remainder S′ upon dividing t S by P satisfies |S′|β = β|S|β . We proceed
as in the proof of Lemma 2.3.1, as follows. Put d = deg(P) and let Sd−1

be the coefficient of td−1 in S. If |S|β = |Sd−1td−1|β then the constant term
of S′ is equal to the remainder upon dividing Sd−1td by P , which has norm
β|S|β . Otherwise |S′ − t (S − Sd−1td−1)|β < β|S|β , so the claim follows
again.

Finally, suppose that R = K �t/β�an. Given g′ ∈ R, we may choose g′′, Q ∈
K [t] such that Q is monic with all roots of norm β and |g′ − g′′/Q|β < c.
Using the division algorithm to divide (hQ − g′′)P by P now returns the same
remainder as does dividing QS by P . If we denote the latter by S′, we may
now argue as in the previous cases once we have shown that |S′|β = |S|β .
Put d = deg(P); in this case, all the roots of P have norm less than β, so
|P − td |β < 1. Hence |S′|β = |S′′|β , where S′′ is the remainder upon dividing
QS by td . But it is clear that |S′′|β = |S|β : we may check this after dividing S
and td by any common factors of t , at which point |S|β and |S′′|β are achieved
as the respective constant terms of S and S′′.

Remark 8.5.5. Note that the proof of Lemma 8.5.4 actually shows something
a bit stronger: the constructed element g ∈ R continues to minimize | f − g|β
even if we replace K with a complete extension L .
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Remark 8.5.6. If K is discretely valued then the conclusion of Lemma 8.5.4
also holds for R = K �t�0 and β = 1, since we can then write F as the
completion of K �t�0[t−1].

8.6 More approximation arguments

We now give some variants of the approximation lemmas (Lemmas 1.3.7 and
1.5.5) that involve rings of power series.

Lemma 8.6.1. Let R be K 〈t〉, K 〈1/t, t〉, K �t�an, or (if K is discretely valued)
K �t�0 equipped with the 1-Gauss norm. Let F be the completion of Frac(R)
under | · |1. Let M be a finite free R-module. Let | · |M be a norm on M,
compatible with R, obtained by restriction from the supremum norm defined
by some basis of M ⊗R F. Then | · |M is the supremum norm defined by some
basis of M.

Proof. (Thanks to Liang Xiao for his help with this proof.) Let N be the
oF -span of a basis of M ⊗R F whose supremum norm restricts to | · |M . Put
R1 = {r ∈ R : |r |1 ≤ 1} and M1 = {x ∈ M : |x |M ≤ 1}. Note that
mK R1 coincides with the subring of R consisting of series whose coefficients
all belong to mK . (If R = K �t�0 this holds only if K is discretely valued.)
Hence the ring R1/mK R1 is either κK �t� or a localization of κK [t], so in any
case it is a principal ideal domain.

Note that M1/mK M1 embeds into N/mK N , so in particular it is torsion-
free as a module over R1/mK R1. Since Frac(R) is dense in F , we can choose
a basis y1, . . . , yn of N which is also a basis of M ⊗R Frac(R). We can then
find an f ∈ R which is nonzero and such that M contains f y1, . . . , f yn ;
by multiplying by a unit in K , we may normalize f so that | f |1 = 1.
Then f y1, . . . , f yn project to elements of M1/mK M1 which form a basis of
N/mK N over κF .

We can also find a g ∈ R which is nonzero and such that M is contained
in the R-span of g−1 y1, . . . , g−1 yn , which we again normalize so that |g|1 =
1. This means that M1/mK M1 is contained in the (R1/mK R1)-submodule of
N/mK N generated by g−1 y1, . . . , g−1 yn . Since R1/mK R1 is a principal ideal
domain, it follows that M1/mK M1 is finitely generated, torsion-free, and hence
finite free as a module over R1/mK R1. By the previous paragraph, any basis
of M1/mK M1 over R1/mK R1 freely generates N/mK N over κF and hence
freely generates N over oF .

Let x1, . . . , xn ∈ M1 lift a basis of M1/mK M1 over R1/mK R1. For any
x ∈ M1 we have a unique representation x = r1x1 + · · · + rn xn with
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r1, . . . , rn ∈ oF . By Lemma 8.5.4 and Remark 8.5.6 we may choose r ′
i ∈ R to

maximize |ri − r ′
i |1. Choose λ ∈ K so that |λ| = maxi {|ri − r ′

i |1}; if λ �= 0
then the image of λ−1(x − r ′

1x1 − · · · − r ′
n xn) in M1/mK M1 fails to be in

the (R1/mK R1)-span of the images of x1, . . . , xn . This yields a contradiction,
so we must have λ = 0 and r ′

i = ri ∈ R ∩ oF = R1 for i = 1, . . . , n.
Consequently, x1, . . . , xn form a basis of M with supremum norm | · |M , as
desired.

It is more difficult to deal with the case of K �t�0 when K is not discretely
valued. Although we will not use that case in what follows, for completeness
we mention one result that applies to it.

Lemma 8.6.2. Suppose that K is spherically complete with value group R.
Let M be a finite free module over K �t/β�0 for some β > 0. Let | · |M be a
supremum-equivalent norm on M that is compatible with K �t/β�0. For j =
1, 2, . . . , let | · | j be the quotient seminorm on M/t j M induced by | · |M .
Suppose that, for any m ∈ M,

|m|M = lim
j→∞ |m| j . (8.6.2.1)

Then | · |M is the supremum norm for some basis of M.

Proof. By rescaling we reduce immediately to the case β = 1. Put R = K �t�0

and R1 = oK �t�, so that R1 is the set of r ∈ R having norm at most 1.
Let M1 be the set of x ∈ M having |x |M ≤ 1; then M1 is a R1-submodule
of M . Since | · |M is compatible with R, for any positive integer j we have
M1 ∩ t j M = t j M1.

By assumption we can find a basis m′
1, . . . ,m′

n of M which determines a
supremum norm equivalent to | · |M . That is, there exist c1, c2 > 0 such that,
for any a1, . . . , an ∈ R,

c1 max
i

{|ai |R} ≤ |a1m′
1 + · · · + anm′

n|M ≤ c2 max
i

{|ai |R}.
As in the proof of Lemma 1.3.5 it follows that, for any positive integer j and
any a′

1, . . . , a′
n ∈ R/t j R,

c1 max
i

{|a′
i |R/t j R} ≤ |a′

1m′
1 + · · · + a′

nm′
n| j ≤ c2 max

i
{|a′

i |R/t j R}. (8.6.2.2)

In particular, each | · | j is a norm.
By Lemma 1.5.5, | · |1 is the supremum norm defined by some basis

m1,1, . . . ,mn,1 of M/t M . By Lemma 1.5.4 (applied by viewing each M/t j M
as a K -vector space), for i = 1, . . . , n and j = 1, 2, . . . we can construct
mi, j+1 ∈ M/t j+1 M lifting mi, j ∈ M/t j M and satisfying |mi, j+1| j+1 =
|mi, j | j .
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For each i , the inverse limit of the mi, j determines an element mi of M ⊗R

K �t�. However, by (8.6.2.2), if we write mi as a K �t�-linear combination of
m′

1, . . . ,m′
n then each coefficient is a power series bounded in norm by c−1

1 so
mi ∈ M . By (8.6.2.1), |mi |M = 1.

For any x ∈ M with |x |M ≤ 1, in each M/t j M we can write x = a′
1, j m1 +

· · · + a′
n, j mn with a′

1, j , . . . , a′
n, j ∈ R/t j R. We will prove by induction on j

that |a′
1, j |, . . . , |a′

n, j | ≤ 1. This is true for j = 1 because the m1, . . . ,mn were
chosen so that the supremum norm they define matches | · |1. Given the claim
for j − 1, lift each a′

i, j−1 ∈ R1/t j−1 R1 to bi, j ∈ R1/t j R1 by making the

last coefficient 0, so that the norm is preserved. Then t1− j (x −∑
i bi, j mi ) is

an element of M/t M of norm at most 1, so it is an oK -linear combination of
m1, . . . ,mn . This completes the induction.

We thus obtain a representation x = a1m1 + · · · + anmn with a1, . . . , an ∈
R1. Since any element of M can be written as an element of K times an element
of M of norm at most 1, we deduce that m1, . . . ,mn is a basis of M and that
the supremum norm defined by this basis coincides with | · |M .

Question 8.6.3. Is condition (8.6.2.1) necessary?

Notes

The Hadamard three-circles theorem (Proposition 8.2.3(c)) is a special case of
the fact that the Shilov boundary of the annulus α ≤ |t | ≤ β consists of the two
circles |t | = α and |t | = β. For a considerable amplification of this remark,
including a full-blown theory of harmonic functions on Berkovich analytic
curves, see [205]. For an alternative presentation, restricted to the Berkovich
projective line but otherwise more detailed, see [12].

The gluing lemma (Lemma 8.3.6) is a special case of the gluing prop-
erty of coherent sheaves on affinoid rigid analytic spaces, as specified in the
theorems of Kiehl and Tate [31, Theorems 8.2.1/1 and 9.4.2/3]. The factoriza-
tion argument in the proof, however, is older still; it is the nonarchimedean
version of what is called a Birkhoff factorization over an archimedean field.
Similarly, Definition 8.4.3 corresponds to the definition of a locally free coher-
ent sheaf on the corresponding rigid or Berkovich analytic space. Such a
sheaf is only guaranteed to be freely generated by global sections in the
case where K is spherically complete [128, Theorem 3.14]; in fact, a pre-
vious result of Lazard [156] implies that this property, even when restricted
to modules of rank 1, is in fact equivalent to the spherical completeness
of K .

We again thank Liang Xiao for his help with the proof of Lemma 8.6.1.
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Exercises

(1) Prove Lemma 8.0.4. (Hint: for each point of I find an open neighbor-
hood covered by one or two elements of S. Then reduce to the usual
compactness property of a bounded closed interval.)

(2) Verify the assertions of Remark 8.2.4. (Hint: a typical example where
piecewise affinity fails is

∑∞
n=1 p1/ntn .)

(3) Prove Proposition 8.2.5. (Hint: it may be easiest to first construct the limit
using a single ρ ∈ [α, β] and then show that this can also be done for the
other ρ.)

(4) Prove that if K is discretely valued then, for any f ∈ K 〈α/t, t/β�0, there
exists a polynomial P ∈ K [t] and a unit g ∈ K 〈α/t, t/β�×0 such that
f = Pg. (Hint: the Newton polygon has finite width in this case, so one
may argue as in Proposition 8.3.2.)

(5) Prove that the ring K {t} is not noetherian. (Hint: pick a sequence of points
in the open unit disc converging to the boundary, and consider the ideal of
functions vanishing on all but finitely many of these points.)

(6) Prove that if K is not trivially or discretely valued then K �t�0 is not noethe-
rian. (Hint: proceed as in the previous exercise but choose the points so
that the Newton polygon of a function vanishing on all the points has finite
height.)

(7) Prove that if K is discretely valued then oK 〈t〉 = oK �t� ∩ K 〈t〉 is
noetherian. Otherwise it is not, because then oK itself is not noetherian.

(8) Prove that each maximal ideal of oK 〈t〉 is generated by mK together with
some P ∈ oK [t] whose reduction modulo mK is irreducible in κK [t].

(9) State and prove an analogue of the gluing lemma (Lemma 8.3.6) for gluing
together finite free modules over K �1/t, t�an and K �t�0, using an isomor-
phism over the completion of K �t�0 ⊗K [t] K (t) under | · |1, to obtain a
module over K �t�an.
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Radius and generic radius of convergence

In this chapter, we begin to approach a fundamental question peculiar to the
study of nonarchimedean differential modules. It was pointed out in Chapter 0
that a differential module over a nonarchimedean disc can fail to have hori-
zontal sections even in the absence of singularities. The radius of convergence
of local horizontal sections is thus an important numerical invariant, whose
control is a key factor in being able to produce solutions of p-adic differential
equations.

Unfortunately, the radius of convergence is often difficult to compute
directly. One of Dwork’s fundamental insights is that one can get much bet-
ter control over the radius of convergence around a so-called generic point.
The properties of the generic radius of convergence can then be used to infer
information about the actual convergence of horizontal sections. For instance,
Dwork’s transfer theorem asserts that the radius of convergence of a differen-
tial module over a nonarchimedean disc is no less than the generic radius of
convergence at the boundary of the disc.

However, both the radius of convergence and the generic radius of conver-
gence are rather coarse invariants. Just as the notion of the spectral radius
is refined by the notion of the full spectrum, we can introduce subsidiary
radii of convergence and subsidiary generic radii of convergence, which detect
whether some local horizontal sections at a point converge further than oth-
ers. We will devote much effort in the remainder of this part of the book to
analyzing the behavior of these refined invariants.

Hypothesis 9.0.1. Throughout this chapter we will view K 〈α/t, t/β〉,
K �α/t, t/β�an, and so forth as differential rings with derivation d = d/dt ,
formal differentiation in the variable t , unless otherwise specified (as in
Section 9.6).
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9.1 Differential modules have no torsion

We start with some simple but critical observations about the categories of
differential modules over the rings of power series introduced in Chapter 8.

Lemma 9.1.1. Let R be one of the following rings: K 〈t/β〉, K �t/β�an,
K 〈α/t, t/β〉, K 〈α/t, t/β�an, K �α/t, t/β�an, or (if K is discretely valued)
K �t/β�0 or K 〈α/t, t/β�0. Then R has no nonzero proper differential ideal.

Proof. If I is a nonzero differential ideal then, by Proposition 8.3.2 (or
Proposition 8.5.2), I contains a nonzero element P ∈ K [t]. But then I
also contains ddeg(P)(P), which is a nonzero element of K (because K is of
characteristic 0), so I must be the unit ideal.

Proposition 9.1.2. For R as in Lemma 9.1.1, any finite differential module
over R is free. Consequently, the finite free differential modules over R form
an abelian category.

Proof. Let M be a finite differential module over R. If m ∈ M is annihilated
by the nonzero element r ∈ R then 0 = D(rm) = r D(m) + d(r)m, and so
D(m) is annihilated by r2. Consequently the torsion submodule T of M is also
a differential module. Also, T is finite over R because R is a principal ideal
domain (by either Proposition 8.3.2 or Proposition 8.5.2) and hence noetherian.
Hence the annihilator I of T is a nonzero ideal of R. It is also a differential
ideal: if r ∈ I then, for any m ∈ T , 0 = D(rm) = r D(m)+ d(r)m = d(r)m,
so d(r) ∈ I . By Lemma 9.1.1, I must be the trivial ideal. Hence T = 0, so M
is torsion-free; since R is a principal ideal domain, M must also be free.

Corollary 9.1.3. For R as in Lemma 9.1.1 and for M a finite differential mod-
ule over R, any finite set of horizontal sections which is linearly independent
over K forms part of a basis of M.

Proof. Let S be a finite set of horizontal sections which is linearly independent
over K . By Lemma 5.1.5, S is also linearly independent over R. In this case, S
determines an injective morphism from a trivial differential module to M . By
Proposition 9.1.2 the image of this map must be a direct summand of M as an
R-module; this yields the desired result.

Corollary 9.1.4. For R as in Lemma 9.1.1, let M be a finite differential mod-
ule over R, of rank n and admitting a set S of n horizontal sections linearly
independent over K . Then M is trivial and H0(M) is the K -span of S.

Since we also wish to deal with open discs and annuli, we must formally
define differential modules on them.
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Definition 9.1.5. Consider the region |t | ∈ I , for any interval I ⊆ [0,+∞);
this region could be a closed or open disc or a closed, open, or half-open annu-
lus. By a finite differential module M on this region we will mean a coherent
locally free module in the sense of Definition 8.4.3, in which each module Mi

carries the structure of a differential module over K 〈αi/t, t/βi 〉 and each iso-
morphism Mi+1 ⊗ K 〈αi/t, t/βi 〉 ∼= Mi is horizontal. By Proposition 9.1.2 we
see that these again form an abelian category. (It would probably be better to
call these coherent differential modules since they need not be generated by a
finite set of sections.)

9.2 Antidifferentiation

One initially surprising fact about p-adic analysis is that the relationship
between differentiation and boundary convergence is reversed from the archi-
medean case: whereas d carries K 〈α/t, t/β〉 into itself, antidifferentiation
does not. Instead, one has merely the following.

Lemma 9.2.1. For any x = ∑
i xi t i ∈ K {α/t, t/β} with x−1 = 0, there exists

y ∈ K {α/t, t/β} for which d(y) = x.

Proof. Exercise.

Corollary 9.2.2. Let M be the trivial differential module over K 〈t/β〉 (resp.
over K 〈α/t, t/β〉). Then, for any δ with 0 ≤ δ < β (resp. any γ, δ with
α < γ ≤ δ < β), the map H1(M) → H1(M ⊗ K 〈t/δ〉) (resp. H1(M) →
H1(M ⊗ K 〈γ /t, t/δ〉)) is the zero map.

This gives us an explicit description of unipotent differential modules.
(Recall that these are the successive extensions of trivial modules.)

Lemma 9.2.3. Let M be a finite unipotent differential module for the deriva-
tion t (d/dt) over K 〈α/t, t/β〉 with 0 < α < β. Then, for any γ, δ with
α < γ ≤ δ < β, M ⊗ K 〈γ /t, t/δ〉 admits a basis on which the matrix of
action of D is nilpotent and has entries in K .

Proof. Let v1, . . . , vn be a basis of M such that, letting Mi denote the span
of v1, . . . , vi , we have that Mi is stable under D and Mi/Mi−1 is trivial for
i = 1, . . . , n. We proceed by induction on n; that being said, we may assume
that the matrix of action of D on v1, . . . , vn−1 is upper triangular nilpotent
with entries in K .

We now write D(vn) = c1v1 + · · ·+ cn−1vn−1. If cn−1 /∈ K , we can choose
α′, β ′ with α < α′ < γ ≤ δ < β ′ < β and then (by Lemma 9.2.1) choose
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x ∈ K 〈α′/t, t/β ′〉 such that cn−1 − t (dx/dt) ∈ K . If we replace vn by v′n =
vn − xvn−1 then D(v′n) = c′1v1 +· · ·+ c′n−1vn−1, with c′n−1 ∈ K . Similarly, if
cn−1, . . . , cn−i+1 ∈ K but cn−i /∈ K , we can change basis to bring cn−i into K
while possibly changing c1, . . . , cn−i−1 but not cn−i+1, . . . , cn−1. Repeating
this process, we ultimately obtain a basis of the desired form.

9.3 Radius of convergence on a disc

Definition 9.3.1. Let M be a finite differential module over K 〈t/β〉, K �t/β�an,
or K �t/β�0. Define the radius of convergence of M around 0, denoted R(M),
to be the supremum of the set of ρ ∈ (0, β) such that M ⊗ K 〈t/ρ〉 has a basis
of horizontal elements; we refer to those elements as local horizontal sections
of M. For M a finite differential module on the open disc of radius β around
t = 0, define R(M) as the supremum of R(M ⊗ K 〈t/γ 〉) over all γ < β. For
γ ≤ β, note that

R(M ⊗ K 〈t/γ 〉) =
{
γ γ ≤ R(M),

R(M) γ > R(M).

Example 9.3.2. In general, if p > 0 then it is possible to have R(M) < β;
that is, there is no p-adic analogue of the fundamental theorem of ordinary
differential equations (as was noted in Example 0.4.1). For instance, con-
sider the module M = K 〈t/β〉v with D(v) = v; for β > p−1/(p−1) we
have R(M) = p−1/(p−1) because that is the radius of convergence of the
exponential series. (This is essentially Example 0.4.1 again.)

However, the local form of the fundamental theorem of ordinary differential
equations has the following analogue.

Proposition 9.3.3 (p-adic Cauchy theorem). Let M be a finite differential
module over K 〈t/β〉, K �t/β�an, or K �t/β�0. Then R(M) > 0.

Proof. By shrinking β we reduce to the case over K 〈t/β〉. One can give
a direct proof of this, but instead we will deduce it from Dwork’s transfer
theorem (Theorem 9.6.1 below). We will give a direct proof of a slightly
stronger result later (Proposition 18.1.1); see also the notes.

Here are some easy consequences of the definition of the radius of conver-
gence; note the parallels with properties of the spectral radius (Lemma 6.2.8).

Lemma 9.3.4. Let M,M1,M2 be finite differential modules over K 〈t/β〉,
K �t/β�an, or K �t/β�0.
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(a) If 0 → M1 → M → M2 → 0 is exact then

R(M) = min{R(M1), R(M2)}.
(b) We have

R(M∨) = R(M).

(c) We have

R(M1 ⊗ M2) ≥ min{R(M1), R(M2)},
with equality when R(M1) �= R(M2).

Proof. For (a), it is clear that R(M) ≤ min{R(M1), R(M2)}; we must check
that equality holds. Choose λ < min{R(M1), R(M2)}, so that M1 ⊗ K 〈t/λ〉
and M2 ⊗ K 〈t/λ〉 are both trivial. For any λ′ < λ, the map H1(M∨

2 ⊗ M1)→
H1((M∨

2 ⊗M1)⊗K 〈t/λ′〉) is zero by Corollary 9.2.2, so M⊗K 〈t/λ′〉 is trivial
by Lemma 5.3.3. Since we can make λ and λ′ as close to min{R(M1), R(M2)}
as we like, we find that R(M) ≥ min{R(M1), R(M2)}.

For (b), we obtain R(M∨) ≥ R(M) from the fact that if M ⊗ K 〈t/λ〉 is
trivial, then so is its dual M∨⊗ K 〈t/λ〉. Since M and M∨ enter symmetrically,
we get R(M∨) = R(M).

For (c), the inequality is clear from the fact that the tensor product of two
trivial modules over K 〈t/λ〉 is also trivial. The last assertion follows as in the
proof of Lemma 6.2.8(c).

Example 9.3.5. Assume that p > 0, and let M be the differential module of
rank 1 over K 〈t/β〉 defined by D(v) = λv with λ ∈ K . Then it is an exercise
to show that

R(M) = min{β, p−1/(p−1)|λ|−1}.
A special case is provided by an important example of Dwork; see Exam-
ple 17.1.4.

9.4 Generic radius of convergence

In general, the radius of convergence of a differential module is difficult to
compute. To make its computation easier, we introduce a related but simpler
invariant.

Definition 9.4.1. For ρ > 0, let Fρ be the completion of K (t) under the
ρ-Gauss norm | · |ρ . Put d = d/dt on K (t); then d extends by continuity to
Fρ , and we have
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|d|Fρ = ρ−1, |d|sp,Fρ = lim
n→∞ |n!|1/nρ−1 =

{
ρ−1 p = 0,

p−1/(p−1)ρ−1 p > 0.

(See Proposition 9.10.2 below for a refinement of this assertion.) It is a
common convention to define

ω =
{

1 p = 0,

p−1/(p−1) p > 0,

so that we may write |d|sp,Fρ = ωρ−1.

Remark 9.4.2. Note that Fρ coincides with the ring K �ρ/t, t/ρ�an of ana-
lytic elements on the circle |t | = ρ (see Definition 8.5.1). As a result, Fρ is
commonly known as the field of analytic elements of norm ρ.

We will also make a related construction in the case ρ = 1. For a way to
unify the two constructions, see Definition 9.10.1.

Definition 9.4.3. Put E = K 〈1/t, t�0 or, in other words, let E be the comple-
tion of oK ((t)) ⊗oK K for the 1-Gauss norm | · |1. If K is discretely valued,
the supremum in the Gauss norm is achieved; consequently E is a field and
its residue field is equal to κK ((t)). However, none of this applies unless K
is discretely valued. (This is the same issue that arises in Remark 8.2.4.) In
any case E is complete under | · |1, there is an isometric map F1 → E car-
rying t to t , and the supremum is achieved for elements of E in the image
of that map; this at least gives an embedding of κK ((t)) into the quotient
{x ∈ E : |x |1 ≤ 1}/{x ∈ E : |x |1 < 1}.
Definition 9.4.4. Let (V, D) be a nonzero finite differential module over Fρ
or E . We define the generic radius of convergence (or for short, the generic
radius) of V to be

R(V ) = ω|D|−1
sp,V ;

note that R(V ) > 0. We will see later (in Proposition 9.7.5) that this does
indeed compute the radius of convergence of horizontal sections of V on a
generic disc. (If V is the zero module, set R(V ) = ρ.)

Remark 9.4.5. Note that the map F1 → E is isometric, and |d|sp,E =
ω = |d|sp,F1 . Consequently, for any finite differential module V over F1,
Corollary 6.2.7 implies that |D|sp,V⊗E = |D|sp,V .
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We can translate some basic properties of the spectral radius (Lemma 6.2.8)
into properties of generic radii of convergence, leading to the following ana-
logue of Lemma 9.3.4. Alternatively, one can first check Proposition 9.7.5 and
then simply invoke Lemma 9.3.4 itself around a generic point.

Lemma 9.4.6. Let V, V1, V2 be nonzero finite differential modules over Fρ .
(a) For an exact sequence 0 → V1 → V → V2 → 0,

R(V ) = min{R(V1), R(V2)}.
(b) We have

R(V ∨) = R(V ).

(c) We also have

R(V1 ⊗ V2) ≥ min{R(V1), R(V2)},
with equality when R(V1) �= R(V2).

Definition 9.4.7. In some situations it is more natural to consider the intrinsic
generic radius of convergence, or for short the intrinsic radius, defined as

I R(V ) = ρ−1 R(V ) = |d|sp,Fρ

|D|sp,V
∈ (0, 1].

(The upper bound of 1 comes from Lemma 6.2.4.) To emphasize the difference,
we may refer to the unadorned generic radius of convergence defined earlier
as the extrinsic generic radius of convergence. (See Proposition 9.7.6 and the
notes for some reasons why the intrinsic radius deserves its name.)

Remark 9.4.8. For I an interval, M a differential module on the annulus
|t | ∈ I , and ρ ∈ I , it is unambiguous to refer to the generic radius of con-
vergence R(M ⊗ Fρ) of M at radius ρ. This is defined by first making a base
change to K 〈α/t, t/β〉 for some closed subinterval [α, β] of I containing ρ.
Since the resulting module M ⊗ Fρ does not depend on the choice of [α, β],
neither does its generic radius.

9.5 Some examples in rank 1

Assume p > 0 for these examples. See also Example 9.9.3.

Example 9.5.1. In Example 9.3.5 we have Ds(v) = λsv for all nonnegative
integers s. By Lemma 6.2.5 we have

R(M ⊗ Fβ) = min{β, p−1/(p−1)|λ|−1} = R(M).
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Another important class of examples is given as follows.

Example 9.5.2. For λ ∈ K , let Vλ be the differential module of rank 1 over
Fρ defined by D(v) = λt−1v. It is an exercise to show that I R(Vλ) = 1 if and
only if λ ∈ Zp.

We can classify Example 9.5.2 further as follows.

Proposition 9.5.3. We have Vλ ∼= Vλ′ if and only if λ− λ′ ∈ Z.

Proof. Note that Vλ ∼= Vλ′ if and only if Vλ−λ′ is trivial, so we may reduce
to the case λ′ = 0. By Example 9.5.2, Vλ is nontrivial whenever λ /∈ Zp; by
direct inspection, Vλ is trivial whenever λ ∈ Z.

It remains to deduce a contradiction, assuming that Vλ is trivial, λ ∈ Zp,
and λ /∈ Z. There is no harm in enlarging K now, so we may assume that K
contains a scalar of norm ρ; by rescaling, we may reduce to the case ρ = 1.
We now have f ∈ F×

1 such that t (d f /dt) = λ f ; by multiplying by an element
of K× we can force | f |1 = 1.

Let λ1 be an integer such that λ ≡ λ1 (mod p). Then∣∣∣∣d( f t−λ1)

dt

∣∣∣∣
1
= |(λ− λ1) f t−λ1−1|1 ≤ p−1.

Using the embedding F1 ↪→ E , we may expand f = ∑
i∈Z fi t i with

maxi {| fi |} = 1. The previous calculation then forces | fi | ≤ p−1 unless
i ≡ λ1 ≡ λ (mod p).

By considering the reduction of f modulo pn and arguing similarly, we
find that | fi | ≤ p−1 unless i ≡ λ (mod pn) for all n. But, since λ /∈ Z,
this means that the image of f in κK ((t)) cannot have any terms at all, a
contradiction.

9.6 Transfer theorems

A fundamental relationship between the radius of convergence and the generic
radius of convergence is given by the following theorem. In the language of
Dwork, it is a transfer theorem, because it transfers convergence informa-
tion from one disc to another. (Note that Proposition 9.3.3, which asserts that
R(M) > 0, is an immediate corollary.)

Theorem 9.6.1 (Dwork). For any nonzero finite differential module M over
K 〈t/β〉 or K �t/β�an, R(M) ≥ R(M ⊗ Fβ). That is, the radius of convergence
is equal to at least the generic radius.
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Proof. Suppose that λ < β and λ < ω|D|−1
sp,M . Fix a supremum norm | · |M

on M that is compatible with | · |λ. We claim that, for any x ∈ M , the Taylor
series

y =
∞∑

i=0

(−t)i

i ! Di (x) (9.6.1.1)

converges under |·|M . To see this, pick ε > 0 such that λω−1(|D|sp,M + ε)< 1.
By Lemma 6.1.8 there exists c > 0 such that |Di (x)|M ≤ c(|D|sp,M +
ε)i |x |M for all i . The i th term of the sum defining y thus has norm at most
λiω−i c(|D|sp,M + ε)i |x |M , which tends to 0 as i → ∞.

By differentiating the series expression as in Remark 5.8.4 we find that
D(y) = 0, so y is a horizontal section of M ⊗ K 〈t/λ〉. If we run this construc-
tion over a basis of M , we obtain horizontal sections of M ⊗ K 〈t/λ〉 whose
reductions modulo t also form a basis; these sections are thus K -linearly inde-
pendent and so form a basis of M ⊗ K 〈t/λ〉 by Proposition 9.1.2. This proves
the claim.

Here is a simple example of how one may apply the transfer theorem; it is
conditional on one result, Theorem 11.3.2.

Example 9.6.2. Recall the hypergeometric differential equation

y′′ + c − (a + b + 1)z)

z(1 − z
y′ − ab

z(1 − z)
y = 0,

considered in Chapter 0. In general, one solution in the ring K ((z)) is given by
the hypergeometric series

F(a, b; c; z) =
∞∑

i=0

a(a + 1) · · · (a + i)b(b + 1) · · · (b + i)

c(c + 1) · · · (c + i)i ! zi .

Let us now restrict to the case a, b, c ∈ Zp ∩ Q. Let m be the denominator of
c. In the ring K ((z1/m)), the general solution is

AF(a, b; c; z)+ Bz1−c F(a + 1 − c, b + 1 − c; 2 − c; z) (A, B ∈ K ),
(9.6.2.1)

and it converges for |z| < 1 (see the exercises for Chapter 0).
We now pass to the associated differential module M of rank 2 which is

defined over the ring K 〈α/z, z�an for any α > 0. From (9.6.2.1) we see that,
for any β ∈ (0, 1), M ⊗ K 〈α/z, z/β〉 has a filtration in which one quotient is a
trivial module and the other has the form D(w) = λz−1w for some λ ∈ Zp∩Q.
From Example 9.5.2 and Lemma 9.4.6 we deduce that R(M ⊗ Fρ) = 1 for
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ρ ∈ (0, 1). By Theorem 11.3.2(a), R(M ⊗ Fρ) is continuous at ρ = 1 so that
R(M ⊗ F1) = 1 also.

We now expand in power series around another value, z0 ∈ oK , that is not
congruent to 0 or 1 modulo mK . We get another differential module N over
K �z− z0�an such that M ⊗ F1 ∼= N ⊗ F1 and so, in particular, R(N ⊗ F1) = 1.
By Theorem 9.6.1, R(N ) = 1; that is, the general solution of the hypergeo-
metric differential equation at z = z0 converges in the disc |z − z0| < 1.

Remark 9.6.3. In Example 9.6.2 one cannot directly prove that R(N⊗F1) = 1
using Theorem 6.5.3, because of the limitation on slopes therein. An alternate
approach that works is to construct a Frobenius structure on N ; see Part V.

9.7 Geometric interpretation

As promised, here is a construction that explains the terminology “generic
radius of convergence”.

Definition 9.7.1. Let L be a complete extension of K . A generic point of L
of norm ρ relative to K is an element tρ ∈ L , with |tρ | = ρ, such that there is
no z ∈ K alg with |z − tρ | < ρ. For instance, t itself is a generic point of Fρ of
norm ρ.

Remark 9.7.2. If tρ ∈ L is a generic point then evaluation at tρ gives an
isometry K [t] → L for the ρ-Gauss norm on K [t]. To see this, it suffices to
check after replacing K by a completed algebraic closure and enlarging L to
contain this enlarged K . Then any P ∈ K (t) can be factored as c

∏
i (t − zi )

for some zi ∈ K , and for each i we have |zi − tρ | ≥ ρ because tρ is a generic
point. Consequently,

|P(tρ)| = |c|
∏

i

|tρ − zi |

= |c|
∏

i

max{ρ, |zi |}

= |c|
∏

i

|t − zi |ρ

= |P|ρ.
Definition 9.7.3. Let L be a complete extension of K . For any tρ ∈ L with
|tρ | = ρ, the substitution t �→ tρ + (t − tρ) induces an isometric map
K [t] → L〈(t − tρ)/ρ〉. However, if (and only if) tρ is a generic point then the
composition of this map with the reduction modulo t − tρ is again an isometry,
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by Remark 9.7.2. Hence in this case the map K [t] → L〈(t − tρ)/ρ〉 extends
to an isometry Fρ → L�(t − tρ)/ρ�an.

Remark 9.7.4. In Berkovich’s theory of nonarchimedean analytic geometry,
the geometric interpretation of the above construction is that the analytic space
corresponding to Fρ is obtained from the closed disc of radius ρ by removing
the open disc of radius ρ centered around each point of K alg. As a result, it still
contains any open disc of radius ρ that does not meet K alg.

Proposition 9.7.5. Let V be a finite differential module over Fρ , and put V ′ =
V ⊗Fρ L�(t − tρ)/ρ�an. Then the generic radius of convergence of V is equal
to the radius of convergence of V ′.

Proof. Let Gλ be the completion of L(t − tρ) for the λ-Gauss norm; then the
map Fρ → Gλ is an isometry for any λ < ρ. By Corollary 6.2.7,

|D|sp,V⊗Gλ = max{|d|sp,Gλ , |D|sp,V } = max{ωλ−1, |D|sp,V }.
On one hand, this implies R(V ) ≤ R(V ′) by the application of Theorem 9.6.1
to V ⊗ L〈(t − tρ)/λ〉 for a sequence of values of λ converging to ρ.

On the other hand, pick any λ < R(V ′); then V ⊗ Gλ is a trivial differential
module, so the spectral radius of D on it is ωλ−1. We thus have

|D|sp,V ≤ ωλ−1,

so R(V ) ≥ λ. This yields R(V ) ≥ R(V ′).

Here is an example illustrating both the use of the geometric interpretation
and a good transformation property of the intrinsic normalization.

Proposition 9.7.6. Let m be a nonzero integer not divisible by p, and let
fm : Fρ → Fρ1/m be the substitution t �→ tm. Then, for any finite differential
module V over Fρ , I R(V ) = I R( f ∗

m(V )).

Proof. Let ζm be a primitive mth root of unity in K alg. Then the claim follows
from the geometric interpretation plus the fact that

|t − tρζ
i
m |< cρ for some i ∈ {0, . . . ,m − 1}⇔ |tm − tm

ρ |< cρm (c ∈ (0, 1)),

(9.7.6.1)

whose proof is left as an exercise.

Remark 9.7.7. Be aware that in Proposition 9.7.6 we are not quite performing
the standard base change. In explicit terms, if dm denotes the derivation with
respect to t on Fρ1/m and d1 denotes the derivation with respect to t on Fρ
extended via fm then
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dm = mtm−1d1.

We will encounter this issue again when we perform Frobenius pullback and
pushforward in Chapter 10. One may view it as an argument in favor of a
coordinate-free perspective (Proposition 6.3.1).

Remark 9.7.8. A similar construction can be made for E . Let L be the
completion of oK ((t1)) ⊗oK K for the 1-Gauss norm. Then the substitution
t �→ t1 + (t − t1) induces an isometry oK ((t)) → oL�t − t1� for the 1-Gauss
norm that extends to an isometric embedding of E into the completion of
oL�t − t1� ⊗oL L for the 1-Gauss norm.

9.8 Subsidiary radii

It is sometimes important to consider not only the generic radius of conver-
gence but also some secondary invariants.

Definition 9.8.1. Let V be a finite differential module over Fρ . Let V1, . . . , Vm

be the Jordan–Hölder constituents of V . We define the multiset of subsidiary
generic radii of convergence, for short the subsidiary radii, to consist of
R(Vi ) with multiplicity dim Vi for i = 1, . . . ,m. We will always list these
in increasing order, as s1 ≤ · · · ≤ sn , so that s1 = R(V ). We also have
intrinsic subsidiary generic radii of convergence, obtained by multiplying the
subsidiary radii by ρ−1.

Remark 9.8.2. If we replace Fρ by C((z)) in the definition of intrinsic sub-
sidiary generic radii of convergence, then the negative logarithm of the product
of the radii equals the irregularity of V . Thus our analysis of the variation of
subsidiary radii, in the remainder of this part, will also imply results about the
variation of irregularity. See [144] for an application of this.

Remark 9.8.3. It is not immediate from the definition how to interpret the sub-
sidiary radii. We will give an interpretation in a later chapter (Theorem 11.9.2).

9.9 Another example in rank 1

We introduce one more important example in rank 1, in the case p > 0.

Definition 9.9.1. For p > 0, the Artin–Hasse exponential series is the formal
power series

E p(t) = exp

( ∞∑
i=0

t pi

pi

)
.
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Proposition 9.9.2. We have E p(t) ∈ (Zp ∩ Q)�t�.

Proof. This follows from the formal identity

E p(x) =
∏

n≥1,p�n

(1 − xn)−μ(n)/n, (9.9.2.1)

in which μ(n) is the Möbius function. That is, μ(n) equals (−1)e if n is the
product of e ≥ 0 distinct primes, and it equals 0 otherwise.

Example 9.9.3 (Matsuda). Let h be a nonnegative integer, and suppose that K
contains a primitive ph+1th root of unity ζ . Let Mh be the differential module
of rank 1 on the whole t-line, the action of D on a generator v being given by

D(v) =
h∑

i=0

(
ζ pi − 1

)
t pi−1v;

note that M1 is isomorphic to the module of Example 9.3.5 for λ = ζ − 1. On
the open disc |t | < 1, Mh admits the horizontal section

E p(t)

E p(ζ t)
v = exp

(
h∑

i=0

1 − ζ pi

pi
t pi

)
v (9.9.3.1)

by Proposition 9.9.2, so R(Mh) ≥ 1. Since this horizontal section is bounded
it also gives a horizontal section in the open unit disc around a generic point of
norm 1, so R(Mh⊗F1) = 1. (This can also be seen by arguing that Mh is trivial
on any disc of the form |t | < ρ for ρ < 1, so that R(Mh ⊗ Fρ) = 1, and then
using the continuity of the generic radius of convergence as in Example 9.6.2.)
By Proposition 9.7.6 the same remains true if we pull back along the map
t �→ ctm , for any positive integer m not divisible by p and any c ∈ o×K . (This
can be generalized further; see the notes.)

Remark 9.9.4. Note that(
E p(t)

E p(ζ t)

)p

= exp((1 − ζ )pt)
E p(t p)

E p(ζ pt p)
.

Consequently, on some disc of radius greater than 1, M⊗p
h is isomorphic to the

pullback of Mh−1 along t �→ t p.

Remark 9.9.5. It is possible to prove directly that, for ρ ∈ [1,+∞)

sufficiently close to 1,

I R(Mh ⊗ Fρ) = ρ−ph
(9.9.5.1)

(exercise). We can also do this using variational properties of the generic
radius; see the exercises for Chapter 11.
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9.10 Comparison with the coordinate-free definition

It is worth reconciling our definition of the generic radius of convergence with
the coordinate-free formula in Proposition 6.3.1. In the process, we can give a
more unified treatment of Fρ and E .

Definition 9.10.1. Let F be a complete nonarchimedean field of characteristic
0 equipped with a bounded derivation d. For u ∈ F , we say that d is of rational
type for the parameter u if the following conditions hold.

(a) We have d(u) = 1 and |ud|F = 1.
(b) For each positive integer n, |dn/n!|F ≤ |d|nF .

For instance, this holds for F = Fρ with d = d/dt and u = t , and similarly
for F = E if K is discretely valued. Note also that condition (b) is vacuously
true if κF is of characteristic 0.

Proposition 9.10.2. Set notation as in Definition 9.10.1. Then, for any
nonnegative integer n and any c0, . . . , cn ∈ F, we have∣∣∣∣∣

n∑
i=0

ci
ui

i ! di

∣∣∣∣∣
F

= max
i

{|ci |}. (9.10.2.1)

Proof. The left-hand side of (9.10.2.1) is less than or equal to the right-hand
side because, by hypothesis, |ui di/ i !|F ≤ |u|i |d|iF ≤ 1 for all i . Conversely,
let j ∈ {0, . . . , n} be the minimal index for which |c j | = maxi {|ci |}; since

ci
ui

i ! di (u j ) =
(

j

i

)
ci u

j

and F is of characteristic 0, we have

∣∣∣∣ci
ui

i ! di (u j )

∣∣∣∣
⎧⎪⎪⎨⎪⎪⎩
= |c j u j | (i = j),

< |c j u j | (i < j),

= 0 (i > j).

Hence |∑n
i=0 ci ui di (u j )/ i !| = |c j u j |, so the left-hand side of (9.10.2.1) is

greater than or equal to the right-hand side.

Corollary 9.10.3. Set notation as in Definition 9.10.1. Then, for any nonzero
finite differential module V over F, we have

|D|sp,V = |d|sp,F lim
s→∞ |Ds |1/s,

where Ds is defined as in Proposition 6.3.1.
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Proof. This follows from Proposition 6.3.1, since (6.3.1.2) holds by virtue of
Proposition 9.10.2.

Notes

As noted in [80, Appendix III], which can be consulted for more informa-
tion, the p-adic Cauchy theorem (Proposition 9.3.3) was originally proved
by Lutz [163]. (Note that this publication long predates Dwork’s work.) See
Proposition 18.1.1 for a related result.

The idea of restricting a p-adic differential module to a generic disc orig-
inated in the work of Dwork [75], although in retrospect the base change
involved is quite natural in Berkovich’s framework of nonarchimedean ana-
lytic geometry. For instance, the Berkovich space associated with a closed
unit disc contains generic points corresponding to each disc of each possi-
ble radius less than or equal to 1; the “residue field” of the generic point
of the disc |t | ≤ ρ is precisely Fρ . (This point of view was adopted
by Baldassarri and Di Vizio in [11] and by Baldassarri in [10].) Our
definition of the generic radius of convergence is taken from Christol and
Dwork [49].

The intrinsic generic radius of convergence (the original terminology) was
introduced in [140], where it is called the “toric normalization” in light of
Proposition 9.7.6.

Previously the subsidiary radii (the original terminology) have not been
studied much; the one reference we found is the work of Young [222]. We will
give Young’s interpretation of the subsidiary radii as the radii of convergence
of certain horizontal sections, in a refined form, as Theorem 11.9.2.

Our description of the Artin–Hasse exponential follows Robert [191, §7.2].
Matsuda’s example, from [168], is an explicit instance of a general construc-
tion introduced by Robba [190]. In turn, Matsuda’s example can be greatly
generalized as shown by Pulita [185], building on work of Chinellato. One
obtains an analogous construction from any Lubin–Tate group over Qp; Mat-
suda’s example arises from the multiplicative group. (The introduction to [185]
provides a detailed historical discussion.)

A slightly different notion of the generic radius of convergence was intro-
duced by Baldassarri and Di Vizio [11] and studied further by Baldassarri [10].
The difference between that definition and ours appears only in the case where
our definition gets truncated. For instance, for a differential module on a closed
disc of radius β, our generic radius of convergence at radius ρ ∈ (0, β) is only
allowed to take values up to ρ. However, Baldassarri and Di Vizio allow values
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up to β since the domain of definition of the original module includes a generic
disc of radius β.

The approach of Baldassarri and Di Vizio gives a more refined invariant than
ours, since ours can be recovered by truncation. Thus, their approach is likely
to have certain advantages in applications. One serious disadvantage is that, at
the moment, there is no good theory of subsidiary generic radii of convergence
in the Baldassarri–Di Vizio framework. The correct definition is presumably
that suggested by Theorem 11.9.2, but it is not clear how to prove any useful
properties for it.

The notion of a derivation of rational type was introduced in [145, §1.4]
as a way to isolate those features of the field Fρ which are needed in the
spectral theory of differential modules. For instance, it is shown in [145]
that the rational type is preserved under unramified or tamely ramified field
extensions. The coordinate-free interpretation of the generic radius of con-
vergence (Corollary 9.10.3) is useful in the study of the irregularity of
higher-dimensional flat meromorphic connections [144].

Exercises

(1) Prove Lemma 9.2.1. Then exhibit an example showing that the coker-
nel of d/dt on K 〈α/t, t/β〉 is not spanned over K by t−1. That is,
antidifferentiation with respect to t is not well defined on K 〈α/t, t/β〉.

(2) Prove Example 9.3.5. (Hint: use the exponential series to construct a
horizontal section.)

(3) Prove Example 9.5.2. (Hint: consider the cases λ ∈ Zp, λ ∈ oK − Zp,
and λ /∈ oK separately.)

(4) In Example 9.5.2 give an explicit formula for I R(Vλ) in terms of ρ and
the minimum distance from λ to an integer.

(5) Prove (9.7.6.1). (Hint: you may find it easier to start with the cases where
m > 0 and where m = −1 and then deduce the general result from them.)

(6) The following considerations illustrate the pitfalls of using td/dt instead
of d/dt in the p-adic setting.
(a) Verify that |td/dt |sp,Fρ �= |t |ρ |d/dt |sp,Fρ .
(b) Show that the inequality (6.3.1.1) of Proposition 6.3.1 can be strict

for F = Fρ and d = td/dt . (Hint: use Example 9.5.2.)
(7) With notation as in Proposition 9.7.6, show that all the intrinsic subsidiary

radii of V match those of f ∗
m(V ), not just the generic radii.

(8) Here is an “off-centered” analogue of Proposition 9.7.6 suggested by
Liang Xiao (compare with Theorem 10.8.2 below). Let m be a nonzero
integer not divisible by p. Given ρ ∈ (0, 1], let fm : Fρ → Fρ be the
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map t �→ (t + 1)m − 1. Then, for any finite differential module V over
Fρ , R(V ) = R( f ∗

m(V )). (As in the previous exercise, one also obtains
equality for the other subsidiary radii.)

(9) Prove (9.9.2.1). (Hint: take logarithms.)
(10) Prove (9.9.5.1) by analyzing an explicit horizontal section around

a generic point. A similar argument is given in the proof of [39,

Proposition 1.5.1]. (Hint: use the equality |1 − ζ | = p−p−h+1/(p−1) from
Example 2.1.6.)
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Frobenius pullback and pushforward

In this chapter, we introduce Dwork’s technique of Frobenius descent to ana-
lyze the generic radius of convergence and subsidiary radii of a differential
module, in the range where Newton polygons do not apply. In one direction
we introduce a somewhat refined form of the Frobenius antecedents introduced
by Christol and Dwork. These fail to apply in an important boundary case; we
remedy this by introducing the new notion of Frobenius descendants, which
covers the boundary case.

Using these results, we are able to improve a number of results from
Chapter 6 in the special case of differential modules over Fρ . For instance
we get a full decomposition by spectral radius, extending the visible decompo-
sition theorem (Theorem 6.6.1) and the refined visible decomposition theorem
(Theorem 6.8.2). We will use these results again to study the variation of sub-
sidiary radii, and decomposition by subsidiary radii, in the remainder of this
part.

Notation 10.0.1. Throughout this chapter we retain Hypothesis 9.0.1. We also
continue to use Fρ to denote the completion of K (t) for the ρ-Gauss norm
viewed as a differential field with respect to d = d/dt , unless otherwise
specified.

Notation 10.0.2. Throughout this chapter we also assume p > 0 unless
otherwise specified.

10.1 Why Frobenius descent?

Remark 10.1.1. It may be helpful to review the current state of affairs, in order
to clarify why we need to descend along a Frobenius morphism.

168
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Let V be a finite differential module over Fρ . Then the possible values
of the spectral radius |D|sp,V are the real numbers greater than or equal to
|d|sp,Fρ = p−1/(p−1)ρ−1, corresponding to generic radii of convergence less
than or equal to ρ. However, in calculating the spectral radius using the Newton
polygon of a twisted polynomial, we cannot distinguish values less than or
equal to the operator norm |d|Fρ = ρ−1. In particular, we cannot use this tech-
nique to prove a decomposition theorem for differential modules that separates
components of spectral radius between p−1/(p−1)ρ−1 and ρ−1.

One way in which one might want to get around this is to consider not d
but a high power of d, in particularly the pn th power. The trouble with this is
that iterating a derivation does not give another derivation but something much
more complicated. Thus, instead we will try to differentiate with respect to
t pn

, rather than t , in order to increase the spectral radius into the range where
Newton polygons become useful.

10.2 pth powers and roots

We first make some calculations in answer to the following question: if two
p-adic numbers are close together, how close are their pth powers or their pth
roots? (See also [80, §V.6] and [42, Proposition 4.6.4].)

Remark 10.2.1. We observed previously, in (9.7.6.1), using slightly different
notation, that when m is a positive integer coprime to p, for ζm a primitive mth
root of unity we have

|t − ηζ i
m | < λ|η| for some i ∈ {0, . . . ,m − 1} ⇔ |tm − ηm | < λ|η|m (λ ∈ (0, 1)).

This breaks down for m = p, because |1 − ζp| = p−1/(p−1) < 1 by
Example 2.1.6. Instead, we have the following bounds.

Lemma 10.2.2. Pick t, η ∈ K .
(a) For λ ∈ (0, 1), if |t − η| ≤ λ|η| then

|t p − ηp| ≤ max{λp, p−1λ}|ηp| =
{
λp|ηp| λ ≥ p−1/(p−1),

p−1λ|ηp| λ ≤ p−1/(p−1).

(b) Suppose that ζp ∈ K . If |t p − ηp| ≤ λ|ηp| then there exists m ∈
{0, . . . , p − 1} such that

|t − ζm
p η| ≤ min{λ1/p, pλ}|η| =

{
λ1/p|η| λ ≥ p−p/(p−1),

pλ|η| λ ≤ p−p/(p−1).

Moreover, if λ ≥ p−p/(p−1), we may always take m = 0.
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We will use repeatedly, and without comment, the fact that

λ �→ max{λp, p−1λ}, λ �→ min{λ1/p, pλ}
are strictly increasing functions from [0, 1] to [0, 1] that are inverse to each
other.

Proof. There is no harm in assuming that ζp ∈ K for both parts. For (a), factor

t p − ηp as (t − η)
∏p−1

m=1(t − ηζm
p ), and write

t − ηζm
p = (t − η)+ η(1 − ζm

p ).

If |t −η| ≥ p−1/(p−1)|η| then t −η is the dominant term; otherwise η(1− ζm
p )

dominates. This gives the claimed bounds.
For (b), consider the Newton polygon of

t p − ηp − c =
p−1∑
i=0

(
p

i

)
ηi (t − η)p−i − c,

viewed as a polynomial in t − η. Suppose that |c| = λ|ηp|. If λ ≥ p−p/(p−1)

then the terms (t − η)p and c dominate, and all roots have norm λ1/p|η|. Oth-
erwise the terms (t − η)p, p(t − η)ηp−1, and c dominate, so one root has
norm pλ|η| and the others are larger. Repeating with η replaced by ζm

p η for
m = 0, . . . , p − 1 gives p distinct roots. This accounts for all the roots.

Corollary 10.2.3. Let T : K �t p − ηp� → K �t − η� be the substitution

t p − ηp �→
p−1∑
i=0

(
p

i

)
ηi (t − η)p−i .

(a) If f ∈ K 〈(t p − ηp)/(λ|ηp|)〉 for some λ ∈ (0, 1) then T ( f ) ∈ K 〈(t −
η)/(λ′|η|)〉 for λ′ = min{λ1/p, pλ}.

(b) If T ( f ) ∈ K 〈(t − η)/(λ|η|)〉 for some λ ∈ (p−1/(p−1), 1) then f ∈
K 〈(t p − ηp)/(λ′|ηp|)〉 for λ′ = λp.

(c) Suppose that K contains a primitive pth root of unity ζp. For m =
0, . . . , p − 1, let Tm : K �t p − ηp� → K �t − ζm

p η� be the substi-

tution t p − ηp �→ ∑p−1
i=0

(p
i

)
ζ im

p ηi (t − ζm
p η)

p−i . If for some λ ∈
(0, p−1/(p−1)] one has Tm( f ) ∈ K 〈(t − ζm

p η)/(λ|η|)〉, for m =
0, . . . , p − 1, then f ∈ K 〈(t p − ηp)/(λ′|ηp|)〉 for λ′ = p−1λ.

10.3 Frobenius pullback and pushforward operations

We now define Frobenius pullback and pushforward operations, and show how
they affect the generic radius of convergence.
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Definition 10.3.1. Let F ′
ρ be the completion of K (t p) for the ρ p-Gauss norm,

viewed as a subfield of Fρ and equipped with the derivation d ′ = d/d(t p). We
then have

d = d(t p)

dt
d ′ = pt p−1d ′.

Given a finite differential module (V ′, D′) over F ′
ρ , we may view ϕ∗V ′ =

V ′ ⊗F ′
ρ

Fρ as a differential module over Fρ with

D(v ⊗ f ) = pt p−1 D′(v)⊗ f + v ⊗ d( f ).

Note that this is not the usual base-change operation, because the restriction of
d to F ′

ρ is not d ′; this is the same situation as that encountered in Remark 9.7.7.

Lemma 10.3.2. Let (V ′, D′) be a finite differential module over F ′
ρ . Then

I R(ϕ∗V ′) ≥ min{I R(V ′)1/p, pI R(V ′)}.
Proof. For any λ < I R(V ′), any complete extension L of K , and any
generic point tρ ∈ L relative to K of norm ρ, V ′ ⊗ L〈(t p − t p

ρ )/(λρ
p)〉

admits a basis of horizontal sections. By Corollary 10.2.3(a), (ϕ∗V ′)⊗ L〈(t −
tρ)/(min{λ1/p, pλ}ρ)〉 does likewise.

Here is a important example, for which Lemma 10.3.2 gives a strict
inequality.

Definition 10.3.3. For m = 0, . . . , p − 1, let Wm be the differential module
over F ′

ρ with one generator v such that

D(v) = m

p
t−pv.

(The generator v is taken to behave as tm = (t p)m/p.) From the Newton poly-
gon associated to v, we may read off I R(Wm) = p−p/(p−1) for m �= 0 since
this is within the range of applicability of Theorem 6.5.3. Note that the inequal-
ity of Lemma 10.3.2 is strict in this case, since ϕ∗Wm is trivial and so has
intrinsic radius 1.

Definition 10.3.4. For V a differential module over Fρ , define the Frobenius
descendant of V as the module ϕ∗V obtained from V by restriction along
F ′
ρ → Fρ . The module ϕ∗V is viewed as a differential module over F ′

ρ with
differential D′ = p−1t1−p D. Note that this operation commutes with duals,
but not with tensor products because of a rank mismatch: the rank of ϕ∗V is p
times that of V . See, however, Lemma 10.3.6(f) below.
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Remark 10.3.5. The definition of the Frobenius descendant extends to differ-
ential modules over K 〈α/t, t/β〉 for α > 0 but not for α = 0, since we must
divide by a power of t to express D′ in terms of D. The underlying problem
is that (in geometric terms) the map ϕ ramifies at the point t = 0. We will see
one way to deal with this problem in the discussion of off-centered Frobenius
descendants (Section 10.8).

The operation ϕ∗ enjoys a number of properties which are useful and
reasonably easy to verify.

Lemma 10.3.6
(a) For V a differential module over Fρ , there are canonical isomorphisms

ψm : (ϕ∗V )⊗ Wm ∼= ϕ∗V (m = 0, . . . , p − 1).

(b) For V a differential module over Fρ , a submodule U of ϕ∗V is itself
the Frobenius descendant of a submodule of V if and only if ψm(U ⊗
Wm) = U for m = 0, . . . , p − 1.

(c) For V ′ a differential module over F ′
ρ , there is a canonical isomorphism

ϕ∗ϕ∗V ′ ∼=
p−1⊕
m=0

(V ′ ⊗ Wm).

(d) For V a differential module over Fρ , there is a canonical isomorphism

ϕ∗ϕ∗V ∼= V ⊕p.

(e) For V a differential module over Fρ , there are canonical bijections

Hi (V ) ∼= Hi (ϕ∗V ) (i = 0, 1).

(f) For differential modules V1, V2 over Fρ , there is a canonical isomor-
phism

ϕ∗V1 ⊗ ϕ∗V2 ∼= (ϕ∗(V1 ⊗ V2))
⊕p.

Proof. Exercise.

10.4 Frobenius antecedents

An important counterpart to the construction of Frobenius descendants is the
construction of Frobenius antecedents; this inverts the pullback operation ϕ∗
when the intrinsic radius is sufficiently large.
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Definition 10.4.1. Let (V, D) be a finite differential module over Fρ .
A Frobenius antecedent of V is a differential module (V ′, D′) over F ′

ρ

such that I R(V ′) > p−p/(p−1), together with an isomorphism V ∼= ϕ∗V ′.
By Lemma 10.3.2 a necessary condition for the existence of a Frobenius
antecedent is that I R(V ) > p−1/(p−1); Theorem 10.4.2 below implies that
this condition is also sufficient.

Theorem 10.4.2 (after Christol and Dwork). Let (V, D) be a finite differen-
tial module over Fρ such that I R(V ) > p−1/(p−1). Then there exists a unique
Frobenius antecedent V ′ of V . Moreover, I R(V ′) = I R(V )p.

Proof. We will assume that ζp ∈ K , as otherwise we could check everything
by adjoining ζp and then performing a Galois descent at the end.

We first check existence. Since |D|sp,V < ρ−1, we may define an action of
Z/pZ on V using a Taylor series:

ζm
p (x) =

∞∑
i=0

(ζm
p t − t)i

i ! Di (x) (x ∈ V,m ∈ Z/pZ).

Note that the maps Pj : V → V defined by

Pj (v) = 1

p

p−1∑
i=0

ζ
−i j
p ζ i

p(v) ( j = 0, . . . , p − 1)

are F ′
ρ-linear projectors onto the generalized eigenspaces for the characters of

Z/pZ. Note also that these eigenspaces are permuted by multiplication by t , so
they must all have the same dimension. We may conclude that the fixed space
V ′ is an F ′

ρ-subspace of V and the natural map ϕ∗V ′ → V is an isomorphism.
(This calculation amounts to a simple instance of the Hilbert–Noether theorem,
i.e., of Galois descent.)

By applying the Z/pZ-action to a basis of horizontal sections of V in the
generic disc |t − tρ | ≤ λρ for some λ ∈ (p−1/(p−1), I R(V )) and then invoking
Corollary 10.2.3(b), we may construct horizontal sections of V ′ in the generic
disc |t p − t p

ρ | ≤ λpρ p. Hence I R(V ′) ≥ I R(V )p > p−p/(p−1).
To check uniqueness, suppose that V ∼= ϕ∗V ′ ∼= ϕ∗V ′′ with I R(V ′),

I R(V ′′) > p−p/(p−1). By Lemma 10.3.6(c) we have

ϕ∗V ∼= ⊕p−1
m=0(V

′ ⊗ Wm) ∼= ⊕p−1
m=0(V

′′ ⊗ Wm).

For m = 1, . . . , p − 1, we have I R(Wm) = p−p/(p−1); since I R(V ′) >
I R(Wm), we have I R(V ′ ⊗ Wm) = p−p/(p−1) by Lemma 9.4.6(c). Since
I R(V ′′) > p−p/(p−1), the factor V ′′ ⊗ W0 must be contained in V ′ ⊗ W0 and
vice versa. Hence V ′ ∼= V ′′.
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For the last assertion, note that the proof of existence gives I R(V ′) ≥
I R(V )p, whereas Lemma 10.3.2 gives the reverse inequality.

Corollary 10.4.3. Let V ′ be a differential module over F ′
ρ such that I R(V ′) >

p−p/(p−1). Then V ′ is the Frobenius antecedent of ϕ∗V ′, so I R(V ′) =
I R(ϕ∗V ′)p.

Proof. By Lemma 10.3.2, I R(ϕ∗V ′) ≥ I R(V ′)1/p > p−1/(p−1), so ϕ∗V ′
has a unique Frobenius antecedent by Theorem 10.4.2. Since I R(V ′) >

p−p/(p−1), V ′ is that antecedent.

The construction of Frobenius antecedents carries over to discs and annuli
as follows.

Theorem 10.4.4. Let M be a finite differential module over K 〈α/t, t/β〉
(we may allow α = 0) such that I R(M ⊗ Fρ) > p−1/(p−1) for ρ ∈
[α, β] (or, equivalently, for ρ = α and ρ = β). Then there exists a
unique differential module M ′ over K 〈α p/t p, t p/β p〉 such that M = M ′ ⊗
K 〈α/t, t/β〉 and I R(M ′ ⊗ F ′

ρ) > p−p/(p−1) for ρ ∈ [α, β]; this M ′ also
satisfies I R(M ′ ⊗ F ′

ρ) = I R(M ⊗ Fρ)p for ρ ∈ [α, β]. (This theorem
also holds with K 〈α/t, t/β〉, K 〈α p/t p, t p/β p〉 replaced with K �α/t, t/β�an,
K �α p/t p, t p/β p�an, respectively, by a similar proof.)

Proof. Define the projectors Pj as in the proof of Theorem 10.4.2, and let
M ′ be the image of P0. By arguing as in Theorem 10.4.2 we may show that
M ′ ⊗ K 〈α/t, t/β〉[t−1] ∼= M ⊗ K 〈α/t, t/β〉[t−1]. However, the quotient of
M by the image of M ′ ⊗ K 〈α/t, t/β〉 is a differential module and so cannot
have any t-torsion, by Proposition 9.1.2. Hence M ′ ⊗ K 〈α/t, t/β〉 ∼= M , and
we may continue as in Theorem 10.4.2.

10.5 Frobenius descendants and subsidiary radii

We saw in Lemma 10.3.2 that we can only weakly control the behavior of
the generic radius of convergence under Frobenius pullback. Under Frobenius
pushforward, we can do much better; we can control not only the generic radius
of convergence but also the subsidiary radii. This will lead to a refinement of
Lemma 10.3.2; see Corollary 10.5.4. (Example 11.7.2 gives an explicit case.)

Theorem 10.5.1. Let V be a finite differential module over Fρ with intrinsic
subsidiary radii s1 ≤ · · · ≤ sn. Then the intrinsic subsidiary radii of ϕ∗V
comprise the multiset

n⋃
i=1

{
{s p

i , p−p/(p−1) (p − 1 times)} si > p−1/(p−1),

{p−1si (p times)} si ≤ p−1/(p−1)
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(note that in the upper expression the second element occurs p − 1 times alto-
gether and in the lower expression the first element occurs p times altogether).
In particular,

I R(ϕ∗V ) = min{p−1 I R(V ), p−p/(p−1)}.
Proof. It suffices to consider V as irreducible. First suppose that I R(V ) >
p−1/(p−1). Let V ′ be the Frobenius antecedent of V (as per Theorem 10.4.2);
note that V ′ is also irreducible. By Lemma 10.3.6(c), ϕ∗V ∼= ⊕p−1

m=0(V
′⊗Wm).

Since each Wm has rank 1, V ′ ⊗ Wm is also irreducible. Since I R(V ′) =
I R(V )p by Theorem 10.4.2 and I R(V ′ ⊗ Wm) = p−p/(p−1) for m �= 0 by
Lemma 9.4.6(c), we have the claim.

Next suppose that I R(V ) ≤ p−1/(p−1). We show first that

I R(ϕ∗V ) ≥ p−1 I R(V ) = max{I R(V )p, p−1 I R(V )}.
For tρ a generic point of radius ρ and λ ∈ (0, p−1/(p−1)), the module ϕ∗V ⊗
L〈(t p − t p

ρ )/(p−1λρ p)〉 splits as the direct sum of V ⊗ L〈(t − ζm
p tρ)/(λρ)〉

over m = 0, . . . , p − 1. If λ < I R(V ), by applying Corollary 10.2.3(c) we
obtain I R(ϕ∗V ) ≥ p−1λ.

Next, let W ′ be any irreducible subquotient of ϕ∗V ; then I R(W ′) ≥
I R(ϕ∗V ), so Lemma 10.3.2 gives on the one hand

I R(ϕ∗W ′) ≥ min{I R(W ′)1/p, pI R(W ′)} ≥ min{I R(ϕ∗V )1/p, pI R(ϕ∗V )} ≥ I R(V ).
(10.5.1.1)

On the other hand ϕ∗W ′ is a subquotient of ϕ∗ϕ∗V , which by
Lemma 10.3.6(d) is isomorphic to V ⊕p. Since V is irreducible, each Jordan–
Hölder constituent of ϕ∗W ′ must be isomorphic to V , yielding I R(ϕ∗W ′) =
I R(V ). That forces each inequality in (10.5.1.1) to be an equality; thus, in par-
ticular, I R(W ′) and I R(ϕ∗V ) have the same image under the injective map
s �→ min{s1/p, ps}. We conclude that I R(W ′) = I R(ϕ∗V ) = p−1 I R(V ),
proving the claim.

Remark 10.5.2. One might be tempted to think that the verification that
I R(ϕ∗V ) ≥ p−1 I R(V ) within the proof of Theorem 10.5.1 should carry over
to the case I R(V ) > p−1/(p−1), in which case it would lead to the false con-
clusion I R(ϕ∗V ) ≥ I R(V )p. What breaks down in this case is that pushing
forward a basis of local horizontal sections of V gives only dim V local hori-
zontal sections of ϕ∗V ; what these span is precisely the Frobenius antecedent
of V .

Corollary 10.5.3. Let s1 ≤ · · · ≤ sn be the intrinsic subsidiary radii of V .
(a) For i such that si ≤ p−1/(p−1), the product of the ip smallest intrinsic

subsidiary radii of ϕ∗V is equal to p−i ps p
1 · · · s p

i .
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(b) For i such that either i = n or si+1 ≥ p−1/(p−1), the product of the
ip + (p − 1)(n − i) smallest intrinsic subsidiary radii of ϕ∗V is equal
to p−ins p

1 · · · s p
i .

In particular, the product of the intrinsic subsidiary radii of ϕ∗V is
p−nps p

1 · · · s p
n .

Note that both conditions apply when si = p−1/(p−1); this will be important
later (see Remark 11.6.2).

As promised, we will now obtain a refined version of Lemma 10.3.2.

Corollary 10.5.4. Let V ′ be a differential module over F ′
ρ such that I R(V ′) �=

p−p/(p−1). Then I R(ϕ∗V ′) = min{I R(V ′)1/p, pI R(V ′)}. (This fails when
I R(V ′) = p−p/(p−1), e.g., for V ′ = Wm.)

Proof. In the case I R(V ′) > p−p/(p−1), this holds by Corollary 10.4.3. Oth-
erwise, by Lemma 10.3.6(c), ϕ∗ϕ∗V ′ ∼= ⊕p−1

m=0(V
′⊗Wm) and I R(V ′⊗Wm) =

I R(V ′) since I R(V ′) < I R(Wm). Hence, by Theorem 10.5.1,

I R(V ′) = I R(ϕ∗ϕ∗V ′) = min{p−1 I R(ϕ∗V ′), p−p/(p−1)}.
We get a contradiction if the right-hand side equals p−p/(p−1), so it must be
the case that I R(V ′) = p−1 I R(ϕ∗V ′) ≤ p−p/(p−1), proving the claim.

10.6 Decomposition by spectral radius

As our first application of Frobenius descent, we will extend the visible decom-
position theorem, and its refined form, in the special case of a differential
module over Fρ . We then deduce some consequences analogous to the con-
sequences of the visible decomposition theorem. To do this, we must use
Frobenius descendants to cross the bound on the spectral radius. This cannot
be done using Frobenius antecedents alone, as they give no information in the
boundary case I R(V ) = p−1/(p−1)ρ.

In this section, we may suppress the hypothesis p > 0, since the case p = 0
is already covered by the original decomposition theorems.

Proposition 10.6.1. Let V1, V2 be irreducible finite differential modules over
Fρ , with I R(V1) �= I R(V2). Then H1(V1 ⊗ V2) = 0.

Proof. We may assume that I R(V2) > I R(V1); note that I R(V ∨
1 ) = I R(V1)

by Lemma 9.4.6(b). If p = 0, or if p > 0 and I R(V1) < p−1/(p−1), then
any short exact sequence 0 → V2 → V → V ∨

1 → 0 splits by the visi-
ble decomposition theorem (Theorem 6.6.1), yielding the desired vanishing by
Lemma 5.3.3. Thus we may assume hereafter that p > 0.
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Suppose that p > 0 and I R(V1) = p−1/(p−1). Let V ′
2 be the Frobenius

antecedent of V2; it also is irreducible, and I R(V ′
2) = I R(V2)

p > p−p/(p−1)

by Theorem 10.4.2. By Theorem 10.5.1, each irreducible subquotient W of
ϕ∗V1 satisfies I R(W ) = p−p/(p−1); hence H1(W ⊗ V ′

2) = 0 by the previous
case, so H1(ϕ∗V1 ⊗ V ′

2) = 0 by the snake lemma.
By Lemma 10.3.6(a), (c),

ϕ∗V1 ⊗ ϕ∗V2 ∼= ⊕p−1
m=0(ϕ∗V1 ⊗ Wm ⊗ V ′

2)

∼= (ϕ∗V1 ⊗ V ′
2)

⊕p.

This yields H1(ϕ∗V1⊗ϕ∗V2) = 0. By Lemma 10.3.6(f), ϕ∗(V1⊗V2) is a direct
summand of ϕ∗V1 ⊗ ϕ∗V2, so H1(ϕ∗(V1 ⊗ V2)) = 0. By Lemma 10.3.6(e),
H1(V1 ⊗ V2) = H1(ϕ∗(V1 ⊗ V2)) = 0.

In the general case, 1 ≥ I R(V2) > I R(V1). If I R(V1) > p−1/(p−1)

then Theorem 10.4.2 implies that V1, V2 have Frobenius antecedents V ′
1, V ′

2.
In addition, for any extension 0 → V1 → V → V ∨

2 → 0, the module V
satisfies I R(V ) > p−1/(p−1) by Lemma 9.4.6, so Theorem 10.4.2 implies that
the whole sequence is itself the pullback of an extension 0 → V ′

1 → V ′ →
(V ′

2)
∨ → 0. To show that V always splits, it suffices to do so for V ′; that is, we

may reduce from V1, V2 to V ′
1, V ′

2. By repeating this enough times, we reach
the situation where I R(V1) ≤ p−1/(p−1). We may then apply the previous
cases.

From here, the proof of the following theorem is purely formal.

Theorem 10.6.2 (Strong decomposition theorem). Let V be a finite differ-
ential module over Fρ . Then there exists a decomposition

V =
⊕

s∈(0,1]
Vs,

where every subquotient Ws of Vs satisfies I R(Ws) = s.

Proof. We induct on dim V ; we need consider only reducible V . Choose a
short exact sequence 0 → U1 → V → U2 → 0 with U2 irreducible.
Decompose U1 as ⊕s∈(0,1]U1,s , where every subquotient Ws of U1,s satisfies
I R(Ws) = s. For each s �= I R(U2), we have H1(U∨

2 ⊗U1,s) = 0 by repeated
application of Proposition 10.6.1 plus the snake lemma. By Lemma 5.3.3 we
have

V = V ′ ⊕
⊕

s �=I R(U2)

U1,s,

where 0 → U1,I R(U2) → V ′ → U2 → 0 is exact.
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As with the visible decomposition theorem, we obtain the following corol-
laries.

Corollary 10.6.3. Let V be a finite differential module over Fρ whose intrinsic
subsidiary radii are all less than 1. Then H0(V ) = H1(V ) = 0.

Proof. It is clear that H0(V ) vanishes, as otherwise V would have a sub-
module with intrinsic generic radius of convergence equal to 1. To see that
H1(V ) = 0, it suffices by Lemma 5.3.3 to show that any short exact sequence
0 → V → W → X → 0 with X trivial is split. This follows by applying
Theorem 10.6.2 to W : in the resulting decomposition, V and X must project
into distinct summands, so W ∼= V ⊕ X .

Corollary 10.6.4. With V = ⊕s∈(0,1]Vs as in Theorem 10.6.2, we have
Hi (V ) = Hi (V1) for i = 0, 1.

This suggests that difficulties in computing H0 and H1 arise in the case
of intrinsic generic radius 1. We will pursue a closer study of this case in
Chapter 13.

Using the strong decomposition theorem, we obtain a refined version of
Corollary 6.2.9 that extends Corollary 6.6.3.

Corollary 10.6.5. If V1 and V2 are irreducible finite differential modules over
Fρ and I R(V1) < I R(V2) then every irreducible subquotient W of V1 ⊗ V2

satisfies I R(W ) = I R(V1).

Proof. Decompose V1 ⊗ V2 = ⊕s∈(0,1]Vs according to Theorem 10.6.2; by
Lemma 9.4.6(c), Vs = 0 whenever s < I R(V1). If some Vs with s > I R(V1)

were nonzero then V1 ⊗ V2 would have an irreducible submodule of intrinsic
radius greater than I R(V1), in violation of Corollary 6.2.9.

We should also mention the following related result extending Corollary 6.2.7
and Corollary 6.5.5.

Proposition 10.6.6. Let Fρ → E be an isometric embedding of complete non-
archimedean differential fields such that |d|Fρ = |d|E and |d|sp,Fρ = |d|sp,E .
Then, for any finite differential module V over Fρ , the full spectra of V and
V ⊗Fρ E are equal.

Proof. We may assume that V is irreducible and has spectral radius s. We first
check the case where E is a finite extension of Fρ ; we may assume that E is
Galois over Fρ . Let W be any submodule of V ⊗Fρ E ; then V ⊗Fρ E is a
quotient of the direct sum of the Galois conjugates of W , all of which have the
same spectral radius. Hence W and V ⊗Fρ E have the same spectral radius,
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which by Corollary 6.2.7 is s. Moreover, every constituent of V ⊗Fρ E is a
conjugate of W and so has spectral radius s. This proves the claim.

In the general case, we may use the previous paragraph to add a primi-
tive pth root of unity ζp to Fρ in the case p > 0. If p = 0 or s > ρ

then Theorem 6.5.3 implies the desired result. Otherwise we may apply
Theorem 10.5.1, replacing Fρ by F ′

ρ and E by the fixed field under the action
of Z/pZ (given by a Taylor series). Repeating this finitely many times, we
arrive back at the case where Theorem 6.5.3 becomes applicable.

We end this discussion by extending the refined visible decomposition
theorem (Theorem 6.8.2) to the full spectrum.

Theorem 10.6.7 (Refined strong decomposition theorem). Let V be a finite
differential module over Fρ such that no subquotient of V has intrinsic radius
equal to 1. Then, for some finite tamely ramified extension E of Fρ , V ⊗Fρ E
admits a (unique) direct sum decomposition

V ⊗Fρ E =
⊕

i

Vi ,

with each Vi refined, such that for i �= j we have Vi �∼ Vj in the sense of
Definition 6.2.12.

Proof. By Theorem 10.6.2 we may reduce immediately to the case where V
is pure and I R(V ) < 1. If p = 0, or if p > 0 and I R(V ) < p−1/(p−1), then
Theorem 6.8.2 gives the claim.

Next we consider the case I R(V ) = p−1/(p−1); by Theorem 10.5.1, ϕ∗V is
again pure with I R(ϕ∗V ) = p−p/(p−1). By the previous paragraph, for some
finite tamely extension E ′ of F ′

ρ we obtain a decomposition of (ϕ∗V )⊗F ′
ρ

E ′
into nonequivalent refined submodules. For V1, V2 appearing in this decom-
position, we declare V1 and V2 to be weakly equivalent if V1 is equivalent
to V2 ⊗E ′ (Wm ⊗F ′

ρ
E ′) for some m. This is again an equivalence relation;

by Lemma 10.3.6(b), if we group the summands of (ϕ∗V ) ⊗F ′
ρ

E ′ into weak
equivalence classes then the resulting decomposition descends to V ⊗Fρ E for
E = Fρ ⊗F ′

ρ
E ′.

Let X be a summand of V ⊗Fρ E in this decomposition; it remains to check
that X is refined. By Lemma 10.3.6(f) we have

(ϕ∗X∨)⊗ (ϕ∗X) ∼= (ϕ∗(X∨ ⊗ X))⊕p.

Hence, by the previous construction, ϕ∗(X∨ ⊗ X) decomposes as a direct sum
in which each summand can be twisted by a suitable Wm ⊗F ′

ρ
E ′ to raise its

intrinsic radius above p−p/(p−1). However, by Lemma 10.3.6(a), ϕ∗(X∨ ⊗ X)
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is isomorphic to its own twist by any Wm ⊗F ′
ρ

E ′. Hence on the one hand its

intrinsic subsidiary radii must comprise a multiset of p rank(X)2 elements in
which exactly rank(X)2 of the elements are greater than p−p/(p−1). On the
other hand, since I R(X∨ ⊗ X) ≥ I R(X) = p−1/(p−1) by Lemma 9.4.6(c),
Theorem 10.5.1 implies that the intrinsic subsidiary radii of ϕ∗(X∨ ⊗ X)
include at most rank(X)2 elements greater than p−p/(p−1). In fact, equality
occurs if and only if all the intrinsic subsidiary radii of X∨ ⊗ X are greater
than p−1/(p−1). Hence X is refined.

Finally, we handle the case p−1/(p−1) < I R(V ) < 1 by induction on the
smallest integer h such that I R(V ) ≤ p−p−h/(p−1). The case h = 0 is han-
dled by the arguments above. If h > 0 then, by Theorem 10.4.2, V has a
Frobenius antecedent W for which I R(W ) = I R(V )1/p ≤ p−p−h+1/(p−1).
By the induction hypothesis, W admits a decomposition into nonequivalent
refined submodules; pulling back by a Frobenius morphism then gives the
desired decomposition of V , by Corollary 10.5.4.

10.7 Integrality of the generic radius

The relationship between the generic radius of convergence and Newton poly-
gons in the visible range (given in Theorem 6.5.3) suggests that the generic
radius of convergence should satisfy some sort of integrality property. On the
one hand we can infer such a property using Frobenius antecedents; on the
other hand, a certain price must be paid.

Theorem 10.7.1. Let V be a finite differential module over Fρ with intrinsic
subsidiary radii s1 ≤ · · · ≤ sn. Let m be the largest integer such that sm =
I R(V ). Then, for any nonnegative integer h,

s1 < p−p−h/(p−1) �⇒ sm
1 ∈ |K×|p−h

ρZ.

Proof. For h = 0 we can read this off from the case of a Newton polygon
(i.e., we can invoke Theorem 6.5.3). To reduce from h to h − 1, if I R(V ) >
p−1/(p−1) then replace V by its Frobenius antecedent (Theorem 10.4.2); if
I R(V ) = p−1/(p−1), apply ϕ∗ and invoke Corollary 10.5.3.

Here is an example to show that the exponent p−h in the conclusion sm
1 ∈

|K×|p−h
ρZ of Theorem 10.7.1 is not spurious.

Example 10.7.2. Suppose that π ∈ K satisfies |π | = p−1/(p−1). Pick λ ∈ K×
and 0 < α ≤ β such that, for ρ ∈ [α, β],

p1/(p−1) < |λ|ρ−p < p p/(p−1).
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Let M be the differential module over K 〈α/t, t/β〉 that is generated by v sat-
isfying D(v) = −pπλt−p−1v. Then M ∼= ϕ∗M ′, where M ′ is the differential
module over K 〈α p/t p, t p/β p〉 with generator w and D′(w) = −πλ(t p)−2w.
We deduce that

|D′|M ′⊗F ′
ρ
= p−1/(p−1)|λ|ρ−2p > ρ−p.

Hence we have

I R(M ′ ⊗ F ′
ρ) = |λ|−1ρ p,

I R(M ⊗ Fρ) = |λ|−1/pρ,

where the first equality follows by Theorem 6.5.3 and the second follows from
the first by Corollary 10.4.3.

Remark 10.7.3. Another way to understand Example 10.7.2 is by means of
the Dwork exponential series; see Definition 17.1.3.

Question 10.7.4. What is the correct extension of Theorem 10.7.1 for the
remaining subsidiary radii? (This should not be difficult.)

10.8 Off-center Frobenius antecedents and descendants

Since pushing forward along a Frobenius morphism does not work well
on a disc (Remark 10.3.5), we must also consider “off-center” Frobenius
antecedents and descendants. Although this can be done rather more generally,
we will stick to one case that is sufficient for our purposes.

Definition 10.8.1. For ρ ∈ (p−1/(p−1), 1], let F ′′
ρ be the completion of K ((t −

1)p −1) under the ρ p-Gauss norm. Note that this coincides with the restriction
of the ρ-Gauss norm on K (t), because |((t − 1)p − 1) − t p|ρ < |t p|ρ . (One
could allow K ((t − μ)p − μp) for any μ ∈ K of norm 1, but there is no
significant loss of generality in rescaling t to reduce to the case μ = 1.) For
brevity, write u = (t − 1)p − 1. Equip F ′′

ρ with the derivation

d ′′ = d

du
= 1

du/dt
d.

Given a differential module V ′′ over F ′′
ρ , we may view ψ∗V ′′ = V ′′ ⊗ Fρ

as a differential module over Fρ . Given a differential module V over Fρ , we
may view the restriction ψ∗V of V along F ′′

ρ → Fρ as a differential module
over F ′′

ρ .
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The main point here is that du/dt ∈ K 〈t〉×. Consequently, we can extend
both ψ∗ and ψ∗ not just to annuli but also discs. This is needed to establish the
monotonicity property for subsidiary radii (Theorem 11.3.2(d)).

We may apply Lemma 10.2.2 with η replaced by η + 1, keeping in mind
that |η + 1| = 1 for |η| < 1. This has the net effect that everything that holds
for ϕ also holds for ψ , except that the intrinsic generic radius of convergence
must be replaced by the extrinsic one. Rather than rederive everything, we
simply state the analogues of Theorems 10.4.2 and 10.5.1 and leave the proofs
as exercises.

Theorem 10.8.2. Let (V, D) be a finite differential module over Fρ such that
R(V ) > p−1/(p−1). Then there exists a unique differential module (V ′′, D′′)
over F ′′

ρ equipped with an isomorphism V ∼= ψ∗V ′′ such that R(V ′′) >
p−p/(p−1). For this V ′′, one has in fact R(V ′′) = R(V )p.

Theorem 10.8.3. Let V be a finite differential module over Fρ with extrin-
sic subsidiary radii s1, . . . , sn. Then the extrinsic subsidiary radii of ψ∗V
comprise the multiset

n⋃
i=1

{
{s p

i , p−p/(p−1) (p − 1 times)} si > p−1/(p−1),

{p−1si (p times)} si ≤ p−1/(p−1).

Remark 10.8.4. Note that one cannot expect Theorem 10.8.3 to hold for ρ <
p−1/(p−1), as in that case p−p/(p−1) is too large to appear as a subsidiary radius
of ψ∗V .

Notes

Lemma 10.2.2 is taken from [128, §5.3] with some typos corrected.
The Frobenius antecedent theorem of Christol and Dwork [49, Théorème 5.4]

is slightly weaker than the one given here: it only applies for I R(V ) > p−1/p.
The discrepancy is due to the introduction of cyclic vectors, which create some
regular singularities which can only eliminated under the stronger hypothe-
sis. Much closer to the statement of Theorem 10.4.2 is [128, Theorem 6.13];
however, uniqueness is only asserted there when I R(V ′) ≥ I R(V )p.

The concept of the Frobenius descendant, and the results deduced using
it, are original. This includes Theorem 10.5.1 and its off-center analogue
(Theorem 10.8.3), the strong decomposition theorem (Theorem 10.6.2), and
the refined strong decomposition theorem (Theorem 10.6.7). The latter was
suggested by Liang Xiao; see the notes for Chapter 6 for the motivation
for this.
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The notions of Frobenius antecedents and descendants extend to derivations
of rational type, with one caveat: the assertion of Theorem 10.7.1 does not
carry over. See [145, Theorem 1.4.21] for the correct statement.

Exercises

(1) Prove Lemma 10.3.6.
(2) Prove that, for any finite differential module V ′ over F ′

ρ with I R(V ′) >
p−p/(p−1), H0(V ′) = H0(ϕ∗V ′). (The example V ′ = Wm shows that the
bound on I R(V ′) cannot be relaxed.)

(3) Derive Theorem 10.8.2 by imitating the proof of Theorem 10.4.2.
(4) Derive Theorem 10.8.3 by imitating the proof of Theorem 10.5.1.
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Variation of generic and subsidiary radii

In this chapter, we apply the tools developed in the preceding chapters to study
the variation of the generic radius of convergence, and of the subsidiary radii,
associated with a differential module on a disc or annulus. We have already
seen some instances where this study is needed to deduce consequences about
the convergence of solutions of p-adic differential equations (Examples 9.6.2
and 9.9.3).

The statements we will formulate are modeled on statements governing the
variation of the Newton polygon of a polynomial over a ring of power series as
we vary the choice of Gauss norm on the power series ring. The guiding princi-
ple is that, in the visible spectrum, one should be able to relate the variation of
subsidiary radii to the variation of Newton polygons via matrices of action of
the derivation on suitable bases. This includes the relationship between sub-
sidiary radii and Newton polygons for cyclic vectors (Theorem 6.5.3), but
trying to use that approach directly creates no end of difficulties because cyclic
vectors only exist in general for differential modules over fields. We will imple-
ment the guiding principle in a somewhat more robust manner than before,
using the discussion of matrix inequalities in Chapter 6.

To this principle we must add the techniques of descent along a Frobenius
morphism introduced in Chapter 10, including the off-centered variant. This
allows us to overcome the limitation to the visible spectrum.

As corollaries of this analysis, we deduce some facts about the true radius of
convergence of a differential module on a disc. We also establish a geometric
interpretation of subsidiary radii in terms of the convergence of local horizontal
sections around a generic point, extending a result of Young. We will build
further on this work when we discuss decomposition theorems in Chapter 12.

Throughout this chapter we retain Notation 10.0.1 but we do not assume that
p > 0. We will continue to use the convention

184
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ω =
{

1 p = 0,

p−1/(p−1) p > 0.

11.1 Harmonicity of the valuation function

For f ∈ K 〈α/t, t/β〉 and r ∈ [− logβ,− logα], the function r �→ vr ( f )
is continuous, piecewise affine, and (by Proposition 8.2.3(b)) concave in r .
However, one can make an even more precise statement; for simplicity, we
will write this out explicitly only for r = 0.

Definition 11.1.1. For μ in some extension of k, let μ be a lift of μ in some
complete extension L of K . For α ≤ 1 ≤ β, define the substitution

Tμ : K 〈α/t, t/β〉 → L�t�an, t �→ t + μ.

(This map extends to K �α/t, t/β�0 if α < 1 < β.) The function r �→
vr (Tμ( f )) on [0,+∞) is continuous and piecewise affine; moreover, its right-
hand slope at r = 0 does not depend on the choice of the field L or the lift μ
of μ. We call this slope sμ( f ). For 1 < β (resp. α < 1), define s∞( f ) (resp.
s0( f )) to be the left-hand (resp. right-hand) slope of the function r �→ vr ( f )
at r = 0.

Then we have the following harmonicity property.

Proposition 11.1.2. For 0 ≤ α < 1 < β and f ∈ K 〈α/t, t/β〉 nonzero,
we have

s∞( f ) =
∑
μ∈κalg

K

sμ( f ).

Proof. Without loss of generality we may assume that | f |1 = 1. The quotient
of oF1 ∩K 〈α/t, t/β〉 by the ideal generated by mK is isomorphic to κK [t, t−1];
let f be the image of f in this quotient. Then sμ is the order of vanishing of f
at μ, whereas s∞ is the pole order of f at ∞. The desired equality then follows
from the fact that a rational function has as many zeroes as poles (counted
including the multiplicity of each pole).

Remark 11.1.3. Note that sμ( f ) ≥ 0 for μ �= 0; thus Proposition 11.1.2 does

indeed recover the concavity inequality s∞ ≥ s0. Also, sμ( f ) = 0 if μ /∈ κalg
K

because the zeroes and poles of a rational function with coefficients in κK must
be algebraic over κK .
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11.2 Variation of Newton polygons

Before proceeding to differential modules, we study the variation of the
Newton polygon of a polynomial over K 〈α/t, t/β〉 or K �α/t, t/β�an when
measured with respect to different Gauss valuations. We begin with this both
because it motivates the statements of the results for differential modules and
also because it will be used heavily in the proofs of those statements.

Theorem 11.2.1. Let P ∈ K �α/t, t/β�an[T ] be a polynomial of degree n. For
r ∈ [− logβ,− logα], put vr (·) = − log | · |e−r . Let NPr (P) be the Newton
polygon of P under vr . Let f1(P, r), . . . , fn(P, r) be the slopes of NPr (P)
(listed with multiplicity) in increasing order. For i = 1, . . . , n, put Fi (P, r) =
f1(P, r)+ · · · + fi (P, r).

(a) (Linearity) For i = 1, . . . , n, the functions fi (P, r) and Fi (P, r) are
continuous and piecewise affine in r . Moreover, even if α = 0 there are
only finitely many different slopes.

(b) (Integrality) If i = n or fi (r0) < fi+1(r0) then the slopes of Fi (P, r)
in some neighborhood of r = r0 belong to Z. Consequently, the slopes
of each fi (P, r) and Fi (P, r) belong to

1

1
Z ∪ · · · ∪ 1

n
Z.

(c) (Superharmonicity) Suppose that α < 1 < β. For i = 1, . . . , n, let
s∞,i (P) and s0,i (P) be the left-hand and right-hand slopes of Fi (P, r)

at r = 0. For μ ∈ (κ
alg
K )×, let sμ,i (P) be the right-hand slope of

Fi (Tμ(P), r) at r = 0. Then

s∞,i (P) ≥
∑
μ∈κalg

K

sμ,i (P),

with equality if i = n or fi (P, 0) < fi+1(P, 0).
(d) (Monotonicity) Suppose that P is monic and α = 0. For i = 1, . . . , n,

the slopes of Fi (P, r) are nonnegative.
(e) (Concavity) Suppose that P is monic. For i = 1, . . . , n, the function

Fi (P, r) is concave.

Proof. Write P = ∑n
i=0 Pi T i with Pi ∈ K �α/t, t/β�an. By Proposition 8.5.2

the function vr (Pi ) is continuous and concave in r and piecewise affine with
slopes in Z. Moreover, even if α = 0 there are only finitely many different
slopes.

For s ∈ R and r ∈ [− logβ,− logα], put

vs,r (P) = min
i

{vr (Pi )+ is};
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that is, vs,r (P) is the y-intercept of the supporting line of NPr (P) of slope
s. Since vs,r (P) is the minimum of finitely many functions of the pair (r, s),
each of which is continuous, piecewise affine with only finitely many different
slopes, and concave, it also enjoys these properties. (Compare Remark 2.1.7.)

Note that Fi (P, r) is the difference between the y-coordinates of the points
of NPr (P) having x-coordinates i − n and −n. That is,

Fi (P, r) = sup
s
{vs,r (P)− (n − i)s} − vr (Pn). (11.2.1.1)

The supremum in (11.2.1.1) is achieved by some s whose denominator is
bounded by n. For any given r0, for r in some neighborhood of r0 there can be
only finitely many values of s with denominator bounded by n achieving the
supremum in (11.2.1.1) for at least one value of r in the neighborhood. Con-
sequently, Fi (P, r) is continuous and piecewise affine with only finitely many
different slopes, proving (a).

If i = n or fi (P, r0) < fi+1(P, r0) then the point of NPr0(P) having
x-coordinate i − n is a vertex, and likewise for r in some neighborhood of r0.
In that case, for r near r0,

Fi (P, r) = vr (Pn−i )− vr (Pn), (11.2.1.2)

proving (b).
Assume that α < 1 < β. Then Proposition 11.1.2 implies that

s∞(Pi ) =
∑
μ∈κalg

K

sμ(Pi ) (i = 0, . . . , n).

If i = n or fi (P, 0) < fi+1(P, 0) then the above equation imply plus
(11.2.1.2) that the desired inequality is in fact an equality. Otherwise, let j, k
be the least and greatest indices for which f j (P, 0) = fi (P, 0) = fk(P, 0);
then j ≤ i < k, and the convexity of the Newton polygon implies that

Fi (P, r) ≤ k − i

k − j + 1
Fj−1(P, r)+ i − j + 1

k − j + 1
Fk(P, r), (11.2.1.3)

with equality for r = 0. From this plus piecewise affinity we deduce that

s∞,i (P) ≥ k − i

k − j + 1
s∞(Pn− j+1)+ i − j + 1

k − j + 1
s∞(Pn−k),

sμ,i (P) ≤ k − i

k − j + 1
sμ(Pn− j+1)+ i − j + 1

k − j + 1
sμ(Pn−k) (μ ∈ κalg

K ),

yielding (c).
Assume that α = 0 and that P is monic. Then each vr (Pi ) is a nondecreasing

function of r , as is each vs,r (P). Since vr (Pn) = 0, Fi (P, r) is nondecreasing
by (11.2.1.1), proving (d).
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To prove (e), one can reduce to working locally around r = 0 and then
deduce the claim from (c) and (d) (because the latter implies that sμ,i (P) ≥ 0
for μ �= 0). However, one can also prove (e) directly as follows. Assume that
P is monic, so that Pn = 1 and (11.2.1.1) reduces to

Fi (P, r) = sup
s
{vs,r (P)− (n − i)s}.

It is not immediately clear from this that Fi (P, r) is concave, since we are tak-
ing the supremum rather than the infimum of a collection of concave functions.
To get around this, pick r1, r2 ∈ [− logβ,− logα] and put r3 = ur1+(1−u)r2

for some u ∈ [0, 1]. For j ∈ {1, 2}, choose an s j achieving the supremum in
(11.2.1.1) for r = r j . Put s3 = us1 + (1 − u)s2; then, using the concavity of
vs,r (P) in both s and r , we have

Fi (P, r3) ≥ vs3,r3(P)− (n − i)s3

≥ u(vs1,r1(P)− (n − i)s1)+ (1 − u)(vs2,r2(P)− (n − i)s2)

= uFi (P, r1)+ (1 − u)Fi (P, r2).

This yields concavity for Fi (P, r), proving (e).

Remark 11.2.2. A more geometric interpretation of the previous proof can
be given by writing each Pi as

∑
j Pi, j t j and considering the lower convex

hull of the set of points {(−i,− j, v(Pi, j ))} in R3. We leave elaboration of this
point to the reader.

Remark 11.2.3. If i = n or fi (P, r0) < fi+1(P, r0) then (11.2.1.2)
implies that

f1(P, r0)+ · · · + fi (P, r0) ∈ v(K×)+ Zr0.

This fact does not analogize to subsidiary radii, because one has to replace
v(K×) by its p-divisible closure. See Theorem 10.7.1 and Example 10.7.2.

Remark 11.2.4. The conclusions of Theorem 11.2.1 carry over if we replace
fi (P, r) by min{ fi (P, r), ar + b} for any fixed a, b ∈ R (except for (b), for
which we need a, b ∈ Z). This is so because

i∑
j=1

min{ fi (P, r), ar + b} = sup
s≤ar+b

{vs,r (P)− (n − i)s} − vr (Pn);

in other words, the height of the relevant point is determined by the supporting
lines of slope less than or equal to ar +b, rather than by all slopes. Note that, in
the notation of the proof of Theorem 11.2.1(e), the inequality s j ≤ ar j + b for
j = 1, 2 implies the same for j = 3, so the proof of concavity goes through.

For bounded elements, we obtain a similar but slightly weaker conclusion.
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Theorem 11.2.5. Let P ∈ K �α/t, t/β�0[T ] be a polynomial of degree n.
Then the conclusions of Theorem 11.2.1 continue to hold except that, if K is
not discrete, in (a) the functions fi (P, r) and Fi (P, r) are only piecewise affine
on the interior of [− logβ,− logα] (with possibly infinitely many slopes).

Proof. The revised statement of (a) holds by Remark 8.2.4. For the other parts,
one may simply apply Theorem 11.2.1 over the ring K 〈γ /t, t/δ〉[T ] for all γ, δ
with α < γ ≤ δ < β (in the case α �= 0) or 0 = α = γ ≤ δ < β (in the case
α = 0).

11.3 Variation of subsidiary radii: statements

In order to state the analogue of Theorem 11.2.1 for the subsidiary radii of
a differential module on a disc or annulus, we must set some corresponding
notation.

Notation 11.3.1. Let M be a finite free differential module of rank n
over K 〈α/t, t/β〉, K 〈α/t, t/β�an, or K �α/t, t/β�an. For ρ ∈ [α, β], let
R1(M, ρ), . . . , Rn(M, ρ) be the extrinsic subsidiary radii of M ⊗ Fρ in
increasing order, so that R1(M, ρ) = R(M ⊗ Fρ) is the generic radius of
convergence of M ⊗ Fρ . For r ∈ [− logβ,− logα], define

fi (M, r) = − log Ri (M, e−r ),

so that fi (M, r) ≥ r for all r . Put Fi (M, r) = f1(M, r)+ · · · + fi (M, r).

We now have the following results, whose proofs are distributed across the
remainder of this chapter (Lemmas 11.5.1, 11.6.1, 11.6.3, and 11.7.1). Note
that there is an overall sign discrepancy with Theorem 11.2.1, so that concavity
becomes convexity and so forth. There are also some exceptions made in cases
where fi (M, r) = r .

Theorem 11.3.2. Let M be a finite free differential module of rank n over
K 〈α/t, t/β〉, K 〈α/t, t/β�an, or K �α/t, t/β�an.

(a) (Linearity) For i = 1, . . . , n, the functions fi (M, r) and Fi (M, r) are
continuous and piecewise affine. Moreover, even if α = 0 there are only
finitely many different slopes.

(b) (Integrality) If i = n or fi (M, r0) > fi+1(M, r0) then the slopes of
Fi (M, r) in some neighborhood of r0 belong to Z. Consequently, the
slopes of each fi (M, r) and Fi (M, r) belong to

1

1
Z ∪ · · · ∪ 1

n
Z.
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(c) (Subharmonicity) Suppose that α < 1 < β and that fi (M, 0) > 0. For
i = 1, . . . , n, let s∞,i (M) and s0,i (M) be the left-hand and right-hand

slopes of Fi (M, r) at r = 0. For μ ∈ (κ
alg
K )×, let sμ,i (M) be the

right-hand slope of Fi (T ∗
μ(M), r) at r = 0. Then

s∞,i (M) ≤
∑
μ∈κalg

K

sμ,i (M),

with equality if either i = n and fn(M, 0) > 0 or i < n and
fi (M, 0) > fi+1(M, 0).

(d) (Monotonicity) Suppose that α = 0. For i = 1, . . . , n, for any point r0

where fi (M, r0) > r0 the slopes of Fi (M, r) are nonpositive in some
neighborhood of r0. (Remember that if α = 0 then fi (M, r) = r for r
sufficiently large, by Proposition 9.3.3; see also Proposition 11.8.1.)

(e) (Convexity) For i = 1, . . . , n, the function Fi (M, r) is convex.

Remark 11.3.3. Note that fi (M, r) and Fi (M, r) are defined using the extrin-
sic normalization. However, if we switch to the intrinsic normalization then
everything in Theorem 11.3.2 stays the same except for (d), in which the upper
bound on the slopes in a neighborhood of r0 changes from 0 to −1.

Remark 11.3.4. Suppose instead that M is a finite free differential module
of rank n over K 〈α/t, t/β�0 (resp. over K �α/t, t/β�0). We may then apply
Theorem 11.3.2 to M ⊗ K 〈γ /t, t/δ〉 for all γ, δ with α < γ ≤ δ < β (in
the case α �= 0 if we are working over K �α/t, t/β�0) or α = γ ≤ δ < β

(otherwise). This implies that all the conclusions of Theorem 11.3.2 continue
to hold for M itself, except that in (a) the functions fi (M, r) and Fi (M, r) are
defined only on (− logβ,− logα] (resp. on (− logβ,− logα)). One can also
show that they extend continuously, and continue to be piecewise affine (with
finitely many slopes) if K is discrete, on the whole of [− logβ,− logα]; see
Remark 11.6.5.

11.4 Convexity for the generic radius

As a prelude to tackling Theorem 11.3.2, we give a quick proof of subhar-
monicity, monotonicity, and convexity (parts (c)–(e) of Theorem 11.3.2) for the
function f1 corresponding to the generic radius of convergence. This argument
applies to both discs and annuli and can be used in place of the full strength
of Theorem 11.3.2 for many purposes; indeed, this is true for numerous results
which predate Theorem 11.3.2. See the notes for further details.
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Proof of Theorem 11.3.2(c), (d), (e) for i = 1. Choose a basis of M , and let
Ds be the matrix of action of Ds on this basis. Then recall from Lemma 6.2.5
that

R1(M, ρ) = min{ρ, ω lim inf
s→∞ |Ds |−1/s

ρ }.

For each s, the function r �→ − log |Ds |−1/s
e−r is convex in r by Prop-

osition 8.2.3(b). This implies the convexity of

f1(M, r) = max

{
r, − logω + lim sup

s→∞
(− log |Ds |−1/s

e−r )

}
.

Similarly, we may deduce (c) by applying Proposition 11.1.2 to each Ds . If
α = 0 then the function r �→ − log |Ds |−1/s

e−r is nonincreasing, yielding (d).

Remark 11.4.1. To improve upon this result, we will try to read off the generic
radius of convergence, and maybe even the other subsidiary radii, from the
Newton polygon of a cyclic vector. In order to do this, we have to circumvent
two obstacles.

(a) In general one can only construct cyclic vectors for differential
modules over differential fields, not over differential rings. (While
Theorem 5.7.3 produces cyclic vectors over certain rings, it only does
so locally for the Zariski topology, which appears to be insufficient for
this purpose.)

(b) If p > 0 some subsidiary radii may be greater than p−1/(p−1)ρ, in
which case Newton polygons will not detect them.

The first problem will be addressed by using a cyclic vector over a fraction field
to establish linearity, integrality, and subharmonicity and then using a carefully
chosen lattice to deduce monotonicity and convexity. The second problem will
be addressed using Frobenius descendants.

11.5 Measuring small radii

In this section, we address concern (a) from Remark 11.4.1, using both cyclic
vectors and matrix inequalities.

Lemma 11.5.1. For any i ∈ {1, . . . , n} and any r0 such that fi (M, r0) >

r0 − logω, Theorem 11.3.2 holds in a neighborhood of r0.

Proof. If M is defined over R, put F = Frac R. Choose a cyclic vector for
M ⊗R F to obtain an isomorphism M ⊗R F ∼= F{T }/F{T }P for some
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monic twisted polynomial P over F . We may then apply Corollary 6.5.4 and
Theorem 11.2.1 to deduce (a), (b), (c) of Theorem 11.3.2.

To deduce (d), we may work in a right-hand neighborhood of a single value
r0 of r . There is no harm in enlarging K (by Proposition 10.6.6), so we may
assume that v(K×) = R. Then we may reduce to the case r0 = 0 by replacing t
by λt for some λ ∈ K×.

Since v(K×) = R, we may pick c1, . . . , cn ∈ K such that

− log |c j | = min{− logω − f j (M, 0), 0} ( j = 1, . . . , n).

Let S ∈ F[U ] be the untwisted polynomial with the same coefficients as P ,
and let μ1, . . . , μn be the roots of S. By Corollary 6.5.4,

|ci | = max{|μi |, 1} = max{ωe f j (M,0), 1} (i = 1, . . . , n).

We now construct a basis of M ⊗R F as in Theorem 6.5.3. Let B0 be the basis
of M ⊗R F given by

c−1
n−1 · · · c−1

n− j T
j ( j = 0, . . . , n − 1).

Let N0 be the matrix of action of D on B0; it is a conjugated companion matrix,
of the form appearing in Proposition 4.3.10, corresponding to S. In particular,
the singular values of N0 are |c1|, . . . , |cn−1|, |μ1 · · ·μn/(c1 · · · cn−1)|. The
latter equals |cn| if |cn| > 1 and otherwise is less than or equal to 1.

By Lemma 8.6.1 the supremum norm defined by B0 is also defined by
some basis B1 of M ⊗R K �t�an. Let N1 be the matrix of action of D on B1.
Theorem 6.7.4 implies that, for r close to 0, the visible spectrum of M ⊗R Fe−r

is the multiset of those norms of eigenvalues of the characteristic polynomial
of N1 which exceed e−r . We may then deduce (d) from Theorem 11.2.1(d).
(Alternatively, one may replace K by a spherical completion, then tensor M
with K �t�0, and use Lemma 8.6.2.)

We can deduce (e) from (c) and (d), as noted in the proof of
Theorem 11.2.1(e). It can also be proved directly as follows. We may again
assume that r0 = 0. We may also assume that α < 1 < β, as otherwise there
is nothing to check at r0. Define B0 as above. This time, apply Lemma 8.6.1 to
construct a basis B ′

1 of M ⊗R K 〈1/t, t〉 defining the same supremum norm as
B0. We may approximate B ′

1 with a basis B1 of M ⊗R K 〈γ /t, t/δ〉 for some
α ≤ γ < 1 < δ ≤ β defining the same supremum norm with respect to
| · |1. (Here we use the facts that K 〈α/t, t/β〉 is dense in K 〈1/t, t〉 and that
any element of K 〈α/t, t/β〉 which becomes a unit in K 〈1/t, t〉 is already a
unit in K 〈γ /t, t/δ〉 for some α ≤ γ < 1 < δ ≤ β. The latter holds because
if the Newton polygon of an element of K 〈γ /t, t/δ〉 has no slope equal to 0,
then it also has no slopes in some neighborhood of 0.) Let N1 be the matrix of
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action of D on B1. Applying Theorem 6.7.4 to N1, we may deduce (e) from
Theorem 11.2.1(e).

11.6 Larger radii

Next we address concern (b) from Remark 11.4.1, considering the cases
fi (M, r0) > r0 and fi (M, r0) = r0 separately. We temporarily omit mono-
tonicity, as it requires a slightly different argument. (We must also say more
about Theorem 11.3.2(a); see Remark 11.6.4 below.)

Lemma 11.6.1. For any i ∈ {1, . . . , n} and any r0 such that fi (M, r0) > r0,
statements (a)–(c), (e) of Theorem 11.3.2 hold in a neighborhood of r0.

Proof. This holds by Lemma 11.5.1 in the case p = 0, so we may assume
p > 0 throughout the proof. For each nonnegative integer j , we will prove the
claim for r0 such that fi (M, r0) > r0 + (1/p j (p − 1)) log p, by induction on
j ; the base case j = 0 is precisely Lemma 11.5.1, so we may assume j > 0
hereafter. As in the proof of Lemma 11.5.1, we may reduce to the case r0 = 0.

Let R′
1(ρ

p), . . . , R′
pn(ρ

p) be the subsidiary radii of ϕ∗M ⊗ F ′
ρ in increasing

order. (The normalization is chosen in this way because the series vari-
able in F ′

ρ is t p, which has norm ρ p.) Put gi (pr) = − log R′
i (e

−pr ). By
Theorem 10.5.1, the list g1(pr), . . . , gpn(pr) consists of

n⋃
i=1

{
{p fi (M, r), pr + p

p−1 log p (p − 1 times)} fi (M, r) ≤ r + 1
p−1 log p,

{log p + (p − 1)r + fi (M, r) (p times)} fi (M, r) ≥ r + 1
p−1 log p.

Thus we may deduce (a) from the induction hypothesis.
To check (b), (c), (e), it suffices to handle the cases where i = n or

fi (M, 0) > fi+1(M, 0). (As in the proof of Theorem 11.2.1(c), we may lin-
early interpolate to establish convexity and subharmonicity in the other cases.)
In these cases, as in Corollary 10.5.3, we have at least one of fi (M, 0) >
(1/(p − 1)) log p, in which case in some neighborhood of r = 0 we have

g1(pr)+ · · · + gpi (pr) = pFi (M, r)+ pi log p + (p − 1)i pr, (11.6.1.1)

or fi+1(M, 0) < (1/(p − 1)) log p, or i = n, in which last case we have in
some neighborhood of r = 0

g1(pr)+ · · · + gpi+(p−1)(n−i)(pr) = pFi (M, r)+ pn log p + (p − 1)npr.
(11.6.1.2)

Moreover, fi (M, 0) > (1/p j (p − 1))) log p if and only if gpi (0) >

(1/p j−1(p − 1)) log p.
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If fi (M, 0) > (1/(p − 1)) log p, apply (11.6.1.1) and the induction hypoth-
esis to write piecewise

Fi (M, r) = (1/p)(g1(pr)+ · · · + gpi (pr)− pi log p − (p − 1)i pr)

= (1/p)(m(pr)+ ∗)
= mr + (1/p)∗

for some m ∈ Z. (Note that ∗ is not guaranteed to be in pv(K×); this explains
Example 10.7.2.) Otherwise, we may apply (11.6.1.2) to write piecewise

Fi (M, r) = (1/p)(g1(pr)+ · · · + gpi+(p−1)(n−i)(pr)− pn log p − (p − 1)npr)

= (1/p)(m(pr)+ ∗)
= mr + (1/p)∗

for some m ∈ Z.

Remark 11.6.2. In the proof of Lemma 11.6.1, note the importance of the
fact that the domains of applicability of (11.6.1.1) and (11.6.1.2) overlap: if
fi (M, 0) = (1/(p − 1)) log p then (11.6.1.1) is valid for r = 0 but possibly
not for nearby r values.

The case fi (M, r0) = r0 remains inaccessible even using descent along a
Frobenius morphism, so we make an ad hoc argument.

Lemma 11.6.3. For any i ∈ {1, . . . , n} and any r0 such that fi (M, r0) = r0,
Theorem 11.3.2 holds in a neighborhood of r0.

Proof. As in the proof of Lemma 11.5.1, it suffices to consider the case r0 =
0. We first check continuity. For this, note that the proofs of Lemma 11.5.1
and 11.6.1 show that, for any c > 0, the function max{ fi (M, r), r + c} is
continuous at r = 0. Consequently, for any ε > 0, we can find 0 < δ < ε/2
such that

|max{ fi (M, r), r + ε/4}| < ε/2 (|r | < δ).

For such r , −ε < −δ < r ≤ fi (M, r) < ε; this yields continuity.
Next we check convexity. Using Remark 11.2.4, the proofs of Lem-

mas 11.5.1 and 11.6.1 show that, for any c > 0, the function∑i
j=1 max{ f j (M, r), r + c} is convex. (The key point is that the domain over

which this holds does not depend on c.) Since this function tends to Fi (M, r)
as c tends to 0, we may deduce (e).

We now check piecewise affinity by induction on i . Given that
f1(M, r), . . . , fi−1(M, r) are affine in a one-sided neighborhood of r = 0,
say [−δ, 0], and given that fi (M, 0) = 0, it suffices to check the linearity
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of fi (M, r) − r in some [−δ′, 0]. By (e), the set of r ∈ [−δ, 0] for which
fi (M, r)− r ≤ 0 is connected. Since fi (M, r)− r ≥ 0 always, it follows that
if fi (M, r0) = 0 for a single r0 ∈ [−δ, 0] then fi (M, r) = 0 for r ∈ [−r0, 0]
so, in particular, fi (M, r)− r is linear in a one-sided neighborhood of 0. Oth-
erwise the slopes of fi (M, r)−r in [−δ, 0) form a sequence of discrete values
which are negative and nondecreasing (by (e)). This sequence must then sta-
bilize, so fi (M, r) − r is again linear in a one-sided neighborhood of 0. This
proves (a).

To prove (b), note that when fi (M, 0) = 0 the input hypothesis can only
hold if i = n. Suppose that we wish to check the integrality of the right slope
of Fn(M, r) (the argument for the left-hand slope is analogous). If f1(M, r)−
r, . . . , fn(M, r)−r are identically zero in a right-hand neighborhood of 0 then
we have nothing to check. Otherwise, let j be the greatest integer such that
f j (M, r)−r is not identically zero in a right-hand neighborhood of 0; we then
deduce (b) by applying Lemma 11.6.1 with i replaced by j .

Since (c) and (d) make no assertion at r = 0 in the case fi (0) = 0, we
are done.

Remark 11.6.4. Lemmas 11.6.1 and 11.6.3 fail to establish the last asser-
tion of Theorem 11.3.2(a), i.e., if α = 0 then each fi (M, r) has only finitely
many differential slopes. However, this is easy to see from parts (b) and (e) of
the theorem. Namely, each Fi (M, r) has slopes which are discrete and non-
decreasing but also bounded above by i because fi (M, r) = r for r large
(by Proposition 9.3.3). Hence each Fi (M, r) has only finitely many different
slopes, as does each fi (M, r).

Remark 11.6.5. Suppose that M is a finite free differential module of rank
n over K 〈α/t, t/β�0 (resp. over K �α/t, t/β�0). As noted in Remark 11.3.4,
Theorem 11.3.2 implies that the functions fi (M, r) and Fi (M, r) are contin-
uous and piecewise affine on (− logβ,− logα] (resp. on (− logβ,− logα)).
However, by imitating the proofs of Lemmas 11.5.1, 11.6.1, and 11.6.3, using
Theorem 11.2.5 in place of Theorem 11.2.1, we see that fi (M, r) and Fi (M, r)
extend continuously to [− logβ,− logα]. Moreover, if K is discretely valued
and β = 1, the limits of the e− fi (M,r) as r → 0+ are the subsidiary radii of
M ⊗ E .

11.7 Monotonicity

To complete the proof of Theorem 11.3.2 we must prove (d) for p > 0 without
the restriction fi (M, r0) > r0 − logω. The reason why we do not have (d) as
part of Lemma 11.6.1 is that passing from M to ϕ∗M introduces a singularity
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at t = 0 (Remark 10.3.5), so we cannot hope to infer monotonicity on ϕ∗M .
To fix this, we must use off-center Frobenius descendants.

Lemma 11.7.1. If α = 0 and fi (M, r0) > r0 then the slope of fi (M, r) in a
right-hand neighborhood of r0 is nonpositive.

Proof. We may assume p > 0, as otherwise Lemma 11.5.1 implies the result.
We proceed as in the proof of Lemma 11.6.1 but using the off-center Frobenius
ψ instead of ϕ. Again, we may assume that r0 = 0 and that i = n or
fi (M, 0) > fi+1(M, 0) (reducing to the latter case by linear interpolation).

Let R′′
1 (ρ

p), . . . , R′′
n (ρ

p) be the subsidiary radii of ψ∗M ⊗ F ′′
ρ in increas-

ing order. Put gi (pr) = − log R′′
i (e

−pr ). By Theorem 10.8.3, if fi (M, 0) >
(1/(p − 1)) log p then

g1(pr)+ · · · + gip(pr) = pFi (M, r)+ i p log p,

whereas if fi+1(M, 0) < (1/(p − 1)) log p or i = n then

g1(pr)+ · · · + gip+(p−1)(n−i)(pr) = pFi (M, r)+ np log p.

Moreover, fi (M, 0) > (1/p j (p − 1)) log p if and only if gip(0) >

(1/p j−1(p−1)) log p. To conclude, we may proceed as in Lemma 11.6.1.

Example 11.7.2. To see in action the discrepancy between the behavior of the
centered and off-center Frobenius descendants, we consider an example sug-
gested by Liang Xiao. (All verifications are left as an exercise.) Take β > 1,
and let M be the differential module over K 〈t/β〉 with a single generator
v satisfying D(v) = t p−1v. Pick any α ∈ (0, 1), so that we may form
ϕ∗M on K 〈α/t p, t p/β〉. Then ϕ∗M splits as ⊕p−1

m=0(M
′ ⊗ Wm), where M ′

has a single generator v′ satisfying D′(v′) = p−1v, and Wm is defined as in
Definition 10.3.3. One then computes, for m �= 0 and μ ∈ κalg

K ,

s∞,1(M
′) = 0,

sμ,1(M
′) = 0,

s∞,1(M
′ ⊗ Wm) = 0,

s0,1(M
′ ⊗ Wm) = 1,

s−m,1(M
′ ⊗ Wm) = −1,

sμ,1(M
′ ⊗ Wm) = 0 (μ �= 0,−m).

This yields
s∞,p(ϕ∗M) = 0,

s0,p(ϕ∗M) = p − 1,

sμ,p(ϕ∗M) = −1 (μ ∈ F×
p ),

sμ,p(ϕ∗M) = 0 (μ /∈ Fp),
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and in turn

s∞,1(M) = −p + 1,

s0,1(M) = 0,

sμ,1(M) = −1 (μ ∈ F×
p ),

sμ,1(M) = 0 (μ /∈ Fp).

11.8 Radius versus generic radius

As promised, we can recover some information about the radius of conver-
gence from the properties of the generic radius of convergence.

Proposition 11.8.1. Let M be a finite differential module over K 〈t/β〉 or
K �t/β�an for some β > 0. Then the radius of convergence of M equals e−r ,
for r the smallest value in [− logβ,+∞) such that f1(r) = r . Consequently
f1(r ′) = r ′ for all r ′ ≥ r .

Proof. By Theorem 9.6.1 the radius of convergence of M is on the one hand
at least the generic radius of convergence of M ⊗ Fe−r , which by hypothesis
equals e−r . On the other hand, if λ > e−r then by hypothesis f1(− log λ) >
− log λ, or in other words R(M ⊗ Fλ) < λ. This means that M ⊗ K 〈t/λ〉
cannot be trivial, so the radius of convergence cannot exceed λ. This proves
the desired result.

Corollary 11.8.2. Let M be a finite differential module over K 〈t/β〉 or
K �t/β�an for some β > 0. Then the radius of convergence of M belongs to
the divisible closure of the multiplicative value group of K .

Proof. By Theorem 11.3.2(a), (b) and Theorem 10.7.1, the function f1(r)
is piecewise of the form ar + b with a ∈ Q and b ∈ Qv(K×). By
Proposition 11.8.1 the radius of convergence of M equals e−r , for r the small-
est value such that f1(r) = r . To the left of this r , f1 must be piecewise affine
with slope �= 1; by comparing the left and right limits at r we deduce that
r = ar + b for some rational a �= 1 and some b ∈ Qv(K×). Since this gives
r = b/(a − 1), we deduce the claim.

One should be able to control the denominators better, as implied in the
following question. (The p = 0 analogue is easy; see the exercises.)

Question 11.8.3. Assume that p > 0. Let M be a finite differential mod-
ule over K 〈t/β〉 for some β > 0. Does there necessarily exist j ∈
{1, . . . , rank(M)} such that the j th power of the radius of convergence of M
belongs to the p-divisible closure of the multiplicative value group of K ?
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We also have a criterion to establish when the radius of convergence equals
the generic radius.

Corollary 11.8.4. Let M be a finite differential module over K 〈t/β〉 or
K �t/β�an for some β > 0 such that, for some α ∈ (0, β), R(M ⊗ Fρ) is
constant for ρ ∈ [α, β]. Then R(M) = R(M ⊗ Fρ).

Proof. The hypothesis implies that f1(M, r) is constant in a right neighbor-
hood of r = − logβ. By Theorem 11.3.2(d), f1(M, r), which is piecewise
affine, remains constant until it becomes equal to r . By Proposition 11.8.1, we
deduce the claim.

11.9 Subsidiary radii as radii of optimal convergence

The subsidiary generic radii of convergence can be interpreted as the radii of
convergence of a well-chosen basis of local horizontal sections at a generic
point. The argument is a variation on Corollary 11.8.4.

Definition 11.9.1. Let M be a differential module of rank n over K 〈t/β〉
or K �t/β�an or on the open disc of radius β. For i = 1, . . . , n, the i th
radius of optimal convergence of M at 0 is the supremum of those λ ∈
[0, β) for which there exist n − i linearly independent horizontal sections of
M ⊗ K 〈t/λ〉. (Remember that by Corollary 9.1.3 it is equivalent to require
linear independence of the horizontal sections over K or over K 〈t/λ〉.)

Note that there exists a basis of local horizontal sections s1, . . . , sn of M
such that si has radius of convergence equal to the i th radius of optimal con-
vergence of M at 0: once si+1, . . . , sn have been chosen, there must be at
least a one-dimensional space of choices left for si . Such a basis is sometimes
called an optimal basis of local horizontal sections. (It might be more consis-
tent with our earlier terminology to refer to the radii of optimal convergence
as the subsidiary radii of convergence, but we have refrained from doing so
to avoid confusion with the subsidiary generic radii of convergence, which we
commonly abbreviate to subsidiary radii.)

The following generalizes Proposition 9.7.5.

Theorem 11.9.2 (after Young). Let (V, D) be a differential module over Fρ
of dimension n with subsidiary radii r1 ≤ · · · ≤ rn. Let L be a complete
extension of K , let tρ be a generic point of L relative to K of norm ρ, and put
V ′ = V ⊗Fρ L�(t − tρ)/ρ�an. Then the radii of optimal convergence of V ′ are
also r1 ≤ · · · ≤ rn.
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Proof. We first produce a basis s1, . . . , sn for which si converges in the
open disc of radius ri around tρ for i = 1, . . . , n. For this, we may apply
Theorem 10.6.2 to decompose V into components each with a single sub-
sidiary radius and thus reduce to the case r1 = · · · = rn = r . By the geometric
interpretation of the generic radius (Proposition 9.7.5), each Jordan–Hölder
constituent of V admits a basis of local horizontal sections on a generic disc of
radius r . By Lemma 6.2.8(a) the same is true for V itself.

It remains to check that there cannot exist n − i linearly independent local
horizontal sections converging on a disc of radius strictly greater than ri . We
will prove this by induction on n. Let m be the largest integer such that r1 = rm .
Let V1 be the component of V of subsidiary radius r1, so that dim V1 = m.
We will check that no local horizontal section of V1 at tρ can have radius of
convergence strictly greater than r1.

Put

fi (r)= fi (V1⊗Fρ L�(t−tρ)/ρ�an, r) (i = 1, . . . ,m; r ∈ [− log ρ,+∞)).

By Theorem 11.3.2(c) the fi (r) are constant in a neighborhood of r = − log ρ.
By Theorem 11.3.2(c), (e) and induction on i ,

fi (r) =
{
− log ri 0 < r ≤ − log ri ,

r r ≥ − log ri .

However, if there were a local horizontal section of V1 at tρ which converged
on a closed disc of radius λ for some λ ∈ (r1, ρ) then V1 ⊗Fρ L〈(t − tρ)/λ〉
would have a trivial submodule, and so it would have λ as one of its subsidiary
radii. This would force fn(r) = r for r = − log λ < − log ri , a contradiction.

We conclude that any local horizontal section of V that projects nontriv-
ially onto V1 has radius of convergence at most r1. If i ≤ m, we are done;
otherwise, any linearly independent set of n − i local horizontal sections con-
verging in an open disc of radius greater than ri must project to zero in V1. We
may thus reduce to applying the induction hypothesis to the complementary
component.

Notes

The harmonicity property of functions on annuli (Proposition 11.1.2) may
be best viewed as a theory of subharmonic functions on one-dimensional
Berkovich analytic spaces. Such a theory has been developed by Thuillier
[205] with a view towards applications in Arakelov theory. A related devel-
opment is the work of Favre and Jonsson concerning potential theory on
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the valuative tree, with applications to the theory of plurisubharmonic sin-
gularities on complex surfaces. See [87] and [88] and also a more recent
paper by Boucksom, Favre, and Jonsson [33] giving some higher-dimensional
generalizations.

For the function f1(M, r) = F1(M, r) representing the generic radius of
convergence, Christol and Dwork established convexity [49, Proposition 2.4]
(using essentially the same short proof as that given here) and continuity
at endpoints [49, Théorème 2.5] (see also [80, Appendix I]) in the case of
a module over a full annulus. In the case of analytic elements, continuity
and piecewise affinity were conjectured by Dwork and proved by Pons [181,
Théorème 2.2]. The analogous results for the higher Fi (M, r) are original.

When restricted to intrinsic subsidiary radii less than ω, Theorem 11.9.2 is
a result of Young [222, Theorem 3.1]. Young’s proof is an explicit calculation
using twisted polynomials and cyclic vectors.

As suggested earlier (see the notes for Chapter 9), Young’s definition of
the radii of optimal convergence suggests an analogue in the framework of
Baldassarri and Di Vizio. For instance, given a differential module on a closed
disc of radius β, the radii of optimal convergence at a generic point of radius
ρ ∈ (0, β) should be defined in terms of an optimal basis of local horizontal
sections which are allowed to extend all the way across the disc of radius β
rather than just across the disc of radius ρ. However, we do not know how to
prove the appropriate analogue of Theorem 11.3.2 for these quantities, since
working over Fρ loses all information beyond radius ρ. Accomplishing this is
an important open problem.1

Exercises

(1) Give an example to show that, in Theorem 11.2.1, f2 need not be concave
(even though f1 and f1 + f2 are concave).

(2) Verify Example 11.7.2.
(3) Give another proof of (9.9.5.1) as follows. First find one value ρ0 for

which Theorem 6.5.3 implies that I R(M ⊗ Fρ0) = ρ−b
0 . Then use

Theorem 11.3.2 to show that (9.9.5.1) holds for ρ ∈ [1, ρ0].
(4) State, then answer affirmatively (using Theorem 6.5.3), the analogue of

Question 11.8.3 for p = 0.

1 Added in proof: A solution to this problem has been announced by Baldassarri.
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Decomposition by subsidiary radii

In the previous chapter we established a number of important variational prop-
erties of the subsidiary radii of a differential module over a disc or annulus.
In this chapter, we continue the analysis by showing that, under suitable con-
ditions, one can separate a differential module into components of different
subsidiary radii. That is, we can globalize the decompositions by spectral
radius provided by the strong decomposition theorem, if a certain numerical
criterion is satisfied.

As in the previous chapter, our discussion begins with some observa-
tions about power series, in this case identifying criteria for invertibility.
We use these in order to set up a Hensel lifting argument to give the desired
decompositions; again we must start with the visible (see Definition 6.5.1) case
and then extend using Frobenius descendants. We end up with a number of dis-
tinct statements, covering open and closed discs and annuli as well as analytic
elements.

As a corollary of these results we recover an important theorem of Chris-
tol and Mebkhout. That result gives a decomposition by subsidiary radii on
an annulus in a neighborhood of a boundary radius at which the module is
solvable, that is, all the intrinsic subsidiary radii tend to 1. (It is not neces-
sary to assume that the annulus is closed at this boundary.) One may view our
results as a collection of quantitative refinements of the Christol–Mebkhout
theorem.

Note that nothing is this chapter is useful if the intrinsic subsidiary radii are
everywhere equal to 1. We will tackle this case in Chapter 13.

Throughout this chapter, besides Notation 10.0.1 we also retain Nota-
tion 11.3.1.

201
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12.1 Metrical detection of units

One can identify the units in rings such as K 〈α/t, t/β〉 rather easily in terms of
power series coefficients (Lemma 8.2.6). However, for the present application
we need an alternate characterization based on metric data, i.e., Gauss norms.

Definition 12.1.1. For f ∈ K 〈α/t, t/β〉 with α ≤ 1 ≤ β, define the
discrepancy of f at r = 0 as the sum

disc( f, 0) =
∑

μ∈(κalg
K )×

sμ( f );

note that disc( f, 0) ≥ 0 because it is a sum of nonnegative terms. We define
disc( f, r) for general r ∈ [− logβ,− logα] by rescaling: assume without loss
of generality that K contains a scalar c of norm e−r , let Tc : K 〈α/t, t/β〉 →
K 〈(αer )/t, t/(βer )〉 be the substitution t �→ ct , and then put

disc( f, r) = disc(Tc( f ), 0).

Lemma 12.1.2. For x ∈ K 〈t/β〉 nonzero and c ∈ K of norm β, x is a unit if
and only if s0(Tc(x)) = disc(x,− log β) = 0.

Proof. We may reduce to the case β = 1 and |x |1 = 1. In this case, by
Lemma 8.2.6, x is a unit if and only if its image modulo mK in κK [t] is a
unit. As noted in Proposition 11.1.2, the order of vanishing of this image at
μ ∈ κalg

K is precisely sμ(x); this proves the claim.

There is also a variant for bounded series and analytic elements which is
slightly simpler.

Lemma 12.1.3. For x ∈ K �t/β�0 or x ∈ K �t/β�an nonzero, x is a unit if and
only if s0(Tc(x)) = 0.

Proof. Again, we reduce to the case β = 1 and |x |1 = 1. Since |x |ρ is nonin-
creasing, s0(Tc(x)) = 0 if and only if |x |ρ = 1 for all ρ ∈ (0, 1). This is true
if and only if the constant term of x has norm 1, which happens if and only if
x is a unit in oK �t� or oK �t� ∩ F1 (since these are both local rings).

For annuli, it is more convenient to prove a weak criterion first.

Lemma 12.1.4. For x ∈ ∪α∈(0,β)K 〈α/t, t/β〉 nonzero, x is a unit if and only
if we have disc(x,− logβ) = 0.

Proof. We may again reduce to the case β = 1 and |x |1 = 1. In this case, by
Lemma 8.2.6, x is a unit if and only if its image modulo mK in κK [t, t−1] is a
unit. We then argue as in Lemma 12.1.2.
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One may then deduce the following.

Lemma 12.1.5. For α > 0 and for x ∈ K 〈α/t, t/β〉 nonzero, x is a unit
if and only if the function r �→ vr (x) is affine on [− logβ,− logα] and
disc(x,− logα) = disc(x,− log β) = 0.

Proof. Note that, by Proposition 11.1.2, r �→ vr (x) is affine on [− logβ,
− logα] if and only if disc(x, r) = 0 for r ∈ (− logβ,− logα). We may thus
reformulate the desired result as follows: x is a unit if and only if disc(x, r) = 0
for all r ∈ [− logβ,− logα].

If x is a unit then disc(x, r) = 0 for all r ∈ [− logβ,− logα] by
Lemma 12.1.4. Conversely, given the latter condition, to check that x is a
unit, it suffices by Remark 8.1.3 to check that x is a unit in K 〈αi/t, t/βi 〉
for a finite collection of closed intervals [αi , βi ] with union [α, β]. However,
Lemma 12.1.4 implies that one can cover a one-sided neighborhood of any ele-
ment of [α, β] with such an interval; the compactness of [α, β] (Lemma 8.0.4)
then yields the claim.

Remark 12.1.6. Another statement in this vein is the fact that ∪α∈(0,β)
K 〈α/t, t/β�an is a field (Corollary 8.5.3).

12.2 Decomposition over a closed disc

We consider decomposition by subsidiary radii first in the case of a closed disc.
The numerical criterion in this case involves an analogue of the discrepancy
function from the previous section.

Definition 12.2.1. Let M be a finite differential module over K 〈α/t, t/β〉 with
α ≤ 1 ≤ β. Define the i th discrepancy of M at r = 0 as

disci (M, 0) = −
∑

μ∈(κalg
K )×

sμ,i (M);

it is always nonnegative by Theorem 11.3.2(d). Extend the definition to define
disci (M, r) for general r ∈ [− logβ,− logα] as in Definition 12.1.1.

Theorem 12.2.2. Let M be a finite differential module over K 〈t/β〉 of rank n.
Suppose that the following conditions hold for some i ∈ {1, . . . , n − 1}.

(a) We have fi (M,− logβ) > fi+1(M,− logβ).
(b) The function Fi (M, r) is constant for r in a neighborhood of − logβ.
(c) We have disci (M,− logβ) = 0.
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Then there is a direct sum decomposition of M inducing, for each ρ ∈ (0, β],
the decomposition of M ⊗ Fρ separating the first i subsidiary radii from the
others.

Before proving Theorem 12.2.2 we record some observations which will
simplify the proof.

Remark 12.2.3. To prove Theorem 12.2.2 it suffices to lift to M the decom-
position of M ⊗ Fβ separating the first i subsidiary radii. Namely, suppose
that M1 ⊕ M2 is this decomposition and that M1 ⊗ Fβ accounts for the first i
subsidiary radii of M ⊗ Fβ . By Theorem 11.3.2(a), for r in a neighborhood of
− logβ, M1 ⊗ Fe−r accounts for the first i subsidiary radii of M ⊗ Fe−r . Con-
sequently, for r in a neighborhood of − logβ we have f j (M, r) = f j (M1, r)
for j = 1, . . . , i and f j (M, r) = f j−i (M2, r) for j = i + 1, . . . , n.

By Theorem 11.3.2(d), (e), the function Fi (M1, r) is convex and nonin-
creasing as long as fi (M1, r) > r . For r in a neighborhood of − logβ,
Fi (M1, r) = Fi (M, r) by the previous paragraph, and Fi (M, r) is constant
by hypothesis. Hence Fi (M1, r) must remain constant until the first value of
r1 for which fi (M1, r1) = r1. Then, for − logβ ≤ r ≤ r1, fi (M1, r) =
Fi (M1, r)− Fi−1(M1, r) is nondecreasing by Theorem 11.3.2(d), whereas for
− logβ ≤ r f1(M2, r) is nonincreasing until it becomes equal to r and then
stays equal to r thereafter. Hence fi (M1, r) > f1(M2, r) for − logβ ≤ r < r1

and r1 = fi (M1, r1) ≥ f1(M2, r1) ≥ r1; thus also fi (M1, r) ≥ r = f1(M2, r)
for r ≥ r1. Consequently, M1 ⊗ Fe−r accounts for the first i subsidiary radii of
M ⊗ Fe−r for all r .

We next make a trivial but quite useful observation.

Lemma 12.2.4. Let R, S, T be subrings of a common ring U with S ∩T = R.
Let M be a finite free R-module. Then the intersection (M ⊗R S)∩ (M ⊗R T )
inside M ⊗R U is equal to M itself.

This also holds when M is only locally free; see the exercises.

Remark 12.2.5. Lemma 12.2.4 allows us to replace K by a complete exten-
sion L in the course of proving Theorem 12.2.2; thus, inside the completion of
L(t) for the β-Gauss norm we have

Fβ ∩ L〈t/β〉 = K 〈t/β〉
(exercise). Thus, obtaining matching decompositions of M ⊗K 〈t/β〉 Fβ and
M ⊗K 〈t/β〉 L〈t/β〉 gives a corresponding decomposition of M itself.
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For annuli, we will use the related fact that, for any ρ ∈ [α, β], inside the
completion of L(t) for the ρ-Gauss norm we have

Fρ ∩ L〈α/t, t/β〉 = K 〈α/t, t/β〉
(exercise).

We also need a lemma about polynomials over K 〈t〉.
Lemma 12.2.6. Let P = ∑

i Pi T i and Q = ∑
i Qi T i be polynomials over

K 〈t〉 satisfying the following conditions.
(a) We have |P − 1|1 < 1.
(b) For m = deg(Q), Qm is a unit and |Q|1 = |Qm |1.

Then P and Q generate the unit ideal in K 〈t〉[T ].
Proof. We may assume without loss of generality that Qm = 1. The hypothesis
that |Q|1 = |Qm |1 = 1 implies that all the slopes of the Newton polygon of Q
under | · |1 are nonnegative. Hence, by Lemma 2.3.1, if R ∈ K 〈t〉[T ] and S is
the remainder upon dividing R by Q then |S|1 ≤ |R|1.

Let Si denote the remainder upon dividing (1 − P)i by Q. By the previ-
ous paragraph, the series

∑∞
i=0 Si converges and its limit S satisfies P S ≡ 1

(mod Q). This proves the claim.

We are now ready to make the key step of establishing Theorem 12.2.2 in
the visible range (see Definition 6.5.1).

Lemma 12.2.7. Theorem 12.2.2 holds if fi (− logβ) > − logω − logβ.

Proof. By invoking Remark 12.2.5 to justify enlarging K and then rescaling,
we may reduce to the case β = 1. We may also assume that K has value
group R.

Set the notation as in that part of the proof of Lemma 11.5.1 dealing with
Theorem 11.3.2(d). Let Q(T ) be the characteristic polynomial of N1, so that
the Newton polygon of Q computes f1(M, r), . . . , fi (M, r) in a neighbor-
hood of r = 0 (from the same part of the proof of Lemma 11.5.1). Condition
(a) of Theorem 12.2.2 implies that these Newton polygons all have a vertex,
with x-coordinate n − i , whose position is determined by the coefficient of
T n−i in Q. Conditions (b) and (c) then imply that this coefficient satisfies
the hypothesis of Lemma 12.1.2 and so is a unit in K 〈t〉. We can thus apply
Theorem 2.2.1 to factor Q as Q2 Q1, so that the roots of Q1 are the i largest
roots of Q under | · |1.

Use the basis B1 to identify M with K 〈t〉n , so that we may view N1 as a
K 〈t〉-linear endomorphism of M . By Lemma 12.2.6 applied after rescaling,
Q1 and Q2 generate the unit ideal in K 〈t〉[T ]. Hence M splits as a direct sum
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M ′
1 ⊕ M ′

2 of modules (but not differential modules) with M ′
i = ker(Qi (N1)).

We now invoke some of the approximation lemmas, as follows. Equip M with
the supremum norm compatible with | · |1 defined by B1, and then equip
M ′

1,M ′
2 with the induced quotient norms; these are both supremum-equivalent

by Lemma 1.3.5. By Lemma 1.3.7, for any c > 1 we can approximate these
norms to within a factor of at most c by supremum norms defined by bases
of M ′

1 ⊗K 〈t〉 F1 and M ′
2 ⊗K 〈t〉 F1. By Lemma 8.6.1 the latter norms are also

defined by bases B1,1, B1,2 of M ′
1,M ′

2.
Let U be the change-of-basis matrix from B1 to B1,1∪B1,2, so that U−1 N1U

is a block diagonal matrix and |U |1, |U−1|1 ≤ c. Then the matrix of action of
D on B1,1 ∪ B1,2 is U−1 N1U + U−1d(U ). If we write this in block form as(

A B
C D

)
then, by taking c sufficiently close to 1, we may force the following conditions
to hold.

(a) The matrix A is invertible and |A−1|1 max{|d|1, |B|1, |C |1, |D|1} < 1.
(b) The Newton slopes of A under | · |1 account for the first i subsidiary

radii of M ⊗K 〈t〉 F1.
As in the proof of Lemma 6.7.3 we may now use Lemma 6.7.1 to produce a
submodule of M accounting for the last n − i subsidiary radii of M ⊗K 〈t〉 F1.
By repeating this argument for M∨, we obtain a submodule of M accounting
for the first i subsidiary radii of M ⊗K 〈t〉 F1. By Remark 12.2.3 this suffices to
prove the desired result.

To prove Theorem 12.2.2 in general, we must use Frobenius descendants
again.

Proof of Theorem 12.2.2. The claim holds by Lemma 12.2.7 if p = 0, so we
may assume p > 0 throughout the proof. It suffices to prove that, for β = 1,
Theorem 12.2.2 holds if fi (M, 0) > 1/(p j (p − 1)) log p for each nonnegative
integer j ; we again proceed by induction on j , the base case j = 0 being
provided by Lemma 12.2.7.

Suppose that fi (M, 0) > 1/(p j (p − 1)) log p for some j > 0. Let M ′
1⊕M ′

2
be the decomposition of ϕ∗M separating the subsidiary radii less than or equal
to e−p fi (M,0) into M ′

1 (which exists by the induction hypothesis). This might
not be induced by a decomposition of M1, because some factors of subsidiary
radius p−p/(p−1) that are needed in M ′

2 are instead grouped into M ′
1. To correct

this, consider instead the decomposition

(ψ0(M
′
1) ∩ · · · ∩ ψp−1(M

′
1))⊕ (ψ0(M

′
2)+ · · · + ψp−1(M

′
2)),
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where ψm is defined as in Lemma 10.3.6(a). By Lemma 10.3.6(b) this decom-
position is induced by a decomposition of M . By Theorem 10.5.1, it has the
desired effect.

Remark 12.2.8. As in Lemma 11.5.1 one can prove Lemma 12.2.7 using
Lemma 8.6.2 in place of Lemma 8.6.1, at the expense of some extra complica-
tions. First, one must replace K by a spherical completion with value group R

and algebraically closed residue field (by invoking Theorem 1.5.3). One then
obtains the desired decomposition only over K �t�0. By gluing with the origi-
nal decomposition (defined over F1), we recover a decomposition over K �t�an.
To remove poles in the disc |t − μ| < 1 we apply the same argument with M
replaced by T ∗

μ(M) (in the sense of Definition 11.1.1).

12.3 Decomposition over a closed annulus

Over a closed annulus, one has a decomposition theorem of a shape somewhat
different from that over a closed disc. Fortunately, the proof is essentially the
same as for Theorem 12.2.2.

Theorem 12.3.1. Let M be a finite differential module over K 〈α/t, t/β〉 of
rank n, for some 0 < α ≤ β. Suppose that the following conditions hold for
some i ∈ {1, . . . , n − 1}.

(a) We have fi (M, r) > fi+1(M, r) for − logβ ≤ r ≤ − logα.
(b) The function Fi (M, r) is affine for − logβ ≤ r ≤ − logα.
(c) We have disci (M,− logβ) = disci (M,− logα) = 0.

Then there is a direct sum decomposition of M inducing, for each ρ ∈ [α, β],
the decomposition of M ⊗ Fρ separating the first i subsidiary radii from the
others.

First we prove a lemma which looks somewhat more like Theorem 12.2.2.

Lemma 12.3.2. Let M be a finite differential module over K 〈α/t, t/β〉 of
rank n. Suppose that the following conditions hold for some i ∈ {1, . . . , n−1}.

(a) We have fi (M,− logβ) > fi+1(M,− logβ).
(b) We have disci (M,− logβ) = 0.

Then, for some γ ∈ [α, β), there is a direct sum decomposition of M ⊗
K 〈γ /t, t/β〉 inducing, for each ρ ∈ [γ, β], the decomposition of M ⊗ Fρ
separating the first i subsidiary radii from the others.

Proof. Using Remark 12.2.5 again, we may enlarge K and then reduce
to the case β = 1. Moreover, it suffices to consider the case where
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fi (M, 0) > − logω, as we may reduce the general case to this one as in the
proof of Theorem 12.2.2.

Again set the notation as in that part of the proof of Lemma 11.5.1 deal-
ing with Theorem 11.3.2(d), but take β = 1; as in the part dealing with
Theorem 11.3.2(e), we can find a basis B1 of M ⊗K 〈α/t,t〉 K 〈γ /t, t〉 for some
γ ∈ [α, 1) defining the same supremum norm as B0. Let N1 be the matrix of
action of D on B1. By conditions (a) and (b) of the lemma plus Lemma 12.1.4,
the coefficient of T n−i in the characteristic polynomial of N1 is a unit in
K 〈γ /t, t〉 for some γ ∈ [α, 1). We may thus continue as in the proof of
Lemma 12.2.7.

To prove Theorem 12.3.1 from Lemma 12.3.2, we proceed as in the proof
of Lemma 12.1.5. However, we must first give an alternate formulation of the
hypotheses of the theorem.

Remark 12.3.3. In the statement of Theorem 12.3.1, given condition (a) we
may reformulate conditions (b) and (c) together as the following condition.

(a) We have disci (M, r) = 0 for − logβ ≤ r ≤ − logα.
To see this, note that if α < 1 < β then condition (a) implies that equality
holds in Theorem 11.3.2(c), so we have s0,i (M) − s∞,i (M) = disci (M, 0).
Consequently Fi (M, r) is affine in a neighborhood of 0 if and only if
disci (M, 0) = 0. By rescaling, we obtain the desired equivalence. (Compare
the proof of Lemma 12.1.5.)

Proof of Theorem 12.3.1. The case α = β proceeds exactly as in
Theorem 12.2.2, so we will assume α < β hereafter. By Remark 12.3.3,
if M satisfies the given hypothesis then so does M ⊗ K 〈γ /t, t/δ〉 for each
closed subinterval [γ, δ] ⊆ [α, β]. For each ρ ∈ (α, β], Lemma 12.3.2 implies
that, for some γ ∈ [α, ρ), M ⊗ K 〈γ /t, t/ρ〉 admits a decomposition with
the desired property. Similarly, for each ρ ∈ [α, β) and for some γ ∈ (ρ, β],
M ⊗ K 〈ρ/t, t/γ 〉 admits a decomposition with the desired property.

By the compactness of [α, β] (Lemma 8.0.4), we can cover [α, β] with
finitely many intervals [γi , δi ] for which M⊗K 〈γi/t, t/δi 〉 admits a decompo-
sition with the desired property. Since the decomposition of M ⊗K 〈γi/t, t/δi 〉
is uniquely determined by the induced decomposition over Fρ for any single
ρ ∈ [γi , δi ], these decompositions agree on overlaps of the covering inter-
vals. By the gluing lemma (Lemma 8.3.6), we obtain a decomposition of M
itself.

Remark 12.3.4. As in Remark 12.2.8, to prove Lemma 12.3.2 one may use
Lemma 8.6.2 in place of Lemma 8.6.1. Again, one enlarges K to be spheri-
cally complete with value group R and algebraically closed residue field. One
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then notes that F = ∪γ<1 K 〈γ /t, t�an is a field (Corollary 8.5.3), so one can
approximate the basis B0 of M ⊗K 〈α/t,t〉 F1 with a basis B1 of M ⊗K 〈α/t,t〉 F
defining the same supremum norm. One then obtains a decomposition of
M ⊗K 〈α/t,t〉 K 〈γ /t, t�an for some γ , and one can remove the unwanted poles
as in Remark 12.2.8.

12.4 Decomposition over an open disc or annulus

Over open discs, we have similar decomposition theorems but without the
discrepancy conditions at endpoints.

Theorem 12.4.1. Let M be a finite differential module of rank n over the
open disc of radius β. Suppose that the following conditions hold for some
i ∈ {1, . . . , n − 1} and some γ ∈ (0, β).

(a) The function Fi (M, r) is constant for − logβ < r ≤ − log γ .
(b) We have fi (M, r) > fi+1(M, r) for − logβ < r ≤ − log γ .

Then M admits a unique decomposition separating the first i subsidiary radii
of M ⊗ Fρ for ρ ∈ [γ, β).
Proof. As in Remark 12.3.3, note that (a) and subharmonicity
(Theorem 11.3.2(c)) imply that disci (M, δ) = 0 for δ ∈ (γ, β). Thus, for
any such δ, we may apply Theorem 12.2.2 to M ⊗ K 〈t/δ〉; doing so for all
such δ (or a sequence increasing to β) yields the desired result.

Similarly, for open annuli we obtain a decomposition theorem without a
discrepancy condition at endpoints.

Theorem 12.4.2. Let M be a finite differential module of rank n over the
open annulus of inner radius α and outer radius β. Suppose that the following
conditions hold for some i ∈ {1, . . . , n − 1}.

(a) The function Fi (M, r) is affine for − logβ < r < − logα.
(b) We have fi (M, r) > fi+1(M, r) for − logβ < r < − logα.

Then M admits a unique decomposition separating the first i subsidiary radii
of M ⊗ Fρ for any ρ ∈ (α, β).
Proof. By Remark 12.3.3 the conditions of Theorem 12.4.2 are satisfied by
M ⊗ K 〈γ /t, t/δ〉 whenever α < γ ≤ δ < β. Gluing together the resulting
decompositions yields the desired result.

Remark 12.4.3. One can also obtain a decomposition theorem for a half-open
annulus, by covering the half-open annulus with an open annulus and a closed
annulus and then gluing together the decompositions given by Theorems 12.3.1
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and 12.4.2. Similarly, one can obtain decomposition theorems on more exotic
subspaces of the affine line by gluing; the reader knowledgeable enough to be
interested in such statements should at this point have no trouble formulating
and deriving them. See also Remark 12.5.3 below.

12.5 Partial decomposition over a closed disc or annulus

We next state decomposition theorems which apply to a closed disc or annulus
without requiring a discrepancy condition. The price one must pay is that one
must work with analytic elements.

Theorem 12.5.1. Let M be a finite differential module of rank n over
K �t/β�an. Suppose that the following conditions hold for some i ∈ {1, . . . ,
n − 1}.

(a) The function Fi (M, r) is constant in a neighborhood of r = − logβ.
(b) We have fi (M,− logβ) > fi+1(M,− logβ).

Then M admits a direct sum decomposition separating the first i subsidiary
radii of M ⊗ Fρ for ρ ∈ (0, β].
Proof. As for Theorem 12.2.2, except that Lemma 12.1.2 is replaced by
Lemma 12.1.3.

Theorem 12.5.2. Let M be a finite differential module of rank n over
K �α/t, t/β�an, for some α < β. Suppose that the following conditions hold
for some i ∈ {1, . . . , n − 1}.

(a) The function Fi (M, r) is affine for − logβ ≤ r ≤ − logα.
(b) We have fi (M, r) > fi+1(M, r) for − logβ ≤ r ≤ − logα.

Then M admits a direct sum decomposition separating the first i subsidiary
radii of M ⊗ Fρ for ρ ∈ [α, β].
Proof. To obtain a decomposition of M ⊗ K 〈γ /t, t/β�an for some γ ∈ (α, β),
we may proceed as in Theorem 12.3.1, Lemma 12.1.4 being replaced by
Remark 12.4.3. We will omit further details.

Remark 12.5.3. Readers familiar with affinoid algebras should be able to
extend the results of this section to cases where M is defined over the ring
of analytic elements for a disc contained in a one-dimensional affinoid space.
(We leave even the definition of this ring as an unstated exercise.)

If K is discrete, one can also extend to modules defined over K �t/β�0 or
K 〈α/t, t/β�0. However, if K is not discretely valued then one runs into var-
ious difficulties associated with the fact that E is no longer a field; compare
Remark 8.2.4.



12.6 Modules solvable at a boundary 211

Remark 12.5.4. If p = 0, it should be possible to get a decomposi-
tion theorem over K �α/t, t/β�0 even without assuming that fi (M, r) >

fi+1(M, r) for r ∈ {− logβ,− logα}; a statement along these lines (for K
discretely valued) appears in [144]. However, this fails completely if p > 0;
one can generate numerous counterexamples using the theory of isocrystals
(Chapter 23).

12.6 Modules solvable at a boundary

One of the most important special cases of our decomposition theorems occurs
in the following setting, which occurs frequently in applications.

Definition 12.6.1. Let M be a finite differential module on the half-open
annulus with closed inner radius α and open outer radius β. We say that
M is solvable at β if R(M ⊗ Fρ) → β as ρ → β− or, equivalently, if
I R(M ⊗ Fρ) → 1 as ρ → β−. (In a similar definition the roles of the inner
and outer radius are reversed; we will not refer to that definition here.)

Lemma 12.6.2. Let M be a finite differential module on the half-open annulus
with closed inner radius α and open outer radius β which is solvable at β.
There exist b1 ≥ · · · ≥ bn ∈ [0,+∞) such that, for ρ ∈ [α, β) sufficiently
close to β, the intrinsic subsidiary radii of M ⊗ Fρ are (ρ/β)b1 , . . . , (ρ/β)bn .
Moreover, if i = n or bi > bi+1 then b1 + · · · + bi ∈ Z.

Proof. For r → (− logβ)+, Fi (M, r) − ir is a convex function
(Theorem 11.3.2(e)) with slopes in a discrete subset of R (Theorem 11.3.2(a),
(b)). Moreover, it is nonnegative and its limit is 0; this implies that the slopes
are all nonnegative. Hence these slopes must eventually stabilize; that is, each
fi (M, r) becomes linear in a neighborhood of − logβ. This provides the exis-
tence of b1, . . . , bn ; by Theorem 11.3.2(b), if i = n or bi > bi+1 then
b1 + · · · + bi ∈ Z.

Definition 12.6.3. Let M be a finite differential module on the half-open annu-
lus with closed inner radius α and open outer radius β which is solvable at β.
The quantities b1, . . . , bn defined by Lemma 12.6.2 are called the differential
slopes of M at β. (They are also called ramification numbers; the reason for
this will become clear when we consider quasiconstant differential modules in
Chapter 19. See specifically Theorem 19.4.1.)

We now recover a decomposition theorem of Christol and Mebkhout; see
the notes for further discussion. We will see several applications of this result
later in the book.
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Theorem 12.6.4 (Christol–Mebkhout). Let M be a finite differential module
on the half-open annulus with closed inner radius α and open outer radius β
which is solvable at β. Then, for any sufficiently large γ ∈ [α, β), the restric-
tion of M to the open annulus with inner radius γ and outer radius β splits
uniquely as a direct sum ⊕b∈[0,+∞)Mb, such that for each b ∈ [0,+∞) and for
all ρ ∈ [γ, β) the intrinsic subsidiary radii of Mb⊗Fρ are all equal to (ρ/β)b.

Proof. By Lemma 12.6.2, this is a case where Theorem 12.4.2 may be
applied.

Remark 12.6.5. For some differential modules for which one has fairly
explicit series expansions for local horizontal sections, one may be able to
establish solvability at a boundary by explicit estimates. (A related strategy
appears in Example 9.6.2.) However, it is more common for solvability to be
established by proving the existence of a Frobenius structure; this notion will
be introduced in Chapter 17.

Remark 12.6.6. Be aware that, in Theorem 12.6.4, if M is the restriction of a
differential module over the closed annulus with inner radius α and outer radius
β, or over the ring of analytic elements on the open annulus, the decomposition
of M given by the theorem need not descend back to this original structure.
Compare Remark 12.5.4.

12.7 Solvable modules of rank 1

We now give a partial classification of modules of rank 1 on an open annulus
which are solvable at a boundary. Assume that p > 0.

Definition 12.7.1. Fix a coherent system of p-power roots of 1 in K alg; that
is, for each h, the chosen ph+1th root of unity should be a pth root of the
chosen ph th root of unity. For c ∈ o×K and n a positive integer write n = mph

with m coprime to p, and let Mn,c be the pullback of the module Mh defined
in Example 9.9.3 along the map t �→ ct−m (using the chosen ph+1th root of
unity); this module is solvable at 1.

Theorem 12.7.2. Let b be a positive integer. Assume that K contains the phth
roots of unity for all h ≤ logp b. Let M denote a finite differential module of
rank 1 on a half-open annulus with open outer radius 1 which is solvable
at 1 with differential slope b. Then there exist c1, . . . , cb ∈ {0} ∪ o×K and
nonnegative integers j1, . . . , jb such that

M ⊗ (ϕ j1)∗(M1,c1)⊗ · · · ⊗ (ϕ jb )∗(Mb,cb)

has differential slope 0.
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We will refine this statement a little later by eliminating the Frobenius
pullbacks (Theorem 17.1.6).

Proof. By Theorem 11.3.2(b) we have b ∈ Z. It thus makes sense to proceed
by induction on b; we may assume that b > 0. Pick 0 < α < β < 1 such that,
for some nonnegative integer j ,

p−p− j+1/(p−1) < I R(M ⊗ Fα) = αb < I R(M ⊗ Fβ) = βb < p−p j /(p−1).

By Theorem 10.4.4, M admits a j-fold Frobenius antecedent N on
K 〈α p j

/t p j
, t p j

/β p j 〉. Pick a generator v of N , and put D(v) = nv. Then
|n|

ρ p j = p−1/(p−1)ρ−p j (b+1) for ρ ∈ [α, β], so in this range n is dominated

by a term of the form n−b−1(t p j
)−b−1 with |nb−1| = p−1/(p−1). Let ζ be the

chosen pth root of unity, write b = phm with m coprime to p, and take

cb = n−b−1

m(ζ − 1)
;

then

I R((N ⊗ Mb,cb)⊗ F
ρ p j ) > ρ p j b (ρ ∈ [α, β]).

We may use the log-concavity of the intrinsic radius (Theorem 11.3.2(e)) to
deduce that the differential slope of N ⊗ Mb,cb is strictly less than b. Thus the
induction hypothesis gives the desired result.

Corollary 12.7.3. Let M denote a finite differential module of rank 1 on a half-
open annulus with open outer radius 1 which is solvable at 1 with differential
slope b > 0. If M⊗p has differential slope 0 then b is not divisible by p.

Proof. There is no harm in enlarging K in such a way that the hypothe-
ses of Theorem 12.7.2 are satisfied; thus we may assume that M ∼=
(ϕ j1)∗(M1,c1)⊗· · ·⊗(ϕ jb )∗(Mb,cb ). By Remark 9.9.4 and Theorem 10.4.2, for
cb ∈ o×K :

• if b is coprime to p then M⊗p
b,cb

has differential slope 0;

• if b is divisible by p then M⊗p
b,cb

has differential slope b/p.
Moreover, these differential slopes are preserved under Frobenius pullback, by
Theorem 10.4.2. This implies the desired result as follows. If b were divis-
ible by p then (ϕ jb )∗(Mb,cb)

⊗p would have differential slope b/p whereas
(ϕ j1)∗(M1,c1)

⊗p ⊗ · · ·⊗ (ϕ jb−1)∗(Mb−1,cb−1)
⊗p would have differential slope

strictly less than b/p. By Lemma 9.4.6(c), M⊗p would have differential slope
b/p > 0, a contradiction.
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12.8 Clean modules

It is reasonable to ask whether the refined strong decomposition theorem
(Theorem 10.6.7) admits an analogue over a disc or annulus. The follow-
ing discussion provides a possible answer to this question, though not a
definitive one.

Lemma 12.8.1. Let M be a finite free differential module of rank n over
K �α/t, t/β�an. Suppose that Fn(M, r) is affine on [− logβ,− logα]. Let
j ∈ {0, . . . , n} be the smallest integer such that fi (M, r) is affine on
[− logβ,− logα] for all i > j . If 0 < j < n then f j (M, r) > f j+1(M, r)
for all r ∈ (− logβ,− logα); if j = n then f j (M, r) > r for all
r ∈ (− logβ,− logα).

Proof. There is nothing to check if j = 0, and j = 1 is impossible, so we
may assume that j > 1. Note that Fj (M, r) = Fn(M, r) − f j+1(M, r) −
· · · − fn(M, r) is affine by hypothesis, and that Fj−1(M, r) is convex by
Theorem 11.3.2(e), so f j (M, r) = Fj (M, r)− Fj−1(M, r) is concave. More-
over f j (M, r) is bounded below by the affine function f j+1(M, r) if j < n or
by the affine function r if j = n. Hence if this inequality becomes an equal-
ity for any interior point of [− logβ,− logα] then it must hold identically,
contrary to the choice of j . This proves the claim.

Definition 12.8.2. Let M be a finite differential module of rank n over
K �α/t, t/β�an. We say that M is clean if Fn(M, r) and Fn2(M∨ ⊗ M, r) are
both affine on [− logβ,− logα].
Theorem 12.8.3. Let M be a finite clean differential module of rank n over
K �α/t, t/β�an.

(a) For i ∈ {1, . . . , n}, Fi (M, r) is affine (and so fi (M, r) is affine).
(b) For i ∈ {1, . . . , n − 1}, either fi (M, r) = fi+1(M, r) for all

r ∈ (− logβ,− logα) or fi (M, r) > fi+1(M, r) for all r ∈
(− logβ,− logα). In addition, either fn(M, r) = r for all r ∈
(− logβ,− logα) or fi (M, r) > r for all r ∈ (− logβ,− logα).

(c) For i ∈ {1, . . . , n − 1}, if fi (M, r) > fi+1(M, r) for r ∈
{− logβ,− logα} then M admits a direct sum decomposition separat-
ing the first i subsidiary radii of M ⊗ Fρ , for ρ ∈ [α, β].

Proof. To check (a) we may replace K by a field with algebraically closed
residue field and value group R. Take j as in Lemma 12.8.1, and suppose by
way of contradiction that j > 0 (which in turn forces j > 1). Pick a point r0 ∈
(− logβ,− logα) at which f j (M, r) fails to be affine or, equivalently, where
Fj−1(M, r) fails to be affine; we may rescale to reduce to the case r0 = 0.
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Then, by Theorem 11.3.2(c), on the one hand we must have sμ, j−1(M) < 0
for some μ ∈ κ×K .

On the other hand, we have f j (M, 0) > 0 if j > 0 (by Lemma 12.8.1) and
hence sμ, j (M) = 0 (by Theorem 11.3.2(c) again). Similarly, if h ∈ {0, . . . , n2}
denotes the smallest index for which fi (M∨⊗ M, r) = r identically for i > h,
we have fh(M∨ ⊗ M, 0) > 0, if h > 0, and sμ,h(M∨ ⊗ M) = 0.

Choose a lift μ of μ in K , and set N = T ∗
μ(M) as a differential module over

K �t�an. Note that Fh(N∨⊗N , r) is constant for r in a right-hand neighborhood
of 0; fh(N∨ ⊗ N , 0) > 0 if h > 0; and fi (N∨ ⊗ N , r) = r for i > h. By
Theorem 12.5.1 there exists a direct sum decomposition P0 ⊕ P1 of N∨ ⊗ N
such that, for each ρ ∈ (0, 1), P0 ⊗ Fρ accounts for the first h subsidiary
radii of (N∨ ⊗ N )⊗ Fρ . By Theorem 9.6.1, P1 restricts to a trivial differential
module over the open unit disc.

For any ρ ∈ (0, 1), any direct sum decomposition of N ⊗ Fρ is defined
by projectors which are horizontal elements of (N∨ ⊗ N ) ⊗ Fρ . For ρ suffi-
ciently close to 1 the subsidiary radii of P0 ⊗ Fρ are all strictly less than ρ
(by Lemma 12.8.1 again), so the projectors must belong to P1 ⊗ Fρ . Since P1

is trivial on the open unit disc, the projectors must also extend to horizontal
elements of N∨ ⊗ N over the open unit disc. That is, they define a direct sum
decomposition of N over the open unit disc.

It follows that, over the open unit disc, N admits a direct sum decompo-
sition ⊕i Ni in which, for each i and each ρ ∈ (0, 1) sufficiently close to 1,
Ni ⊗ Fρ has only a single subsidiary radius. Namely, given any decomposi-
tion not satisfying this condition, we can apply Theorem 10.6.2 and then the
previous paragraph to obtain a finer decomposition. (This can only be repeated
as many times as the rank of N .)

Let S be the set of indices i for which limr→0+ f1(Ni , r) ≥ f j (M, 0). Since
f j (M, 0) > 0, in a neighborhood of r = 0 we have that f1(Ni , r) is affine
and nonincreasing for each i ∈ S, by Theorem 11.3.2(a), (d), and Fj (N , r)
is a positive linear combination of these functions. However, the right-hand
slope of Fj (N , r) at r = 0 is sμ, j (M) = 0, so f1(Ni , r) must be constant in a
neighborhood of r = 0 for each i ∈ S. In a neighborhood of r = 0, Fj−1(N , r)
is a nonnegative linear combination of the f1(Ni , r) for i ∈ S, so it also has
right-hand slope 0 at r = 0. But this contradicts the fact that sμ, j−1(M) < 0.

This contradiction leads to the conclusion that j = 0, which implies (a).
Given (a), we may deduce (b) from the fact that fi (M, r) and fi+1(M, r) are
affine functions on [− logβ,− logα] satisfying fi (M, r) ≥ fi+1(M, r) (or,
in the case i = n, the same argument with fi+1(M, r) replaced by r ). Given
(a) and (b), the hypothesis of (c) implies that fi (M, r) > fi+1(M, r) for all
r ∈ [− logβ,− logα], so the claim follows from Theorem 12.5.2.
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Notes

Some results described here have also been obtained recently by Christol [46].
However, since we did not have access to Christol’s definitive manuscript at
the time of this writing, we are unable to provide detailed references.

Our results on modules solvable at a boundary are originally due to Chris-
tol and Mebkhout [51, 52]. In particular, Lemma 12.6.2 for the generic
radius is [51, Théorème 4.2.1] and the decomposition theorem (which implies
Lemma 12.6.2 in general) is [52, Corollaire 2.4–1]. However, the proof tech-
nique of Christol and Mebkhout is significantly different from ours: they
construct the desired decomposition by exhibiting convergent sequences for
a certain topology on the ring of differential operators. This does not appear to
give quantitative results; that is, the range over which the decomposition occurs
is not controlled, although we are not sure whether this is an intrinsic limita-
tion of the method. (Keep in mind that the our approach here crucially uses our
method of Frobenius descendants, which was not available when [51, 52] were
written.)

Note also that Christol and Mebkhout work directly with a differential mod-
ule on an open annulus as a ring-theoretic object; this requires a freeness result
of the following form. If K is spherically complete, any coherent locally free
module on the half-open annulus with closed inner radius α and open outer
radius β is induced by a finite free module over the ring ∩ρ∈[α,β)K 〈α/t, t/ρ〉.
(That is, any coherent locally free sheaf on this annulus is freely generated by
global sections.) See the notes for Chapter 8 for further discussion.

A partial extension of the work of Christol and Mebkhout can be found in a
paper of Pons [181]. However, in the absence of a theory of Frobenius descen-
dants, Pons was forced to impose somewhat awkward hypotheses in order to
avoid the exceptional value p−1/(p−1)ρ for the generic radius of convergence.

For the attribution of Theorem 12.7.2, see the notes for Chapter 17.
The notion of a clean differential module is original and was motivated

partly by discussions with Liang Xiao. It is a first attempt to model in p-adic
differential theory a higher-rank analogue of Kato’s notion of cleanness for
a rank-1 étale sheaf [119]. Similar considerations in residual characteristic 0
appear in [144].

Exercises

(1) Prove an analogue of Lemma 12.2.4 in which M is required only to be
locally free (in the sense of Remark 5.3.4).

(2) Let L be a complete extension of K . Prove that, for any β > 0, within the
completion of L(t) for the β-Gauss norm we have
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Fβ ∩ L〈t/β〉 = K 〈t/β〉, Fβ ∩ L〈β/t, t/β〉 = K 〈β/t, t/β〉.
(Hint: use Remark 8.5.5.)

(3) Use the previous exercise to deduce that, for any ρ ∈ [α, β], within the
completion of L(t) for the ρ-Gauss norm we have

Fρ ∩ L〈α/t, t/β〉 = K 〈α/t, t/β〉.
(4) (a) Prove that, for x ∈ K �t�0 nonzero, the following are equivalent: (i) the

element x is a unit; (ii) the function vr (x) is constant in a neighborhood
of r = 0; (iii) vr (x) is constant for all r ∈ [0,+∞).

(b) Prove that, for x ∈ ∪α∈(0,1)K 〈α/t, t�0 nonzero, x is a unit if and
only if the function r �→ vr (x) is affine in some neighborhood of
r = 0. In fact, this always happens if K is discretely valued, since
the Newton polygon of any x ∈ K 〈α/t, t�0 has finite width in this
case (see the exercises for Chapter 8). Hence, in this case the ring
∪α∈(0,1)K 〈α/t, t�0 is a field. We will encounter this field again under
the name of the bounded Robba ring; see Definition 15.1.2.
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p-adic exponents

In this chapter we study p-adic differential modules in a situation left untreated
by our preceding analysis, namely when the intrinsic generic radius of con-
vergence is equal to 1 everywhere. (This condition is commonly called the
Robba condition.) This setting is loosely analogous to the study of regu-
lar singularities of formal meromorphic differential modules considered in
Chapter 7; in particular, there is a meaningful theory of p-adic exponents in
this setting.

However, some basic considerations indicate that p-adic exponents must
necessarily be more complicated than the exponents considered in Chapter 7.
For instance, the p-adic analogue of the Fuchs theorem (Theorem 7.3.8)
can fail unless we impose a further condition: that the differences between
exponents must not be p-adic Liouville numbers.

With this in mind we may proceed to construct p-adic exponents for differ-
ential modules satisfying the Robba condition. Such modules carry an action
of the group of p-power roots of unity via Taylor series; under favorable cir-
cumstances the module splits into isotypical components for the characters of
this group. We may identify these characters with elements of Zp, and these
give the exponents.

Throughout this chapter, we retain Notation 10.0.1 and assume that p > 0.

13.1 p-adic Liouville numbers

Definition 13.1.1. For λ ∈ K , the type of λ, denoted type(λ), is the radius of
convergence of the power series

∞∑
m=0,m �=λ

tm

λ− m
.

218
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This cannot exceed 1, as there are infinitely many m for which |λ − m| =
max{|λ|, 1}. (For instance, we may take m ∈ pZp if |λ| ≥ 1 and m ∈ 1 +
pZp if |λ| < 1.) Moreover, if λ /∈ Zp, then |λ − m| is bounded below, so
type(λ) = 1. Thus we will concentrate mostly on λ ∈ Zp.

Definition 13.1.2. We say that λ ∈ K is a p-adic Liouville number if either λ
or −λ has type less than 1 and a p-adic non-Liouville number otherwise. The
explicit reference to λ and −λ is not superfluous, as they may have different
types (exercise).

The following alternative characterization of type may be helpful.

Definition 13.1.3. For λ ∈ Zp, let λ(m) be the unique integer in {0, . . . , pm−1}
congruent to λ modulo pm .

Proposition 13.1.4. For λ ∈ Zp not a nonnegative integer,

− 1

logp type(λ)
= lim inf

m→+∞
λ(m)

m
. (13.1.4.1)

In particular, λ has type 1 if and only if λ(m)/m → +∞ as m → +∞.

Proof. It suffices to check that, for 0 < η < 1, we have

lim sup
m→∞

(m + λ(m) logp η) = −∞ (13.1.4.2)

when η < type(λ) and

lim sup
m→∞

(m + λ(m) logp η) = +∞ (13.1.4.3)

when η> type(λ). Namely (13.1.4.2) implies that m + λ(m) logp η ≤ 0
for all large m, and so lim infm→∞ λ(m)/m ≥ −1/(logp η), whereas
(13.1.4.3) implies that m + λ(m) logp η ≥ 0 for infinitely many m, and so
lim infm→∞ λ(m)/m ≤ −1/(logp η).

Suppose first that type(λ) > η > 0; then, as s → ∞, ηs/|λ − s| → 0 or
equivalently vp(λ − s) + s logp η → −∞. (Here vp denotes the renormal-
ized valuation with vp(p) = 1.) Since λ is not a nonnegative integer we have
λ(m) → +∞ as m → +∞, and so

vp(λ− λ(m))+ λ(m) logp η → −∞.
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The left-hand side does not increase if we replace vp(λ − λ(m)) by m, so we
may deduce (13.1.4.2).

Suppose next that type(λ) < η < 1; then we may choose a sequence s j such
that, as j → ∞, vp(λ− s j )+ s j logp η → +∞. Put m j = vp(λ− s j ), so that
s j ≥ λ(m j ). Then

m j + λ(m j ) logp η → +∞,

yielding (13.1.4.3).

The alternate characterization is convenient for such verifications as the fact
that rational numbers are non-Liouville (exercise), or the following stronger
result [80, Proposition VI.1.1], whose proof we omit.

Proposition 13.1.5. Any element of Zp algebraic over Q is non-Liouville.

Later, we will encounter the p-adic Liouville property in yet another,
apparently different, form. (See the exercises for an alternate proof of this
lemma.)

Lemma 13.1.6. For λ not a nonnegative integer, we have the following
equality of formal power series:

∞∑
m=0

xm

λ(1 − λ)(2 − λ) · · · (m − λ)
= ex

∞∑
m=0

(−x)m

m!
1

λ− m
.

Proof. The coefficient of xm on the right-hand side is a sum of the form∑m
i=0 ci/(i − λ) for some ci ∈ Q. It is thus a rational function of λ of the

form P(λ)/(λ(1 − λ) · · · (m − λ)), where P has coefficients in Q and degree
at most m. To check that in fact P(λ) = 1 identically, we need only check this
for λ = 0, . . . ,m.

In other words, to check the original identity it suffices to check after multi-
plying both sides by λ− i and evaluating at λ = i for each nonnegative integer
i . On the left-hand side we obtain

∞∑
m=i

−xm

(−1)i−1i !(m − i)! .

On the right-hand side we obtain

ex (−x)i

i ! ,

which is the same thing.
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Corollary 13.1.7. If λ ∈ K is not a nonnegative integer and type(λ) = 1 then
the series

∞∑
m=0

xm

λ(1 − λ)(2 − λ) · · · (m − λ)

has radius of convergence at least p−1/(p−1).

13.2 p-adic regular singularities

We now consider a p-adic analogue of Theorem 7.3.8. Unlike its archimedean
analogue, it requires a hypothesis on exponents beyond simply that they are
weakly prepared (which means that no two eigenvalues of the constant matrix
differ by a nonzero integer).

Definition 13.2.1. We say that a finite set is p-adic non-Liouville if its
elements are p-adic non-Liouville numbers. We say the set has p-adic non-
Liouville differences if the difference between any two elements of the set is a
p-adic non-Liouville number.

Theorem 13.2.2 (p-adic Fuchs theorem for discs). Let N = ∑∞
i=0 Ni ti be

an n × n matrix over K 〈t/β〉 for some β > 0. Assume that N0 has weakly
prepared eigenvalues with p-adic non-Liouville differences. Then there exists
γ > 0 such that the fundamental solution matrix for N, which exists and is
unique by Proposition 7.3.6, has its entries in K 〈t/γ 〉 (the same holds for its
inverse).

Proof. Recall that the fundamental solution matrix U is computed by the
recursion (7.3.6.1):

N0Ui − Ui N0 + iUi = −
i∑

j=1

N jUi− j (i > 0).

There is no harm in enlarging K to include the eigenvalues λ1, . . . , λn of N0.
By Lemma 7.3.5 the map X �→ i + N0 X − X N0 has eigenvalues λg − λh +
i for g, h ∈ {1, . . . , n}. View the operator X �→ N0 X − X N0 as a linear
transformation T on the space V of n × n matrices over K . The matrix of
action of (i + T )−1 on some basis of V can be written as a matrix of cofactors
of i + T divided by the determinant of i + T . If we fix the basis of V then the
entries of i + T are bounded independently of i , as are the cofactors; we thus
obtain a bound of the form
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|Ui |β i ≤ c|N |β max
j<i

{|U j |β j }
n∏

g,h=1

|λg − λh + i |−1

for some c > 0 not depending on i . (For a somewhat more careful argument in
this vein, see Proposition 18.1.1.)

Thus, to conclude the theorem it suffices to verify that, for each g, h ∈
{1, . . . , n}, the quantity λ = λg − λh has the property that

m∏
i=1

max{1, |λ− i |−1}

grows at worst exponentially. If λ /∈ Zp then |λ − i |−1 is bounded above and
the claim is verified. Otherwise Corollary 13.1.7 and the hypothesis that λ is a
p-adic non-Liouville number give the desired estimate.

By a slight modification of the argument (which we omit), one may obtain
the following result of Clark [54, Theorem 3], which may viewed as a p-adic
analogue of Corollary 7.3.11.

Theorem 13.2.3 (Clark). Let M be a finite differential module over K 〈t/β〉
for the derivation td/dt, with a regular singularity at 0 whose exponents are
p-adic non-Liouville numbers. Then, for any x ∈ M and y ∈ M ⊗K 〈t/β〉 K �t�
such that D(y) = x, we have D(y) ∈ M ⊗K 〈t/β〉 K 〈t/ρ〉 for some ρ > 0.

Remark 13.2.4. The conclusion of Theorem 13.2.2 remains true, with the
same proof, if it is assumed only that the pairwise differences between eigen-
values of N0 all have type greater than 0. However, it is possible for the
conclusion to fail otherwise. To construct a counterexample put a = b = 1,
choose c ∈ Zp with type(−c) = 0, and consider the differential module
associated with the hypergeometric differential equation (0.3.2.2). Then the
eigenvalues of N0 are 0 and c, whose difference has type 0; correspondingly,
the hypergeometric series (0.3.2.1), i.e.,

F(a, b; c; z) =
∞∑

i=0

a(a + 1) · · · (a + i)b(b + 1) · · · (b + i)

c(c + 1) · · · (c + i)i ! zi ,

gives rise to a formal horizontal section with radius of convergence 0.

13.3 The Robba condition

Given a finite differential module on an annulus for the derivation td/dt , we
would like to be able to tell whether it extends over a disc with a regular singu-
larity. It turns out that when the exponents of that singularity are constrained
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to lie in Zp (e.g., if they are rational numbers with denominators prime to p),
one gets a strong necessary condition from the generic radius of convergence
function.

Definition 13.3.1. Let M be a finite differential module on the disc or annu-
lus |t | ∈ I , for I an interval. We say that M satisfies the Robba condition if
I R(M ⊗ Fρ) = 1 for all nonzero ρ ∈ I .

Proposition 13.3.2. Let M be a finite differential module on the open disc
of radius β for the derivation td/dt satisfying the Robba condition in some
annulus. Then the eigenvalues of the action of D on M/t M belong to Zp.

Proof. Let N = ∑∞
i=0 Ni ti be the matrix of action of D on some basis of M .

Suppose that N0 has an eigenvalue λ /∈ Zp; there is no harm in enlarging K to
force λ ∈ K . Choose v ∈ M such that the image of v in M/t M is a nonzero
eigenvector of N0 of eigenvalue λ. Let D′ be the derivation corresponding to
d ′ = d/dt instead of td/dt . Then with notation as in Example 9.5.2 we have,
for any ρ < β,

max

{
lim sup

s→∞
|(D′)sv|1/sρ , |d ′|sp,Fρ

}
≥ |D′|sp,Vλ,ρ > p−1/(p−1)ρ,

so that I R(M ⊗ Fρ) < 1 by Lemma 6.2.5.

We will establish a partial converse to Proposition 13.3.2 later
(Theorem 13.7.1). In the interim, we mention the following easy result.

Proposition 13.3.3. Let M be a finite differential module, on the open disc of
radius β for the derivation td/dt, such that the matrix of action N0 of D on
some basis of M has entries in K . Then M satisfies the Robba condition if and
only if N0 has eigenvalues in Zp.

Proof. Exercise, or see [80, Corollary IV.7.6].

13.4 Abstract p-adic exponents

In the previous section, we considered a finite differential module on an annu-
lus for the derivation td/dt and saw that the Robba condition was necessary
for extending the module over a disc with a regular singularity at t = 0. More-
over, the exponents of that regular singularity must belong to Zp. We may then
ask whether it is possible to identify these exponents by looking only at the
original annulus.

The answer to this question is complicated by the fact that the exponents are
only well defined as elements of the quotient Zp/Z. This means that we cannot
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hope to identify them using purely p-adic considerations; in fact, we must use
archimedean considerations to identify them. Here are those considerations.

Definition 13.4.1. We will say that A, B ∈ Zn
p are equivalent (or sometimes

strongly equivalent) if there exists a permutation σ of {1, . . . , n} such that
Ai − Bσ(i) ∈ Z for i = 1, . . . , n. This is evidently an equivalence relation.

Definition 13.4.2. We say that A, B ∈ Zn
p are weakly equivalent if there exists

a constant c > 0, a sequence σ1, σ2, . . . of permutations of {1, . . . , n}, and
signs εi,m ∈ {±1} such that

(εi,m(Ai − Bσm (i)))
(m) ≤ cm (i = 1, . . . , n;m = 1, 2, . . . ).

In other words, Ai − Bσm (i) has a representative modulo pm of size at most
cm. Again, this is clearly an equivalence relation and equivalence implies weak
equivalence.

Lemma 13.4.3. If A, B ∈ Zp (regarded as 1-tuples) are weakly equivalent
then they are equivalent.

Proof. For some c > 0, we have

|ε1,m+1(ε1,m+1(A − B))(m+1) − ε1,m(ε1,m(A − B))(m)| ≤ 2cm + c,

and the left-hand side is an integer divisible by pm . For m large enough, we
have pm > 2cm + c and so

ε1,m+1(ε1,m+1(A − B))(m+1) = ε1,m(ε1,m(A − B))(m).

Hence, for m large enough, ε1,m is constant and ε1,m(A − B) is a constant
nonnegative integer.

Corollary 13.4.4. Suppose that A ∈ Zn
p is weakly equivalent to h A for some

positive integer h. Then A ∈ (Zp ∩ Q)n.

Proof. We are given that, for some c > 0, some permutations σm , and some
signs εi,m ,

(εi,m(Ai − h Aσm (i)))
(m) ≤ cm.

The order of σm divides n!, so we have

(±(Ai − hn! Ai ))
(m) ≤ n!cm

for some choice of sign (depending on i,m). That is, for each i the 1-tuple
consisting of (hn! − 1)Ai is weakly equivalent to zero. By Lemma 13.4.3,
(hn! − 1)Ai ∈ Z, so Ai ∈ Zp ∩ Q.
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Proposition 13.4.5. Suppose that A, B ∈ Zn
p are weakly equivalent and that

B has p-adic non-Liouville differences. Then A and B are equivalent.

Proof. There is no harm in replacing B by an equivalent tuple in which
Bi − B j ∈ Z if and only if Bi = B j . For some c and σm , we have, for all m,

(±(Ai − Bσm (i)))
(m) ≤ cm,

(±(Ai − Bσm+1(i)))
(m+1) ≤ c(m + 1),

and so

(±(Bσm (i) − Bσm+1(i)))
(m) ≤ 2cm + c.

By hypothesis, the difference Bσm (i) − Bσm+1(i) is either zero or a p-adic
non-Liouville number which is not an integer; for m large, the previous
inequality is inconsistent with the second option, by Proposition 13.1.4, so
Bσm (i) = Bσm+1(i). That is, for m large we may take σm = σ for some fixed
σ , so

(±(Ai − Bσ(i)))
(m) ≤ cm (m = 1, 2, . . . ).

By Lemma 13.4.3 Ai − Bσ(i) ∈ Z, so A and B are equivalent.

Example 13.4.6. It is easy to give examples of sets which are weakly
equivalent but not equivalent; here is an example of Dwork (from [161, Exam-
ple 2.3.2]). Let γ be an increasing function on the nonnegative integers such
that, for some ε > 0, we have γ (i + 1)p−γ (i) ≥ ε for all i ≥ 0. Put

α =
∞∑

i=0

pγ (2i), β =
∞∑

i=0

pγ (2i+1).

One may verify (exercise) that the pairs (α,−β) and (α − β, 0) are weakly
equivalent but not equivalent. In this case α, β, α + β, α − β are all p-adic
Liouville numbers.

13.5 Exponents for annuli

We now give an abstract definition of the p-adic exponents of a differen-
tial module on an annulus satisfying the Robba condition, after a motivating
remark.

Remark 13.5.1. Let N be a differential module over K 〈t/β〉 for the derivation
td/dt , such that the matrix of action, N0, of D on N has entries in K and
eigenvalues in Zp. By Proposition 13.3.3, N satisfies the Robba condition.
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Our best hope at this point would be to prove that any differential module M
over K 〈α/t, t/β〉 satisfying the Robba condition is isomorphic to such an N .
This turns out to be rather too much to ask for, owing to difficulties arising with
Liouville numbers (not to mention the closed boundary), but for the moment
let us postulate the existence of an isomorphism N ⊗ K 〈α/t, t/β〉 ∼= M and
see what it tell us.

Assume (for clarity) that K contains the group μp∞ of all p-power roots of
unity (i.e., all roots of unity of orders that are powers of p) in K alg. Since M
and N satisfy the Robba condition, a Taylor series construction gives an action
of μp∞ ; recall that we have used the p-power action already in the construc-
tion of Frobenius antecedents (Theorem 10.4.2). The K -valued characters of
μp∞ may be naturally identified with Zp, by identifying a ∈ Zp with the map
carrying ζ ∈ μp∞ to ζ a ; we can use the structure of N to decompose M into
character spaces for this action. Namely, perform a shearing transformation if
needed (Proposition 7.3.10) to ensure that N0 has prepared eigenvalues. Then
choose the basis of N so that the matrix N0 splits into blocks corresponding
to individual eigenspaces Vj for the action of D (so, in particular, the K -span
of the chosen basis of N equals ⊕ j V j ). Let λ j ∈ Zp be the eigenvalue corre-
sponding to Vj . We may then identify M with (⊕ j V j )⊗K K 〈α/t, t/β〉; under
this identification t i V j is an eigenspace with character λ j + i .

The strategy for constructing p-adic exponents is then to turn this argument
on its head, by first constructing the eigenspaces for the actions of the finite
subgroups of μp∞ and then extracting elements of these which stabilize at a
basis of M . One might expect an obstruction to arise because the full action of
1 + mK by Taylor series need not be semisimple, but this does not occur; see
the exercises for a statement that may help to give the reason.

Following the strategy discussed in the previous remark, we now introduce
the definition of exponents.

Definition 13.5.2. Let M be a finite differential module of rank n over
K 〈α/t, t/β〉 satisfying the Robba condition. For m > 0, let μpm denote the
group of pth roots of unity in K alg, and put μp∞ = ∪m>0μpm . For ζ ∈ μp∞ ,
define the action of ζ on M ⊗K 〈α/t,t/β〉 K (ζ )〈α/t, t/β〉 via the Taylor
series

ζ(x) =
∞∑

i=0

(ζ t − t)i

i ! Di (x);

this series converges because of the Robba condition. Fix a basis e1, . . . , en

of M . An exponent for M is an element A ∈ Zn
p for which there exists
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a sequence {Sm,A}∞m=1 of n × n matrices over K 〈α/t, t/β〉 satisfying the
following conditions.

(a) For j = 1, . . . , n and m = 1, 2, . . . , put vm,A, j = ∑
i (Sm,A)i j ei .

Then, for all ζ ∈ μpm , ζ(vm,A, j ) = ζ A j vm,A, j .
(b) For some k > 0, we have |Sm,A|ρ ≤ pkm for all m and all ρ ∈ [α, β].

(This condition will be used to obtain some sort of convergence for the
Sm,A.)

(c) We have
∣∣det(Sm,A)

∣∣
ρ
≥ 1 for all m and all ρ ∈ [α, β]. (This condition

prevents the Sm,A from converging to zero.)
We make the following observations. w

(i) The property of being an exponent does not depend on the choice of
basis, although the matrices Sm do depend on the basis.

(ii) If A is an exponent for M then so is any B ∈ Zn
p equivalent to A.

(iii) To obtain (b), it is enough to have |Sm,A|ρ ≤ cpkm for some
c, k > 0, as we can enlarge k to absorb c. In fact it is enough to
check this just for ρ = α, β, by the Hadamard three circles theorem
(Proposition 8.2.3(c)).

Before constructing exponents in general, we note the following extension
of Remark 13.5.1.

Proposition 13.5.3. Let M be a differential module of rank n over K 〈t/β〉
for the derivation td/dt, such that the eigenvalues of D on M/t M are in Zp.
Then, for any α ∈ (0, β), these eigenvalues form an exponent for M ⊗K 〈t/β〉
K 〈α/t, t/β〉 (which satisfies the Robba condition by Proposition 13.3.3).

Proof. By applying shearing transformations (Proposition 7.3.10) as needed,
we may reduce to the case where the eigenvalues of D on M/t M are prepared.
Let e1, . . . , en be a basis of M reducing modulo t to a basis of M/t M con-
sisting of bases for the generalized eigenspaces of D. For j = 1, . . . , n and
m = 1, 2, . . . , let A j be the eigenvalue corresponding to e j , and put

vm,A, j = p−m
∑
ζ∈μpm

ζ−A j ζ(e j ).

Then the resulting matrices Sm,A have the desired property (exercise).

For the general construction of exponents, we need the following lemma due
to Dwork and Robba. It will be easiest to postpone its proof until Chapter 18,
when we will derive it as a corollary of some explicit convergence bounds on
solutions of p-adic differential systems (Corollary 18.2.5).
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Lemma 13.5.4. Let V be a finite differential module of rank n over Fρ for
the derivation d/dt, such that I R(V ) = 1. Choose a basis of V and, for
i = 1, 2, . . . , let Ni be the matrix of action of Di/ i ! on this basis. Then

|Ni |ρρi ≤ p(n−1) logp i" max{1, |N1|n−1
ρ } (i = 1, 2, . . . ).

We now give the general construction of exponents, using a discrete Fourier
transform for the group Z/pmZ. (Compare [79, Lemma 3.1 and Corollary 3.3]
or [161, Proposition 3.1.1].)

Theorem 13.5.5. Let M be a finite differential module of rank n over
K 〈α/t, t/β〉 satisfying the Robba condition. Then there exists an exponent
for M.

Proof. Fix a basis e1, . . . , en of M . For any A ∈ Zn
p and any positive integer

m, we wish to define the matrix Sm,A such that vm,A, j corresponds to the pro-
jection of e j into the eigenspace of μpm for the character A j . To achieve this,
we let E(ζ ) be the matrix of action of ζ ∈ μp∞ , and put

Sm,A = p−m
∑
ζ∈μpm

E(ζ )Diag(ζ−A1 , . . . , ζ−An ).

This matrix is invariant under Gal(K (μp∞)/K ) and so has entries in
K 〈α/t, t/β〉. By the vector interpretation, it satisfies condition (a) of
Definition 13.5.2. (Another way to see this is to check the identity

E(ζ )ζ(Sm,A) = Sm,A Diag(ζ A1 , . . . , ζ An ) (ζ ∈ μpm )

and use the formula for change of basis in a difference module. See
Remark 14.1.3 below.)

We will check that Sm,A satisfies (b) of Definition 13.5.2 using

Lemma 13.5.4. For each ζ ∈ μpm , we have |ζ − 1| ≤ p−p−m+1/(p−1) by
Example 2.1.6. If we write

E(ζ ) =
∞∑

i=0

(ζ − 1)i t i Ni

then, under | · |ρ , the i th summand is bounded under | · |ρ by
max{1, |N1|n−1

ρ }pc(m,i) for

c(m, i)= (n−1) logp i− i p−m+1

p − 1
= (n−1)m+(n−1) logp(i p−m)− i p−m

p(p − 1)
.

Here c(m, i)−(n−1)m is a function of i p−m which is continuous on (0,+∞)

and tends to −∞ as i p−m tends to either 0 or +∞, so it is bounded above
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independently of m. Hence |E(ζ )|ρ ≤ pkm for some k > 0, implying a similar
bound for Sm,A (but with a larger k).

We next choose A to satisfy (c) of Definition 13.5.2. Note that

vm,A,1 ∧ · · · ∧ vm,A,n = det(Sm,A)e1 ∧ · · · ∧ en

and that, for b ∈ {0, . . . , p − 1}n ,

vm,A, j =
p−1∑
b=0

vm+1,A+pm b, j ( j = 1, . . . , n).

(In words this second equation states that each eigenspace for the action of
μpm is the direct sum of p eigenspaces for the action of μpm+1 .) Hence, for
any A ∈ Zn

p and any m ≥ 0, we have

det(Sm,A) =
∑

b∈{0,...,p−1}n

det(Sm+1,A+pm b). (13.5.5.1)

Write Sm,A = ∑
i∈Z Sm,A,i t i . By (13.5.5.1) we can choose b such that∣∣det(Sm+1,A+pm b,0)
∣∣ ≥ ∣∣det(Sm,A,0)

∣∣. Since S0,A is the identity matrix, this
allows us to choose A such that the matrices Sm,A satisfy

∣∣det(Sm,A,0)
∣∣ ≥∣∣det(S0,A,0)

∣∣ = 1 for all m. Since
∣∣det(Sm,A)

∣∣
ρ

≥ ∣∣det(Sm,A,0)
∣∣ for all

ρ ∈ [α, β], this yields (c) of Definition 13.5.2.

We also have the following limited uniqueness result for the exponents; here
we see the first appearance of a non-Liouville condition. We also must begin
to assume that the annulus has positive width. (Compare [79, Theorem 4.4].)

Theorem 13.5.6. Assume that α < β. Let M be a finite differential module of
rank n over K 〈α/t, t/β〉 satisfying the Robba condition. Then any two expo-
nents for M are weakly equivalent. In particular, if M admits an exponent A
with non-Liouville differences then (by Lemma 13.4.3) any other exponent for
M is equivalent to A.

Proof. Fix a basis for M , let A, B be two exponents for M , and let Sm,A, Sm,B

be the corresponding sequences of matrices (for the same constant k > 0).
For j = 1, . . . , n, put vm, j,A = ∑

i (Sm,A)i ei and vm, j,B = ∑
i (Sm,B)i ei . Let

Tm = Sm,A S−1
m,B be the change-of-basis matrix between the bases vm, j,A and

vm, j,B of M . Since |S−1
m,A|ρ ≤ |Sm,A|n−1

ρ

∣∣det(Sm,A)
∣∣−1
ρ

(from a description of
the inverse matrix using cofactors), we have

|Tm |ρ ≤ |Sm,B |ρ |Sm,A|n−1
ρ

∣∣det(Sm,A)
∣∣−1
ρ

≤ pnkm (ρ ∈ [α, β]).
(13.5.6.1)
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We will make progress by levering (in a metaphorical sense) the upper bound
(13.5.6.1) against various lower bounds involving Tm , using the log-convexity
of the Gauss norm as a function of the radius, i.e., the Hadamard three circles
theorem (Proposition 8.2.3(c)).

To begin with, we have

|det(Tm)|ρ ≥ ∣∣det(Sm,A)
∣∣−1
ρ

≥ ∣∣Sm,A
∣∣−n
ρ

≥ p−nkm (ρ ∈ [α, β]).
Put γ = √

αβ. From the additive formula for the determinant of Tm , there must
be a permutation σm of {1, . . . , n} such that

n∏
i=1

|Ti,σm (i)|γ ≥ p−nkm .

We now use (13.5.6.1) to isolate a single factor, yielding

|Ti,σm (i)|γ ≥ p−nkm
∏
j �=i

|Tj,σm ( j)|−1
γ ≥ p−n2km (i = 1, . . . , n).

(13.5.6.2)

Write Ti,σm (i) =
∑

j∈Z Ti, j t j with Ti, j ∈ K ; we can then choose j = j (i,m)

so that |Ti, j (i)t j |γ = |Ti,σm (i)|γ . We repeat the leverage process to limit the
size of j . Put η = √

β/α > 1. In the case j ≥ 0, combine (13.5.6.2) with the
case ρ = β of (13.5.6.1) to get

η j =
(
β

γ

) j

= |Ti, j (i)t j |β
|Ti, j (i)t j |γ ≤ p(n

2+n)km;

in the case j ≤ 0, combine (13.5.6.2) with the case ρ = α of (13.5.6.1) to get

η− j =
(γ
α

)− j = |Ti, j (i)t j |α
|Ti, j (i)t j |γ ≤ p(n

2+n)km .

In either case we deduce that

| j | logp η ≤ (n2 + n)km.

Finally, note that

Diag(t B1, . . . , t Bn )Tm Diag(t−A1 , . . . , t−An )

must have entries in K 〈α pm
/t pm

, t pm
/β pm 〉 by condition (a) of

Definition 13.5.2. Thus the integer j = j (i,m) is a representative of Bi −
Aσm (i) modulo pm which is bounded in size by a constant times m. This implies
that A and B are weakly equivalent, as desired.



13.6 The p-adic Fuchs theorem for annuli 231

Corollary 13.5.7. Assume that α < β. Let M be a finite differential module
of rank n over K 〈α/t, t/β〉 satisfying the Robba condition. Suppose that, for
some α, β with α ≤ α′ < β ′ ≤ β, M ⊗K 〈α/t,t/β〉 K 〈α′/t, t/β ′〉 admits an
exponent A with p-adic non-Liouville differences. Then A is also an exponent
for M.

Proof. By Theorem 13.5.5 there exists an exponent B for M . By
Theorem 13.5.6, A and B are weakly equivalent and hence equivalent by
Lemma 13.4.3 since A has p-adic non-Liouville differences. Hence A is also
an exponent for M .

In general, it is quite difficult to compute the p-adic exponents of a dif-
ferential module. However, one can at least check the following compatibility,
which will lead to an important instance in which the exponent of a differential
module can be controlled. See Corollary 13.6.2.

Lemma 13.5.8. Let M be a finite differential module of rank n over
K 〈α/t, t/β〉 satisfying the Robba condition, and let ϕ : K 〈α/t, t/β〉 →
K 〈α1/q/t, t/β1/q〉 be the substitution t �→ tq . If A is an exponent of M then
q A is an exponent of ϕ∗M.

13.6 The p-adic Fuchs theorem for annuli

We now come to the question of whether one can really invert the construction
of Remark 13.5.1, i.e., whether any differential module satisfying the Robba
condition is isomorphic to a differential module over a disc. We can hope to
treat this question only in the case where the module has an exponent with
p-adic non-Liouville differences: in this case the exponent is unique up to
equivalence, by Theorem 13.5.6, so there is no ambiguity about how to fill in
the hole in the annulus. The fact that no other conditions are necessary is the
content of the following remarkable theorem of Christol and Mebkhout.

Theorem 13.6.1 (Christol–Mebkhout). Let M be a finite differential module
on an open annulus for the derivation td/dt satisfying the Robba condition
and admitting an exponent on some closed subannulus of positive width with
p-adic non-Liouville differences. Then M admits a basis on which the matrix
of action of D has entries in K and eigenvalues representing the exponent
of M (and hence belonging to Zp). Consequently, M admits a canonical
decomposition

M =
⊕

λ∈Zp/Z

Mλ

in which each Mλ has exponent identically equal to λ.
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The proof is loosely analogous to that of Theorem 13.5.6 but instead of
comparing two different sequences of matrices we compare one sequence with
itself.

Proof. Let α, β be the inner and outer radii of the original annulus. It suffices
to construct a basis of the desired form over the closed annulus α′ ≤ |t | ≤ β ′
for every pair α′, β ′ with α < α′ < β ′ < β. Choose α′′, β ′′ with α < α′′ <
α′ < β ′ < β ′′ < β and α′/α′′ = β ′′/β ′ = η > 1, so that M is represented by
a finite free module over K 〈α′′/t, t/β ′′〉.

By hypothesis, M admits an exponent A on some closed subannulus of pos-
itive width having p-adic non-Liouville differences; by replacing A with an
equivalent exponent we can force it also to have no nonzero integer differences.
By Corollary 13.5.7, A is also an exponent for M on any closed subannu-
lus of positive width, including α′′ ≤ |t | ≤ β ′′. We may thus fix a basis of
M ⊗ K 〈α′′/t, t/β ′′〉 and then define a sequence Sm,A as in Definition 13.5.2.

For m′ ≥ m, set Tm′,m = S−1
m,A Sm′,A. As in (13.5.6.1) we have

|Tm′,m |ρ, |T −1
m′,m |ρ ≤ pnkm (ρ ∈ [α′′, β ′′]).

Our first goal is to show that Tm′,m is close to its constant term. Write Tm′,m =∑
h∈Z Tm′,m,hth ; note that the (i, j)th entry of Tm′,m,h can only be nonzero if

h ≡ Ai − A j (mod pm). Since A has p-adic non-Liouville differences, for
any c > 0 and for m sufficiently large the congruence h ≡ Ai − A j (mod pm)

forces either h = Ai − A j = 0 or |h| ≥ cm. If h > 0 we then have

|Tm′,m,hth |α′ ≤ |Tm′,m,hth |β ′ ≤ |Tm′,m,hth |β ′′η−cm ≤
(

pnkη−c
)m

and, if h < 0,

|Tm′,m,hth |β ′ ≤ |Tm′,m,hth |α′ ≤ |Tm′,m,hth |α′′η−cm ≤
(

pnkη−c
)m
.

Pick any λ ∈ (0, p−nk). Since η > 1, we may choose c in the above argument
such that pnkη−c ≤ λ; we then deduce that, for some m0,

|Tm′,m − Tm′,m,0|ρ ≤ λm (ρ ∈ [α′, β ′],m ≥ m0).

This suggests renormalizing the Tm′,m to make them convergent. Specifically,
we define Um′,m = Tm′,m T −1

m′,m,0, so that Um′,m has constant term In . Then∣∣∣In − Tm′,m,0T −1
m′,m

∣∣∣
ρ
≤
∣∣∣Tm′,m − Tm′,m,0

∣∣∣
ρ

∣∣∣T −1
m′,m

∣∣∣
ρ

≤ pnkmλm < 1 (ρ ∈ [α′, β ′],m ≥ m0),

and so |In − Um′,m | ≤ pnkmλm < 1; in particular,

|T −1
m′,m,0|ρ ≤ |Um′,m |ρ |T −1

m′,m |ρ ≤ pnkm (ρ ∈ [α′, β ′],m ≥ m0).



13.6 The p-adic Fuchs theorem for annuli 233

Consider now three indices m′′ > m′ > m. We have Tm′,m Tm′′,m′ = Tm′′,m , of
course; moreover, this multiplicativity is approximately preserved upon taking
constant terms. Namely, the identity

Tm′′,m,0 = Tm′,m,0Tm′′,m′,0 +
∑
h �=0

Tm′,m,−h Tm′′,m′,h

yields the bound

|Tm′′,m,0 − Tm′,m,0Tm′′,m′,0|ρ ≤ |Tm′′,m′ − Tm′′,m′,0|ρ |Tm′,m |ρ
≤ λm′

pnkm (ρ ∈ [α′, β ′],m ≥ m0).

We now write

Um′′,m − Um′,m = Tm′′,m T −1
m′′,m,0 − Tm′,m T −1

m′,m,0

= Tm′,m T −1
m′,m,0(Tm′,m,0Tm′′,m′ − Tm′′,m,0)T

−1
m′′,m,0

= Tm′,m T −1
m′,m,0(Tm′,m,0Tm′′,m′,0 − Tm′′,m,0)T

−1
m′′,m,0

+ Tm′,m(Tm′′,m′ − Tm′′,m′,0)T
−1
m′′,m,0.

Using this last expression, we obtain the bound

|Um′′,m − Um′,m |ρ ≤ λm′
p4nkm (ρ ∈ [α′, β ′],m ≥ m0).

We conclude that, for any fixed m ≥ m0, the sequence {Um′,m}∞m′=m is Cauchy.
It thus has limit U with the property that Sm,AU is the matrix that effects the
change to a basis of M ⊗ K 〈α′/t, t/β ′〉 of the desired form. This completes
the proof.

The hypothesis of Theorem 13.6.1 is difficult to verify in general, because
of the indirect nature of the definition of exponents. However, we do have the
following important case where the condition can be verified.

Corollary 13.6.2. Let M be a finite differential module on the open annulus
with inner radius α and outer radius β satisfying the Robba condition. Let q
be a power of p, and suppose that the intervals (α1/q , β1/q) and (α, β) have
nonempty intersection. Suppose moreover that on some annulus there exists an
isomorphism ϕ∗

Kϕ
∗M ∼= M, where ϕK : K → K is an isometry and ϕ is the

substitution t �→ tq . Then any exponent for M consists of rational numbers;
consequently, the conclusion of Theorem 13.6.1 applies.

Proof. Choose α′, β ′ with α ≤ α′ < β ′ ≤ β such that the intervals
((α′)1/q , (β ′)1/q) and (α′, β ′) have nonempty intersection. On the intersec-
tion, M has exponent A by Theorem 13.5.5; A extends to be an exponent of
both M and ϕ∗

Kϕ
∗M on their entire domains of definition by Corollary 13.5.7.
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The rationality of A holds by Lemma 13.5.8 and Corollary 13.4.4. By
Theorem 13.5.6 and Lemma 13.4.3, any exponent for M is equivalent to A.
We may thus apply Theorem 13.6.1.

Remark 13.6.3. Corollary 13.6.2 is critical in what follows; it gives rise to
a quasiunipotence result (Lemma 21.2.1) which can be used to establish the
p-adic local monodromy theorem (Theorem 20.1.4).

One other consequence of Theorem 13.6.1 that can be stated without ref-
erence to exponents is the following. (In fact, it can also be proved without
exponents; see Remark 13.7.3.)

Corollary 13.6.4. Let M be a finite differential module on an open annulus for
the derivation td/dt satisfying the Robba condition. Suppose that the restric-
tion M ′ of M to some smaller open annulus is either trivial or unipotent. Then
the same is true for M.

Proof. If M ′ is unipotent then it admits the exponent 0 by Remark 13.5.1.
However, any exponent A of M restricts to an exponent of M ′ and so is weakly
equivalent to 0 by Proposition 13.5.6. By Lemma 13.4.3, A is equivalent to 0
so Theorem 13.6.1 implies that M is unipotent. If now M ′ is trivial then M is
forced to be trivial also.

13.7 Transfer to a regular singularity

As an application of Theorem 13.6.1 we obtain a transfer theorem in the
presence of a regular singularity, in the spirit of Theorem 9.6.1 but with a
somewhat weaker estimate. For the necessity of weakening the estimate, see
Example 13.7.2 below.

Theorem 13.7.1. Let M be a finite differential module of rank n, on the open
unit disc for the derivation td/dt, with a regular singularity at t = 0 whose
exponents are in Zp and have p-adic non-Liouville differences. Then on the
open disc of radius limρ→1− R(M ⊗ Fρ)n, M admits a basis on which the
matrix of action of D has entries in Zp. In particular, if M is solvable at 1 then
this basis is defined over the whole open unit disc.

Proof. Using shearing transformations (as in Proposition 7.3.10), we may
reduce to the case where the exponents of M at the regular singularity
t = 0 are prepared. Note that, for any ρ ∈ (0, 1), M ⊗ K 〈t/ρ〉 admits a
basis. By Theorem 13.2.2 the fundamental solution matrix in terms of this
basis has entries defined over some disc of positive radius. From this and
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Proposition 13.3.3, it follows that R(M ⊗ Fρ) = ρ for ρ ∈ (0, 1) sufficiently
small.

Let λ be the supremum of ρ ∈ (0, 1) for which R(M ⊗ Fρ) = ρ. Note that
the function f1(r) = − log R(M ⊗ Fe−r ) is convex by Theorem 11.3.2(e), is
equal to r for r sufficiently large by the previous paragraph, and is also equal to
r for r = − log λ by continuity (Theorem 11.3.2(a)). Consequently, f1(r) = r
for all r ≥ − log λ.

Choose α, β ∈ (0, λ), with α < β, such that the fundamental solution matrix
of M (with respect to some basis on the closed disc of radius β) converges in
the open disc of radius β. Let N0 be the matrix of action of D on the basis
B0 given by the columns of the fundamental solution matrix; by construc-
tion, N0 has entries in K whose eigenvalues are prepared and form a tuple
A ∈ Zn

p with p-adic non-Liouville differences. On the open annulus of inner
radius α and outer radius β, M admits the exponent A by Remark 13.5.1. By
Corollary 13.5.7, A is also an exponent for M on the open annulus of inner
radius α and outer radius λ. By Theorem 13.6.1, on that annulus we obtain
another basis B1 of M on which D acts via a matrix N1 with entries in K and
eigenvalues equal to A.

Let U be the change-of-basis matrix from B0 to B1; it is an invertible n × n
matrix over K {α/t, t/β} and satisfies the equation

U−1 N0U + U−1t
d

dt
(U ) = N1,

or N0U −U N1 + t (d/dt)(U ) = 0. Since N0, N1 have entries in K , if we write
U = ∑

i Ui t i then N0Ui − Ui N1 + iUi = 0 for each i ∈ Z. By Lemma 7.3.5
the map Ui �→ N0Ui −Ui N1 + iUi on n × n matrices over K has eigenvalues
each of which is i plus a difference between two elements of A. In particular,
since A is prepared these eigenvalues can never vanish for i �= 0, so U = U0

has entries in K . (Compare the uniqueness argument in Proposition 7.3.6.) It
follows that B0 is in fact a basis of M on the open disc of radius λ, on which
D acts via a matrix over K . Since that matrix has eigenvalues in Zp we can
conjugate over K to put the matrix in Jordan normal form, in which case the
entries will belong to Zp.

It remains to give a lower bound for λ. By Theorem 11.3.2, for r ∈
[0,− log λ] the function f1 is continuous, convex, and piecewise affine, with
slopes belonging to

1

1
Z ∪ · · · ∪ 1

n
Z.

Since the slope for r > − log λ is equal to 1, the slopes for r ≤ − log λ
cannot exceed 1. Moreover, there cannot be a slope equal to 1 in this range
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as otherwise it would occur as the left-hand slope at r = − log λ, so there
would exist ρ > λ for which R(M ⊗ Fρ) = ρ, contrary to the definition
of λ. Consequently f1 has all slopes less than or equal to (n − 1)/n for r ∈
[0,− log λ], yielding

− log λ = f1(− log λ) ≤ f1(0)+ n − 1

n
(− log λ).

From this we deduce that λ ≥ limρ→1− R(M ⊗ Fρ)n , as desired.

Example 13.7.2. The following example shows that the exponent n in
Theorem 13.7.1 cannot be replaced by 1. Pick λ ∈ K× with |λ| > 1. Let
M be the differential module of rank 2 over the open unit disc for the operator
td/dt , whose action of D on a basis is given by(

0 λ

t 0

)
.

Since this matrix modulo t is nilpotent, the exponents of M are both zero; in
particular, they are in Zp with p-adic non-Liouville differences.

For ρ ∈ (|λ|−1, 1) we may apply Theorem 6.5.3 to compute
|t−1 D|sp,M⊗Fρ = |λ|1/2ρ−1/2 and so R(M ⊗ Fρ) = p−1/(p−1)|λ|−1/2ρ1/2.
To compute R(M ⊗ Fρ) for ρ ≤ |λ|−1, we note that the function f1(M, r)
is affine of slope 1/2 for 0 ≤ r ≤ log |λ| and of slope 1 for r large. By
Theorem 11.3.2(a), (b), (e), f1 is piecewise affine and its slopes on [0,+∞)

must lie in [1/2, 1] ∩ (Z ∪ (1/2)Z). Consequently f1(M, r) must have slope
1/2 until it reaches a point at which f1(M, r) = r and slope 1 thereafter. In
other words,

R(M ⊗ Fρ) =
{

p−1/(p−1)|λ|−1/2ρ1/2 ρ > p−2/(p−1)|λ|−1,

ρ ρ ≤ p−2/(p−1)|λ|−1.

In particular, the fundamental solution matrix of M in the given basis converges
on the open disc of radius p−2/(p−1)|λ|−1 = limρ→1− R(M ⊗ Fρ)2 but not on
any larger disc.

Remark 13.7.3. The final assertion of Theorem 13.7.1 (if M is solvable
at 1 then the fundamental solution matrix converges in the open unit disc)
can also be proved without relying on the p-adic Fuchs theorem for annuli
(Theorem 13.6.1); see the notes. This in turn can be used to give a proof of
Corollary 13.6.4 without using Theorem 13.6.1, as follows.

Let M be a finite differential module, on the open annulus α < |t | < β for
the derivation td/dt , satisfying the Robba condition. Suppose that the restric-
tion M ′ of M to some smaller open annulus γ < |t | < δ is unipotent. Then, on
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this smaller annulus, by Lemma 9.2.3 we obtain a basis of M on which td/dt
acts via a nilpotent matrix over K . This defines a differential module on the
disc |t | < δ with a nilpotent regular singularity at t = 0; by gluing the module
to M over the annulus γ < |t | < δ we obtain a differential module on the
disc |t | < β with a nilpotent regular singularity at t = 0, which is solvable at
the boundary of the disc. By the final assertion of Theorem 13.7.1 this module
admits a basis on which td/dt acts via a nilpotent matrix over K . This gives us
such a basis of M over the annulus γ < |t | < β; by a similar argument, we get
a similar basis over the annulus α < |t | < δ. These bases can only differ by
a K -linear transformation (as in the proof of Theorem 13.7.1), so each gives a
basis of M itself on which td/dt acts via a nilpotent matrix over K . Hence M
is unipotent.

Notes

The definition of a p-adic Liouville number was introduced by Clark [54]; our
presentation follows [80, §VI.1].

The cited theorem of Clark [54, Theorem 3] is actually somewhat stronger
than Theorem 13.2.3 as it allows differential operators of possibly infinite
order.

The example in Remark 13.2.4 was loosely inspired by an example of
Monsky (a counterexample against a slightly different assertion); see [81, §7]
or [80, §IV.8] for discussion.

Proposition 13.3.2 was originally due to Christol; compare [80,
Proposition IV.7.7].

The theory of exponents for differential modules on a p-adic annulus
satisfying the Robba condition was originally developed by Christol and
Mebkhout [50, §4–5]; in particular, Theorem 13.6.1 appears therein as [50,
Théorème 6.2–4]. A somewhat more streamlined development was later given
by Dwork [79], in which Theorem 13.6.1 appears as [79, Theorem 7.1].
(Dwork notes that he did not verify the equivalence between the two con-
structions; we do not recommend losing any sleep over this.) Our treatment is
essentially that of Dwork with a few technical simplifications. Another treat-
ment will appears in the upcoming book of Christol [46]. Besides all these
there is an expository article [161] that summarizes the proofs (using Dwork’s
approach) and provides some further context, including the formulation of the
p-adic index theorem.

It is claimed in [161, §3.2] that the converse of Theorem 13.5.6 also holds,
i.e., if A is an exponent of a differential module M and B is weakly equivalent
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to A then B is also an exponent of M . We do not know of a proof of this; in
[79, Remark 4.5] it is suggested that this may not be entirely trivial.

A somewhat more elementary treatment of Theorem 13.7.1 than the one
given here was given in [80, §6]; it does not rely on the p-adic Fuchs theorem
for annuli (Theorem 13.6.1). However, it gives a weaker result: it only estab-
lishes convergence of the fundamental solution matrix in the open disc of
radius limρ→1− R(M ⊗ Fρ)n

2
. That weaker result is due to Christol, who

presented it himself in [42, Théorème 6.4.7] and [43].
The weaker result just mentioned is itself sufficient to imply that if

limρ→1− R(M ⊗ Fρ) = 1 then the fundamental solution matrix converges
in the open unit disc. In the case of a nilpotent singularity one can show this
even more directly; see [134, Lemma 3.6.2]. As noted in Remark 13.7.3 this
can be used to derive Corollary 13.6.4 without using Theorem 13.6.1.

An intriguing archimedean analogue to the theory of p-adic exponents
appears in the local analytic theory of q-difference equations in the case
|q| = 1. This seems to extend to an analogy between q-difference equations
with |q| �= 1 and p-adic differential modules with intrinsic subsidiary radii
strictly less than 1. See [73] for part of this story.

Exercises

(1) Prove that rational numbers are p-adic non-Liouville numbers.
(2) Give another proof of Lemma 13.1.6 (as in [80, Lemma VI.1.2]) by first

verifying that both sides of the desired equation have the same coeffi-
cients of x0 and x1 and are killed by the second-order differential operator

d

dx

( d

dx
− λ− x

)
.

(3) Show that Theorem 13.2.2 can be deduced from Theorem 13.2.3. (Hint:
show that if H0(M) �= 0 then 0 must occur as an eigenvalue of N0.)

(4) Prove that there exists a ∈ Zp satisfying

type(a) = 1, type(−a) < 1.

(5) Prove Proposition 13.3.3.
(6) Verify Example 13.4.6.
(7) (a) Prove that the set of A ∈ Z

p
n which are weakly equivalent to 0 is a

subgroup of Z
p
n .

(b) Give a counterexample against the claim that if Ai is weakly equiva-
lent to Bi for i = 1, 2 then A1 + A2 is weakly equivalent to B1 + B2.
(Hint: give an example using rational numbers, in which case weak
equivalence implies equivalence, by an earlier exercise.)
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(8) Complete the proof of Proposition 13.5.3.
(9) Prove that if a differential module M over K 〈α/t, t/β〉 admits a basis

on which td/dt acts via a nilpotent matrix over K then the K -span of
the basis is fixed by the Taylor series action of μp∞ , but not necessarily
by the full action of 1 + mK . (Hint: this can be reduced to the fact that
μp∞ is in the kernel of the logarithm map defined using the power series
log(1 − z), which converges for |z| < 1.)

(10) Let M be a differential module on an open annulus satisfying the Robba
condition. Use Theorem 13.6.1 to prove that H0(M) and H1(M) are
both finite-dimensional and of the same dimension, i.e., that the index
of M is 0.
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Formalism of difference algebra

We now step away from differential modules for a little while to study the
related subject of difference algebra. This is the theory of algebraic structures
enriched not with a derivation but with an endomorphism of rings. Our treat-
ment of difference algebra will run largely in parallel with that for differential
algebra but in a somewhat abridged fashion; our goal is to be able to use dif-
ference algebra to say nontrivial things about p-adic differential equations. We
will begin to do that in Part V.

In this chapter we introduce the formalism of difference rings, fields, and
modules and the associated notion of twisted polynomials. Then we study
briefly the analogue of algebraic closure for a difference field. Finally, we
make a detailed study of difference modules over a complete nonarchimedean
field culminating in a classification of difference modules for the Frobenius
automorphism of a complete unramified p-adic field with algebraically closed
residue field (the Dieudonné–Manin classification).

Hypothesis 14.0.1. Throughout this part of the book and the next, we retain
Notation 8.0.1 with p> 0 (so that K is a complete nonarchimedean field of
characteristic 0 and residual characteristic p> 0) but, unless otherwise spec-
ified, we will require K to be discretely valued. This is necessary to avoid a
number of technical complications, some of which we will point out as we go
along. (We will make almost no reference to K in this particular chapter; we
only include this hypothesis here in order to place it at the beginning of Part V.)

14.1 Difference algebra

We start with the central definition. See the notes at the end of the chapter for
some explanation of the term “difference” in this context.

243
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Definition 14.1.1. A difference ring or field is a ring or field R equipped
with an endomorphism φ. A difference module over R is an R-module M
equipped with a map � : M → M which is additive and φ-semilinear; the
latter means that

�(rm) = φ(r)�(m) (r ∈ R,m ∈ M).

This data determines an R-linear map φ∗(M) = M ⊗R,φ R → M sending
m⊗1 to�(m); conversely, any R-linear map φ∗M → M induces the structure
of a difference module on M . A free difference module is trivial if it admits a
�-invariant basis; when we refer to “the” trivial module we mean the module
R itself, with � = φ. A difference submodule of R is also called a difference
ideal.

Morphisms of difference rings or modules are required to be φ-equivariant.
Tensor products behave as expected: if M, N are difference modules over the
same difference ring R then M ⊗R N acquires the structure of a difference
module with

�(m ⊗ n) = �(m)⊗�(n) (m ∈ M, n ∈ N ).

In particular, if R → S is a morphism of difference rings then we can perform
a base change from difference modules over R to difference modules over S.

As in differential algebra, difference modules can often be described in
terms of matrices of action.

Definition 14.1.2. If M is a finite difference module over R freely generated
by e1, . . . , en then we can recover the action of � from the n × n matrix A
defined by

�(e j ) =
∑

i

Ai j ei .

Namely, if we use the basis to identify M with the space of column vectors of
length n over R then

�(v) = Aφ(v).

In parallel with the differential case, we call A the matrix of action of� on the
basis e1, . . . , en .

We now record the effect of a change of basis on a matrix of action.

Remark 14.1.3. Let M be a finite free difference module over R, and let
e1, . . . , en and e′1, . . . , e′n be two bases of M . Recall that the change-of-basis
matrix U from the first basis to the second is the n × n matrix U satisfying
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e′j = ∑
i Ui j ei . If A is the matrix of action of � on the ei then the matrix of

action of � on the e′i is

A′ = U−1 Aφ(U ).

It is important to consider dual modules, but the description in difference
algebra is somewhat more complicated than in differential algebra. We will
introduce it only in the free case. (One can extend the definition to locally free
modules; compare Remark 5.3.4.)

Definition 14.1.4. Let M be a finite free difference module over R. We say
that M is dualizable if the map φ∗(M)→ M induced by� is an isomorphism.
Given a basis of M , it is equivalent to check that the matrix of action A of� on
that basis is invertible (the same then holds for any other basis). However, even
in this case the action of � on M itself is not invertible unless the action of φ
on R is invertible (i.e., unless R is inversive in the sense of Definition 14.1.5
below).

If M is dualizable, there is a unique way to equip the module-theoretic dual
M∨ = HomR(M, R) with a �-action such that

�( f )(�(m)) = f (m) ( f ∈ M∨,m ∈ M).

In terms of a given basis, the matrix of action on the dual basis is given by the
inverse transpose A−T . We call the resulting difference module the dual of M .

There is also a notion of an opposite difference ring but only under an extra
hypothesis.

Definition 14.1.5. We say that the difference ring R is inversive if φ is an auto-
morphism. In this case, we can define the opposite difference ring Ropp to be R
again, but now equipped with the endomorphism φ−1. If R is inversive and M
is a finite free difference module over R, we define the opposite module Mopp

of M to be M equipped with the inverse of�; that is, if A is the matrix of action
of � on some basis then the matrix of action of �−1 is given by φ−1(A−1).

Definition 14.1.6. For M a difference module, write

H0(M) = ker(id−�), H1(M) = coker(id−�).
If M1,M2 are difference modules with M1 dualizable then H0(M∨

1 ⊗ M2)

computes φ-equivariant morphisms from M1 to M2 and H1(M∨
1 ⊗ M2) com-

putes extensions 0 → M2 → M → M1 → 0 of difference modules (exercise).
That is, we have natural identifications

H0(M∨
1 ⊗ M2) = Hom(M1,M2), H1(M∨

1 ⊗ M2) = Ext(M1,M2)

of groups (see the proof of Lemma 5.3.3 for the group structure on extensions).
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14.2 Twisted polynomials

As in differential algebra, there is a relevant notion of twisted polynomials.

Definition 14.2.1. For R a difference ring, we define the twisted polynomial
ring R{T } as the set of finite formal sums

∑∞
i=0 ri T i , with multiplication obey-

ing the rule T r = φ(r)T . For any P ∈ R{T }, the quotient R{T }/R{T }P is a
difference module; if M is a difference module, we say that m ∈ M is a cyclic
vector if there is an isomorphism M ∼= R{T }/R{T }P carrying m to 1.

Definition 14.2.2. If R is inversive, we again have a formal adjoint construc-
tion: given P ∈ R{T }, its formal adjoint is obtained by taking the coefficients
to the right-hand side of T . This may then be viewed as an element of the
opposite ring of R{T }, which we may identify with Ropp{T }.

It is not completely straightforward to analogize the cyclic vector theorem
to difference modules; see the exercises for one attempt to do so. Instead, we
will use only the following trivial observation.

Lemma 14.2.3. Any irreducible finite difference module over a difference field
contains a cyclic vector.

Proof. If F is a difference field, M is a finite difference module over F , and
m ∈ M is nonzero then m,�(m), . . . generate a nonzero difference submodule
of M . If M is irreducible, this submodule must be the whole of M .

Definition 14.2.4. If φ is isometric for a norm | · | on F then we have the
usual definition of Newton polygons and slopes for twisted polynomials, with
a natural analogue of the additivity of slopes (i.e., Proposition 2.1.2). If R
is inversive then a twisted polynomial and its adjoint have the same Newton
polygon.

As in the differential case, we may apply the master factorization theorem
(Theorem 2.2.2), as in the proof of Theorem 2.2.1, to get a factorization result.
However, the result is inherently asymmetric; see Remark 14.2.6 below.

Theorem 14.2.5. Let F be a difference field complete for a norm | · | under
which φ is isometric. Then any monic twisted polynomial P ∈ F{T } admits a
unique factorization

P = Pr1 · · · Prm

for some r1 < · · · < rm, where each Pri is monic with all slopes equal to ri .
(The same holds with the factors in the opposite order if F is inversive, but not
always otherwise; see Remark 14.2.6 and the exercises.)

Remark 14.2.6. It is worth clarifying why the conditions of Theorem 2.2.2 can
be satisfied by F{T } but not necessarily by its opposite ring. The key condition
in this theorem is (b), which states that with
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U = {P ∈ F[T ] : deg(P) ≤ deg(S)− m},
V = {P ∈ F[T ] : deg(P) ≤ m − 1},
W = {P ∈ F[T ] : deg(P) ≤ deg(S)},
a = 1,

b = T m,

the map (u, v) �→ av+ ub surjects U × V onto W . This holds because, on the
one hand, any element of F{T } whose coefficients of 1, T, . . . , T m−1 vanish
is divisible by T m on the right. On the other hand, if r /∈ φ(F) then rT m is not
divisible on the left by T , let alone by T m .

14.3 Difference-closed fields

Now we study briefly the difference-theoretic analogue of the algebraic closure
property of ordinary fields.

Definition 14.3.1. We will say that a difference field F is weakly difference-
closed if every dualizable finite difference module over F is trivial. We say F
is strongly difference-closed if F is inversive and weakly difference-closed.

Remark 14.3.2. Note that the property that F is weakly difference-closed
includes the fact that short exact sequences of dualizable finite difference
modules over F always split. By contrast, if for instance φ is the identity
map then this is never true even if F is algebraically closed, because linear
transformations need not be semisimple.

Here is a useful criterion for checking for difference closure.

Lemma 14.3.3. The difference field F is weakly difference-closed if and only
if the following conditions all hold.

(a) Every nonconstant monic twisted polynomial P ∈ F{T } factors as a
product of linear factors.

(b) For every c ∈ F×, there exists x ∈ F× with φ(x) = cx.
(c) For every c ∈ F×, there exists x ∈ F× with φ(x)− x = c.

Proof. We first suppose that F is weakly difference-closed. To prove (a), it
suffices to check that if P ∈ F{T } is nonconstant monic with nonzero constant
term then P factors as P1 P2 with P2 linear. The nonzero constant term implies
that M = F{T }/F{T }P is a dualizable finite difference module over F and
so must be trivial by the hypothesis that F must be weakly difference-closed.
In particular, there exists a short exact sequence 0 → M1 → M → M2 → 0
with M2 trivial of dimension 1; this corresponds to a factorization P = P1 P2

with P2 linear.
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To prove (b), note that F{T }/F{T }(T − c−1) must be trivial. Since each
element of this difference module is represented by some x ∈ F , we must have
x ∈ F× such that T x − x is divisible on the right by T − c−1. By comparing
degrees, we see that T x − x = y(T − c−1) for some y ∈ F . Then y = φ(x)
and yc−1 = x , proving the claim.

To prove (c), form the φ-module V corresponding to the matrix

(
1 c
0 1

)
. By

construction, we have a short exact sequence 0 → V1 → V → V2 → 0 with
V1, V2 trivial; since V must also be trivial, this extension must split. In other
words we can find x ∈ F such that(

1 x
0 1

)(
1 c
0 1

)(
1 −φ(x)
0 1

)
=
(

1 0
0 1

)
,

that is, φ(x)− x = c.
Conversely, suppose that (a)–(c) hold. Every nonzero dualizable finite dif-

ference module over F admits an irreducible quotient. This quotient admits a
cyclic vector, by Lemma 14.2.3, and so admits a quotient of dimension 1 by
(a). That quotient in turn is trivial by (b). By induction, we deduce that every
dualizable finite difference module over F admits a filtration whose successive
quotients are trivial of dimension 1. This filtration splits, by (c).

The notion of difference closure is particularly simple for the absolute
Frobenius endomorphism (the p-power map) on a field of characteristic p > 0.

Proposition 14.3.4. Let F be a separably (resp. algebraically) closed field
of characteristic p > 0 equipped with a power of the absolute Frobenius
endomorphism. Then F is weakly (resp. strongly) difference-closed.

Proof. For P = ∑m
i=0 Pi T m ∈ F{T }, with m > 0, Pm = 1, and P0 �= 0, the

polynomial Q(x) = ∑m
i=0 Pi xqi

has degree qm ≥ 2, and x = 0 occurs as a
root only with multiplicity 1. Moreover, the formal derivative of P is a constant
polynomial and so has no common roots with P; hence P is a separable poly-
nomial. Since F is separably closed, there must exist a nonzero root x of Q;
this implies criteria (a) and (b) of Lemma 14.3.3. To deduce (c) note that, for
c ∈ F×, the polynomial xq−x−c is again separable and so has a root in F .

14.4 Difference algebra over a complete field

Hypothesis 14.4.1. For the rest of this chapter, let F be a difference field com-
plete for a nonarchimedean norm | · |, with respect to which φ is isometric. (For
short, we will say that F is an isometric complete nonarchimedean difference
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field.) We do not assume that F is inversive; if it is not then we can embed F
into an inversive difference field by forming the completion F ′ of the direct
limit of the system

F
φ→ F

φ→ · · · .
We sometimes call F ′ the perfection, or more precisely the φ-perfection, of F .

As in the differential case, we would like to classify finite difference mod-
ules over F by the spectral radius of �; this turns out to be somewhat easier in
the difference case because there is now no analogue of the distinction between
the visible and full spectra. A related fact is that the use of matrix inequalities
here is much closer to that in Chapter 4 than that in Chapter 6; the main dif-
ference is that we do not begin with a satisfactory theory of eigenvalues or
eigenvectors.

We first note the following analogue of Lemma 6.2.5.

Lemma 14.4.2. Let V be a nonzero finite difference module over F. Let
e1, . . . , en be a basis of V . For each nonnegative integer s, let As be the matrix
of action of �s on e1, . . . , en. Then

|�|sp,V = lim
s→∞ |As |1/s .

Proof. It suffices to observe that, using the supremum norm defined by
e1, . . . , en , the operator norm of �s is precisely |As |. Thus the limit on the
right-hand side exists and matches the definition of the left-hand side.

The following basic properties will help with our classification, as long as
we are mindful of the discrepancies between the differential and difference
cases. For instance, the difference case has a simpler rule for tensor prod-
ucts but a less simple rule for duals. (It may be helpful to keep in mind the
case where φ is the identity map, and relate the following observations to
eigenvalues of linear transformations.)

Lemma 14.4.3. Let V, V1, V2 be nonzero finite difference modules over F.
(a) For a short exact sequence 0 → V1 → V → V2 → 0,

|�|sp,V = max{|�|sp,V1 , |�|sp,V2}.
(b) We have

|�|sp,V1⊗V2 = |�|sp,V1 |�|sp,V2 .

(c) For any complete extension E of F to which φ extends isometrically,

|�|sp,V = |�|sp,V⊗E .
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(d) For V dualizable,

|�|sp,V |�|sp,V ∨ ≥ 1.

Proof. Exercise.

Lemma 14.4.4. If V ∼= F{T }/F{T }P and P has only one slope r < +∞ in
its Newton polygon, then V admits a basis on which

|�|V = e−r , |�−1|V⊗F ′ = er .

Consequently

|�|sp,V = e−r , |�∨|sp,V = er

and, if F is inversive, then also

|�−1|sp,V = er .

Proof. Put n = deg(P), and define a norm on V by

|a0 + · · · + an−1T n−1| = max
i

{|ai |e−ri };
then clearly

|�|V = e−r , |�−1|V⊗F ′ = |�|V∨ = er .

We deduce that

|�|sp,V ≤ e−r , |�−1|sp,V⊗F ′, |�|V ∨ ≤ er ;
since

1 ≤ |�|sp,V |�−1|sp,V⊗F ′ ≤ e−r er , 1 ≤ |�|sp,V |�|sp,V ∨ ≤ e−r er ,

we obtain the desired equalities.

Corollary 14.4.5. For any nonzero finite difference module V over F, either
|�|sp,V = 0 or there exists an integer m ∈ {1, . . . , dimF V } such that
|�|msp,V ∈ |F×|.
Definition 14.4.6. Let V be a nonzero finite difference module over F . We say
that V is pure (and) of norm s if all the Jordan-Hölder constituents of V have
spectral radius s. Note that V is pure of norm 0 if and only if �dimF V = 0. If
V is pure of norm 1, we also say that V is étale or unit-root.

Remark 14.4.7. It is more common to classify pure modules using additive
notation, i.e., in terms of the slope (− log s) instead of the norm s. (Corre-
spondingly, pure modules are also called isoclinic modules.) For better or



14.4 Difference algebra over a complete field 251

worse, we have decided here to keep the notation consistent with the mul-
tiplicative terminology used in the differential case. We will switch to the
additive language only in the next section, in order to talk about Hodge and
Newton polygons.

Proposition 14.4.8. Let V be a nonzero finite difference module over F. Then
V is pure of norm s > 0 if and only if

|�|sp,V⊗F ′ = s, |�−1|sp,V⊗F ′ = s−1; (14.4.8.1)

in this case, V ∨ is pure of norm s−1.

Proof. If V is pure of norm s then (14.4.8.1) holds by Lemmas 14.4.3(a), (c)
and 14.4.4. Conversely, if (14.4.8.1) holds and W is an irreducible subquotient
of V then, by Lemma 14.4.3(a),

|�|sp,W⊗F ′ ≤ |�|sp,V⊗F ′, |�−1|sp,W⊗F ′ ≤ |�−1|sp,V⊗F ′ .

We thus have

1 ≤ |�|sp,W⊗F ′ |�−1|sp,W⊗F ′ ≤ ss−1 = 1,

which forces the equalities |�|sp,W = |�|sp,W⊗F ′ = s and |�−1|sp,W⊗F ′ =
s−1. In particular, W is pure of norm s. Moreover, by Lemma 14.2.3
there is an isomorphism W ∼= F{T }/F{T }P for some twisted polynomial
P; by Theorem 14.2.5, P has only one slope in its Newton polygon. By
Lemma 14.4.4 that slope must equal − log s, and so W∨ must be pure of norm
s−1, as then is V ∨.

Corollary 14.4.9. Let V1, V2 be nonzero finite difference modules over F
which are pure and of respective norms s1, s2. Then V1 ⊗ V2 is pure of
norm s1s2.

Note that this does not follow immediately from Lemma 14.4.3(b) because
the tensor product of two irreducibles need not be irreducible.

Proof. If s1s2 = 0 then it is easy to check that V1 ⊗ V2 is pure of norm 0.
Otherwise, Lemma 14.4.3(b) plus Proposition 14.4.8 yields

|�|sp,V1⊗V2⊗F ′ = |�|sp,V1⊗F ′ |�|sp,V2⊗F ′ = s1s2,

|�−1|sp,V1⊗V2⊗F ′ = |�−1|sp,V1⊗F ′ |�−1|sp,V2⊗F ′ = s−1
1 s−1

2 ;

thus Proposition 14.4.8 again implies that V1 ⊗ V2 is pure of norm s1s2.
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Corollary 14.4.10. Let V be a nonzero finite difference module over F. Then,
for any positive integer d, V is pure of norm s if and only if V becomes pure
of norm sd when viewed as a difference module over (F, φd).

Proposition 14.4.11. Let V be a nonzero finite difference module over F.
Suppose that either

(a) |�|sp,V < 1 or
(b) F is inversive and |�−1|sp,V < 1.

Then H1(V ) = 0.

Proof. In case (a), given v ∈ V , the series

w =
∞∑

i=0

�i (v)

converges to a solution of w −�(w) = v. In case (b), the series

w = −
∞∑

i=0

�−i−1(v)

does likewise.

Corollary 14.4.12. If V1, V2 are nonzero finite differential modules over F
which are pure of respective norms s1, s2 and if either

(a) s1 < s2 or
(b) F is inversive and s1 > s2,

then any exact sequence 0 → V1 → V → V2 → 0 splits.

Proof. If s2 > 0 then, by Proposition 14.4.8 and Corollary 14.4.9, V ∨
2 ⊗ V1 is

pure of norm s1/s2, so Proposition 14.4.11 gives the desired splitting. Other-
wise we must be in case (b), so we can pass to the opposite ring to make the
same conclusion.

If F is inversive, we again get a decomposition theorem.

Theorem 14.4.13. Suppose that F is inversive. Let V be a finite difference
module over F. Then there exists a unique direct sum decomposition

V =
⊕
s≥0

Vs

of difference modules, in which each nonzero Vs is pure of norm s. (Note that
V is dualizable if and only if V0 = 0.)

Proof. This follows at once from Corollary 14.4.12.
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Remark 14.4.14. Note that if φ is the identity map on F , Theorem 14.4.13
simply reproduces the decomposition of V in which Vs consists of the
generalized eigenspaces for all eigenvalues of norm s.

If F is not inversive, we get a filtration instead of a decomposition.

Theorem 14.4.15. Let V be a finite difference module over F. Then there
exists a unique filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V

of difference modules, such that each successive quotient Vi/Vi−1 is pure of
some norm si and s1 > · · · > sl . (Note that V is dualizable if and only if
V = 0 or sl > 0.)

Proof. Start with any filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V with irreducible
successive quotients. Let si be the radius of Vi/Vi−1. In the case si < si+1 we
may apply Corollary 14.4.12 to choose another difference module V ′

i , contain-
ing Vi−1 and contained in Vi+1, such that V ′

i /Vi−1, Vi+1/V ′
i are pure and have

slopes si+1, si , respectively.
By repeating this process, we eventually reach the case where s1 ≥ · · · ≥

sl . We obtain the existence of a suitable filtration from the given filtration by
simply omitting Vi whenever si = si−1. Uniqueness follows by tensoring with
F ′ and invoking the uniqueness in Theorem 14.4.13.

The following alternative characterization of pureness may be useful in
some situations.

Proposition 14.4.16. Let V be a finite difference module over F, and choose
λ ∈ F×. Then V is pure of norm |λ| if and only if there exists a basis of V on
which � acts via λ times an element of GLn(oF ).

Proof. If such a basis exists then Proposition 14.4.8 implies that V is pure
of norm |λ|. Conversely, if V is irreducible of spectral radius |λ| then
Lemma 14.4.4 provides a basis of the desired form. Otherwise we proceed
by induction on dimF V . Suppose that we are given a short exact sequence
0 → V1 → V → V2 → 0 in which V1, V2 admit bases of the desired form.
Let e1, . . . , em ∈ V form such a basis for V1, and let em+1, . . . , en ∈ V lift
such a basis for V2. Then, for μ ∈ F of sufficiently small norm,

e1, . . . , em, μem+1, . . . , μen

will form a basis of V of the desired form.
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Remark 14.4.17. Note that, whenever V is pure and of positive norm, we can
apply Proposition 14.4.16 after replacing � by some power of itself, thanks to
Corollary 14.4.5.

14.5 Hodge and Newton polygons

The theory of Hodge and Newton polygons, which we introduced when study-
ing nonarchimedean matrix inequalities in Chapter 4, admits a close analogue
when considering a difference algebra over a complete nonarchimedean field.
Throughout this section, we continue to retain Hypothesis 14.4.1.

Definition 14.5.1. Let V be a finite difference module over F equipped with
the supremum norm with respect to some basis. Let A be the matrix of action
of � on this basis; define the Hodge polygon of V as the Hodge polygon of
the matrix A (see Definition 4.3.3). Given the choice of the norm on V , this
definition is independent of the choice of the basis: we can change basis only
by using a matrix U ∈ GLn(oF ) which replaces A by U−1 Aφ(U ); since φ is
an isometry, this ensures that φ(U ) ∈ GLn(oF ) also. As in the linear case we
list the Hodge slopes sH,i , . . . , sH,n in increasing order.

Definition 14.5.2. Let V be a finite difference module over F . Define the
Newton polygon of V to have slopes sN ,1, . . . , sN ,n such that r appears
with multiplicity equal to the dimension of the quotient of the norm e−r in
Theorem 14.4.15.

Lemma 14.5.3. Let V be a finite difference module over F. We have

sH,1 + · · · + sH,i = − log |�|∧i V (i = 1, . . . , n),

sN ,1 + · · · + sN ,i = − log |�|sp,∧i V (i = 1, . . . , n).

Proof. The first assertion follows from the corresponding fact in the linear
case (which is analogous to Lemma 4.1.9). The second assertion reduces to
the fact that if V is irreducible of dimension n and spectral radius s then ∧i V
has spectral radius si for i = 1, . . . , n; this follows from the fact that, in the
basis given by Lemma 14.4.4,

∣∣∧i�
∣∣∧i V = si .

Corollary 14.5.4 (Newton above Hodge). We have

sN ,1 + · · · + sN ,i ≥ sH,1 + · · · + sH,i (i = 1, . . . , n)

with equality for i = n.

As in the linear case (Theorem 4.3.11), we have a Hodge–Newton decom-
position theorem.
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Theorem 14.5.5. Let V be a finite difference module over F equipped with a
basis. If for some i ∈ {1, . . . , n − 1} we have

sN ,i < sN ,i+1, sN ,1 + · · · + sN ,i = sH,1 + · · · + sH,i

then we can change basis, using a matrix in GLn(oF ), so that the matrix of
action of � becomes block upper triangular; the top left block accounts for
the first i Hodge and Newton slopes of V . Moreover, if F is inversive and
sH,i > sH,i+1, we can ensure that the matrix of action of � becomes block
diagonal.

Proof. First we change basis by a matrix in GLn(oF ) such that the F-span
of the first i basis vectors equals the step of the filtration of Theorem 14.4.15
consisting of norms greater than or equal to e−sN ,i . We may then proceed as in
Theorem 4.3.11.

Remark 14.5.6. Be aware that the Newton polygon, unlike the Hodge poly-
gon, cannot be read off directly from the matrix of action of �; see the
exercises for an example. However, this can be done if the matrix of � is a
companion matrix. A restatement follows.

Proposition 14.5.7. If V ∼= F{T }/F{T }P then the Newton polygon of V
coincides with that of P.

Proof. This reduces to Lemma 14.4.4 using Theorem 14.2.5.

We also obtain the following analogue of Proposition 4.4.10.

Proposition 14.5.8. Let V be a finite difference module over F, equipped with
the supremum norm for some basis. For i = 1, 2, . . . , let sH,1,i , . . . , sH,n,i be
the Hodge slopes of V as a difference module over (F, φi ). Then, as i → ∞,
the quantities i−1sH,1,i , . . . , i−1sH,n,i converge to the Newton slopes of V .

Proof. The claim is independent of the choice of basis, so by Theorem 14.4.15
we may reduce to considering a pure module. In that case Lemma 14.4.2
implies that i−1sH,1,i → sN ,1 as i → ∞.

Note that sN ,1 = · · · = sN ,n by purity and that i−1sH,1,i ≥ i−1sH, j,i for
j ≥ 1. Also, the Newton slopes of V as a difference module over (F, φi ) are
isN ,1, . . . , isN ,n ; by the equality case of Corollary 14.5.4 we obtain i−1sH,1,i+
· · ·+ i−1sH,n,i = sN ,1 +· · ·+sN ,n . All this plus the fact that i−1sH,1,i → sN ,1

as i → ∞ yields the desired convergence.

Proposition 14.5.9. Suppose that F = K (i.e., F is discretely valued) and that
R = F�t�0 carries the structure of an isometric complete nonarchimedean
difference ring for the norm | · |1. Let M be a finite free difference module over
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R with least Newton slope c. Then there exists a basis of M with respect to
which, for each positive integer m, the least Hodge slope of �m is the least
element of v(F×) greater than or equal to cm.

Proof. Recall that if K is discrete then E is the completed fraction field of R
(see Definition 9.4.3). Construct a suitable basis of M ⊗ E by imitating the
proof of Lemma 4.3.13 and then apply Lemma 8.6.1.

14.6 The Dieudonné–Manin classification theorem

We also have an analogue in difference algebra of the fact that linear transfor-
mations over an algebraically closed field can be put into Jordan normal form.
In fact, the situation is even better: in this setting all objects are semisimple.
We continue to retain Hypothesis 14.4.1.

We first define some standard difference modules of a particularly simple
form.

Definition 14.6.1. For λ ∈ F and d a positive integer, let Vλ,d be the difference
module over F with basis e1, . . . , ed such that

�(e1) = e2, . . . , �(ed−1) = ed , �(ed) = λe1.

Lemma 14.6.2. Suppose that λ ∈ F× and the positive integer d are such that
there is no i ∈ {1, . . . , d −1} such that |λ|i/d ∈ |F×|. Then Vλ,d is irreducible.

Proof. Note that

�d(ei ) = φi−1(λ)ei (i = 1, . . . , d).

Hence, by Proposition 14.4.16, Vλ,d is pure of norm λ1/d , as then is any sub-
module. But if the submodule were proper and nonzero then we would have a
violation of Corollary 14.4.5.

Next we show that, if F has a sufficiently large residue field, one can classify
all dualizable finite difference modules in terms of the standard modules Vλ,d .
One can always enlarge F to reach this case; see the exercises.

Theorem 14.6.3. Let F be a complete discretely valued field, equipped with
an isometric endomorphism φ, such that κF is strongly difference-closed. Then
every dualizable finite difference module over F can be split (non-uniquely) as
a direct sum of submodules, each of the form Vλ,d for some λ, d. Moreover,
given any generator π of mF , we can force each λ to be a power of π .

Proof. We first check that if V is pure of norm 1 then V is trivial; for this
step, we only need κF to be weakly difference-closed. We must show that, for
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any A ∈ GLn(oF ), there exists a convergent sequence U1,U2, · · · ∈ GLn(oF )

such that

U−1
m Aφ(Um) ≡ In (mod πm).

Specifically, we will insist that Um+1 ≡ Um (mod πm). Finding U1 amounts
to trivializing a dualizable difference module of dimension n over κF , which
is possible because κF is assumed to be weakly difference-closed. For m > 1,
given Um we wish to set Um+1 = Um(In + πm Xm), for some Xm , in such a
way that

(In + πm Xm)
−1(U−1

m Aφ(Um))(In + φ(π)mφ(Xm)) ≡ In (mod πm+1).

Since we already have U−1
m Aφ(Um) ≡ In (mod πm), this amounts to solving

−Xm + π−m(U−1
m Aφ(Um)− In)+ φ(π)mπ−mφ(Xm) ≡ 0 (mod π),

which we can do by applying criterion (c) from Lemma 14.3.3.
Next we check that φ is surjective on oF , which implies that F is inversive.

Given x ∈ oF , it suffices to exhibit a sequence y0, y1, y2, . . . , with ym ≡ ym+1

(mod πm), such that φ(ym) ≡ x (mod πm). We start with y0 = 0; given ym ,
solving the equation

φ(π−m(ym+1 − ym)) ≡ φ(π)−m(x − φ(ym)) (mod π)

is possible because κF is inversive.
We now check that if V is trivial then H1(V ) = 0. Given x ∈ oF , it suffices

to exhibit a sequence y0, y1, y2, . . . , with ym ≡ ym+1 (mod πm), such that
φ(ym) − ym ≡ x (mod πm). Again, we start with y0 = 0; given ym , solving
the equation

π−mφ(πm)φ(π−m(ym+1 − ym))− π−m(ym+1 − ym) ≡ π−m(x − φ(ym)+ ym) (mod π)

is possibly by criteria (b) and (c) from Lemma 14.3.3. (We must use (b) to
remove the leading coefficient in the first term before applying (c).)

At this point, we may apply Theorem 14.4.13 to reduce the desired result to
the case where V is pure of norm s > 0. Let d be the smallest positive integer
such that sd = |πm | for some integer m. Then the first paragraph of the proof
implies that π−m�d fixes some nonzero element of V ; this gives us a nonzero
map from Vπm ,d to V . By Lemma 14.6.2 this map must be injective. Repeating
this argument, we can write V as a successive extension of copies of Vπm ,d .
However, V ∨

πm ,d ⊗ Vπm ,d is pure of norm 1 and so has trivial H1 as above.
Thus V splits as a direct sum of copies of Vπm ,d , as desired.

By Proposition 14.3.4, Theorem 14.6.3 has the following immediate
corollary.
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Corollary 14.6.4. Let F be a complete discretely valued field such that κF

is algebraically closed and of characteristic p > 0. Let φ : F → F be an
isometric automorphism lifting a power of the absolute Frobenius on κF . Then
every dualizable finite difference module over F can be split (non-uniquely) as
a direct sum of difference submodules, each of the form Vλ,d for some λ ∈ F×
and some positive integer d coprime to the valuation of λ. Moreover, given any
generator π of mF , we can force each λ to be a power of π .

Remark 14.6.5. Let k be an algebraically closed field of characteristic p >
0, let W (k) be the ring of p-typical Witt vectors (i.e., the unique complete
discrete valuation ring with residue field k and maximal ideal generated by
p), and put F = Frac(W (k)). Then, for each power q of p, there is a unique
Frobenius lift φ on W (k), namely the Witt vector Frobenius lift. For this data,
Corollary 14.6.4 with π = p is precisely the Dieudonné–Manin theorem, i.e.,
the classification theorem of rational Dieudonné modules over k. (For more on
Witt vectors, see the notes and the exercises.)

Corollary 14.6.6. Let F be a complete discretely valued field, equipped with
an isometric endomorphism φ, such that κF is strongly difference-closed. Then,
for any finite difference module V over F, H1(V ) = 0.

Proof. By Theorem 14.4.13 this reduces to the case where V is pure and of
some norm s ≥ 0. If s > 0 then V is dualizable and Theorem 14.6.3 implies
the claim. If s = 0 then the action of� on V is nilpotent, so we may check the
claim for V by checking the kernel and image of V . We may thus reduce to the
case where the action of � on V is zero, when F becomes inversive; this was
also checked in the proof of Theorem 14.6.3.

Notes

The parallels between difference algebra and differential algebra are close
enough that a survey of references for difference algebra strongly resembles
its differential counterpart. A well-established, perhaps rather dry, reference
is [56]; a somewhat more lively and more modern reference, which devel-
ops difference Galois theory under somewhat restrictive conditions, is [201].
We again mention [4] as a useful unifying framework for difference and
differential algebra.

The choice of the modifier “difference” in the phrase “difference algebra” is
motivated by the following basic example. Consider the automorphism on the
ring of entire functions f : C → C given by φ( f )(z) = f (z + q) for some q.
The difference operator
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�( f ) = φ( f )− f

q

obeys the twisted Leibniz rule

�( f g) = φ( f )�(g)+�( f )(g),

and its limit as q → 1 is the usual derivation with respect to z.
Proposition 14.3.4 can be found in SGA7 [70, Exposé XXII, Corol-

laire 1.1.10], wherein Katz attributes it to Lang. Indeed, it is a special case
of the nonabelian Artin–Schreier theory associated with an algebraic group
over a field of positive characteristic (in our case GLn) via the Lang torsor;
see [153]. It is also the basis for the theory of (φ, �)-modules, which we will
mention briefly in Chapter 24. (See also Section 19.1.)

Suppose that k is a perfect field of characteristic p > 0 and that Ck is a com-
plete discretely valued field with residue field k and maximal ideal generated
by p (e.g., k = Fp and Ck = Zp). It was originally noticed by Teichmüller
that each element x ∈ k has a unique lift [x] ∈ Ck admitting pn th roots for
all n; this is called the Teichmüller lift of x . (These were first considered for
unramified extensions of Zp, in which context we have already seen them, in
Chapter 0.) One can use Teichmüller lifts as digits to form a canonical base-p
expansion of any element of Ck ; the arithmetic operations can be expressed
using certain polynomials in the p-power roots of these digits. These polyno-
mials were used by Witt to prove that Ck exists, is unique, and is functorial
in k. More generally, Witt gave a functor for each p accepting arbitrary rings
(the functor of p-typical Witt vectors) and associating k as above to Ck ; he also
gave a natural functor through which all the functors, for different choices of p,
factorize (the functor of big Witt vectors). These have applications far beyond
their origins, in fields as diverse as arithmetic geometry, algebraic topology,
and combinatorics. See [110] for a comprehensive summary.

In the special case of the difference field Frac(W (k)), with k perfect and
of characteristic p > 0 and φ equal to the unique lift of the absolute p-
power Frobenius morphism, a number of the results in this chapter appear (in
marginally less generality) in [120], such as the following.

• Corollary 14.5.4 reproduces Mazur’s [120, Theorem 1.4.1].
• Theorem 14.5.5 is [120, Theorem 1.6.1].
• Proposition 14.5.8 reproduces [120, Corollary 1.4.4] without requiring

nonnegative Hodge slopes (as Katz does in his “basic slope estimate”
[120, 1.4.3]).

• Proposition 14.5.9 reproduces (and slightly generalizes) one case of
[120, Theorem 2.6.1].
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For the original classification of rational Dieudonné modules over an
algebraically closed field, see Manin’s original paper [166] or the book of
Demazure [71]. We do not have a prior reference for Theorem 14.6.3, but
nevertheless we do not believe it to be original.

An equal-characteristic analogue of Remark 14.6.5 is to take F = k((z))
for k an algebraically closed field of characteristic p > 0, with φ acting
as the Frobenius morphism on k and trivially on z. This special case of
Corollary 14.6.4 is due to Laumon [155, Theorem 2.4.5].

As in Chapter 4, one can interpret what has been done here as the special
case for GLn of a construction for any reductive algebraic group. This point
of view was originally introduced by Kottwitz [148, 149], but a full devel-
opment of the analogy is the subject of ongoing work of Kottwitz [150] and
Csima [64].

Exercises

(1) For M1,M2 difference modules over a difference ring R, with M1 dual-
izable, give a canonical identification of H1(M∨

1 ⊗ M2) with the Yoneda
extension group Ext(M1,M2). (Hint: as in Lemma 5.3.3 you may wish to
first reduce to the case M1 = R.)

(2) Prove Lemma 14.4.3. (Hint: Lemma 14.4.2 may be helpful, particularly
for (c) and (d).)

(3) Let F be a difference field (of arbitrary characteristic) containing an ele-
ment x such that φ(x) = λx for some λ fixed by φ which is not a
root of unity. Prove that every finite difference module for M admits a
cyclic vector. (Hint: imitate the proof of Theorem 5.4.2. At the key step,
instead of getting a polynomial in s you should get a polynomial in λs ; the
root-of-unity condition forces λs to take infinitely many values.)

(4) Let F be the completion of Qp(t) for the 1-Gauss norm, viewed as a dif-
ference field for φ equal to the substitution t �→ t p. Let V be the difference
module corresponding to the matrix

A =
(

1 t
0 p

)
.

Prove that there is a nonsplit short exact sequence 0 → V1 → V → V2 →
0 with V1, V2 pure and of norms s1, s2 with s1 < s2.

(5) Here is a beautiful example from [120, §1.3] (attributed to B. Gross). Let
p be a prime congruent to 3 modulo 4, put F = Qp(i) with i2 = −1,
and let φ be the automorphism i �→ −i of F over Qp. Define a difference
module V of rank 2 over F , using the matrix
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A =
(

1 − p (p + 1)i
(p + 1)i p − 1

)
.

Compute the Newton polygons of A and V and verify that they do not
coincide. (Hint: find another basis of V , on which � acts diagonally.)

(6) (a) Prove that every difference field can be embedded into a strongly
difference-closed field. (Hint: use your favorite equivalent of the
axiom of choice, e.g., Zorn’s lemma or transfinite induction.)

(b) Prove that every complete isometric discretely valued difference field
can be embedded into a complete isometric difference field with the
same value group but having a strongly difference-closed residue field.

(7) Prove that Theorem 14.6.3 continues to hold if the hypothesis that F is
discretely valued is replaced by one of the following hypotheses.
(a) There exists a constant ε > 0 with the following property: for c ∈

{0, 1} and x ∈ oF there exists y ∈ oF with |φ(y) − cy − x | < ε|x |.
(Hint: use ε to replace the π -adically convergent sequences in the
proof of Theorem 14.6.3.)

(b) The field F is spherically complete. (Hint: attempt to form conver-
gent sequences as in (a) and then invoke spherical completeness if the
sequences fail to converge.)

(8) This exercise is related to the construction of Witt vectors. Let k, � be
perfect fields of characteristic p > 0. Suppose that Ck,C� are com-
plete discrete valuation rings, having residue fields identified with k, �,
respectively, whose maximal ideals are generated by p. Prove that any
homomorphism k → � lifts uniquely to a homomorphism Ck → C�.
(Hint: read about Teichmüller lifts in the notes.)
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Frobenius modules

Having introduced the general formalism of difference algebra and made a
more careful study over a complete nonarchimedean field, we specialize to the
sort of power series rings over which we studied differential algebra. We have
seen most of these rings before, but we will encounter a couple of new varia-
tions, notably the Robba ring. This ring consists of power series convergent on
some annulus of outer radius 1 but with unspecified inner radius, which may
vary with the choice of power series. This may seem to be a strange construc-
tion at first, but it is rather natural from the point of view of difference algebra:
the endomorphisms that we will consider (Frobenius lifts) do not preserve the
region of convergence of an individual series but do act on the Robba ring as a
whole.

This chapter serves mostly to set the definitions and notation for what fol-
lows. One nontrivial result here is the behavior of the Newton polygon under
specialization. Remember that Hypothesis 14.0.1 is still in force, so the field
K will always be discretely valued.

15.1 A multitude of rings

One can talk about Frobenius structures on a variety of rings; for convenience,
we review here the definitions of some rings introduced in Chapter 8 and then
add some special notation that will be useful later.

Remark 15.1.1. The following rings were defined in Chapter 8:

K 〈α/t, t/β〉 =
{∑

i∈Z

ci t
i : ci ∈ K , lim

i→−∞ |ci |αi = 0, lim
i→+∞ |ci |β i = 0

}
,

K �t�0 =
{ ∞∑

i=0

ci t
i : ci ∈ K , sup

i
{|ci |} <∞

}
,

262
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K {t} =
{ ∞∑

i=0

ci t
i : ci ∈ K , lim

i→∞ |ci |ρi = 0 (ρ ∈ (0, 1))

}
,

K 〈α/t, t�0 =
{∑

i∈Z

ci t
i : ci ∈ K , lim

i→−∞ |ci |αi = 0, sup
i
{|ci |} <∞

}
,

K 〈α/t, t} =
{∑

i∈Z

ci t
i : ci ∈ K , lim

i→−∞ |ci |αi = 0, lim
i→+∞ |ci |ρi = 0 (ρ ∈ (0, 1))

}
.

Definition 15.1.2. For later use, we give a special notation to certain rings
appearing in this framework. We have already defined E to be the completion
of oK ((t)) ⊗oK K = K �t�0[t−1] for the 1-Gauss norm; that is, E consists of
formal sums

∑
i ci t i which have bounded coefficients and satisfy |ci | → 0 as

i → −∞. Since we are assuming that K is discretely valued, E is a complete
nonarchimedean field with residue field κK ((t)). We next set

E† =
⋃

α∈(0,1)
K 〈α/t, t�0;

that is, E† consists of formal sums
∑

ci t i which have bounded coefficients
and converge in some range α ≤ |t | < 1. This ring is sometimes called the
bounded Robba ring, since it consists of the bounded elements of the Robba
ring (see Definition 15.1.4 below). Note that it can also be written as

E† =
⋃

α∈(0,1)
K �α/t, t�0.

Lemma 15.1.3.
(a) The ring E† is a field.
(b) Under the 1-Gauss norm | · |1, the valuation ring oE† is a local ring with

maximal ideal mK oE† .
(c) The field E†, equipped with | · |1, is henselian (see Remark 3.0.2).

This last property implies that finite separable extensions of κE† = κK ((t))
lift functorially to finite étale extensions of oE† (and to unramified extensions
of E†). In particular, the maximal unramified extension E†,unr carries an action
of the absolute Galois group of κK ((t)).

Proof. To check (a), note that the Newton polygon of any nonzero x ∈ E†

has finite width (since K is discretely valued). We can thus choose α such
that x ∈ K 〈α/t, t�0 has no slope between 0 and − logα. In this case x is a
unit in K 〈α/t, t�0 by Lemma 8.2.6(c), yielding (a). We may deduce (b) as an
immediate corollary of (a).

To prove (c) it suffices to check the criterion of Remark 3.0.2: for any monic
polynomial P(x) ∈ oE†[x] and any simple root r ∈ κE† of P ∈ κE†[x], there
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exists a unique root r ∈ oE† of P lifting r . In fact, there exists a unique such
root r ∈ oE by Hensel’s lemma (see Remark 2.2.3), so it suffices to produce
such a root in oE† .

We may rescale P by a unit in oE† to force P
′
(r) = 1. Choose r0 ∈ oE†

lifting r . We can then choose α ∈ (0, 1) such that K 〈α/t, t�0 contains both r0

and the coefficients of P and, in addition, |P(r0)|α, |1 − P ′(r0)|α < 1. Since
|P(r0)|1, |1 − P ′(r0)|1 < 1, this implies that |P(r0)|ρ, |1 − P ′(r0)|ρ < 1 for
ρ ∈ [α, 1) by Proposition 8.2.3(c).

We may now finish using a standard application of Newton’s method. Given
r0 as defined above, for i ≥ 0 set ri+1 = ri − P(ri )/P ′(ri ). We find by
induction on i (exercise) that |P(ri+1)|ρ ≤ |P(ri )|2ρ and |1 − P ′(ri )|ρ < 1
for ρ ∈ [α, 1). Consequently, the ri form a Cauchy sequence under | · |ρ
for each ρ ∈ [α, 1); since K 〈α/t, t�0 is Fréchet complete for these norms
(Proposition 8.2.5), the sequence has a limit r of the desired form. This
yields (c).

We next confect another novel but important ring.

Definition 15.1.4. Put

R =
⋃

α∈(0,1)
K 〈α/t, t};

that is, R consists of formal sums
∑

i ci t i which converge in some range
α ≤ |t | < 1 but need not be bounded. The ring R is commonly known as the
Robba ring having coefficients in K .

Remark 15.1.5. Be aware that, since R consists of series with unbounded
coefficients, the 1-Gauss norm | · |1 is not defined on the whole of R. We will,
conventionally, write |x |1 = +∞ if x ∈ R has unbounded coefficients. A
related issue is that R is not a field; indeed, it is not even noetherian, by a sim-
ilar argument as that for K {t} (see the exercises for Chapter 8). We will return
to this and related ring-theoretic issues concerning R later (Section 16.2).

15.2 Frobenius lifts

Next, we equip these rings with a particular sort of endomorphism.

Definition 15.2.1. Let q be a power of p. Let R be one of the following rings:
• K 〈t〉, K �t�0, or K {t};
• the union of K 〈α/t, t〉, K 〈α/t, t�0, or K 〈α/t, t} over all α ∈ (0, 1);
• F1, the completion of K (t) for the 1-Gauss norm;
• E , the completion of K �t�0[t−1] for the 1-Gauss norm.
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By a q-power Frobenius lift on R we will mean a map φ : R → R of the form∑
i

ci t
i �→

∑
i

φK (ci )u
i ,

where:
• the map φK : K → K is an isometry;
• the element u ∈ R satisfies |u − tq |1 < 1. (If R = R, this forces

u ∈ E†.)
(These are not the most inclusive conditions possible; see the notes.) The most
important case is when φ is absolute, i.e., when φK provides the q-power
Frobenius lift on κK .

Remark 15.2.2. Note that, unless φ is absolute, the property that it is a
Frobenius lift depends on the implicit choice of the series parameter t ; that
is, φ is not invariant under isometric automorphisms of R.

Remark 15.2.3. Note that, in Definition 15.2.1, one cannot define a Frobenius
lift on an individual ring like K 〈α/t, t�0; for instance, the simple substitution
t → tq carries K 〈α/t, t�0 to K 〈α1/q/t, t�0. One can make this remark more
quantitative, as in the following lemma.

Lemma 15.2.4. Let φ be a Frobenius lift on E†. Then there exists ε ∈
(0, 1) such that, for β, γ ∈ [ε, 1) with β ≤ γ , φ carries K 〈β/t, t/γ 〉 to
K 〈β1/q/t, t/γ 1/q〉 and

| f |β = |φ( f )|β1/q .

Proof. Since |φ(t)t−q − 1|1 < 1, by continuity we can choose ε ∈ (0, 1) and
η ∈ (0, 1) so that |φ(t)t−q − 1|ρ1/q ≤ η for ρ ∈ [ε, 1]. This inequality implies
that |φ(t i )t−qi − 1|ρ1/q ≤ η for all i ∈ Z. For such an ε, the claim is easily
verified: if f = ∑

i fi t i then, for β ∈ [ε, 1),

| f |β =
∣∣∣∣∣∑

i

φK ( fi )t
qi

∣∣∣∣∣
β1/q

≥ η

∣∣∣∣∣∑
i

φK ( fi )(t
qi − φ(t i ))

∣∣∣∣∣
β1/q

.

Definition 15.2.5. Let φ be a Frobenius lift on K �t�0. We say that φ is centered
if there exists λ ∈ mK such that

φ(t − λ) ≡ 0 (mod t − λ).

We call such a λ a center of φ; it follows from Lemma 15.2.6 below that λ
is unique if it exists. Furthermore, it always exists if φK is inversive (but not
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always otherwise; see the exercises). We say that φ is zero-centered if its center
is equal to 0, i.e., if φ(t) ≡ 0 (mod t).

Lemma 15.2.6. Suppose that φ is a Frobenius lift on K �t�0 and that φK :
K → K is inversive. Then φ is centered and its center is unique.

Proof. Exercise.

15.3 Generic versus special Frobenius lifts

For difference modules over K �t�0 there are two natural Newton polygons,
and there is an important relationship between them.

Definition 15.3.1. Let M be a finite free difference module over K �t�0, for a
centered Frobenius lift φ. Define the generic Newton polygon of M to be the
Newton polygon of M ⊗ E . Define the special Newton polygon of M to be the
Newton polygon of M/(t − λ)M , for λ the center of φ.

The following result is sometimes called the semicontinuity theorem for
Newton polygons.

Theorem 15.3.2 (Grothendieck, Katz). Let M be a finite free differ-
ence module over K �t�0, for a centered Frobenius lift φ. Then the special
Newton polygon lies on or above the generic Newton polygon with the same
endpoints.

Proof. Choose a basis of M , and use it to define supremum norms on M ⊗ E
and M/(t − λ)M . Then it is evident that, for any positive integer n, the Hodge
polygon of �n acting on M/(t − λ)M lies on or above the Hodge polygon
of �n acting on M ⊗ E with the same endpoints. If we divide all slopes by n
and take limits as n → ∞ then Proposition 14.5.8 implies that the generic or
special Hodge slopes converge to the generic or special Newton slopes.

As in the comparison of Hodge and Newton polygons, one obtains a decom-
position result in the case when the special and generic Newton polygons touch
somewhere.

Theorem 15.3.3. Let M be a finite free difference module of rank n over
K �t�0, for a centered Frobenius lift φ. Let sg,1 ≤ · · · ≤ sg,n and ss,1 ≤ · · · ≤
ss,n be the generic and special Newton slopes, respectively. Suppose that, for
some i ∈ {1, . . . , n − 1}, we have

ss,i < ss,i+1, sg,1 + · · · + sg,i = ss,1 + · · · + ss,i .
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Then there exists a difference submodule N of M, with M/N free, whose
generic and special Newton slopes are sg,1, . . . , sg,i and ss,1, . . . , ss,i , respec-
tively. Moreover, if sg,i < sg,i+1 then N is unique.

We will relax the hypothesis of uniqueness later (Corollary 16.4.7).

Proof. We may assume that φ is zero-centered. Uniqueness in the case
sg,i < sg,i+1 follows from the uniqueness in M ⊗ E , as in Theorem 14.4.15.
For the existence, we first replace φ by a suitable power to ensure that all the
slopes are in the additive value group of K ; we then apply Proposition 14.4.16
followed by Lemma 8.6.1 to change basis in M , in order to ensure that the
generic Hodge slopes of M are also equal to sg,1, . . . , sg,n .

If ss,H,1, . . . , ss,H,n denote the special Hodge slopes in this basis then we
have

ss,1 + · · · + ss,i ≥ ss,H,1 + · · · + ss,H,i

by Corollary 14.5.4, but also

ss,H,1 + · · · + ss,H,i ≥ sg,1 + · · · + sg,i

as in the proof of Theorem 15.3.2 (since sg,1, . . . , sg,i match the generic
Hodge slopes of M). Consequently, ss,1 + · · · + ss,i = ss,H,1 + · · · + ss,H,i ;
that is, for this basis, the condition of Theorem 14.5.5 is also satisfied by
M/t M .

We can thus change the basis over oK �t� to obtain a new basis of M on
which the action of � is via the block matrix

A0 =
(

B0 C0

D0 E0

)
,

in which, modulo t , B0 accounts for the first i Hodge and Newton slopes of
M/t M , E0 accounts for the remaining Hodge and Newton slopes of M/t M ,
and D0 vanishes. In particular, det(B0 (mod t)) has the valuation ss,1 + · · · +
ss,i . The valuation of det(B0) itself cannot be any greater, but it must be at least
the sum of the first i generic Hodge slopes of M , which we also know to be
ss,1 + · · · + ss,i . Consequently det(B0) is a unit in K �t�0, and it has minimal
valuation among all i × i minors of A0. Then, by Cramer’s rule (as in the proof
of Theorem 4.3.11), D0 B−1

0 and B−1
0 C0 have entries in oK �t�. Note also that

the least Hodge slope of B−1
0 is −sg,i , since det(B0) is a unit and the entries of

det(B0)B
−1
0 are the cofactors of B0.

Conjugating by the block lower triangular unipotent matrix U0 with off-
diagonal block D0 B−1

0 , we obtain
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A1 =U−1
0 A0φ(U0)=

(
B0 + C0φ(D0 B−1

0 ) C0

E0φ(D0 B−1
0 )− D0 B−1

0 C0φ(D0 B−1
0 ) E0 − D0 B−1

0 C0

)
.

Since D0 B−1
0 has entries in toK �t�, we have A1 ≡ A0 (mod t). We can thus

iterate the construction to obtain a sequence of block matrices

Al =
(

Bl Cl

Dl El

)
(l = 0, 1, . . . )

for which Al+1 = U−1
l Alφ(Ul), with Ul ∈ GLn(oK �t�) equal to the block

lower triangular unipotent matrix with off-diagonal block Dl B−1
l . Note that

Bl+1 = Bl(I + B−1
l Clφ(Dl B−1

l )), in which B−1
l Clφ(Dl B−1

l ) has entries in
(t,mK ), so the Hodge slopes of Bl are preserved. In particular, the least Hodge
slope of B−1

l equals sg,i .
To complete the proof we must show that the Ul converge to the identity for

the (t,mK )-adic topology. Since the least Hodge slope of B−1
l equals sg,i , it is

enough to check that the Dl converge to zero for the same topology. Moreover,
it suffices to check that, for each positive integer m, Dl (mod tm) converges
to zero for the mK -adic topology.

We do this by induction on m, the case m = 1 being clear because Dl ≡ 0
(mod t). Assume that the convergence is known modulo tm . Write

Dl+1 = Elφ(Dl)φ(B
−1
l )− Dl(B

−1
l Cl)φ(Dl B−1

l ).

Setting Dl = ∑
h Dl,hth , we then have

Dl+1,mtm ≡ Elφ(Dl,mtm)φ(B−1
l )− Dl,mtm(B−1

l Cl)φ(Dl B−1
l )

+ · · · (mod tm+1), (15.3.3.1)

where the ellipses represent terms depending on Dl,0, . . . , Dl,m−1 which are
already known to converge to 0 as l → ∞.

On the one hand the sum of the least Hodge slopes of the reductions of
El and φ(B−1

l ) modulo t equals sg,i+1 − sg,i ≥ 0. Thus the reduction of
Elφ(Dl,mtm)φ(B−1

l )modulo tm+1 has p-adic valuation no less than that of the
reduction of φ(Dl,mtm), which in turn has p-adic valuation strictly greater than
that of the reduction of Dl,mtm . On the other hand, B−1

l Cl has entries in oK �t�,
and φ(Dl B−1

l ) has entries in the ideal (t,mK ) since Dl is divisible by t . Thus
the reduction of Dl,mtm(B−1

l Cl)φ(Dl B−1
l )modulo tm+1 has valuation strictly

greater than that of the reduction of Dl,mtm . We may conclude that, for any
c > 0, for l sufficiently large (so that the terms represented by the ellipses in
(15.3.3.1) all have norm less than c) we have |Dl+1,m | < max{|Dl,m |, c}. This
yields the desired convergence.



15.4 A reverse filtration 269

Theorem 15.3.4. Let M be a finite free difference module of rank n over
K �t�0, for φ a zero-centered Frobenius lift. Suppose that the generic and spe-
cial Frobenius slopes of M are all equal to a single value r . Then there is a
canonical isomorphism M ∼= (M/t M)⊗K K �t�0 of differential modules.

Proof. First suppose that r = 0. By Lemma 8.6.1 we can choose a basis for
which the generic Hodge slopes are all equal to 0. Let A be the matrix of action
of � on this basis. We wish to construct an n × n matrix U = ∑∞

i=0 Ui ti

over oK �t�, with U0 = In , such that U−1 Aφ(U ) = A0 or, equivalently,
U = Aφ(U )A−1

0 . Since the map U �→ Aφ(U )A−1
0 is contractive for the

(t,mK )-adic topology on In + t Mn×n(oK �t�), it has a unique fixed point, by
the contraction mapping theorem, which gives the desired isomorphism.

If r ∈ v(K×), we may apply the above argument after twisting by a scalar.
Otherwise we may replace φ by a power and then twist and apply the above
argument.

15.4 A reverse filtration

Since E† is not complete, we cannot apply Theorem 14.4.15 to filter a finite
difference module over E† with pure quotients of decreasing norms. It was
originally observed by de Jong that one can get a filtration with pure quotients
of increasing norms, but at the expense of replacing E† with its φ-perfection.

Definition 15.4.1. Let φ be a Frobenius lift on E†. Let Eφ denote the
φ-perfection of E , that is, the completion of the direct limit R0 → R1 → · · · ,
with Ri = E and the transition map Ri → Ri+1 being φ. Choose ε as in
Lemma 15.2.4. For α ∈ [ε, 1) we may define | · |α on Eφ as the function
| · |

α1/qi on Ri ; this is consistent because Lemma 15.2.4 guarantees that the

transition maps are isometries. Let E†
φ be the subring of x ∈ Eφ such that,

for some α ∈ [ε, 1) depending on x , |x |β < +∞ for β ∈ [α, 1]. Note that,
within Eφ ,

E ∩ E†
φ = E†.

We obtain the following analogue of Lemma 15.1.3.

Lemma 15.4.2.
(a) The ring E†

φ is a field.
(b) Under the 1-Gauss norm | · |1, the valuation ring oE†

φ
is a local ring

with maximal ideal mK oE†
φ
.

(c) The field E†
φ equipped with | · |1 is henselian.
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Proof. Exercise.

Example 15.4.3. Suppose that φK is the identity and φ(t) = tq . Then Eφ may
be identified with the set of formal sums

∑
i∈Z[1/p] ci t i having the property

that, for each ε > 0, the set of i ∈ Z[1/p] for which |ci | ≥ ε is both bounded
below and has bounded denominators. In this interpretation, E†

φ consists of

those sums
∑

i ci t i for which there exists α ∈ (0, 1) for which |ci |αi → 0
as i → −∞. (Equivalently, there exists α ∈ (0, 1) for which |ci |αi remains
bounded as i → −∞.)

Theorem 15.4.4. Let V be a finite free dualizable difference module over E†
φ .

Then there exists a unique filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V

of difference modules, such that each successive quotient Vi/Vi−1 is pure and
of some norm si and s1 < · · · < sl .

Proof. By Theorem 14.4.15 we obtain a decomposition of V ′ = V ⊗E†
φ
Eφ

as a direct sum ⊕s V ′
s of difference modules in which each nonzero V ′

s is pure
of norm s. By replacing φ with a power, we can ensure that each s for which
V ′

s �= 0 appears in |F×|. It suffices to check that the summand of V ′ of least
norm descends to a submodule of V , as we may then repeat the argument after
quotienting by this submodule.

By twisting and then approximating a suitable basis of V ′, we obtain a basis
of V on which the matrix of action of �−1 is a block matrix(

A B
C D

)
,

in which A is invertible over oE†
φ

and B,C, D have entries in mK oE†
φ
. Put

X = C A−1 and then change basis using the block lower triangular unipotent
matrix with lower left block X , to obtain the new matrix of action(

A′ B ′
C ′ D′

)
=
(

A + Bφ−1(X) B
(D − X B)φ−1(X) D − X B

)
.

Repeating this operation yields a p-adically convergent sequence of changes
of basis; in the limit, we get a block upper triangular matrix in which the first
block corresponds to the summand of V ′ of least norm. To prove that this
summand descends to a submodule of V , it suffices to check that the change-
of-basis matrices are bounded in norm by 1 under | · |α for some α ∈ (0, 1).

At the first stage, for α sufficiently close to 1 we have

|A−1|α max{|B|α, |C |α, |D|α} < 1,
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which implies that |X |α < 1. Since we also have |X |1< 1, by
Proposition 8.2.3(c) we have |X |α1/q < 1; by Lemma 15.2.4, |φ−1(X)|α =
|X |α1/q < 1. Hence

|A−1 A′ − In|α < 1,

max{|B ′|α, |C ′|α, |D|α} ≤ max{|B|α, |C |α, |D|α}.
We may thus use the same α for the next stage, so |X |α < 1 at all stages.

In order to use the reverse filtration later, we will need the following
projection construction.

Lemma 15.4.5. There exists a E-linear map λ : Eφ → E sending E†
φ to E†,

such that λ(x) = x for all x ∈ E .

Proof. Suppose first that κK is inversive. In this case, the residue field of Eφ
can be written as ∪∞

i=0κK ((t1/qi
)). Each element of this union can be written

uniquely as the finite sum
∑∞

i=0 φ
−1(xi ), with xi ∈ κK ((t)) such that the

coefficient of t j in xi vanishes whenever i > 0 and j is divisible by q.
This implies by an easy induction that each x ∈ Eφ can be written uniquely

as a convergent (for the mK -adic topology) sum
∑∞

i=0 φ
−i (xi ), with xi ∈ E

such that the coefficient of t j in xi vanishes whenever i > 0 and j is divisible
by q. In this presentation, for ε as in Lemma 15.2.4 we have |φ−i (xi )|α ≤ |x |α
for α ∈ [ε, 1) (exercise). We may thus take λ(x) = x0.

In the general case, let K ′ be the φ-perfection of K and put Ẽ = K ′〈1/t, t�0.
(That is, Ẽ is the analogue of E with base field K ′ instead of K .) Argue as above
to construct a map Eφ → Ẽ . Then choose any continuous linear map K ′ → K
whose composition with the inclusion K → K ′ is the identity, and use it to
define a projection Ẽ → E . The composition Eφ → Ẽ → E has the desired
effect.

Corollary 15.4.6. The multiplication map μ : E ⊗E† E†
φ → Eφ is injective.

Proof. Exercise.

Notes

Much existing literature makes the restriction that Frobenius lifts must be
absolute. The generalization that we have considered here is relevant for
some applications (e.g., to families of Galois representations in p-adic Hodge
theory), so it is prudent to allow it as much as possible.

However, we have not opted to consider cases where φ does not carry
K into K . (At that level of generality, one might consider that our definition
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restricts to scalar-preserving Frobenius lifts.) Also, we have not allowed K to
be nondiscrete; this avoids having to worry about whether to allow Frobenius
lifts φ for which φ(t)− tq has 1-Gauss norm 1 but each of its coefficients has
norm less than 1. (This cannot occur for K discrete.)

As in the previous chapter, a number of the results are based on [120], at
least when restricted to an absolute Frobenius lift.

• Theorem 15.3.2 is a local formulation of a geometric result of
Grothendieck. The proof given is from [120, Theorem 2.3.1].

• Theorem 15.3.3 is a variant of [120, Theorem 2.4.2].
• Theorem 15.3.4 is an adaptation of [120, Theorem 2.7.1].

For stronger global results along these lines (in the theory of F-crystals), see
[67], [226], and [176].

Theorem 15.4.4 in the case of an absolute Frobenius lift is due to de Jong
[65, Proposition 5.8]. Corollary 15.4.6 and its proof are a variant on [65,
Proposition 8.1].

Exercises

(1) Verify the claims about Newton iteration from the proof of
Lemma 15.1.3(c).

(2) Suppose that κK is perfect and that φ : E → E is a continuous isometric
endomorphism inducing the absolute q-power Frobenius lift on κK ((t)).
Prove that φ is an absolute Frobenius lift in the sense of Definition 15.2.1.
(Hint: use Witt vector functoriality to show that φ carries K into K . In
other words, for x ∈ K , show that φ(x pn

) = φ(x)pn
is p-adically close to

an element of K .)
(3) Prove Lemma 15.2.6. (Hint: show that the map λ �→ φ−1

K (φ(t)|t=λ) on
mK is contractive; here φ(t)|t=λ denotes the substitution t �→ λ.)

(4) Let K be the completion of Qp(x) for the 1-Gauss norm. Prove that the
Frobenius lift φ defined by φ(t) = t p + px does not have a center.

(5) Prove Lemma 15.4.2.
(6) Check the omitted details in the proof of Lemma 15.4.5. (Hint: you can

in fact show that |x |α = supi {|φ−1(xi )|α}. To check this, it suffices to
consider x in the dense subset ∪∞

m=0φ
−m(E†) of E†

φ .)
(7) Prove Corollary 15.4.6. (Hint: if the claim fails, we can choose a nonzero

element z = ∑n
i=1 xi ⊗ yi of the kernel with n as small as possible. Now

use Lemma 15.4.5 to construct an element with an even shorter representa-
tion, as in the proof of Lemma 1.3.11. A related argument in Galois theory
is Artin’s proof of the linear independence of characters.)
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Frobenius modules over the Robba ring

In Chapter 14 we discussed some structure theory for finite difference modules
over a complete isometric nonarchimedean difference field. This theory can be
applied to the field E , which is the p-adic completion of the bounded Robba
ring E†; however, the information it gives is somewhat limited.

For the purposes of studying Frobenius structures on differential modules
(see Part V), it would be useful to have a structure theory over E† itself. This is
a bit too much to ask for; what we can provide is a structure theory that applies
over the Robba ring R, which is somewhat analogous to what we obtain over
E . In particular, with an appropriate definition of pure modules, we obtain a
slope filtration theorem analogous to Theorem 14.4.15 but valid over R.

Given a difference module over E†, one obtains slope filtrations and Newton
polygons over both E and R. For a module over K �t�0 these turn out to
match the generic and special Newton polygons, and so in particular they need
not coincide. However, they do admit a specialization property analogous to
Theorem 15.3.2.

Unfortunately, a proof of the slope filtration theorem over R would take us
rather far afield, so we do not include one here. Instead, we limit ourselves to
a brief overview of the proof and consign further discussion and references to
the notes.

Hypothesis 16.0.1. Throughout this chapter, let φ be a Frobenius lift on the
Robba ring R. (For a possible relaxation of this hypothesis, see the notes.) All
difference modules over R will be taken with respect to φ unless otherwise
specified.

16.1 Frobenius modules on open discs

We start with the fact that, over the ring K {t}, the classification of finite free
difference modules reduces (mostly) to classification over K .

273
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Theorem 16.1.1. Suppose that κK is strongly difference-closed (e.g., φ is an
absolute Frobenius lift and κK is algebraically closed). Let M be a finite
free dualizable difference module over K {t} for a zero-centered Frobenius
lift. Then there exists a noncanonical isomorphism of difference modules
M ∼= (M/t M)⊗K K {t}.
Proof. Let c be the reduction of φ(t)/t modulo t , so that c ∈ mK . Let
e1, . . . , en be a basis for M . Let A be the matrix of action of � on this basis,
which is invertible because M is dualizable. Let A0 be the constant term of A,
which is an invertible matrix over K . We wish to find a matrix U over K {t}
with U ≡ In (mod t) such that U−1 Aφ(U ) = A0.

We first construct a sequence of matrices U0,U1,U2, . . . over K �t�, with
U0 = In and Ui+1 = Ui (In + Xi t i ) for some matrix Xi over K such that
U−1

i Aφ(Ui )A
−1
0 ≡ In (mod t i+1). Namely, given Ui , we find Xi by solving

the equation

ci A0φ(Xi )A
−1
0 −Xi +t−i (U−1

i Aφ(Ui )A
−1
0 − In) ≡ 0 (mod t), (16.1.1.1)

which amounts to trivializing a class in H1(V ) for some finite difference
module V over K . This is possible by Corollary 14.6.6, although it can
not necessarily be done uniquely. However, let us choose h ≥ 0 such
that |ch ||A0||A−1

0 | < 1. Then, for i ≥ h and for any choice of Xi ,
|ci A0φ(Xi )A

−1
0 | < |Xi |, so that Xi is uniquely determined by (16.1.1.1);

moreover, it has the same norm as the reduction of t−iU−1
i Aφ(Ui )A

−1
0 − In

modulo t .
Choose α so that, for i = h,

|Ui − In|α, |U−1
i − In|α, |U−1

i Aφ(Ui )A
−1
0 − In|α < 1. (16.1.1.2)

Then, by the previous paragraph, |Xi t i |α ≤ |U−1
i Aφ(Ui )A

−1
0 − In|α . By our

choice of h, |A0φ(Xi t i )A−1
0 |α < |Xi t i |α; since

U−1
i+1 Aφ(Ui+1)A

−1
0 = (In + Xi t

i )−1U−1
i Aφ(Ui )A

−1
0 (In + A0φ(Xi t

i )A−1
0 ),

we may conclude that (16.1.1.2) holds also with i replaced by i + 1. By
induction, we see that (16.1.1.2) holds for all i ≥ h.

This means that, for any β < α, the matrices U and U−1 have entries in
K 〈t/β〉. Using the relation U = Aφ(U )A−1

0 , we may conclude that U and
U−1 also have entries in K 〈t/β ′〉, for β ′ equal to the minimum norm of a root
of φ(t)− c over all c ∈ K alg of norm β. Since φ is zero-centered, by consider-
ing the Newton polygon of φ(t)− c we see that β ′ ≥ min{β1/q , β/|π |} for π
a generator of mK . Iterating the function β �→ min{β1/q , β/|π |}, we see that
U and U−1 have entries in K 〈t/β〉 for all β ∈ (0, 1), proving the claim.
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Remark 16.1.2. We will see a similar result later in the presence of a differen-
tial structure. This is introduced as Dwork’s trick (Corollary 17.2.2). The main
differences are that in the setting of Dwork’s trick there will be a canonical
isomorphism M ∼= (M/t M)⊗K K {t}, and no restriction on K is needed.

Remark 16.1.3. Note that the function β �→ min{β1/q , β/|π |} becomes
exactly the function λ �→ min{λ1/p, pλ} from Chapter 10 in the case where
q = p and K is absolutely unramified. See also Theorem 17.2.1.

One can apply Theorem 16.1.1 to coherent locally free modules on the open
unit disc, by virtue of the following observation. (Compare Definition 8.4.3,
remembering that in this part of the book K is assumed to be discretely valued.)

Proposition 16.1.4. Any coherent locally free module on the open unit disc
over K is freely generated by finitely many global sections.

Proof. Let M be such a module. Choose a sequence 0 < β1 < β2 < · · · with
limit 1, and put Mi = M ⊗ K 〈t/βi 〉. Choose any basis B1 of M1. Given a
basis Bi of Mi , there must exist Xi ∈ GLn(K 〈t/βi 〉) such that changing basis
from Bi via Xi produces a basis of Mi+1. By Lemma 8.3.4 we can factor Xi as
Vi Wi , with Vi ∈ GLn(K 〈t/βi 〉) such that |Vi−In|βi < 1 and Wi ∈ GLn(K [t]).
Write Vi = ∑∞

j=0 Vi, j t j , let Yi be the sum of Vi, j t j over only those j for

which |Vi, j |1 ≤ 1, and put Ui = Vi Y
−1
i . Changing basis from Bi via Ui also

produces a basis Bi+1 of Mi+1.
Since K is discretely valued, for each positive integer j and for i sufficiently

large (depending on j), we have |Vi, j t j |1 ≤ 1 if and only if |Vi, j t j |βi ≤
1. Consequently, the Ui converge t-adically to the identity matrix. Given any
β ∈ (0, 1), if we choose γ ∈ (β, 1) and combine the previous observation
with the fact that the Ui are bounded under | · |γ , we may deduce that the
Ui converge under | · |β to the identity matrix. Hence the product U1U2 · · ·
is the change-of-basis matrix from B1 to a simultaneous basis of each Mi , as
desired.

16.2 More on the Robba ring

To discuss the classification of difference modules on annuli, we must recall
some properties of the Robba ring beyond simply its definition.

Remark 16.2.1. Recall (Definition 15.1.4) that we have defined the Robba
ring to be

R = ∪α∈(0,1)K 〈α/t, t};
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that is, R consists of formal sums
∑

i ci t i that converge in some range α ≤
|t | < 1 but need not have bounded coefficients. Unlike its subring E†, R is not
a field; for instance the element

log(1 + t) =
∞∑

i=1

(−1)i−1

i
t i

is not invertible (because its Newton polygon has infinitely many slopes). More
generally, we have the following easy fact.

Lemma 16.2.2. We have R× = (E†)× = E† \ {0}.
Proof. On the one hand, a unit in K 〈α/t, t} must have empty Newton polygon,
so it must belong to E†. On the other hand, E† is a field by Lemma 15.1.3(a).
This proves the claim.

Definition 16.2.3. Because R consists of series with possibly unbounded
coefficients, it does not carry a natural p-adic norm or topology. The most use-
ful topology on R is the LF topology, which is the direct limit of the Fréchet
topology on each K 〈α/t, t} defined by the | · |ρ for ρ ∈ [α, 1). That is, a
sequence converges if on the one hand it is contained in some K 〈α/t, t} and
on the other hand it converges for the Fréchet topology on that ring. Note
that it does not matter which α is chosen since, for γ > α, the inclusion
K 〈α/t, t} → K 〈γ /t, t} is strict (i.e., it is a homeomorphism to its image
equipped with the subspace topology).

In fact, the ring R is not even noetherian (by an argument similar to that
for K {t}; see the exercises for Chapter 8), but the following useful facts,
mentioned in the notes, are true.

Proposition 16.2.4. For an ideal I of R, the following are equivalent.
(a) The ideal I is closed in the LF topology.
(b) The ideal I is finitely generated.
(c) The ideal I is principal.

Remark 16.2.5. The equivalence of (b) and (c) in Proposition 16.2.4 implies
that R is a Bézout domain, i.e., an integral domain in which every finitely
generated ideal is principal. Such rings enjoy many properties analogous to
principal ideal domains; see the exercises.

We also have the following analogue of Proposition 16.1.4.

Proposition 16.2.6. Any coherent locally free module on the half-open annu-
lus with closed inner radius α and open outer radius 1 is represented by a
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finite free module over K 〈α/t, t} and so corresponds to a finite free module
over R.

Proof. Let M be such a module. Then M ⊗ K 〈α/t, t/α〉 is finite free since
K 〈α/t, t/α〉 is a principal ideal domain by Proposition 8.3.2. By choosing a
basis of M ⊗ K 〈α/t, t/α〉 and then invoking Lemma 8.3.6, we may extend M
to a coherent locally free module on the whole unit disc. We may then deduce
the claim from Proposition 16.1.4.

16.3 Pure difference modules

Over a complete nonarchimedean difference field such as E†, we already have
a notion of a pure difference module. Since R does not come with a Frobenius-
invariant norm we cannot use the same definition. The appropriate definition
in this case is as follows.

Definition 16.3.1. A finite free difference module M over R is pure of norm
s if there exists a finite free difference module M† over E† which is pure of
norm s (in the sense of Definition 14.4.6) and such that M ∼= M† ⊗E† R. We
will see shortly (Corollary 16.3.7) that the module M† is uniquely determined
by this requirement.

Lemma 16.3.2. Let A be an n × n matrix over oE† . Then the map v �→ v −
Aφ(v) induces a bijection on (R/E†)n.

Proof. Exercise, or see [136, Proposition 1.2.6].

Corollary 16.3.3. Let M be a finite free difference module over E† such that
|�|sp,M⊗E ≤ 1. Then the map H1(M)→ H1(M ⊗E† R) is bijective.

Proof. This will follow from Lemma 16.3.2 once we produce a basis of M
on which the matrix of action of � has entries in oE† . Such a basis exists, as
explained in the proof of Proposition 14.5.9.

Corollary 16.3.4. Let M†
1 ,M†

2 be two finite free dualizable difference modules

over E†. Suppose that every Newton slope of M†
1 ⊗E† E is less than or equal to

every Newton slope of M†
2 ⊗E† E . Then

Hom(M†
1 ,M†

2 ) = Hom(M†
1 ⊗E† R, M†

2 ⊗E† R).
Proof. Note that (M†

1 )
∨ ⊗ M†

2 has norm less than or equal to 1 (because its
Newton slopes are all nonnegative). It thus suffices to check that, for M† of
norm s ≤ 1, H0(M†) = H0(M† ⊗E† R). As in the previous proof, we
can find a basis e1, . . . , en of M† such that the matrix A of action of � has
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entries in oE† . Any element of H0(M† ⊗E† R), when written in terms of the
basis, corresponds to a column vector v ∈ Rn satisfying Aφ(v) = v. By
Lemma 16.3.2 this forces v ∈ (E†)n , so v corresponds to an element of M
itself.

Corollary 16.3.5. Let M1,M2 be finite free difference modules over R that
are pure of norms s1, s2, respectively. If s1 > s2 > 0 then Hom(M1,M2) = 0.

Proof. By Corollary 16.3.4 it suffices to check that if M†
1 ,M†

2 are finite free
difference modules over E† that are pure of norms s1, s2, respectively, and s1 >

s2 then Hom(M1,M2) = 0. This holds because the image of any morphism
M†

1 → M†
2 , if nonzero, would have to be both pure of norm s1 and pure of

norm s2, which is impossible.

Remark 16.3.6. In the proof of Corollary 16.3.5 we used the fact that, when
working over a difference field, purity of the middle term in a short exact
sequence 0 → M1 → M → M2 → 0 implies purity (of the same norm)
at the extremes. This is not true over R, which means that one cannot deduce
Corollary 16.3.5 in the case s1 < s2. For example, if φ is a Frobenius lift for
which φ(1 + t) = (1 + t)p, and M = Rv with �(v) = p−1v, then

log(1 + t)v ∈ H0(M);
this constitutes a key example in p-adic Hodge theory (see Chapter 24).

Corollary 16.3.7. Let M be a finite free difference module over R that is pure
of norm s > 0. Then there is a unique finite free difference module M† over
E†, which is pure of norm s, such that M ∼= M† ⊗E† R.

Remark 16.3.8. Even if M is pure of norm s, the uniqueness in
Corollary 16.3.7 can fail if we do not require M† to be pure.

Proposition 16.3.9. Let M†
1 ,M†

2 be finite free difference modules over E† that
are pure of the same norm s > 0. Then any finite free difference module M
over R fitting into a short exact sequence of the form

0 → M†
1 ⊗E† R → M → M†

2 ⊗E† R → 0

is also pure of norm s.

Proof. It is equivalent to check that

Ext(M†
1 ,M†

2 ) = Ext(M†
1 ⊗E† R, M†

2 ⊗E† R).
If we set M† = (M†

1 )
∨⊗M†

2 , it is also equivalent to check that the natural map

H1(M†)→ H1(M† ⊗E† R)
is a bijection (see Definition 14.1.6); this holds by Corollary 16.3.3.
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16.4 The slope filtration theorem

The fundamental theorem in the theory of difference modules over the Robba
ring is the following result, which is analogous to Theorem 14.4.15. We do not
give a complete proof in this book, but we will sketch the argument in the next
section. (As noted in Remark 14.4.7, this theorem is usually stated in additive
rather than multiplicative terms; this explains our choice of the name “slope
filtration theorem” rather than “norm filtration theorem”.)

Theorem 16.4.1 (Slope filtration theorem). Let M be a finite free dual-
izable difference module over R. Then there exists a unique filtration 0 =
M0 ⊂ · · · ⊂ Ml = M by dualizable difference submodules with the following
properties.

(a) Each successive quotient Mi/Mi−1 is finite free and is pure of some
norm si (in the sense of Definition 16.3.1).

(b) We have s1 > · · · > sl .

In this book the main application of the slope filtration will be to the p-adic
local monodromy theorem for differential modules over R (Theorem 20.1.4).
For the moment, let us record one or two additional corollaries. (For further
applications, see the notes.)

Definition 16.4.2. Let M be a finite free dualizable difference module over R.
Set the notation as in Theorem 16.4.1. Define the Newton polygon of M to be
the polygon associated with the multiset containing − log si with multiplicity
rank(Mi/Mi−1).

By the compatibility of purity of difference modules over E† with tensor
products (Corollary 14.4.9) and duals (Proposition 14.4.8), we obtain the usual
behavior of Newton slopes under tensor products, exterior powers, and duals.

Lemma 16.4.3. Let M, N be finite free dualizable difference modules over
R. Let sM,1, . . . , sM,m and sN ,1, . . . , sN ,n be the Newton slopes of M and N,
respectively.

(a) The Newton slopes of M ⊗ N are sM,i + sN , j for i = 1, . . . ,m and
j = 1, . . . , n.

(b) For j = 1, . . . , rank(M), the Newton slopes of ∧ j M are sM,i1 + · · · +
sM,i j for 1 ≤ i1 < · · · < i j ≤ m.

(c) The Newton slopes of M∨ are −sM,1, . . . ,−sM,m.

We have the following generalization of Corollary 16.3.5.

Proposition 16.4.4. Let M1,M2 be finite free dualizable difference modules
over R. Suppose that every Newton slope of M1 is less than every Newton
slope of M2. Then Hom(M1,M2) = 0.
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Proof. We induct on rank(M1) + rank(M2). If M1 and M2 are both pure then
Corollary 16.3.5 yields the claim. If M1 is not pure, by Theorem 16.4.1 there
exists a proper nonzero difference submodule N of M1 such that N and M1/N
are both finite free, and we deduce that Hom(M1,M2) = 0 from the fact that
Hom(N ,M2) = Hom(M1/N ,M2) = 0. (Namely, any morphism from M1

to M2 must vanish on N , yielding a morphism from M1/N to M2 that also
vanishes.) We argue similarly if M2 fails to be pure.

We now mention a result that extends the semicontinuity theorem for
Newton polygons (Theorem 15.3.2). See Example 20.2.1 for an explicit
example.

Definition 16.4.5. For M a finite free dualizable difference module over E†,
we can construct two different Newton polygons, namely those associated with
M ⊗E† E and M ⊗E† R. We call these the generic Newton polygon and the spe-
cial Newton polygon, respectively. The terminology is justified by the fact that
if κK is strongly difference-closed, φ is induced by a zero-centered Frobenius
lift on K �t�0, and M is obtained by base extension from a finite free dualizable
difference module M0 over K �t�0, then by Theorem 16.1.1 the special Newton
polygon of M coincides with the special Newton polygon of M0.

Theorem 16.4.6. Let M be a finite free dualizable difference module over E†.
Then the special Newton polygon lies on or above the generic Newton polygon
with the same endpoints.

Proof. It suffices to show that the least special slope of M is greater than or
equal to the least generic slope, as then applying this inequality to the exterior
powers of M yields the comparison of Newton polygons by Lemmas 14.5.3
and 16.4.3.

Suppose on the contrary that the least special slope is less than the least
generic slope. Let M1 be the first step in the filtration of M ⊗E† R given by
Theorem 14.4.15. Since M1 is pure, it descends to a difference module N1

over E† of the same norm. By hypothesis, the generic slopes of N∨
1 ⊗ M are

all positive. It follows that H0(N∨
1 ⊗ M) = 0 are and then by Corollary 16.3.4

that H0((N∨
1 ⊗ M)⊗E† R) = 0 also. However, the latter contradicts the fact

that N1 is a submodule of M ⊗E† R. We thus deduce the claim.

We can similarly use slope filtrations to finish the uniqueness part of
Theorem 15.3.3.

Corollary 16.4.7. With the notation of Theorem 15.3.3, the submodule N is
always unique.

Proof. It suffices to check that N⊗K �t�0
R is uniquely determined; this follows

because it coincides with one step of the slope filtration of M ⊗K �t�0
R.
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Remark 16.4.8. Note that in Corollary 16.4.7 we need only the uniqueness of
the slope filtration in Theorem 16.4.1. The existence, which lies much deeper,
can be supplied using Theorem 16.1.1 because we start with a difference
module over K �t�0.

16.5 Proof of the slope filtration theorem

The proof of Theorem 16.4.1 is unfortunately in some respects orthogonal to
much of the material presented in this book. We will thus limit ourselves to an
indication of the key steps. See the notes for further discussion.

Definition 16.5.1. Let M be a finite free dualizable difference module over R
of rank n > 0. Define the average norm of M to be

μ(M) = |�|1/n
sp,∧n M ;

this quantity is multiplicative in the sense that μ(M1 ⊗ M2) = μ(M1)μ(M2).
We say M is semistable if we have μ(M) ≥ μ(N ) for any nonzero difference
submodule N of M .

Lemma 16.5.2. Let M be a nonzero finite free dualizable difference module
over R that is pure of some norm. Then M is semistable.

Proof. Suppose on the contrary that there exists a difference submodule N of
M with μ(N ) > μ(M). Put e = rank(N ); then ∧e N is of rank 1 and hence
pure. Consequently, the inclusion ∧e N → ∧e M violates Corollary 16.3.5; this
contradiction yields the claim.

Lemma 16.5.3. Let M be a nonzero finite free dualizable difference mod-
ule over R. There exists a unique filtration 0 = M0 ⊂ · · · ⊂ Ml =
M by difference submodules, such that each quotient Mi/Mi−1 is free and
semistable and

μ(M1/M0) > · · · > μ(Ml/Ml−1).

Proof. First note that the claim holds for any module of rank 1 by
Lemma 16.5.2. From this point, the rest of the proof is formal; we leave it
as an exercise.

Definition 16.5.4. The filtration in Lemma 16.5.3 is called the Harder–
Narasimhan or HN filtration of the module M . To prove Theorem 16.4.1 it
will suffice to check that semistable modules over R are pure.

Remark 16.5.5. The reader may wonder why it is necessary to prove
Theorem 16.4.1 if defining the HN filtration is a mere formality. The answer is
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that one cannot prove much about the norms occurring in the HN filtration; for
instance, it has not been formally proved that the tensor product of semistable
modules is semistable but this is indeed a consequence of Theorem 16.4.1. A
similar situation arises in the theory of vector bundles, on which the usage
of the word “semistable” is modeled; see the discussion preceding [136,
Theorem 1.7.1]. Another loosely analogous situation is Deligne’s use of deter-
minantal weights in his second proof of the Weil conjectures [69]; there one
has matrices over a p-adic field whose eigenvalues are supposed to be alge-
braic numbers with certain archimedean norms, but one has direct control only
over the determinants.

We need to introduce something like a residual difference closure of the
ring R. (This characterization is justified by Corollary 16.5.8.) This construc-
tion, based on Mal’cev-Neumann series (Example 1.5.8), is called the extended
Robba ring in [136].

Definition 16.5.6. Let R̃ be the ring of formal sums x = ∑
i∈Q xi t i with

xi ∈ K that satisfy the following properties. (Here α is a number in (0, 1)
which may vary with x .)

(a) For ρ ∈ (α, 1) and we have limi→±∞ |xi |ρi = 0.
(b) For ρ ∈ (α, 1) and for c > 0, the set of indices i for which |xi |ρi ≥ c

is a well-ordered subset of R (i.e., it contains no infinite decreasing
subsequence).

We may also construct R̃ as follows. Recall that the field K ((tQ)) of Mal’cev-
Neumann series over K consists of formal sums

∑
i∈Q xi t i for which {i ∈ Q :

xi �= 0} is well-ordered. On the subring of K ((tQ)) consisting of series with
bounded coefficients, for ρ ∈ (0, 1) define the Gauss norm

∣∣∣∣∣∣
∑
i∈Q

xi t
i

∣∣∣∣∣∣
ρ

= sup
i
{|xi |ρi }.

For each α ∈ (0, 1) take the Fréchet completion for the norms | · |ρ , for ρ ∈
(α, 1); the union of these completions over all α gives R̃.

Like the usual Robba ring, the ring R̃ turns out to be a Bézout domain (com-
pare Proposition 16.2.4). Let Ẽ† be the subring of R̃ consisting of formal sums
with bounded coefficients. By imitating the proofs for E† (Lemma 15.1.3) it
can be shown that Ẽ† is a henselian discretely valued field with residue field
κK ((tQ)). Various definitions (e.g., purity, semistability) carry over from R to
R̃; we will not write these out explicitly.
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We view R̃ as a difference ring with the Frobenius morphism given by

φ

⎛⎝∑
i∈Q

xi t
i

⎞⎠ =
∑
i∈Q

φK (xi )t
qi .

The following lemma is where most of the hard work is concentrated.

Lemma 16.5.7. Suppose that κK is strongly difference-closed. Then every
semistable dualizable finite difference module over R̃ is pure of some norm.

Sketch of proof. One first constructs (using an explicit calculation) a filtration
in which the successive quotients are each pure of some norm, but these norms
do not necessarily increase in the right direction as we proceed up the filtration.
One then argues (using a second explicit calculation) that if there are two steps
in the wrong order that cannot be switched, because the extension between
them is not split, then one can change the filtration to move the norms of these
steps closer to each other. (Note the similarity to Grothendieck’s classification
of vector bundles on the projective line.) See [136, Theorem 2.1.8] for full
details.

Although we will not need it explicitly, we mention the following analogue
of the generalized Dieudonné–Manin classification (Theorem 14.6.3). It is not
stated explicitly in [136] but is an easy consequence of results from there.

Corollary 16.5.8. Suppose that κK is strongly difference-closed. Then every
dualizable finite difference module over R̃ can be split (non-uniquely) as a
direct sum of difference submodules, each of the form Vλ,d for some λ, d (as
in Definition 14.6.1).

Proof. By [136, Proposition 2.1.6], the categories of pure dualizable differ-
ence modules of a given norm over K and over R̃ are equivalent. Thus, by
Lemma 16.5.7 and Theorem 14.6.3, it suffices to split any short exact sequence
0 → M1 → M → M2 → 0 in which M1,M2 are base extensions of pure dif-
ference modules over K with μ(M1) > μ(M2). This can be deduced from the
proof of [136, Proposition 2.1.5] or by a simple direct calculation.

It remains to descend in our understanding of semistability and purity from
R̃ to R. We must first make the following observation.

Remark 16.5.9. Let L be a complete extension of K as a difference field, such
that κL is strongly difference-closed. (Such an L can always be constructed; see
the exercises for Chapter 14 or [136, Proposition 3.2.4].) Let R̃L denote the
extended Robba ring constructed using L as the coefficient field. Then there
is always an embedding of difference rings ψ : R → R̃L that is isometric;
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i.e., for some α ∈ (0, 1) and for ρ ∈ (α, 1) we have |ψ(x)|ρ = |x |ρ for all
x ∈ R (in particular, the two quantities are either both finite or both infinite).
This is clear if for instance φ(t) = tq , as we can then set ψ(t) = t ; it was
verified in general by [136, Proposition 2.2.6].

We then obtain the following results; the key tool used is descent for mod-
ules along a faithfully flat ring homomorphism. (We also make considerable
use of an analogue of the projection Eφ → E of Lemma 15.4.5.)

Lemma 16.5.10. Let M be a semistable dualizable finite difference module
over R. Then M ⊗R R̃L is semistable.

Proof. See [136, Theorem 3.1.2].

Lemma 16.5.11. Let M be a dualizable finite difference module over R such
that M ⊗R R̃L is pure. Then M is pure.

Proof. See [136, Theorem 3.1.3].

Putting everything together, we may prove Theorem 16.4.1 as follows.

Proof of Theorem 16.4.1. We wish to show that the HN filtration of M is pure.
By Lemma 16.5.10, if we start with the HN filtration of M and tensor with
R̃L then the resulting filtration still has semistable successive quotients. Con-
sequently, it must be the HN filtration of M ⊗R R̃L . By Lemma 16.5.7, each
successive quotient of the HN filtration of M becomes pure when tensored
with R̃L . By Lemma 16.5.11 each successive quotient is itself pure.

Notes

The restriction that φ must be a Frobenius lift is probably stronger than nec-
essary. In fact, as suggested in [136], if the action of φ on κK ((t)) satisfies
v(φ(x)) = mv(x) for some integer m > 1 this should suffice.

Our proof of Theorem 16.1.1 is essentially that of [130, Proposition 4.3],
except that in the latter only the absolute case is treated, and it is further
assumed that M descends to K �t0�.

Proposition 16.2.4 is the essential content of a paper of Lazard [156].
Note that it depends on K being spherically complete and is false otherwise;
however, we have assumed in this part that K is discretely valued, so we
are safe.

The treatment of pure modules over R is an abridged version of [136, §1].
Corollary 16.3.4 has appeared in several guises previously. It figures

in the work of Cherbonnier and Colmez [38], which we will discuss in
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Chapter 24 (see Remark 24.2.6); it also appears in work of Tsuzuki [206,
Proposition 4.1.1].

The existence of slope filtration for Frobenius modules over the Robba ring
was anticipated by Tsuzuki [209], who introduced the definition in the case
of a Frobenius structure on a differential module [209, Definition 5.1.1]. For
more on why he did this, see the notes to Chapter 20.

The slope filtration theorem itself (Theorem 16.4.1), in the case of an abso-
lute Frobenius lift with K of characteristic 0, was originally proved by Kedlaya
in [125, Theorem 6.10]. That proof was significantly more complicated than
the one given here. A second proof in the absolute case (again with K of char-
acteristic 0), which also gives an important generalization (see below), was
given in [129]; this proof introduced the formalism of semistability, inspired by
some parallel work of Hartl and Pink [104] (on which more below). Our sketch
was modeled on a third proof, this time for an arbitrary Frobenius lift, given
in [136, Theorem 1.7.1]; the latter proof adds several technical simplifications
to the previous proofs. One is the direct characterization of pure modules; the
previous proofs used a characterization in terms of an appropriate analogue
of the Dieudonné–Manin classification (Corollary 16.5.8). Another is the use
of faithful flat descent, replacing a more complicated Galois descent argument
used in the previous proofs. A third simplification is the use of the extended
Robba ring R̃ as described here. In the previous proofs the role of R̃ was
played by a somewhat smaller ring: its bounded elements (plus 0) form a field
whose residue field is the algebraic closure of κK ((t)) rather than the much
larger field of generalized power series.

The proof of Theorem 16.4.1 in [129] includes a nontrivial generalization
of the original slope filtration theorem that was not covered by [136]. In this
generalization, the ring E is replaced by a Cohen ring (or a ramified exten-
sion thereof), not for a field of power series but for a more general complete
nonarchimedean field of characteristic p; the rings E† and R are replaced
by appropriate analogues. The resulting theorem plays an important role in
the study of isocrystals; see the notes for Chapter 23. It also is important for
applications to Rapoport–Zink spaces; see below.

In the case of an absolute Frobenius lift, Theorem 16.4.6 becomes [129,
Proposition 5.5.1]. (This reference is also the source of the terminology of
special and generic Newton polygons over E†). The proof in [129] uses the
reverse filtration of de Jong (see Theorem 15.4.4).

Besides the p-adic local monodromy theorem (Theorem 20.1.4), several
additional applications of the slope filtration theorem have been found. One
of these is in p-adic Hodge theory; this is discussed further in the notes to
Chapter 24. Another is a q-difference analogue of the p-adic local monodromy
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theorem, due to André and Di Vizio [8]. A third application has been pur-
sued by Hartl in the context of period morphisms for Rapoport–Zink spaces.
These are moduli spaces for deformations of certain p-divisible groups into
mixed characteristic; the main conjecture of Rapoport and Zink is that a
period morphism between this space and a space of linear-algebraic objects
can be constructed, via which the Galois representations for to the p-divisible
groups correspond to some coherent data. In equal positive characteristic, Hartl
[101] established the appropriate analogue of this conjecture, using a form
of Theorem 16.4.1 in which K is of positive characteristic. (Hartl prove that
case of Theorem 16.4.1 directly, building on work of Hartl and Pink [104]
giving a form of Corollary 16.5.8 for K of characteristic p.) In the original
mixed-characteristic setting, Hartl has given some partial results [102, 103];
a complementary but related partial result has been established by Faltings
(though only the brief research announcement [86] was available at the time
of writing), and the combination of ideas may lead to a proof of the full
Rapoport–Zink conjecture.

Exercises

(1) Show that if φ is a Frobenius lift such that φ(t) ≡ 0 (mod t2) then the
conclusion of Theorem 16.1.1 holds without any restriction on K .

(2) Let R be a Bézout domain (an integral domain in which every finitely
generated ideal is principal).
(a) Prove that any x1, . . . , xn ∈ R that generate the unit ideal appear as

the first row in some n × n invertible matrix over R.
(b) Prove that every finitely generated torsion-free R-module is free.

(3) Prove Lemma 16.3.2. (Hint: reduce to the case where |A|ρ ≤ 1 for
ρ ∈ [α, 1). For the injectivity, given that v − Aφ(v) ∈ (E†)n show that
|v|ρ is bounded for ρ ∈ [α, 1) by comparing |v|ρ with |v|ρ1/q , using
Lemma 15.2.4. For the surjectivity, to find the class of w ∈ Rn in the
image of the map, separate off the positive terms w+ of w, replace w with
Aφ(w+)+ (w − w+), and then repeat this procedure.)

(4) Prove that any A ∈ GLn(R) can be factored as U V with U ∈ GLn(K {t})
and V ∈ GLn(E†). (Hint: imitate the proof of Proposition 8.3.5.)

(5) Let M be a finite free difference module over K {t} such that M ⊗K {t} R
is pure of some norm s. Let M† be the pure module over E† satisfying
M ⊗K {t} R ∼= M† ⊗E† R. Prove that there exists a basis e1, . . . , en of M
that is also a basis of M†. (Hint: imitate the proof of Lemma 8.3.6 using
the previous exercise.)
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(6) Prove Lemma 16.5.3. (Hint: first check that μ(N ) ≤ μ(M) whenever N
is a difference submodule of M of full rank, by comparing the top exterior
powers of M and N . See also [136, Proposition 1.4.15].)

(7) Let M be a nonzero finite dualizable difference module over R. Let 0 =
M0 ⊂ · · · ⊂ Ml = M be any filtration of M by difference submodules,
such that each quotient Mi/Mi−1 is free and semistable. Form the convex
polygon of length n associated (as in Definition 4.3.2) with the multiset of
slopes given by − logμ(Mi/Mi−1), with multiplicity rank(Mi/Mi−1), for
i = 1, . . . , l. Prove that this polygon lies on or below the corresponding
polygon for the HN filtration with the same endpoint. (Again, this is a
purely formal consequence of the definitions of semistability and the HN
filtration, so the proof is as in the theory of vector bundles.)
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Frobenius structures on differential modules

In this part of the book, we bring together the streams of differential algebra
(from Part III) and difference algebra (from Part IV), realizing Dwork’s fun-
damental insight that the study of differential modules on discs and annuli is
greatly enhanced by the introduction of Frobenius structures.

This chapter sets the foundations for this study. First, we introduce the
notion of a Frobenius structure on a differential module, with some exam-
ples. Then we consider the effect of Frobenius structures on the generic radius
of convergence and obtain the fact that a differential module on a disc has
a full basis of horizontal sections (“Dwork’s trick”). We also show that the
existence of a Frobenius structure does not depend on the particular choice of
Frobenius lift; this independence plays an important role in rigid cohomology
(Chapter 23).

Throughout Part V, Hypothesis 14.0.1 remains in force unless explicitly
contravened. In particular, K will by default be a discretely valued complete
nonarchimedean field.

17.1 Frobenius structures

We start with the basic compatibility between differential and difference
structures.

Definition 17.1.1. Let R be a ring as in Definition 15.2.1. For M a finite
free differential module over R, a Frobenius structure on M with respect to
a Frobenius lift φ on R is an isomorphism � : φ∗M ∼= M of differential mod-
ules. In more explicit terms, we must equip M with the structure of a dualizable
difference module over (R, φ), such that

D(�(m)) = dφ(t)

dt
�(D(m)) (m ∈ M).

291
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In even more explicit terms, if A, N are the matrices of action of�, D on some
basis then A is invertible, and we have the compatibility

N A + d A

dt
= dφ(t)

dt
Aφ(N ). (17.1.1.1)

Remark 17.1.2. We may also speak of Frobenius structures on finite free
differential modules for the derivation td/dt ; the analogue of (17.1.1.1) is

N A + t
d A

dt
= t

φ(t)

dφ(t)

dt
Aφ(N ). (17.1.2.1)

However, if R is a subring of K �t� then (17.1.2.1) only makes sense if φ(t) =
tqu for u ∈ R×, in which case taking constant terms in (17.1.2.1) yields
N0 A0 = qu0 A0φ(N0). This gives |N0|sp = |A−1

0 N0 A0|sp = q−1|φ(N0)|sp =
q−1|N0|sp, so N0 must have spectral radius 0 and hence must be nilpotent.

We now describe some examples where Frobenius structures can be con-
structed explicitly.

Definition 17.1.3. Suppose that π ∈ K satisfies π p−1 = −p. Then the power
series E(t) = exp(π t −π t p) (sometimes called the Dwork exponential series)
has radius of convergence p(p−1)/p2

(exercise), even though the series exp(π t)
has radius of convergence 1.

Example 17.1.4 (Dwork). Assume that K contains an element π with
π p−1 = −p. Pick any f ∈ oE† , and let M f be the differential module over
E† of rank 1 with a generator v satisfying D(v) = π(d f /dt)v. (Note that this
is the pullback along f of Example 9.3.5.) This module is typically nontrivial
because the exponential series exp(−π f ) does not represent an element of E†

(e.g., consider f = t−1). However, the exponential series gives an important
clue about how to associate a Frobenius structure with M f ; namely, for φ an
absolute Frobenius lift we would like to define

�(v) = exp(π f − πφ( f ))v.

To verify this formula, note that it suffices to do so in the case φ(t) = tq , since
exp(π( f q − φ( f ))) is already well-defined in E†. We can then write

exp(π f − π f pa
) = E( f )E( f p) · · · E( f pa−1

),

where E is the Dwork exponential series from Definition 17.1.3.

Example 17.1.5. We can similarly construct a Frobenius structure for Exam-
ple 9.9.3. (The case h = 0 will reproduce Example 17.1.4; see Remark 17.1.7
below.) For h a nonnegative integer and ζ ∈ K a primitive ph+1th root of
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unity, let M be the differential module of rank 1 over E† with the action of D
on a generator v given by

D(v) = −
h∑

i=0

(ζ pi − 1)t−pi−1v.

(Note that we have replaced t by t−1 in the formula from Example 9.9.3. ) Let
φ : E† → E† be an absolute Frobenius lift fixing ζ . On the disc |t−1| < 1 we
have already constructed the horizontal section

E p(t−1)

E p(ζ t−1)
v = exp

(
h∑

i=0

1 − ζ pi

pi
t−pi

)
v,

where

E p(t) = exp

( ∞∑
i=0

t pi

pi

)
is the Artin–Hasse exponential. This suggests that one should define a
Frobenius action fixing this horizontal section, which would then be given by
the formula

�(v) = E p(t−1)E p(ζ t−p)

E p(t−p)E p(ζ t−1)
v. (17.1.5.1)

In fact, this gives a Frobenius structure defined over E†, because the coeffi-
cient of v in (17.1.5.1), as a power series in t−1, has radius of convergence
strictly greater than 1. We will not verify this here; it was shown for p > 2
by Matsuda [169] by an explicit calculation, and for all p by Pulita [185] as
part of a much broader result. We note here that the existence of this Frobenius
structure implies the following strengthening of Theorem 12.7.2.

Theorem 17.1.6. Let b be a positive integer. Let K be a complete nonarchi-
medean field (not necessarily discretely valued) containing the phth roots of
unity for all h ≤ logp b and having a perfect residue field. Let M denote a
finite differential module of rank 1 on a half-open annulus with open outer
radius 1, which is solvable at 1 with differential slope b. Then there exist
c1, . . . , cb ∈ {0} ∪ o×K and nonnegative integers j1, . . . , jb such that

M ⊗ M1,c1 ⊗ · · · ⊗ Mb,cb

has differential slope 0, for Mi,ci defined as in Theorem 12.7.2.

Proof. Since κK is perfect, K contains a subfield K0 isomorphic to the frac-
tion field of the Witt vectors of κK . Let φ0 be the Witt vector Frobenius
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morphism on K0. Let ψ be the substitution t �→ t p, and set φ = ψ ◦ φ0

as an endomorphism of E†
0 = ∪α∈(0,1)K0〈α/t, t�0.

On the one hand, by Example 17.1.5, for any cb ∈ oK0 we have Mb,cb
∼=

φ∗(Mb,cb) = ψ∗(Mb,φ0(cb)). On the other hand, for cb, db ∈ oK with |cb −
db| < 1, M∨

b,cb
⊗ Mb,db is trivial because we can use (9.9.3.1) to write down a

horizontal section. Since κK is perfect, given cb ∈ oK we can choose c′b ∈ oK0

with |(c′b)p − cb| < 1, and so |φ0(c′b)− cb| < 1. We thus deduce that

Mb,c′b
∼= ψ∗(Mb,cb).

With this fact, we may deduce the claim from Theorem 12.7.2.

Remark 17.1.7. We will have special need later for the case of
Theorem 17.1.6, in which M⊗p has differential slope 0. In this case, we
only deal with objects of the form Mi,ci with i not divisible by p, thanks to
Corollary 12.7.3.

This implies first that we only need K to contain the pth roots of unity, not
the ph th roots of unity, for all h ≤ logp b. It also implies that we can use the
Frobenius structure from Example 17.1.4 instead of that from Example 17.1.5.
Namely, for ζ a primitive pth root of unity, there exists a unique π ∈ Qp(ζ )

with π p−1 = −p and |π − (ζp − 1)| < p−1/(p−1) (exercise) and, for this
choice, if ci ∈ oK and f = ci t−i then M∨

f ⊗ Mi,ci has differential slope 0 by
an explicit calculation (exercise).

Remark 17.1.8. In addition to the above examples, Dwork managed to con-
struct explicit Frobenius structures in several classical cases, using explicit
formal solutions of the corresponding differential equations; see for instance
Example 20.2.1. These examples are uniformly explained by the fact that
Picard–Fuchs modules carry Frobenius structures in rather broad generality.
See Chapter 22 for further discussion.

17.2 Frobenius structures and the generic radius
of convergence

One of Dwork’s early discoveries was that the presence of a Frobenius struc-
ture forces solvability at the boundary. (There is also a converse for modules
of rank 1; see the notes.)

Theorem 17.2.1. Let M be a finite differential module on the half-open annu-
lus with closed inner radius α and open outer radius 1 equipped with a
Frobenius structure. Then
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lim
ρ→1−

I R(M ⊗ Fρ) = 1,

that is, M is solvable at 1. More precisely, for ρ ∈ (0, 1) sufficiently close to 1,

I R(M ⊗ Fρ1/q ) ≥ I R(M ⊗ Fρ)
1/q .

Proof. By imitating the proof of Lemma 10.3.2 (using Lemma 15.2.4), we may
show that, for ρ ∈ (0, 1) sufficiently close to 1,

I R(M ⊗ Fρ1/q ) ≥ min{I R(M ⊗ Fρ)
1/q , q I R(M ⊗ Fρ)}.

The function f (s) = min{s1/q , qs} on (0, 1] is strictly increasing, and any
sequence of the form s, f (s), f ( f (s)), . . . converges to 1 (as in the proof of
Theorem 16.1.1). This proves the first claim; for the second claim, note that
f (s) = s1/q when s is sufficiently close to 1.

The following corollary is sometimes called Dwork’s trick. It may be viewed
as a true nonarchimedean analogue of the fundamental theorem of ordinary
differential equations.

Corollary 17.2.2 (Dwork). Let M be a finite differential module on the open
unit disc, such that the restriction of M to some half-open annulus with
open outer radius 1 admits a Frobenius structure. Then M admits a basis of
horizontal sections.

Proof. By Theorem 17.2.1, for each λ < 1 there exists ρ ∈ (λ, 1) such that
R(M ⊗ Fρ) > λ. By Dwork’s transfer theorem (Theorem 9.6.1), M ⊗ K 〈t/λ〉
admits a basis of horizontal sections. Taking λ arbitrarily close to 1 yields the
claim.

Remark 17.2.3. The proof of Corollary 17.2.2 admits the following geometric
interpretation. By Proposition 9.3.3 the horizontal sections converge on some
disc of positive radius ρ. Pulling back by a Frobenius lift gives a new space
of horizontal sections on the disc of radius min{ρ1/q , qρ}, but this space must
coincide with the original space. Repeating the construction, we can eventually
stretch the horizontal sections over the entire open unit disc.

One also has a nilpotent analogue of Dwork’s trick by using Theorem 13.7.1
in place of Theorem 9.6.1.

Corollary 17.2.4. Let M be a finite differential module, on the open unit disc
for the derivation td/dt with a nilpotent singularity at t = 0, such that the
restriction of M to some annulus with open outer radius 1 admits a Frobenius
structure. Then M has radius of convergence 1; that is, for any β < 1 and
for any basis of M ⊗ K 〈t/β〉, the fundamental solution matrix for that basis
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has entries in K 〈t/β〉. (Note that the nilpotency of the singularity is automatic
if the Frobenius lift φ is of the form described in Remark 17.1.2 and if the
Frobenius structure is defined on the entire disc.)

A nice application of Dwork’s trick is the following.

Proposition 17.2.5. Let M be a finite differential module over K �t�0 with
R(M) = 1. (For instance, this holds if M admits a Frobenius structure, by
Dwork’s trick.) Then H0(M) = H0(M ⊗ E†).

Proof. By Theorem 9.6.1 there exists a horizontal basis e1, . . . , en of M⊗K �t�0

K {t}. If v ∈ H0(M⊗K �t�0
E†) then when we write v = ∑n

i=1 vi ei with vi ∈ R
we must have d(vi ) = 0 for i = 1, . . . , n. This forces vi ∈ K for i = 1, . . . , n,
and so

v ∈ (M ⊗K �t�0
E†) ∩ (M ⊗K �t�0

K {t}) = M ⊗K �t�0
(E† ∩ K {t}) = M.

17.3 Independence from the Frobenius lift

Another key property of Frobenius structures is that their existence does not
depend on the exact shape of the Frobenius lift.

Proposition 17.3.1. Let φ1, φ2 be two Frobenius lifts on R that agree on K .
Let M be a finite free differential module over R equipped with a Frobenius
structure for φ1. Then there is a functorial way to equip M with a Frobenius
structure for φ2.

Proof. The Frobenius structure for φ2 is defined by the following Taylor
series:

�2(m) =
∞∑

i=0

(φ2(t)− φ1(t))i

i ! �1(D
i (m)). (17.3.1.1)

By Theorem 17.2.1 and the fact that |φ2(t)−φ1(t)|1 < 1, this series converges
under | · |ρ for ρ ∈ (0, 1) sufficiently close to 1 (if this is well-defined for R),
and also under | · |1 (if this is well-defined for R).

Corollary 17.3.2. Let φ1, φ2 be two Frobenius lifts on R that agree on K .
Then there is a canonical equivalence between the categories of finite free
differential modules over R equipped with Frobenius structures with respect
to φi for i = 1, 2; this equivalence is the identity functor on the underlying
difference modules.
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Definition 17.3.3. Corollary 17.3.2 allows us to switch from one Frobenius
lift on R to another that may be more convenient. One useful choice is what
we call the standard q-power Frobenius lift for a given choice of φK , namely
the Frobenius lift φ for which φ(t) = tq .

We will also see that changing Frobenius lifts preserves purity.

Lemma 17.3.4. Let M be a finite free differential module over E† equipped
with a unit-root Frobenius structure. Let M0 be a finite free dualizable differ-
ence module over oE† such that M is isomorphic as a difference module to
M0 ⊗oE† E†. Then, under any such isomorphism, M0 is stable under Di/ i ! for
each nonnegative integer i .

Proof. We proceed by induction on i . Note that oE† is stable under di/ i ! for
each i ; hence, by the Leibniz rule, given the claim for all j < i it suffices to
exhibit a single basis of M0 on which Di/ i ! acts via a basis over oE† .

Choose a matrix of M0, and let A, N be the matrices of action of �, D
on this basis. If we apply � to this basis, the matrices of action of �, D on
the resulting basis are �(A), (dφ(t)/dt)φ(N ), respectively. By repeating this
construction, for any ε < 0 we can find a basis of M0 on which the matrix of
action of D has norm at most ε.

In particular, we will deduce the base case i = 1. For i > 1, use the previ-
ous paragraph to choose a basis e1, . . . , en of M0 such that (D/ i)(e j ) ∈ M0

for j = 1, . . . , n and then invoke the induction hypothesis to deduce that
(Di/ i !)(e j ) = (Di−1/(i − 1)!)((D/ i)(e j )) ∈ M0.

Proposition 17.3.5. Suppose that R = E† or R = R. Let φ1, φ2 be two
Frobenius lifts on R that agree on K . Let M be a finite free differential module
over R equipped with a Frobenius structure for φ1 that is pure of some norm.
Then M is also pure of the same norm with respect to the induced Frobenius
structure for φ2.

Proof. It suffices to check the case R = E†, because if M is pure over R, and
M† is the unique pure module over E† with M ∼= M†⊗E† R, then� acts on M
by Corollary 16.3.4. We may also reduce to the case where M is pure of norm
1, by replacing φ1, φ2 by powers of themselves and invoking Corollary 14.4.5.
By Proposition 14.4.16 we can write M = M0 ⊗oE† E† for some finite free
oE† -module M0 such that M0 and M∨

0 are stable under the action of φ1. By
Lemma 17.3.4, M0 is stable under Di/ i ! for each nonnegative integer i . By
(17.3.1.1) the Frobenius structure with respect to φ2 carries M0 into itself, and
similarly for M∨

0 . This yields the claim.
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17.4 Slope filtrations and differential structures

In order to apply the slope filtration theorem (Theorem 16.4.1) to differen-
tial modules with a Frobenius structure, we must check some compatibilities
between slope filtrations and differential modules.

Lemma 17.4.1. Let M be a finite differential module over R equipped with
a Frobenius structure. Then the steps of the filtration of Theorem 16.4.1 are
differential modules, not just difference modules.

Proof. It suffices to check this for M1, as then we may quotient by M1 and

repeat the argument. Note that the composition M1
D→ M → M/M1 is

R-linear, since D(rv) = r D(v) + d(r)v and the second term becomes zero
in the quotient. Hence it suffices to check that M1 → M/M1 is the zero map.
However, M1 is pure of some norm that is greater than every norm appear-
ing in the slope filtration of M/M1. Consequently, Hom(M1,M/M1) = 0 by
Proposition 16.4.4.

Lemma 17.4.2. Let M be a finite free unit-root difference module over E† such
that M ⊗E† R admits a compatible differential structure. Then this structure is
induced by a corresponding differential structure on M itself.

Proof. Let N , A be the matrices via which D and � act on a basis of M .
Write the commutation relation (17.1.2.1) between N and A in the form
N − (t/φ(t))(dφ(t)/dt)Aφ(N )A−1 = (d/dt)(A)A−1. We deduce from
Lemma 16.3.2 that N has entries in E†.

From Lemmas 17.4.1 and 17.4.2, we deduce the following refinement of the
slope filtration theorem in the presence of a differential structure.

Theorem 17.4.3. Let M be a differential module over R equipped with a
Frobenius structure. Then there exists a unique filtration 0 = M0 ⊂ · · · ⊂
Ml = M, by differential submodules preserved by the Frobenius structure,
with the following properties.

(a) Each successive quotient Mi/Mi−1 is finite free and descends uniquely
to a differential module over E† with an induced Frobenius structure
that is pure of some norm si (in the sense of Definition 16.3.1).

(b) We have s1 > · · · > sl .

17.5 Extension of Frobenius structures

The following result allows us to extend certain Frobenius actions. An
important application will be to Picard–Fuchs modules (Chapter 22).
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Proposition 17.5.1. Let M be a finite differential module on the open unit disc
for the derivation td/dt with a nilpotent singularity at t = 0. Assume that
either:

(a) the Frobenius lift φ on K �t�0 is arbitrary, and M has no singularity at
t = 0; or

(b) the Frobenius lift φ on K �t�0 satisfies φ(t) = tqu for some u ∈
oK �t�×.

Then any Frobenius structure with respect to φ on the restriction of M to some
annulus with open outer radius 1 is induced by a Frobenius structure on M
itself.

Proof. It suffices to check this for a standard Frobenius lift, as then under either
(a) or (b) we may switch back and forth between the given Frobenius lift and
a standard Frobenius lift using Proposition 17.3.1. Thus we assume hereafter
that φ(t) = tq .

Let � be a Frobenius structure with respect to φ on the restriction of M
to some annulus with open outer radius 1. By Corollary 17.2.4, M admits a
basis on which the matrix of action of D is a nilpotent matrix N over K . Let
A = ∑

i∈Z Ai t i be the matrix of action of � on the same basis; then the com-
mutation relation (17.1.2.1) between φ and D states that N A + td A/dt =
q AφK (N ). Consequently, for each i ∈ Z we have N Ai + i Ai = q AiφK (N ).
By Lemma 7.3.5 the operator X �→ N X + i X − q XφK (N ) on n × n matrices
over K has all its eigenvalues equal to i , because N and φK (N ) are both nilpo-
tent. Hence Ai = 0 for i �= 0, so A ∈ GLn(K ). In particular the Frobenius
structure � can be defined on the entire open unit disc.

Notes

The statement of Theorem 17.1.6 (whose proof includes that of Theorem
12.7.2) is a slight weakening of [171, Corollaire 2.0–2], with a similar proof;
the technique goes back to Robba [190]. A complete classification of rank 1
solvable modules on an open annulus with outer radius 1 (and unspeci-
fied inner radius) has been given by Pulita [185] and can be formulated in
terms of any Lubin–Tate group; using the formal multiplicative group returns
Theorem 17.1.6.

Theorem 17.2.1 admits the following partial converse: if M is a finite free
differential module over R of rank 1 that is solvable at 1 then there exists
λ ∈ Zp such that M ⊗ Vλ admits a Frobenius structure for some absolute
Frobenius lift. (Here Vλ is defined as in Example 9.5.2.) For M defined over
F1 the field of analytic elements, this was shown by Chiarellotto and Christol
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[39]; it is straightforward to extend their argument to E†, but not to R. The
general case was shown by Pulita [184]; it constitutes a refinement of our
Theorem 17.1.6.

We cannot resist viewing Dwork’s trick (Corollary 17.2.2) as an instance of
a general principle articulated beautifully by Coleman [57, §III]:

Rigid analysis was created to provide some coherence in an otherwise totally discon-
nected p-adic realm. Still, it is often left to Frobenius to quell the rebellious outer
provinces.

A direct proof of Corollary 17.2.4, which does not employ the transfer
theorem for a nilpotent regular singularity (Theorem 13.7.1), appeared in [134,
§3.6].

The proof of Proposition 17.3.1 was taken from [209, Theorem 3.4.10].
Theorem 17.4.3, in the case of an absolute Frobenius lift, is the original form

of the slope filtration theorem suggested, though not explicitly conjectured,
by Tsuzuki in [209]. Its derivation from Theorem 16.4.1 is the same as the
derivation of [125, Theorem 6.12] from [125, Theorem 6.10]. See also [129,
§7.1].

Exercises

(1) Verify the unproved assertion in Definition 17.1.3. (Hint: see [191, §7.2]).
(2) Verify the unproved assertions in Remark 17.1.7.
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Effective convergence bounds

In this chapter, we discuss some effective bounds on the solutions of p-adic
differential equations with nilpotent singularities. These come in two forms.
We start by discussing bounds that make no reference to a Frobenius structure;
these are due to Christol, Dwork, and Robba. They could have been presented
earlier, and indeed one was invoked in Chapter 13; we chose to postpone them
until this point so that we could better contrast them with the bounds available
in the presence of a Frobenius structure. The latter are original, though strongly
inspired by some recent results of Chiarellotto and Tsuzuki.

These results carry both theoretical and practical interest. Besides their
application in the study of p-adic exponents mentioned above (and in the
proof of the unit-root p-adic local monodromy theorem to follow; see
Theorem 19.3.1), another theoretical point of interest is their use in the study
of the logarithmic growth of horizontal sections at a boundary. We will discuss
some recent advances in this subject due to André, Chiarellotto, and Tsuzuki.
(An area of application that we will not discuss is the theory of G-functions,
as found in [80].)

A point of practical interest is that effective convergence bounds are useful
for carrying out rigorous numerical calculations, e.g., in the machine computa-
tion of zeta functions of varieties over finite fields. See the notes for Chapter 23
for further discussion.

Hypothesis 18.0.1. In this chapter, we will drop the running restriction that
K is discretely valued, imposing it only when we discuss Frobenius structures.
We retain the condition p > 0, however.

18.1 A first bound

We now go back to the p-adic Fuchs theorem for discs (Theorem 13.2.2) and
extract an effective convergence bound in the case of a nilpotent singularity.

301
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One can also give effective bounds for more general regular singularities (as
long as one takes into account the condition of p-adic non-Liouville differ-
ences), but the nilpotent case is sufficient for most applications in algebraic
geometry and the bounds are much easier to describe in this case. (The case of
no singularity reproduces the p-adic Cauchy theorem, Proposition 9.3.3.)

Proposition 18.1.1. Let N = ∑∞
i=0 Ni ti be an n × n matrix over K �t/β�0

corresponding to the differential system D(v) = Nv+d(v), where d = td/dt.
Assume that N0 is nilpotent with nilpotency index m, that is, N m

0 = 0 but
N m−1

0 �= 0. Assume also that |N |β ≤ 1. Then the fundamental solution matrix
U = ∑∞

i=0 Ui ti over K �t� (as in Proposition 7.3.6) satisfies

|Ui |β i ≤ |i !|−2m+1 (i = 1, 2, . . . ). (18.1.1.1)

Consequently, U has entries in K �t/(p−(2m−1)/(p−1)β)�0, as does its inverse.

Proof. Recall that U is determined by the recursion (7.3.6.1):

N0Ui − Ui N0 + iUi = −
i∑

j=1

N jUi− j (i > 0).

By Lemma 7.3.5 the map f (X) = N0 X − X N0 on n × n matrices is nilpotent,
with nilpotency index 2m − 1. Hence the map X �→ i X + f (X) has inverse

X �→
2m−2∑

j=0

(−1) j i− j−1 f j (X).

This gives the claim by induction on i .

18.2 Effective bounds for solvable modules

We now give an improved version of Proposition 18.1.1 under the hypothesis
that U has entries in K {t/β�0}. The hypothesis is only qualitative, in that it
implies that |Ui |β i → 0 as i → ∞, but it does not give a specific bound
on |Ui | for any particular i . Somewhat surprisingly, this hypothesis plus an
explicit bound on N together imply a rather strong explicit bound on |Ui |. (We
will continue to restrict to the case of nilpotent singularities; see Section 18.5
for what happens when the exponents are allowed to range over Zp.)

Theorem 18.2.1. Let N = ∑∞
i=0 Ni ti and U = ∑∞

i=0 Ui ti be n × n matrices
over K �t� satisfying the following conditions.

(a) The matrix N has entries in K �t/β�0.
(b) We have U0 = In.
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(c) We have U−1 NU + U−1t (d/dt)(U ) = N0.
(d) The matrix N0 is nilpotent.
(e) The matrices U and U−1 have entries in K {t/β}.

Then, for every positive integer i ,

|Ui |β i ≤ p(n−1) logp i" max{1, |N |n−1
β }.

The first step in the proof of Theorem 18.2.1 is to change basis to reduce
|N |β ; this comes at the expense of enlarging K slightly and decreasing β
slightly.

Lemma 18.2.2. With notation as in Theorem 18.2.1, suppose that K has value
group R. Then, for any λ < 1, there exists an invertible n × n matrix X over
K �t/(λβ)�0 such that∣∣∣∣X−1 N X + X−1t

d

dt
(X)

∣∣∣∣
λβ

≤ 1

|X−1|λβ ≤ 1

|X |λβ ≤ |N |n−1
λβ .

Proof. Let M be the differential module over K �t/β�0 for the operator td/dt ,
with a basis on which D acts via N , and let | · | be the supremum norm defined
by this basis. Over the closed disc of radius λβ, M becomes isomorphic to a
successive extension of trivial differential modules. Consequently the generic
radius of convergence of M ⊗ Fλβ is equal to λβ. In particular,

p−1/(p−1)λβ = |t−1 D|sp,M⊗Fλβ ≤
∣∣∣∣ d

dt

∣∣∣∣
Fλβ

= λβ.

By Proposition 6.5.6 plus Lemma 8.6.1, we obtain the desired matrix X .

Using Lemma 18.2.2, we wish to prove Theorem 18.2.1 by using Frobenius
antecedents to reduce the index from i to  i/p". One can improve upon this
argument if one has a Frobenius structure on the differential module; see
Lemma 18.3.2 below.

Lemma 18.2.3. With notation as in Theorem 18.2.1, suppose that |N |β ≤ 1.
Then there exist n×n matrices N ′,U ′ over K �t/β p�, satisfying the hypotheses
of Theorem 18.2.1, such that

|N ′|β p ≤ p,

max{|U j |β j : 0 ≤ j ≤ i} ≤ max{|U ′
j |β pj : 0 ≤ j ≤ i/p}.
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Proof. Define the invertible n × n matrix V = ∑∞
i=0 Vi t i over K �t/β�

as follows. Start with V0 = In . Given V0, . . . , Vi−1, if i ≡ 0 (mod p)
then put Vi = 0. Otherwise, put W = ∑i−1

j=0 Vj t j and NW = W−1 N W +
W−1t (d/dt)(W ), and let Vi be the unique solution of the matrix equation

N0Vi − Vi N0 + iVi = −(NW )i .

By induction on i we have |Vi |β i ≤ 1 for all i , so V is invertible over K �t/β�0.
Let φ : K �t� → K �t� denote the substitution t �→ t p. Put N ′′ = V −1 N V +
V −1t (d/dt)(V ); then N ′′ has entries in K �t p� and |φ−1(N ′′)|β p ≤ 1. Put
U ′′ = V −1U ; then

(U ′′)−1 N ′′U ′′ + (U ′′)−1t
d

dt
(U ′′) = N ′′

0 = N0,

which forces U ′′ also to have entries in K �t p�. We may then take N ′ =
p−1φ−1(N ′′) and U ′ = φ−1(U ′′).

We now put everything together.

Proof of Theorem 18.2.1. There is no harm in enlarging K , so we may assume
that K has value group R. We will then prove the claim by induction on
i , in three stages. First, if i < p and |N |β ≤ 1 then the desired estimate
follows from Proposition 18.1.1. Second, for any given i , the desired esti-
mate for general N follows from the estimate for the same i in the case
|N |β ≤ 1, by Lemma 18.2.2. (More precisely, for any λ < 1, replace the
pair N ,U by X−1 N X + X−1t (d/dt)(X), X−1U X0 and then take the limit as
λ → 1.) Third, if |N |β ≤ 1 then the desired estimate for any given i follows
from the corresponding estimate for general N with i replaced by  i/p", by
Lemma 18.2.3.

Example 18.2.4. It is easy to give an example that shows that one cannot
significantly improve the bound of Theorem 18.2.1 without extra hypothe-
ses. (There is a tiny improvement possible; see the notes.) For instance, the
functions

fi = 1

i ! (log(1 + t))i (i = 0, . . . , n − 1)

satisfy the differential system

d

dt
f0 = 0,

d

dt
fi = 1

1 + t
fi−1 (i = 1, . . . , n − 1),

in which the coefficients have 1-Gauss norm at most 1.
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One important special case of these results is that of a generic disc.
Considering this case will fulfill an earlier promise to prove Lemma 13.5.4.

Corollary 18.2.5. Let V be a finite differential module over Fβ (for the deriva-
tion d/dt) for some β > 0 such that I R(V ) = 1. Choose a basis of V and, for
i ≥ 0, let Di be the matrix of action of Di on this basis. Then∣∣∣∣Di

i !
∣∣∣∣
β

β i ≤ p(n−1) logp i" max{1, |D1|n−1
β } (i > 0).

Proof. Let L be the completion of K (tβ) for the β-Gauss norm, so that tβ ∈ L
is a generic point of norm β. As in Section 9.4, we may base-extend V to the
open disc of radius β with series parameter t − tβ . The fundamental solution
matrix at tβ can be computed using Remark 5.8.4; it is

∞∑
i=0

(tβ − t)i

i ! Di .

If we write this matrix as
∑∞

i=0 Ti (t−tβ)i , where Ti has entries in L , we obtain
from Theorem 18.2.1 the bound

|Ti |β i ≤ p(n−1) logp i" max{1, |D1|n−1
β }.

We now deduce the claim by induction on i . Write Di as a power series∑∞
j=0 Di, j (t − tβ) j whose coefficients have entries in L , so that |Di, j |β j ≤

|Di |β for j ≥ 0 with equality for j = 0. (See Section 9.4 to recall where these
inequalities come from.) We then have

Ti =
i∑

j=0

(−1) j D j,i− j

j ! .

By the induction hypothesis, for j < i we have

|D j,i− j/j !|β i ≤ |D j/j !|ββ j

≤ p(n−1) logp j" max{1, |D1|n−1
β }

≤ p(n−1) logp i" max{1, |D1|n−1
β }.

Combined with the bound on Ti , this yields

|Di/ i !|ββ i = |Di,0/ i !|β i ≤ p(n−1) logp i" max{1, |D1|n−1
β },

as desired.
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18.3 Better bounds using Frobenius structures

Although Theorem 18.2.1 is close to optimal under its hypotheses, it can be
improved if the differential module in question admits a Frobenius structure.
For simplicity, we restrict to standard Frobenius structures.

Hypothesis 18.3.1. In this section, we restore the hypothesis that K is dis-
cretely valued. Fix a power q of p, and let φ be the standard qth-power
Frobenius lift on K �t�0 with respect to some isometry φK : K → K .

The key here is to imitate the proof of Theorem 18.2.1 but with the
differential equation replaced by a certain difference equation.

Lemma 18.3.2. Let U = ∑∞
i=0 Ui ti , A = ∑∞

i=0 Ai t i be n × n matrices over
K �t� satisfying the following conditions.

(a) The matrix A has entries in K �t�0.
(b) We have U0 = In, and the matrix A0 is invertible.
(c) We have U−1 Aφ(U ) = A0.

Then

max{|U j | : 0 ≤ j ≤ i} ≤ |A−1
0 ||A|1 max{|U j | : 0 ≤ j ≤  i/q"}.

Consequently, for every positive integer i ,

|Ui | ≤ (|A−1
0 ||A|1)�logq i�.

Proof. Note that (c) can be rewritten as

U = Aφ(U )A−1
0 .

This gives the first inequality. To deduce the second inequality, we proceed
as in the proof of Theorem 18.2.1 except that we iterate �logq i� times to
reach the case i = 0 (rather than iterating  logq i" times to reach the case
0 < i < p).

Theorem 18.3.3. Let N = ∑∞
i=0 Ni ti , U = ∑∞

i=0 Ui ti , and A = ∑∞
i=0 Ai t i

be n × n matrices over K �t� satisfying the following conditions.
(a) The matrix A has entries in K �t�0.
(b) We have U0 = In, and the matrix A0 is invertible.
(c) We have U−1 NU + U−1t (d/dt)(U ) = N0.
(d) We have N A + t (d/dt)(A) = q Aφ(N ).

Then U−1 Aφ(U ) = A0 and, for every positive integer i ,

|Ui | ≤ (|A−1
0 ||A|1)�logq i�.
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Proof. As noted in Remark 17.1.2, the commutation relation (d) implies that
N0 A0 = q A0φ(N0), which forces N0 to be nilpotent. Put B = U−1 Aφ(U ) =∑∞

i=0 Bi t i . Then B0 = A0 and N0 B + t (d/dt)(B) = q Bφ(N0). Hence

N0 Bi + i Bi = q Biφ(N0) = Bi A−1
0 N0 A0

or

N0(Bi A−1
0 )+ i(Bi A−1

0 ) = (Bi A−1
0 )N0. (18.3.3.1)

By Lemma 7.3.5 the operator X �→ N0 X − X N0 + i X on n × n matrices
is invertible for i �= 0, so (18.3.3.1) implies that Bi = 0 for i > 0. Hence
U−1 Aφ(U ) = A0 does hold, so we may conclude by applying Lemma 18.3.2,
to reduce to the case i < q, Theorem 18.2.1.

Remark 18.3.4. By combining Theorem 18.3.3 with Theorem 18.2.1 (apply-
ing the latter for i < q), we can obtain the bound

|Ui | ≤ |N |n−1
1 p(n−1) logp i−(logp q) logq i""(|A−1

0 ||A|1) logq i".

Remark 18.3.5. In applications to Picard–Fuchs modules, the difference
between the bounds given by Theorems 18.2.1 and 18.3.3 can be quite sig-
nificant. For instance, given a Picard–Fuchs module arising from a family
of curves of genus g, the bound of Theorem 18.2.1 contains the factor
p(2g−1) logp i" but the bound of Theorem 18.3.3 replaces the factor 2g − 1
by 1. In general, it should be possible to use Theorem 18.3.3 (and perhaps also
Theorem 18.3.6) to explain various instances in which a calculation of n terms
of a power series involves a precision loss pO(log(n)) even though the accu-
mulated factors p by which one divides throughout the calculation amount to
pO(n). (A typical example of this is given in [124, Lemma 3].)

We record also a sharper form of Theorem 18.3.3 for use in the discussion
of logarithmic growth in the next section.

Theorem 18.3.6. Let v be a column vector of length n over K �t�, let A =∑∞
i=0 Ai t i be an n × n matrix over K �t�, and let λ ∈ K be chosen to satisfy

the following conditions.
(a) The matrix A has entries in K �t�0.
(b) The matrix A0 is invertible.
(c) We have Aφ(v) = λv.

Then

max{|v j | : 0 ≤ j ≤ i} ≤ |λ−1||A|1 max{|v j | : 0 ≤ j ≤  i/q"}.
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Consequently, for every positive integer i ,

|vi | ≤ |v0|(|λ−1||A|1)�logq i�.

Proof. Rewrite (c) as v = λ−1 Aσ(v) and proceed as in Lemma 18.3.2.

18.4 Logarithmic growth

In general, the fundamental solution matrix of a differential system with a
nilpotent regular singularity at 0 need not be bounded on a closed disc, even if
the matrix defining the system is bounded and the solution matrix converges on
the open disc. However, one gets a fairly mild growth condition at the bound-
ary; better still, one can extract some interesting information by distinguishing
different solutions on the basis of their order of growth. This is loosely inspired
by a comparable archimedean situation, for which see the notes.

Definition 18.4.1. For δ ≥ 0, let K �t�δ be the subset of K �t� consisting of
those f = ∑∞

i=0 fi t i for which

| f |δ = sup
i

{ | fi |
(i + 1)δ

}
< +∞;

note that K �t�δ is complete under the norm | · |δ . For δ = 0 we recover the ring
K �t�0 of bounded power series. However, K �t�δ is not a ring for δ > 0; rather,
we have

K �t�δ1 K �t�δ2 ⊂ K �t�δ1+δ2 .

Also, K �t�δ is stable under d/dt but antidifferentiation carries it into
K �t�δ+1. Put

K �t�δ+ =
⋂
δ′>δ

K �t�δ′ .

For another useful characterization of K �t�δ , see the exercises.

Definition 18.4.2. For f ∈ K �t�, we say that f has order of log-growth δ if
f ∈ K �t�δ but f /∈ K �t�δ′ for any δ′ < δ. We say f has order of log-growth
δ+ if f /∈ K �t�δ but f ∈ K �t�δ′ for any δ′ > δ. We have similar definitions
for vectors or matrices over K �t� and for elements of M ⊗K �t�0

K �t� if M is
a finite free module over K �t�0 (by computing in terms of a basis, the choice
of which will not affect the answer).

We then deduce the following from Theorem 18.2.1.
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Proposition 18.4.3. Let M be a differential module of rank n over K �t�0 for
the operator td/dt, such that the action of D on M/t M is nilpotent. Then any
element of H0(M ⊗K �t�0

K �t�) has order of log-growth at most n − 1.

Remark 18.4.4. One can say something slightly stronger than
Proposition 18.4.3, by observing that M ⊗K �t�0

K �t�[log t] admits a basis of
horizontal sections, each of which has degree at most n − 1 in log t (exer-
cise). If we write some m ∈ H0(M ⊗K �t�0

K �t�[log t]) as a formal sum∑n−1
i=0 mi (log t)i , with mi ∈ M ⊗K �t�0

K �t�, then Theorem 18.2.1 implies
that, for i = 0, . . . , n − 1, mi has order of log-growth at most n − 1. However,
we suspect that this can be improved to n − 1 − i .

In the presence of a Frobenius structure, one obtains a much sharper bound,
due to Chiarellotto and Tsuzuki [41, Theorem 6.17]. (One can also formulate
a refinement in the manner of Remark 18.4.4.)

Theorem 18.4.5. Assume that K is discretely valued. Let M be a differential
module of rank n over K �t�0 for the operator td/dt, equipped with a Frobenius
structure for a qth-power Frobenius lift as in Remark 17.1.2. Then any element
v ∈ H0(M ⊗K �t�0

K �t�) satisfying �(v) = λv for some λ ∈ K has order
of log-growth at most (− log |λ| − s0)/(log q), where s0 is the least generic
Newton slope of M.

Proof. We may assume that the Frobenius lift is standard, thanks to
Proposition 17.3.1. By then replacing the Frobenius lift by some power, we can
reduce to the case where s0 is a multiple of − log p. We can then twist into the
case s0 = 0. By Proposition 14.5.9, we can choose a basis of M such that the
least generic Hodge slope of M is also 0. Then the claim follows immediately
from Theorem 18.3.6.

Remark 18.4.6. Refining a conjecture of Dwork, it was conjectured
by Chiarellotto and Tsuzuki [41] that if M is indecomposable then
Theorem 18.4.5 is optimal. That is, in the notation of Theorem 18.4.5, v should
have order of log-growth exactly (− log |λ| − s0)/(log q); Chiarellotto and
Tsuzuki have proved this for rank(M) ≤ 2 [41, Theorem 7.2]. It should be
possible to extend their proof to all cases where − log |λ| is less than or equal
to the least Newton slope of M strictly greater than s0, but it is less clear how
to extend to the general case.

Remark 18.4.7. By contrast, if M does not carry a Frobenius structure then
the order of log-growth of a horizontal section behaves much less predictably.
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For instance, it need not be rational, and it could have the form δ+ instead of
δ [41, §5.2].

18.5 Nonzero exponents

So far, we have considered only regular differential systems with all exponents
equal to zero. We now allow for arbitrary exponents in Zp; the bound we get
is very slightly weaker in this case.

Theorem 18.5.1. Let N = ∑∞
i=0 Ni ti and U = ∑∞

i=0 Ui ti be n × n matrices
over K �t� satisfying the following conditions for some β > 0.

(a) The matrix N has entries in K �t/β�0.
(b) We have U0 = In.
(c) We have U−1 NU + U−1t (d/dt)(U ) = N0.
(d) The matrix N0 has prepared eigenvalues in Zp.
(e) The matrices U and U−1 have entries in K {t/β}.

Then, for every positive integer i ,

|Ui |β i ≤ pn+(n−1)�logp i� max{1, |N |n−1
β }.

Proof. The statement of Lemma 18.2.2 carries over to this situation with-
out change. However, we can carry out the construction in the proof of
Lemma 18.2.3 only if the exponents are divisible by p. Otherwise we must
first enforce this condition by performing up to p−1 shearing transformations,
yielding the weaker bound

max{|U j |β j : 0 ≤ j ≤ i} ≤ max{|U ′
j |β pj : 0 ≤ j ≤ (i + p − 1)/p}.

In the case i ≤ p (and |N |β = 1), we instead perform the shearing trans-
formations and then calculate explicitly as in Proposition 18.1.1 to obtain the
bound

|Ui |β i ≤ p2n−1.

If i ≤ ph+1 for some h ≥ 0 then, after h iterations of the map i �→  (i + p −
1)/p", we end up with a quantity that is at most p. We thus obtain the claimed
bound.

Notes

In the case of no singularities (N0 = 0), the effective bound of Theorem 18.2.1
is due to Dwork and Robba [82], but is slightly stronger: one may replace
p(n−1) logp i" with the maximum of | j1 · · · jn−1|−1 over j1, . . . , jn−1 ∈ Z with
1 ≤ j1 < · · · < jn−1 ≤ i . See also [80, Theorem IV.3.1].
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The general case of Theorem 18.2.1 is due to Christol and Dwork [47],
except that their bound is significantly weaker: it is roughly pc(n−1) logp i"
with c = 2 + 1/(p − 1). The discrepancy comes from the fact that the role
of Proposition 6.5.6 is played in [47] by an effective version of the cyclic vec-
tor theorem, which does not give optimal bounds. As usual, the use of cyclic
vectors also introduces singularities, which must then be removed, leading to
some technical difficulties. See also [80, Theorem V.2.1].

Theorems 18.3.3 and 18.3.6 are original, but they owe a great debt to the
proof of [41, Theorem 7.2]. The main difference is that we prefer to argue in
terms of matrices rather than cyclic vectors.

In the case of no singularities, Proposition 18.4.3 was first proved by Dwork;
it appears in [75] and [76]. (See also [42].) The extension suggested by
Remark 18.4.4 is original; as noted above, the effective bounds in [47] are
not strong enough to imply this.

The archimedean motivation for the study of logarithmic growth comes from
Deligne’s study of regular singularities [68]. He showed that a differential
module over the ring of germs of meromorphic functions at a point has a reg-
ular singularity if and only if the horizontal sections have at worst logarithmic
growth at the singular point.

In the p-adic setting, the theory of logarithmic growth emerged from some
close analysis made by Dwork [75, 76] of the finer convergence behavior
of solutions of certain p-adic differential equations. The subject languished
until the recent work of Chiarellotto and Tsuzuki [41]; inspired by this, André
[6] proved a conjecture of Dwork [76, Conjecture 2] analogizing the semi-
continuity theorem for Newton polygons (Theorem 15.3.2) to logarithmic
growth.

Theorem 18.5.1 is an improvement on [80, Theorem V.9.1], in which the

bound takes the form p(n
2+cn) logp i" for some constant c. Again, part (though

not all) of the improvement is due to the avoidance of cyclic vectors.

Exercises

(1) Prove that, for δ ≥ 0,

K �t�δ = { f ∈ K �t� : lim sup
ρ→1−

| f |ρ
(− log ρ)δ

<∞}.

(Hint: the inequality

sup
i
{(i + 1)δρi } ≤ ρ−1

(
δ

e

)δ
(− log ρ)−δ

may be helpful.)
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(2) Let M be a differential module of rank n over K �t� for the operator
td/dt , such that the action of D on M/t M is nilpotent. Show that if we
extend the action of td/dt to K �t�[log t], by setting (td/dt)(log t) = 1,
then M ⊗K �t� K �t�[log t] admits a basis of horizontal sections, and each
horizontal section has degree in log t bounded by n − 1.
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Galois representations and
differential modules

In this chapter we construct a class of examples of differential modules on open
annuli which carry Frobenius structures and hence are solvable at a bound-
ary. These modules are derived from continuous linear representations of the
absolute Galois group of a positive-characteristic local field.

We first construct a correspondence between Galois representations and dif-
ferential modules over E carrying a unit-root Frobenius structure. The basic
mechanism for producing these modules is to tensor with a large ring carrying
a Galois action and then take Galois invariants. This mechanism will reappear
when we turn to p-adic Hodge theory, at which point we will attempt to simu-
late this situation using the Galois group of a mixed-characteristic local field.
See Chapter 24.

Then we refine the construction to compare Galois representations having
finite image of inertia with differential modules over E† carrying a unit-root
Frobenius structure; the main result here is an equivalence of categories due to
Tsuzuki. It is generalized by the absolute case of the p-adic local monodromy
theorem (Theorem 20.1.4 below) and indeed can be used together with the
slope filtration theorem (Theorem 17.4.3) to prove the monodromy theorem in
the absolute case. This result also has an analogue in p-adic Hodge theory; see
Theorem 24.2.5.

We finally describe (without proof) a numerical relationship between the
wild ramification of a Galois representation and the convergence of solu-
tions of p-adic differential equations. Besides making explicit the analogy
between the wild ramification of Galois representations and the irregularity
of meromorphic differential systems, it also suggests an approach to higher-
dimensional ramification theory. We reserve most discussion of the latter to
the notes.

313
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Remark 19.0.1. The reader encountering this material for the first time is
strongly encouraged to assume that κK is perfect. For an explanation of how
things get complicated otherwise, see Section 20.5.

Notation 19.0.2. In this chapter we write d and φ instead of D and � for
the actions on a differential or difference module. This is to avoid confu-
sion with another standard usage of the letter D, which will first appear in
Definition 19.1.2.

19.1 Representations and differential modules

We first describe a simple correspondence between Galois representations and
differential modules due to Fontaine. This will serve as a model later, when
we introduce (φ, �)-modules associated with Galois representations of local
fields in mixed characteristic (Chapter 24).

Definition 19.1.1. For L a finite separable extension of κK ((t)), let EL be
the finite unramified extension of E with residue field L (see Corollary 3.2.4).
Let Ẽ be the completion of the maximal unramified extension of E , which in
particular contains the completion K̃ of the maximal unramified extension of
K . Then GκK ((t)) acts on Ẽ with fixed field E .

Definition 19.1.2. Let V be a finite-dimensional vector space over K , and
let τ : GκK ((t)) → GL(V ) be a continuous homomorphism for the p-adic
topology on GL(V ). Let us view V ⊗K Ẽ as a left GκK ((t))-module, with the
action on the first factor coming from τ and the natural action on the second
factor. Put

D(V ) = (V ⊗K Ẽ)GκK ((t)) .

Lemma 19.1.3. The space D(V ) is an E-vector space of dimension dimK (V ).
Equivalently, the natural map D(V )⊗E Ẽ → V ⊗K Ẽ is an isomorphism.

Proof. We first check this in the case where τ has finite image; then τ factors
through G E/κK ((t)) for some finite separable extension E of κK ((t)). In this
case the claim is a consequence of Noether’s nonabelian version of Hilbert’s
Theorem 90: for any finite Galois extension E/F of fields, the nonabelian
cohomology set H1(G E/F ,GLn(E)) is trivial.

In the general case we must argue a bit more carefully. Since GκK ((t)) is
compact as a topological group, its image under τ is also compact. This implies
that we can find an oE -lattice T in V that is stable under the Galois action,
e.g., by starting with any lattice and taking the span of its images under the
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Galois action. (The compactness ensures that the resulting oE -submodule of V
is indeed finitely generated.) For any positive integer i the induced topology
on T/mi

K T is discrete, so the Galois action factors through the Galois group of
a finite separable extension of κK ((t)). We may thus argue for each i as above
and then take the inverse limit.

Definition 19.1.4. Note that d/dt extends uniquely to EL , and hence to D(V )
by taking the action on V to be trivial. Since the action of d/dt commutes
with the Galois action, we also obtain an action on D(V ). That is, D(V )
is a differential module over E . By the same token, if we equip V with the
structure of a difference module with respect to φK , then D(V ) inherits a
Frobenius structure for any Frobenius lift φ on E acting on K via φK . Since
we can always start with a unit-root Frobenius structure on V (e.g., by forcing
a basis of V to be fixed), we deduce that D(V ) admits a unit-root Frobenius
structure.

We obtain an instance of nonabelian Artin–Schreier theory. See the notes to
Chapter 14 for some background.

Proposition 19.1.5. Suppose that φ is an absolute qth-power Frobenius lift
and that the fixed field K0 of φ on K has residue field Fq and the same
value group as K . Given a continuous representation of GκK ((t)) on a finite-
dimensional K0-vector space V0, equip V = V0 ⊗K0 K with the Frobenius
action induced by the trivial action on V0. Then V0 �→ D(V ) is an equivalence
of categories between the category of continuous representations of GκK ((t))

on finite-dimensional K0-vector spaces and the category of finite differential
modules over E equipped with a unit-root Frobenius structure.

Proof. We will show that the reverse equivalence is provided by the functor
V0 on finite differential modules over E equipped with unit-root Frobenius
structures and defined by

V0(D) = (D ⊗E Ẽ)φ=1.

Since D(V0)⊗E Ẽ → V0 ⊗K0 Ẽ is an isomorphism by Lemma 19.1.3, we may
naturally identify V0(D(V0)) with (V ⊗K Ẽ)φ=1 = V0. (Here the conditions
on K0 are needed to ensure that Ẽφ=1 = K0. See the exercises at the end of the
chapter.)

It remains to give a canonical isomorphism of D(V0(D)) with D; by the
same token, it is sufficient to check that the natural map V0(D)⊗K0 Ẽ → D⊗E
Ẽ is a bijection. This is exactly the statement that D ⊗E Ẽ is a trivial difference
module. This holds by the first part of the proof of Theorem 14.6.3, since the
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residue field of Ẽ is separably closed and hence weakly difference-closed for
absolute Frobenius lifts.

Corollary 19.1.6. Suppose that φ is an absolute qth-power Frobenius lift and
that K = Qq is the unramified extension of Qp with residue field Fq . Then the
functor D, from continuous representations of GFq ((t)) on finite-dimensional
Qq-vector spaces to finite differential modules over E equipped with unit-root
Frobenius structure, is an equivalence of categories.

Remark 19.1.7. In Proposition 19.1.5 the differential structure is not neces-
sary; see the exercises. What we do need is the symmetry between two actions
on Ẽ , that of the Galois group and that of the monoid given by the nonnega-
tive powers of φ. The proof works because Ẽ is large enough to trivialize both
the Galois action (by the Hilbert–Noether theorem) and the φ-action (by the
Dieudonné–Manin theorem). Starting from this point, Fontaine realized that
one could set up an analogous situation when GFq ((t)) is replaced by the Galois
group of a finite extension of Qp; the result is a central construction in p-adic
Hodge theory. See Chapter 24.

Remark 19.1.8. If φ is a Frobenius lift that is not absolute, then
Definition 19.1.4 remains valid. The reason is that even though an individual
finite separable extension of κK ((t)) may not carry an action of φ, the separa-
ble closure of κK ((t)) does carry such an action. However, Proposition 19.1.5
does not remain valid, because the residue field of Ẽ need not be weakly
difference-closed.

19.2 Finite representations and overconvergent
differential modules

Following an idea of Crew, we give a refinement of the previous construction
for some special representations.

Definition 19.2.1. Since E† is henselian (Lemma 15.1.3), for each finite sep-
arable extension L of κK ((t)) there exists a unique finite unramified extension
E†

L with residue field L . In fact

EL ∼= E ⊗E† E†
L ,

and E†
L is the integral closure of E† in EL . In particular, GκK ((t)) acts on E†

L
with fixed field E†.
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Definition 19.2.2. Let V be a finite-dimensional vector space over K , and let
τ : GκK ((t)) → GL(V ) be a continuous homomorphism for the discrete topol-
ogy on GL(V ). That is, τ factors through GL/κK ((t)) for some finite separable
extension L of κK ((t)). Let us view V ⊗K E†

L as a GκK ((t))-module in which
the action on the first factor comes from τ and the action on the second factor
is as above. Put

D†(V ) = (V ⊗K E†
L)

GκK ((t)) .

Lemma 19.2.3. The space D†(V ) is an E†-vector space of dimension
dimK (V ). Equivalently, the natural map D†(V ) ⊗E† E†

L → V ⊗K E†
L is an

isomorphism. (In particular, D†(V ) is canonically independent of the choice
of L.)

Proof. This again follows from the Hilbert–Noether theorem.

Definition 19.2.4. As in Definition 19.1.4, D†(V ) is a differential module over
E† admitting a unit-root Frobenius structure for any Frobenius lift φ on E†.
However, now that we have a module over E† it makes sense to compute the
subsidiary radii of D†(V )⊗ Fρ for ρ ∈ (0, 1) sufficiently close to 1. Namely,
realize D†(V ) as a differential module over K 〈α/t, t�0 for some α and com-
pute there. Be aware that any two such realizations for a given α need only
become isomorphic over K 〈β/t, t�0 for some β ∈ [α, 1). However, statements
about the germ at 1 of the function ρ �→ R(D†(V )⊗ Fρ) are unambiguous.

Proposition 19.2.5. The generic radius of convergence of D(V ) is equal to 1.
Consequently (by the continuity of the generic radius of convergence, as in
Theorem 11.3.2(a)), D†(V ) is solvable at 1.

Proof. This follows from the existence of a Frobenius structure on D†(V ),
using Theorem 17.2.1.

Example 19.2.6. Assume that K contains an element π with π p−1 = −p;
then K contains a unique pth root of unity ζp satisfying 1−ζp ≡ π (mod π2)

(see Remark 17.1.7). Let L = κK ((t))[z]/(z p − z − f ) be an Artin–Schreier
extension, and let V be the Galois representation corresponding to the char-
acter of GL/κK ((t)) taking the automorphism z �→ z + 1 to ζp. We can then
explicitly describe D†(V ): it is the module M f of Example 17.1.4 (exercise).

Similarly, one can realize the construction of Example 9.9.3 as D†(V ) for
a certain explicit character of order ph . This observation has been thoroughly
generalized by Pulita [185].
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Remark 19.2.7. Note that the kernel of d on E†
L is the integral closure K ′ of K

in E†
L (exercise). Consequently, the space of horizontal sections of D†(V )⊗E†

E†
L is equal to V ⊗K K ′. This suggests that we cannot recover the whole of

V from D†(V ), at least if we use only the differential structure; instead, we
recover the restriction of V to the inertia subgroup of GκK ((t)), which we can
identify with Gκ

sep
K ((t)).

The previous remark suggests the following construction.

Definition 19.2.8. Let V be a finite-dimensional vector space over K , and
let τ : GκK ((t)) → GL(V ) be a continuous homomorphism for the p-adic
topology. We say that τ has finite local monodromy if the image of the iner-
tia subgroup of GκK ((t)) is finite. (That inertia subgroup is isomorphic to
Gκ

sep
K ((t)).) In this case, let E†

κ
sep
K ((t))

be the ring defined in the same fashion

as E† but using K̂ unr, the completion of the maximal unramified extension of
K , for the coefficients; let GκK ((t)) act on this ring via the quotient by its inertia
subgroup. We can then define

D†(V ) = (V ⊗K (E†
κ

sep
K ((t))

)unr)GκK ((t))

and this will be a differential module over E† of the correct dimension, again
admitting a unit-root Frobenius structure for any Frobenius lift.

19.3 The unit-root p-adic local monodromy theorem

We have the following refinement of Proposition 19.1.5. See the notes for
a detailed attribution. (For an analogous fact in p-adic Hodge theory, see
Theorem 24.2.5.)

Theorem 19.3.1 (Tsuzuki). Suppose that φ is an absolute qth-power
Frobenius lift, and that the fixed field K0 of φ on K has residue field Fq and
the same value group as K . Given a continuous representation of GκK ((t))

with finite local monodromy on a finite-dimensional K0-vector space V0, equip
V = V0 ⊗K0 K with the Frobenius action induced by the trivial action on V0.
Then V0 �→ D†(V ) is an equivalence of categories with the category of finite
differential modules over E† equipped with unit-root Frobenius structure.

Although it is possible to deduce this theorem from the p-adic local
monodromy theorem (see Remark 20.1.5 below), it is both instructive and his-
torically appropriate to give a proof using the tools we have available at this
point. We proceed to this task now.
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Definition 19.3.2. Let M be a finite differential module over E† equipped with
a unit-root Frobenius structure. For c ∈ (0, 1), we say that M is c-constant if
there exists a basis of M on which � acts via a matrix A with |A − In|1 ≤ c;
we call such a basis a c-constant basis.

If φ is absolute, we can see directly that the property of M of being
c-constant is invariant under a change in Frobenius lift (Corollary 17.3.2).
Namely, by Proposition 19.1.5, M is c-constant if and only if it occurs as
D(V ) for some representation τ : GκK ((t)) → GL(V ) such that V admits a
supremum norm | · | for which |τ(g)(x) − x | ≤ c|x | for all g ∈ GκK ((t)) and
x ∈ V .

For arbitrary φ, we may reach the same conclusion by imitating the proof of
Proposition 17.3.5. See the exercises.

Lemma 19.3.3. Let M be a finite differential module over E† admitting a
unit-root Frobenius structure for a standard (but not necessarily absolute)
Frobenius lift. Then there exists a positive integer m coprime to p such that
M ⊗E† E†[t1/m] admits a basis on which the matrices A, N of action of
�, t D have entries in E†[t1/m] ∩ oK �t−1/m�, as does A−1. Moreover, if M is
c-constant for some c < 1 then we can ensure that m = 1 and |A − In|1 ≤ c.

Proof. Since M admits a unit-root Frobenius structure, we can choose a basis
on which the matrix of action A of � belongs to GLn(oE†). By reordering the
basis vectors, we can ensure that the minimum t-adic valuation of the reduction
of Ai j occurs for i = j = 1. By adjoining t1/(q−1) and then rescaling, we can
force this minimum valuation to equal 0. We can then conjugate to ensure that
Ai1 = 0 for i = 2, . . . , n. Proceeding in this manner, we can force A to be
upper triangular and invertible over κK �t1/m�.

We next put A into the desired form, by repeating the following operation.
(If M is c-constant for some c < 1, we may start the argument here.) Write
A = ∑

i Ai t i/m , so that A0 is upper triangular and invertible modulo mK and
Ai vanishes modulo mK for i < 0. Then replace A by U−1 Aφ(U ), with

U = In + A−1
0

(∑
i>0

Ai t
i/m

)
.

The matrices U then converge to the identity under the (t1/m,mK )-adic
topology on oK �t1/m�.

Finally, we note that the compatibility N −q Aφ(N )A−1 = t (d/dt)(A)A−1

from (17.1.2.1) implies that having A in the desired form forces N to be
in the desired form as well. Namely, the compatibility first implies that N
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modulo q involves only nonnegative powers of t−1/m . We then derive the same
conclusion modulo q2, q3, and so on.

The crux of the proof is the following lemma.

Lemma 19.3.4. Let M be a finite differential module over E† admitting a
unit-root Frobenius structure. Suppose that M is c-constant for some c <

p−1/(p−1). Then M is trivial as a differential module.

Proof. We may assume that the Frobenius lift is standard. By Lemma 19.3.3
we may assume that there is a c-constant basis on which�, t D act via matrices
A, N over E† ∩ oK �t−1�. Then A and N together represent a finite differential
module over ∪α∈(0,1)K 〈α/t〉 equipped with a unit-root Frobenius structure.
Moreover, the commutation relation N A + t (d/dt)(A) = q Aφ(N ) from
(17.1.2.1) and the fact that |A0| = |A−1

0 | = |A|1 = |A−1|1 = 1 together
force N0 = 0 and |N |1 ≤ c; consequently, there exists α ∈ (0, 1) for which
|N |α ≤ 1.

We now proceed as in the proof of Lemma 18.2.3. As in that proof, we
construct a matrix V, with entries in E† ∩ K �t−1� and with |V − In|1 ≤ c and
|V − In|α ≤ 1, for which

A′ = V −1 Aφ(V ), N ′ = V −1 N V + V −1t
d

dt
(V )

have entries in E† ∩ K �t−p�. Let ψ : K �t−1� → K �t−1� be the K -linear sub-
stitution t−1 �→ t−p. Since φ is standard, φ commutes with ψ ; consequently,
A′′ = ψ−1(A′), N ′′ = p−1ψ−1(N ′) again satisfy the commutation relation
N ′′ A′′ + t (d/dt)(A′′) = q A′′φ(N ′′). Since |A′′ − In|1 = |A′ − In|1 ≤ c,
we deduce that |N ′′|1 ≤ c; we also have |N ′′|α p = p|N ′|α ≤ p. To choose
u ∈ [0, 1] such that puc1−u = 1 or, in other words, u log p+ (1−u) log c = 0,
we take

u = log c

log c − log p
.

Using Proposition 8.2.3(b) we obtain |N ′′|β ≤ 1 for

logβ = up logα = p log c

log c − log p
logα.

Since p log c < log c − log p < 0, we have − logβ ≥ (1 + ε)(− logα) for
some fixed ε > 0.

Consequently, we can replace A, N by another pair for which the desired
result can be derived equivalently, with α arbitrarily small. In particular we
can force α < p−1/(p−1). Now let M ′ be the differential module on the disc
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of radius α−1 in the coordinate t−1 with the action of t−1d/dt−1 = −td/dt
given by −N . The fact |N |α ≤ 1 implies by Theorem 6.5.3 that the spectral
radius of d/dt−1 on M ′ is at most α. Hence the generic radius of convergence
of M ′ at radius α−1 is at least p−1/(p−1)α−1 > 1, so, using Theorem 9.6.1 it
can be proved that the local horizontal sections at infinity converge on a disc
of radius greater than 1 in the parameter t−1. We may then restrict these to a
basis of horizontal sections of M .

Proof of Theorem 19.3.1. It follows from Proposition 19.1.5 that D† is fully
faithful, so the key point is to show that D† is essentially surjective. That
is, for any finite differential module M over E† equipped with a unit-root
Frobenius structure, there exists a finite separable extension L of κK ((t)) such
that M ⊗E† E†

L is a trivial differential module (and so corresponds to an unram-
ified representation of GκK ((t))). Using Proposition 19.1.5, we may choose L
so that M ⊗E† E†

L is c-constant for some c < p−1/(p−1). Then Lemma 19.3.4
implies the desired result.

19.4 Ramification and differential slopes

In the equal-characteristic case, we can relate the upper numbering ramifi-
cation filtration (Definition 3.4.3) of a Galois representation with finite local
monodromy to the generic radius of convergence of an associated differential
module, as follows. We will not give a proof here; see the notes for attributions
and references plus some speculations about a mixed-characteristic analogue.

Theorem 19.4.1. Assume that κK is perfect. Let V be a finite-dimensional
vector space over K , and let τ : GκK ((t)) → GL(V ) be a continuous homo-
morphism for the p-adic topology on GL(V ), with finite local monodromy.
Then, for ρ ∈ (0, 1) sufficiently close to 1,

R(D†(V )⊗ Fρ) = ρb, b = max{i ≥ 1 : Gi
κK ((t))

�⊆ ker(τ )}.
Corollary 19.4.2. With the notation of Theorem 19.4.1, let V1, . . . , Vm be the
constituents of V , and let τ j : GκK ((t)) → GL(Vj ) be the corresponding homo-
morphisms for j = 1, . . . ,m. For ρ ∈ (0, 1) sufficiently close to 1, the multiset
of subsidiary radii of D†(V )⊗ Fρ consists of ρb1 , . . . , ρbn , where the multiset
{b1, . . . , bn} consists of max{i ≥ 1 : GκK ((t)),i �⊆ ker(τ j )} with multiplicity
dim(Vj ) for j = 1, . . . ,m.

Remark 19.4.3. One interpretation of Theorem 19.4.1 is that the decompo-
sition of V by ramification numbers matches up with the Christol–Mebkhout
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decomposition of D†(V ) ⊗ R provided by Theorem 12.6.4. While the lat-
ter was inspired by analogues for meromorphic connections in the complex
analytic setting, the analogy with wild ramification was anticipated somewhat
before it was realized in Theorem 19.4.1.

Remark 19.4.4. Using the integrality properties of subsidiary radii
(Theorem 11.3.2(b)), we may deduce that, for ρ ∈ (0, 1) sufficiently close to
1, the product of the subsidiary radii is an integral power of ρ; this amounts to
verifying the Hasse–Arf theorem for V (the integrality of the Artin conductor).

An interesting corollary of Theorem 19.4.1 is the following.

Proposition 19.4.5. Let M be a finite free differential module, on the open
annulus with inner radius α and outer radius β, satisfying the Robba condition.
Suppose that for some closed interval [γ, δ] with α < γ < δ < β there
exists a finite étale extension R of K 〈γ /t, t/δ〉 such that the differential module
M ⊗K 〈γ /t,t/δ〉 R is unipotent (i.e., a successive extension of trivial modules).
Then there exists a positive integer m coprime to p such that the pullback of
M along the map t �→ tm is unipotent.

Proof. Note that the conclusion may be checked by replacing K by a finite
Galois extension K ′; this follows from the fact that

H0(M ⊗K K ′)G K ′/K = H0(M).

We may thus enlarge K and then rescale to ensure that 1 ∈ (α, β). We may
also assume that R is Galois over K 〈γ /t, t/δ〉 and (possibly after enlarging K
again) geometrically connected. That is, R is connected and remains so after
any further finite enlargement of K .

Put G = R ⊗K 〈γ /t,t/δ〉 F1. Our hypotheses so far ensure that G is a field
so, by Theorem 1.4.9, G carries a unique multiplicative norm extending | · |1.
Since that norm is computed using Newton polygons, we can replace K by a
finite extension to ensure that the multiplicative value group of G is the same
as that of K .

By Lemma 8.6.1 the norm on G can be defined as the supremum norm for
some basis of R ⊗K 〈γ /t,t/δ〉 K 〈t, t−1〉. After moving γ and δ closer to 1, we
can define the same norm for a basis e1, . . . , en of R itself.

Let A be the matrix of the trace pairing of R in terms of this basis, i.e., Ai j is
the trace of multiplication by ei e j as an endomorphism of R over K 〈γ /t, t/δ〉.
On the one hand, because G has the same multiplicative value group as K , we
must have |det(A)|1 = 1. On the other hand, since R is étale over K 〈γ /t, t/δ〉,
det(A) must be a unit in R. We conclude that det(A) = ctm for some c ∈ o×K
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and some m ∈ Z. In particular, R induces a finite étale extension R of
κK [t, t−1].

Let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M be a filtration of M such that, for
i = 1, . . . , l, Mi/Mi−1 ⊗K 〈γ /t,t/δ〉 R is a trivial differential module. View the
K -vector space ⊕

i

H0((Mi/Mi−1)⊗K 〈γ /t,t/δ〉 R)

as a representation of Aut(R/κK [t, t−1]). By restricting to the inertia groups at
t = 0 and t = ∞, applying Theorem 19.4.1, and possibly making a different
choice of [γ, δ] (but still with 1 in its interior), we can construct a subexten-
sion R′ of R which induces a tamely ramified extension of κK [t, t−1] such that
M ⊗K 〈γ /t,t/δ〉 R′ is unipotent. However, a finite étale extension of κK [t, t−1]
that is tamely ramified at t = 0 and t = ∞ must be contained in an exten-
sion of the form κ ′K [t1/m, t−1/m] for some positive integer m and some finite
separable extension κ ′K of κK . (This is usually deduced as a consequence of
Grothendieck’s theory of the tame quotient of the étale fundamental group of
a scheme; see [99, Exposé XIII].)

This proves the claim for the restriction of M to the open annulus with inner
radius γ and outer radius δ. The claim for M itself follows by Corollary 13.6.4.

Notes

A more detailed survey of most material in this chapter (excluding the unit-root
p-adic local monodromy theorem) is given in the article [128].

Proposition 19.1.5 was originally formulated by Fontaine [89, A1.2.6], in a
slightly less general form and with no reference to differential modules. Our
presentation more closely follows [207, Theorem 4.1.3]; a related result in the
language of F-isocrystals is the theorem of Crew [61, Theorem 2.1].

For κK perfect, the rank 1 case of Theorem 19.3.1 is due to Crew [61,
Theorem 4.12], while the general case is due to Tsuzuki [207, Theorem 5.1.1];
however, both arguments can be extended easily to the general case. An alter-
nate exposition was given by Christol [44] in the case of a standard Frobenius
lift, although without discussion of the fact that standardness is not stable under
the replacement of κK ((t)) by a finite separable extension. (In our argument
this is treated by the invariance of the c-constant property under a change in
Frobenius lift, as in Definition 19.3.2. The representation-theoretic approach
we used is that taken in [207].) Yet another exposition may be inferred from
[135, Theorem 4.5.2], where a stronger result is proved. (The stronger result
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is used in the study of semistable reduction for isocrystals; see the notes for
Chapter 23.) All these proofs are similar in form to the proof given here; by
contrast, one may infer a rather different proof by specializing Theorem 20.1.4
below to the unit-root case (Remark 20.1.5).

The fact that one can give a direct quantitative relationship between wild
ramification and the spectral properties of differential modules fits nicely into
a well-developed analogy between the structures of irregular formal meromor-
phic connections and those of wildly ramified �-adic étale sheaves. An early
suggestion along these lines was given by Katz [121] and pursued further by
Terasoma [204]; some further work in this direction is that of Beilinson, Bloch,
and Esnault [13].

Theorem 19.4.1 was originally stated in its present form by Matsuda [169,
Corollary 8.8]; a reformulation in the formalism of Tannakian categories
was given by André [5, Complement 7.1.2] as part of his formulation and
proof of the p-adic local monodromy theorem. However, thanks to the p-adic
global index theorem of Christol and Mebkhout [51, Theorem 8.4–1], [52,
Corollaire 5.0–12], this could have been deduced from the Grothendieck–
Ogg–Shafarevich formula for unit-root overconvergent F-isocrystals in rigid
cohomology; such a formula was proved by Tsuzuki [208, Theorem 7.2.2]
(by Brauer induction, as is possible in the �-adic case) and Crew [63,
Theorem 5.4] (using the Katz–Gabber theory of canonical extensions, as
also is possible in the �-adic case). For a proof by direct computation and
Brauer induction (not using the Christol–Mebkhout index theory), see [128,
Theorem 5.23].

In the case of an imperfect residue field, it was originally suggested by
Matsuda [170] that one should formulate an analogue of Theorem 19.4.1
relating the Abbes–Saito conductor (discussed in the notes for Chapter 3) to
a suitable differential analogue. That differential analogue was described by
Kedlaya [133]; a comparison with the Abbes–Saito conductor was established
by Chiarellotto and Pulita [40] for one-dimensional representations, and by
Xiao [219] in the general case. This has the side effect of establishing the inte-
grality of the Abbes–Saito conductor in the case of equal characteristic, which
is not evident from the original construction.

In mixed characteristic the appropriate analogue of the functor V �→ D(V )
is provided by the theory of (φ, �)-modules; see Chapter 24. The sort of ana-
logue of Theorem 19.4.1 that should exist in mixed characteristic is distinctly
less clear. Even in the case of a perfect residue field, where one is asking for
a differential interpretation of the usual conductor, only a partial answer is
known, by a result of Marmora [167]: one has a differential interpretation of
the conductor once one passes to a suitably large cyclotomic extension. In
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general, one does at least have integrality of the Abbes–Saito conductor when
the residue characteristic is odd; see Xiao [220].

Exercises

(1) Suppose that the fixed field K0 of φ on K has residue field Fq and the same
value group as K . Prove that Ẽφ=1 = K0. (Hint: reduce to a corresponding
equality of residue fields.)

(2) Prove that any finite free unit-root difference module over E admits a
unique compatible differential structure.

(3) Prove that the kernel of d/dt on Ẽ equals K̃ . In particular, for any finite
separable extension L of κK ((t)), prove that the kernel of d on E†

L is the

integral closure of K in E†
L .

(4) Write out explicitly the isomorphism D†(V ) ∼= M implied by Exam-
ple 19.2.6. (Hint: this module is generated by (1 + pπ f )1/p for any lift
f ∈ E† of f .)

(5) Prove that, for an arbitrary Frobenius lift, the property whereby a finite
differential module over E or E† equipped with a unit-root Frobenius struc-
ture is c-constant remains invariant under a change in Frobenius lift. (Hint:
in Lemma 17.3.4, if the matrix of action of D/ i has norm at most ε then so
does the matrix of action of Di/ i !. Apply this observation to (17.3.1.1).)
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The p-adic local monodromy theorem

We are now ready to state the capstone theorem of this book, the p-adic local
monodromy theorem. This asserts that a finite differential module over an
annulus carrying a Frobenius structure has “finite local monodromy”, in the
sense that it becomes unipotent after making a suitable finite étale cover of the
annulus. In this chapter, we give the precise statement of the theorem, illus-
trate it with an example and a couple of basic applications, and discuss some
technical points that arise if the field K has imperfect residue field. We will
postpone discussion of the proof(s) of the theorem to the next chapter.

We will discuss two broad areas of application of the p-adic local mon-
odromy theorem in later chapters. One of these is in the subject of rigid
cohomology, where the theorem plays a role analogous to the �-adic local mon-
odromy theorem of Grothendieck in the subject of étale cohomology (hence
the name); see Chapter 23. The other is in p-adic Hodge theory, where the
theorem clarifies the structure of certain p-adic Galois representations; see
Chapter 24.

Hypothesis 20.0.1. Throughout this chapter and the next, fix a homomorphism
φ : κK ((t))→ κK ((t)) preserving (but not necessarily fixing) κK and carrying
t to tq for some power q of p. We will assume that all the Frobenius lifts
considered are in fact lifts of this particular φ.

20.1 Statement of the theorem

Definition 20.1.1. Let L be a finite separable extension of κK ((t)) to which φ
extends. Put

RL = R⊗E† E†
L .

326
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We say that a finite free differential module M over R is quasiconstant if
there exists L such that M ⊗R RL is trivial. We say M is quasiunipotent if
it is a successive extension of quasiconstant modules; this holds if and only
if M ⊗R RL is unipotent for some L (exercise).

Remark 20.1.2. It is more typical to make Definition 20.1.1 without reference
to φ, so that L may be any finite separable extension of κK ((t)). This corre-
sponds precisely to the case where φ is an absolute Frobenius morphism, as
then φ extends to any finite separable extension of κK ((t)).

The condition of quasiunipotence implies solvability.

Proposition 20.1.3. Let M be a finite free quasiunipotent differential module
over R. Then M is solvable at 1.

Proof. We may reduce to the case where M is irreducible and hence quasi-
constant. We may thus pick an L for which M ⊗R RL is trivial. It is then
clear that M ⊗R RL is solvable at 1, and one can argue using direct calcula-
tion that this implies the same for M . Here, we will give a slightly different
argument.

There is no harm in enlarging K , so we may assume that K is integrally
closed in RL . In this case, H0(M ⊗R RL) is a vector space over K equipped
with a linear action of GL/κK ((t)); that is, we have a representation of a finite
group on a finite-dimensional vector space over a field of characteristic 0.
(Without the enlargement of K , we might have only a semilinear group action.)
It is a basic fact of the representation theory of finite groups that this represen-
tation can also be defined over a subfield of K that is finite over Q; in particular,
we can pick a finite extension K0 of Qp contained in K and a K0-lattice T in
H0(M ⊗R RL) that is stable under the Galois action.

Since the desired result makes no reference to φ, we can choose φ to be
an absolute Frobenius lift fixing K0. We then obtain a Frobenius structure on
M⊗RRL by declaring T to be fixed under the Frobenius action. Since T is sta-
ble under GL/κK ((t)), this action descends to a Frobenius structure on M itself.
We may thus deduce that M is solvable at 1, by applying Theorem 17.2.1. (The
reader may recognize this construction from the proof of Theorem 19.3.1.)

Conversely, the following important theorem asserts that many naturally
occurring solvable differential modules, including Picard–Fuchs modules, are
quasiunipotent. In the case of an absolute Frobenius lift, the theorem is due
independently to André [5], Kedlaya [125], and Mebkhout [171]; the general-
ization to nonabsolute Frobenius lifts is original to this book. See Chapter 21
for a proof and see the notes for further discussion.
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Theorem 20.1.4 (p-adic local monodromy theorem). Let M be a finite free
differential module over R admitting a Frobenius structure for some Frobenius
lift. Then M is quasiunipotent.

Remark 20.1.5. In the special case where φ is absolute and M = M† ⊗E†

R for M† a finite differential module over E† equipped with a unit-root
Frobenius structure, Theorem 20.1.4 almost recovers Tsuzuki’s theorem
(Theorem 19.3.1). The missing ingredients are as follows.

(a) We must show that M is quasiconstant, not just quasiunipotent. This
follows from the fact that a unipotent differential module over R
equipped with a unit-root Frobenius structure must be trivial (exercise).

(b) We must show that M† ⊗E† E†
L is a trivial differential module. This

follows from the triviality of M ⊗R RL , using Corollary 16.3.4.

20.2 An example

It may be worth seeing how Theorem 20.1.4 applies in a particular example.
This example, corresponding to a Bessel equation, was originally considered
by Dwork [77]; the analysis given here is due to Tsuzuki [209, Example 6.2.6]
and was cited in the introduction to [125].

Example 20.2.1. Let p be an odd prime, put K = Qp(π) with π p−1 = −p,
and take φ to be the absolute p-power Frobenius morphism. Let M be the
differential module of rank 2 over R with the action of D on a basis e1, e2

given by

N =
(

0 t−1

π2t−2 0

)
.

Then M admits a Frobenius structure; this was shown by explicit calculation in
[77] but can also be derived by consideration of a suitable Picard–Fuchs mod-
ule. Define the tamely ramified extension L of κK ((t)), and the corresponding
extension E†

L of E†, by adjoining to κK ((t)) an element u such that 4u2 = t ;
then put

u± = 1 +
∞∑

n=1

(±1)n
(2n)!2

(32π)nn!3 un ∈ K {u}.

Define the matrix

U =
⎛⎝ u+ u−

ud

du
(u+)+

(
1
2 − πu−1

)
u+

ud

du
(u−)+

(
1
2 + πu−1

)
u−

⎞⎠
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and use it to change basis; then the action of d/du on the new basis e+, e− of
M ⊗R RL is via the matrix(− 1

2 u−1 + πu−2 0
0 − 1

2 u−1 − πu−2.

)
.

That is, M ⊗R RL splits into two differential submodules of rank 1. To ren-
der these quasiconstant, we must adjoin to L a square root of u (to eliminate
the term − 1

2 u−1) and a root of the polynomial z p − z = u−1 (which, by
Example 19.2.6, eliminates the terms ±πu−2).

By further analysis, carried out in [209, Example 6.2.6], one determines
that in this example the special Newton slopes are 1

2 log p, 1
2 log p. By con-

trast, the generic Newton slopes (obtained by writing M = M† ⊗E† R using
the chosen basis and then extending scalars to E) are 0, log p. This illus-
trates the conclusion of the semicontinuity theorem for Newton polygons
(Theorem 16.4.6).

20.3 Descent of sections

The property of quasiunipotence is rather handy because it often allows
complicated-looking statements about nontrivial differential modules to be
reduced to statements about trivial differential modules that can be checked
by direct calculation. Over a disc, this can be achieved using Dwork’s trick
(Corollary 17.2.2); over an annulus, Theorem 20.1.4 often serves as a usable
replacement. Here is a typical example, which builds on techniques of de Jong;
see the notes for further discussion.

We start with a calculation that is in some sense dual to Lemma 16.3.2.
Recall that Eφ and E†

φ denote the φ-perfections of E and E†, respectively
(Definition 15.4.1).

Lemma 20.3.1. Let A be an n × n matrix over oE†
φ
, and suppose that v ∈ En

φ ,

w ∈ (E†
φ)

n satisfy Av − φ(v) = w. Then v ∈ (E†
φ)

n.

Proof. Exercise.

We next bring to bear de Jong’s reverse filtration.

Lemma 20.3.2. Let M be a finite dualizable difference module over E†
φ . Let

ψ : M → Eφ be a nonzero φ-equivariant map (i.e., ψ commutes with
φ using the specified φ-actions on M and Eφ). Then ψ−1(E†

φ)/ ker(ψ) has

rank 1 and Newton slope 0, and M/ψ−1(E†
φ) has all its Newton slopes less

than 0.
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Proof. We may assume that ψ is injective. Let M1 be the first step of the
filtration on M , given by Theorem 15.4.4. Then ψ induces a nonzero element
of H0(M∨

1 ⊗E†
φ
Eφ), which can only exist if M1 is pure of norm 1. Moreover,

by Lemma 20.3.1 (applied after using Proposition 14.4.16 to choose a suitable
basis),

H0(M∨
1 ) = H0(M∨

1 ⊗E†
φ
Eφ),

so ψ is induced by a nonzero morphism M1 → E†
φ . We deduce that ψ−1(E†

φ)

is of rank 1; since ψ is assumed to be injective, M1 must also be of rank 1.
This proves the desired results.

To eliminate the perfection in the previous lemma, we use the projection
Eφ → E constructed in Lemma 15.4.5.

Proposition 20.3.3. Let M be a finite dualizable difference module over E†.
Let ψ : M → E be a nonzero φ-equivariant map. Then ψ−1(E†)/ ker(ψ) has
rank 1 and Newton slope 0, and M/ψ−1(E†) has all Newton slopes less than 0.

Proof. Put M ′ = M ⊗E† E†
φ , and let ψ ′ : M ′ → Eφ be the composition

M ′ ψ⊗1→ E ⊗E† E†
φ → Eφ,

the last map being multiplication in Eφ . The map ψ ′ is nonzero because
it restricts to ψ on M . (Note that the multiplication map is injective by
Corollary 15.4.6, but we will use the proof technique of that result here rather
than its statement.)

By Lemma 20.3.2 the desired results will follow from the assertion that the
natural inclusions

ψ−1(0)⊗E† E†
φ → (ψ ′)−1(0),

ψ−1(E†)⊗E† E†
φ → (ψ ′)−1(E†

φ)

are surjective. To check this assertion, choose a basis m1, . . . ,mn of M . Given
v ∈ (ψ ′)−1(0) (resp. v ∈ (ψ ′)−1(E†

φ)), write v = ∑n
i=1 vi mi with v ∈ E†

φ .
We induct on the largest integer j for which v j �= 0, the case where no such j
exists being a trivial base case.

Define the map λ : Eφ → E as in Lemma 15.4.5, and put λM = idM ⊗λ :
M ′ → M , so that ψ ◦ λM = λ ◦ ψ ′. Then the quantity

λM (v/v j ) =
j∑

i=1

λ(vi/v j )mi
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belongs to ψ−1(0) (resp. to ψ−1(E†)). Moreover the coefficient of m j in
v/v j − λM (v/v j ) vanishes, so by the induction hypothesis the latter belongs
to ψ−1(0)⊗E† E†

φ (resp. to ψ−1(E†)⊗E† E†
φ). Hence v does also.

We now add the p-adic local monodromy theorem in order to split some
exact sequences.

Lemma 20.3.4. Suppose that κK is perfect. Let 0 → M1 → M → M2 → 0
be a short exact sequence of finite differential modules over E† equipped with
Frobenius structures. Suppose that every generic Newton slope of M1 is strictly
greater than every generic Newton slope of M2. Then the exact sequence
splits.

Proof. As in Lemma 5.3.3, we may replace M1,M2 with M∨
2 ⊗ M1, E†; that

is, we may reduce to the case where M2 = E† and every generic Newton slope
of M1 is positive. By Theorem 16.4.6 every special Newton slope of M1 is also
positive. By Theorem 20.1.4, we can find a finite Galois extension L of κK ((t))
such that M1 ⊗E† RL is unipotent. Since we have assumed that κK is perfect,
RL can itself be written as a Robba ring over some finite extension of K (see
Remark 20.5.3 below). By a direct calculation (exercise), the exact sequence
splits over RL . By Corollary 16.3.3, in the category of difference modules the
map H1(M1 ⊗E† E†

L) → H1(M1 ⊗E† RL) is injective, so the original exact

sequence splits in the category of difference modules over E†
L . That splitting is

unique (as can be seen for the case of EL ), so it descends to a splitting of the
original sequence in the category of difference modules over E†.

We now check that this splitting is also a splitting of differential modules.
We start with an injective homomorphism E† → M of difference modules.
By comparing special slopes, we see that the resulting copy of R in M ⊗E†

R must be the first step in the slope filtration of M ⊗E† R, in the sense of
Theorem 17.4.3. In particular, the copy of R in M ⊗E† R is a differential
submodule, as is its pure descent to E†. The latter is just the image of E† in M ,
so the claim follows.

We now put the preceding lemmas together to get a theorem on the descent
of horizontal sections.

Theorem 20.3.5. Let M be a finite differential module over R = K �t�0 or
R = E† admitting a Frobenius structure. Then, in the category of differential
modules, we have

H0(M) = H0(M ⊗R E).
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Proof. For the case R = K �t�0 we have H0(M) = H0(M ⊗R E†) by
Proposition 17.2.5, so we may assume that R = E† hereafter. We may enlarge
K to force κK to be perfect. We first check that any nonzero �-invariant
horizontal section v of M ⊗E† E descends to M . The section v corresponds
to a nonzero φ-equivariant map ψ : M∨ → E . By Proposition 20.3.3,
ψ−1(E†) �= 0 and the generic slopes of M∨/ψ−1(E†) are all negative. By
Lemma 20.3.4 the exact sequence

0 → ψ−1(E†)/ ker(ψ)→ M∨/ ker(ψ)→ M∨/ψ−1(E†)→ 0

must split. However, again by Proposition 20.3.3, any complement of
ψ−1(E†)/ ker(ψ) in M∨/ ker(ψ) that is in the category of difference modules
must map to zero under ψ . We conclude that in fact ψ(M∨) = E†, forcing
v ∈ H0(M).

To check the original claim (still for R = E†), we may enlarge K to have
an algebraically closed residue field. In this case, Corollary 14.6.4 implies that
H0(M ⊗E† E) is spanned by one-dimensional fixed subspaces for some power
of the Frobenius action. The previous argument shows that any generator of
one of these subspaces belongs to M , proving the claim.

20.4 Local duality

Here is another useful property of quasiunipotent differential modules, which
by Theorem 20.1.4 is present whenever one has a Frobenius structure.

Lemma 20.4.1. Put R = E† or R. Let M be a finite free differential module
over R. Then, for i = 0, 1, the natural maps

Hi (M)→ Hi (M ⊗E† E†
L)

GL/κK ((t))

are bijections.

Proof. For i = 0, we clearly have

H0(M ⊗E† E†
L)

GL/κK ((t)) = H0((M ⊗E† E†
L)

GL/κK ((t)) ) = H0(M).

For i = 1, we have injectivity because M is a direct summand of M ⊗E† E†
L .

We have surjectivity, because if x ∈ M ⊗E† E†
L represents a Galois-invariant

class in H1(M ⊗E† E†
L) then the average of g(x) over g ∈ GL/κK ((t)) is an

element of M representing the same class.

Proposition 20.4.2. Suppose that κK is perfect. (This assumption can be
removed; see Section 20.5.) Let M be a finite free quasiunipotent differential
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module over R. Then the spaces H0(M), H1(M) are finite-dimensional, and
there is a perfect pairing

H0(M)× H1(M∨)→ H1(M ⊗ M∨)→ H1(R) ∼= K
dt

t
.

In particular, by Theorem 20.1.4 this holds whenever M admits a Frobenius
structure.

Proof. This is straightforward to check when M is unipotent (exercise). In
general, we may choose a finite Galois extension L of κK ((t)) such that M ⊗R
RL is unipotent. Since we have assumed that κK is perfect, RL can itself be
written as a Robba ring over some finite extension of K (see Remark 20.5.3
below), so the desired assertions hold for M ⊗R RL . We may then deduce the
desired results using Lemma 20.4.1. (See also [128, Proposition 4.26].)

This leads to the following result of Matsuda [169, Theorem 7.8].

Corollary 20.4.3 (Matsuda). Every indecomposable finite free quasiunipotent
differential module over R has the form M ⊗ N with M quasiconstant and N
unipotent.

Proof. Exercise.

20.5 When the residue field is imperfect

We mentioned earlier (Remark 19.0.1) that the reader should assume that the
residue field κK of K is perfect. We now discuss the possible confusion arising
when this hypothesis is omitted.

Remark 20.5.1. The Cohen structure theorem asserts that if F is a complete
discretely valued field of characteristic p > 0 then there exists an isomorphism
F ∼= κF ((t)). However, this isomorphism is far from unique; it depends not
only on the choice of the series parameter t but also on the choice of embed-
ding of the residue field κF into F . This choice is unique when κF is perfect
(because in that case one has Teichmüller lifts; see the notes for Chapter 14),
but not otherwise.

Example 20.5.2. Suppose that F = Fp(x)((t)). Then, for any y = ∑∞
i=1 yi t i ,

there is an embedding Fp(x) ↪→ F given by x �→ x + y.

Remark 20.5.3. Suppose further that E is a finite separable extension of F . By
the Cohen structure theorem, we can find copies of κE and κF inside E and F ,
respectively, and use these to present E and F as power series fields (possibly
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in different series parameters, if |E×| �= |F×|). If κE is separable over κF , we
can choose the copy of κE to be the integral closure in E of the chosen copy
of κF , by Proposition 3.2.3 (or simply by applying Hensel’s lemma directly).
If F = κK ((t)) and E = L , we can then view RL as a copy of the Robba ring
with coefficients in the unramified extension of κK = κF with residue field
κE . However, this may not be possible if κE is not separable over κF , as in the
following example.

Example 20.5.4. Suppose again that F = Fp(x)((t)), and put

E = F[z]/(z p − z − xt−p).

Then κE ∼= Fp(x1/p), but there is no pth root of x within E itself. To write
E ∼= κE ((t)), we must make a different choice of the copy of κE within E ,
e.g., Fp(zt).

Fortunately, in our setting there is a convenient way to skirt this issue using
the Frobenius map φ.

Lemma 20.5.5. Suppose that φ is bijective on κK . Then, for any finite Galois
extension E of F = κE equipped with an extension of φ, κE is separable
over κF .

Proof. Let U and T be the maximal unramified and tamely ramified subexten-
sions, respectively, of E over F . Then the claim holds for the extensions U/F
and T/U (the former by the definition of an unramified extension, the latter
by Proposition 3.3.6). We may thus assume that E is totally wildly ramified
over F .

By Remark 3.3.10 the extension E/F can be written as a tower of Artin–
Schreier extensions F = E0 ⊂ E1 ⊂ · · · ⊂ El = E . It may happen that
E1 is not preserved by the action of φ on E ; however, it must be carried to
another Z/pZ-subextension of E over F , of which there are only finitely many.
Consequently E1 is preserved by some power of φ; similarly, we can choose a
power of φ preserving E2, . . . , El .

Since the desired result is insensitive to the replacement of φ by a power, we
may thus reduce to considering a single Artin–Schreier extension

E = F[z]/(z p − z − P), P =
∑

i

ci t
i .

Since E admits an extension of φ, there must exist a ∈ F×
p such that P −

aφ(P) = y p − y for some y ∈ F . By replacing φ with a suitable power, we
may reduce to the case a = 1.

Remember that we do not change the extension by replacing P with P +
y p − y for y ∈ F . We may thus choose P so that, for any two indices i, j < 0
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such that ci , c j �= 0, the ratio i/j is not a power of p. Now let j be the smallest
integer for which c j �= 0. We are done if either j ≥ 0, in which case E is
unramified, or j < 0 is not divisible by p, in which case #(|E×|/|F×|) > 1
and so, by Lemma 3.1.1, κE = κF .

Suppose that, on the contrary, j is divisible by p. By the choice of P and the
fact that P−φ(P) = y p−y for some y ∈ F , we must have φ(c j t j ) = (c j t j )q .

That is, c1/q
j = φ −1(c j ) ∈ κK since φK was assumed to be bijective. We can

thus replace P by P +(c j t j )1/p −c j t j to increase j . This process repeats only
finitely many times, after which we may deduce the claim.

Notes

The p-adic local monodromy theorem (Theorem 20.1.4) can be viewed
as an archimedean analogue of the following theorem of Borel [see 194,
Theorem 6.1]. Given a vector bundle with connection over the punctured unit
disc in the complex plane, equipped with a polarized variation of (rational)
Hodge structures, Borel’s theorem asserts that the monodromy transformation
is forced to be quasiunipotent (i.e., its eigenvalues must be roots of unity). It
appears that the Frobenius structure in the p-adic setting plays the role of the
variation of Hodge structures in the complex analytic realm.

The p-adic local monodromy theorem was originally formulated and proved
only in the absolute case. Then, it is often referred to in the literature as
Crew’s conjecture because it emerged from the work of Crew [62] on the
finite dimensionality of rigid cohomology with coefficients in an overcon-
vergent F-isocrystal. Crew’s original conjecture was more limited still, as it
concerned only modules such that the differential and Frobenius structures
were both defined over E†; it was restated in a more geometric form by de
Jong [66]. A closer analysis of Crew’s conjecture was then given by Tsuzuki
[209], who explained (using Theorem 19.3.1, which he had proved in [207])
how Theorem 20.1.4 in the absolute case would follow from a slope filtration
theorem [209, Theorem 5.2.1].

The original proofs of Theorem 20.1.4 in the absolute case can be
briefly described as follows. The proof of Kedlaya uses slope filtrations
(Theorem 17.4.3) to reduce everything to the unit-root case (Theorem 19.3.1).
André and Mebkhout proceed by using properties of solvable differential
modules to reduce everything to the p-adic Fuchs theorem of Christol and
Mebkhout (Theorem 13.6.1). André’s proof was phrased in the language of
Tannakian categories, whereas Mebkhout’s proof was more explicit; the proof
in the relative case that we will give in the next chapter is closely modeled on
Mebkhout’s proof.
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For applications to rigid cohomology, as far as we know only the absolute
case of Theorem 20.1.4 is of any relevance. However, the nonabsolute case
occurs in the context of relative p-adic Hodge theory. Namely, Berger and
Colmez [18] used the full strength of Theorem 20.1.4 to prove an analogue of
Fontaine’s conjecture on the potential semistability of de Rham representations
(Corollary 24.4.5 below) for a family of de Rham representations parametrized
by an affinoid base space.

To our knowledge, no proof of the nonabsolute case of Theorem 20.1.4 has
appeared prior to the one we are about to describe in Chapter 21. The proof
by Kedlaya does not apply because it relies on Theorem 19.3.1, whose given
proof does not extend to the relative case. The use of the nonabsolute case of
Theorem 20.1.4 in [18] provided a strong motivation for working at this level
of generality in the present book.

Lemma 20.3.1 is a mild generalization of [206, Proposition 2.2.2]. A weaker
result in the same spirit appears in the work of Cherbonnier and Colmez [38].

For an absolute Frobenius lift, the case of Theorem 20.3.5 with R = E†

was originally conjectured by Tsuzuki [210, Conjecture 2.3.3] and proved by
Kedlaya [126, Theorem 1.1]. However, most of the ideas are already present in
the subcase R = K �t�0, which was established by de Jong [65, Theorem 9.1];
the main difference is that de Jong could use Dwork’s trick (Corollary 17.2.2)
where we had to use the p-adic local monodromy theorem (Theorem 20.1.4).
Since a weak form of Dwork’s trick applies even without a differential struc-
ture (Theorem 16.1.1), it should be possible to extend the case R = K �t�0 of
Theorem 20.3.5 to difference modules; this was carried out in the absolute case
in [130], but we expect the general case to follow similarly.

The proof of Theorem 20.3.5 given here is in substance the same as the
proof in the absolute case given in [126]. In particular, Proposition 20.3.3
is essentially [126, Proposition 4.2], which in turn is close to de Jong’s [65,
Corollary 8.2].

The original application of Theorem 20.3.5 in the case R = K �t�0 is de
Jong’s proof of the equal-characteristic analogue of Tate’s extension theorem
on p-divisible groups (Barsotti–Tate groups). Tate proved [203] that for R a
complete discrete valuation ring of characteristic 0 and residual characteristic
p > 0, given any two p-divisible groups over R, any morphism between their
generic fibres extends to a full morphism. Tate’s proof introduced the seeds that
grew into the subject of p-adic Hodge theory (see Chapter 24); de Jong rec-
ognized that an appropriate analogue of Tate’s method for R of characteristic
p would proceed by means of crystalline Dieudonné theory. In this manner, de
Jong [65, Theorem 1.1] reduced this analogue of Tate’s theorem to an instance
of Theorem 20.3.5.
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The case R = E† of Theorem 20.3.5 has applications in the theory of
overconvergent F-isocrystals (for more on which see Chapter 23). Namely,
it implies (after some work) that, on a smooth variety over a field of charac-
teristic p > 0, the restriction functor from overconvergent F-isocrystals to
convergent F-isocrystals is fully faithful [137, Theorem 4.2.1].

The local duality for quasiunipotent differential modules (Proposition 20.4.2)
is due to Matsuda [169]. See also the treatment in [128, §4].

Exercises

(1) Prove that a finite free differential module M over R is quasiunipotent if
and only if M ⊗R RL is unipotent for some L . (Hint: produce a nonzero
quasiconstant submodule of M , e.g., by Galois descent.)

(2) Let 0 → M1 → M → M2 → 0 be a nonsplit extension of differential
modules over R, where M1 and M2 are both trivial and of rank 1. Prove
that M cannot admit a Frobenius structure that induces unit-root Frobenius
structures on both M1 and M2. (Hint: use the fact that H1(R) = K dt/t .)

(3) Prove Lemma 20.3.1. (Hint: reduce to the case where |A|ρ ≤ 1 for some
ρ ∈ (0, 1) for which |w|ρ <∞. Then use |w|ρ to bound the terms of v of
norm greater than some c > 0.)

(4) Complete the proof of Lemma 20.3.4 by proving the following assertion.
Let M be a finite unipotent differential module over R, equipped with a
Frobenius structure whose Newton slopes are all positive. Prove that any
exact sequence 0 → M → N → R → 0 in the category of differential
modules with Frobenius structures must split. (Hint: apply Lemma 9.2.3 to
N and then see how the resulting basis behaves under a standard Frobenius
lift.)

(5) In the notation of Theorem 20.3.5, suppose that φ(t) = tq . Prove that the
equality H0(M) = H0(M ⊗R E) also holds in the category of difference
modules. (Hint: if v ∈ H0(M) then t−1 D(v) ∈ H0(M) also.)

(6) Prove Proposition 20.4.2 in the case where M is unipotent. (Hint: use
Lemma 9.2.3.)

(7) Prove Corollary 20.4.3 using Proposition 20.4.2. (Hint: let P be an inde-
composable finite free quasiunipotent differential module over R. First,
prove that P is a successive extension of copies of a single irreducible dif-
ferential module M . Then construct an isomorphism P ∼= M ⊗ N , with
N unipotent, by induction on the rank of P .)
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The p-adic local monodromy theorem: proof

In this chapter we give a proof of the p-adic local monodromy theorem, at
the full level of generality at which we stated it (Theorem 20.1.4). After some
initial reductions, we start with the case of a module of differential slope 0,
i.e., one satisfying the Robba condition. We describe how this case can be
treated using either the p-adic Fuchs theorem for Christol–Mebkhout annuli
(Theorem 13.6.1) or the slope filtration theorem of Kedlaya (Theorem 16.4.1).
We then treat the rank 1 case using the classification of rank 1 solvable modules
from Chapter 12. We then show that any module of rank greater than 1 and
prime to p can be made reducible, by comparing the module with its top
exterior power and using properties of refined differential modules. We finally
handle the case of a module M of rank divisible by p by considering M∨ ⊗ M
instead.

The reader may notice some similarities to the proof of the Turrittin–Levelt–
Hukuhara decomposition theorem (Theorem 7.5.1). In fact, this theorem is also
known as the p-adic Turrittin theorem for this reason.

Besides the running hypothesis for this part of the book (Hypothesis 14.0.1)
and the hypothesis from the previous chapter (Hypothesis 20.0.1), it will be
convenient to set several more hypotheses.

21.1 Running hypotheses

We are going to make a number of calculations under the same hypotheses.
Rather than repeat the hypotheses each time, we enunciate them once and for
all here. We first explain how to deal with the case where κK is imperfect.

Remark 21.1.1. First, we point out that it suffices to prove quasiunipotence,
after replacing K by a complete extension K ′ to which φK extends, either by
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Proposition 6.9.1 or a more elementary argument (see [125, Proposition 6.11]).
In particular we may take K ′ to be the φ-perfection of K , on which φ is
bijective.

Here is a variant of the previous remark.

Remark 21.1.2. One can also proceed without φ-perfecting K initially but
replacing K by its inverse image under φ at any time when needed. We end up
with a finite extension L of φ−m(κK )((t)), for some positive integer m, such
that M ⊗R RL is quasiunipotent. In particular, H0(M ⊗R RL) is a nonzero
space on which φ acts bijectively. Applying φm gives a nonzero element of
H0(M ⊗RRL ′) for a finite separable extension L ′ of κK ((t)). We may deduce
that M has a nonzero �-stable differential submodule that is quasiunipotent;
repeating this argument recovers Theorem 20.1.4 in full.

We are now ready to introduce the new running hypotheses mentioned in the
introduction to this chapter.

Hypothesis 21.1.3. For the rest of the chapter, assume that φK is bijective
on K ; by the preceding remarks this is harmless for the purpose of prov-
ing Theorem 20.1.4. Let F be a finite Galois (but not necessarily unramified)
extension of K . Put RF = R⊗K F ; we will not attempt to extend φ to RF . Let
M be a finite differential module over R equipped with a Frobenius structure.

Hypothesis 21.1.4. Within each lemma in this chapter, set the notation as fol-
lows. Let N be a nonzero differential submodule (that is not a subquotient)
of M ⊗R RF for some specified F . We will use L to indicate an initially
unspecified finite separable extension of κK ((t)) to which φ extends; since φK

is bijective on K , Lemma 20.5.5 implies that RL may be viewed as a Robba
ring over a finite unramified extension of K . We will use F ′ to indicate an ini-
tially unspecified finite extension of F that is Galois over the integral closure
K ′ of K in RL . (This may require the identification of a subfield of F larger
than K with an isomorphic subfield of RL .) Write RL ,F ′ = RL ⊗K ′ F ′.

Notation 21.1.5. We write N0 to refer to the component of N of differential
slope 0, as provided by Theorem 12.6.4.

21.2 Modules of differential slope 0

We start by describing objects of differential slope 0. This requires the use
of either of two pieces of heavy machinery: the theory of p-adic exponents
(Chapter 13) or the theory of slope filtrations for difference modules over the
Robba ring (Theorem 17.4.3).
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Lemma 21.2.1. Suppose that N has differential slope 0. Then we may choose
L such that N ⊗RF RL ,F is unipotent.

Before giving either proof, we insert a reduction common to both.

Remark 21.2.2. In Lemma 21.2.1 the existence of N forces M to have a non-
trivial summand M0 of differential slope 0, such that N appears in M ⊗RRF .
It thus suffices to prove that if M is of differential slope 0 then we may choose
L such that M ⊗R RL is unipotent.

We first give the proof using p-adic exponents.

First proof of Lemma 21.2.1. As in Remark 21.2.2, we may assume that M
itself is of differential slope 0. By Corollary 17.3.2 we may change to a
standard Frobenius lift. We may then apply Corollary 13.6.2 to deduce that
M ⊗R R[t1/m] is unipotent for some positive integer m coprime to p.

We next give the proof using slope filtrations.

Second proof of Lemma 21.2.1. Again as in Remark 21.2.2, we may assume
that M itself is of differential slope 0. By Theorem 17.4.3 (and changing the
Frobenius lift, as in Corollary 17.3.2), we may reduce to the case where M is
pure of norm 1 as a difference module.

In other words, Lemma 21.2.1 is reduced to the following claim. Let M be
a finite differential module over E† admitting a unit-root Frobenius structure
for a standard Frobenius lift. Suppose that I R(M ⊗ Fρ) = 1 for ρ ∈ (0, 1)
sufficiently close to 1. Then there exists a positive integer m coprime to p such
that M ⊗R R[t1/m] is unipotent.

To prove this claim, apply Lemma 19.3.3 to construct a basis of M ⊗R
E†[t1/m] for some m, on which�, t D act via matrices A, N such that A, A−1,

and N have entries in E† ∩ oK �t−1/m�. As in the proof of Lemma 19.3.4, this
forces N0 = 0.

For notational simplicity, assume hereafter that m = 1. Let f : K �t−1� →
K �t� denote the substitution t−1 �→ t . We may then view f (N ) as defining
a differential module M ′ over K 〈t/β〉 for the operator d/dt for some β > 1
such that I R(M ′ ⊗K 〈t/β〉 Fβ) = 1. By Theorem 9.6.1 this module is trivial on
the open disc of radius β; this implies that the original module M is trivial, and
in particular unipotent.

Remark 21.2.3. It would be interesting to know whether one can prove
Lemma 21.2.1 without using either p-adic exponents or slope filtrations but
instead simply using the fact that the hypothesis forces M to extend across



21.3 Modules of rank 1 341

the entire punctured open unit disc (by the pasting together of Frobenius
antecedents).

21.3 Modules of rank 1

We next consider the rank-1 case, using the classification of solvable rank 1
differential modules (Theorem 12.7.2). This proof is the only point in the
course of the proof of Theorem 20.1.4 at which we will introduce any spe-
cific wildly ramified extensions of κK ((t)). (We made some tamely ramified
extensions in Lemma 21.2.1 and will make some unramified extensions in
Lemma 21.4.1 below.)

Lemma 21.3.1. Suppose that rank(N ) = 1. Then we may choose L such that
N ⊗RF RL ,F is trivial.

Proof. We may assume that F contains all pth roots of 1. By Theorem 17.2.1,
M is solvable at 1 as then is M ⊗R RF and also N . By Theorem 12.7.2 there

exists a nonnegative integer h such that N⊗ph
has differential slope 0. If h = 0,

we may deduce the claim from Lemma 21.2.1. It suffices to check the case
h = 1, as we may apply this case repeatedly to deduce the general case.

In the case h = 1, by Theorem 17.1.6 (or the special case of the latter
discussed in Remark 17.1.7), there exist c1, . . . , cb ∈ {0} ∪ o×F , with ci = 0
whenever i is divisible by p, such that the rank 1 differential module N1 =
M1,c1 ⊗ · · · ⊗ Mb,cb over RF has the property that N∨

1 ⊗ N has differential
slope 0. Since N1 ⊗RF RL0,F is unipotent for L0 equal to the Artin–Schreier
extension L0 of κF ((t)) defined by the parameter c1t−1 + · · · + cbt−b, so is
N ⊗RF RL0,F .

Unfortunately, this construction does not guarantee that L0 admits an action
of φ. However, suppose that we run over all possible choices of N for the given
M and F and define each L0 we see, using the unique possible Artin–Schreier
parameter in the additive group ⊕

i<0,p�i

κ
alg
K t−i .

The resulting parameters then fill out a finite set S.
Pick an integer i with i < 0, p � i . Let Si be the set of coefficients of

t−i appearing in the elements of S. Let Pi (x) ∈ κK [x] be the product of the
distinct minimal polynomials of the elements of Si over κK . Since M admits
a Frobenius structure, the roots of φ(Pi (x)), when multiplied by t−qi , must
define Artin–Schreier parameters that are equivalent to the roots of Pi (x)when
multiplied by t−i . In other words,
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φ(Pi (x)) = Pi (x
1/q)q .

We may thus extend φ to the splitting field of Pi in such a way that, for each
root a of Pi , we have φ(a) = bq for some root b of Pi .

This allows us to define a compositum of Artin–Schreier extensions L to
which φ extends; this includes all the choices of L0 made above. For such
an L , N ⊗RF RL ,F has differential slope 0, so we can make it trivial by
Lemma 21.2.1. This gives the desired result.

21.4 Modules of rank prime to p

We next pass from rank 1 to rank prime to p, using what we know about refined
differential modules over Fρ .

Lemma 21.4.1. Suppose that rank(N ) is coprime to p. Then we may choose
L , F ′ such that N ⊗RF RL ,F ′ is either unipotent or reducible.

Proof. Put n = rank(N ). The case n = 1 is covered by Lemma 21.3.1, so
we may assume that n is greater than 1 and coprime to p. Suppose by way of
contradiction that N ⊗RF RL ,F ′ is irreducible and nontrivial for all L , F ′. By
Lemmas 21.2.1 and 21.3.1, we may reduce to the case where (M∨ ⊗ M)0 is
unipotent and ∧n N is trivial.

Let us realize M,M0, N as differential modules on some annulus α < |t | <
1. For ρ ∈ (α, 1), let Fρ = F�ρ/t, t/ρ�an, F ′

ρ = F ′�ρ/t, t/ρ�an denote the
fields of analytic elements on the circle of radius ρ over the respective base
fields F, F ′. We claim that N ⊗ Fρ must be refined for every ρ ∈ (α, 1).
Otherwise, by Theorem 10.6.7, for a suitable choice of F ′ and some positive
integer m coprime to p we could split N nontrivially over F ′

ρ(t
1/m). Each

projector for this splitting would define a horizontal section of (N∨ ⊗ N ) ⊗
F ′
ρ(t

1/m). Since (M∨ ⊗ M)0 is unipotent, so is its subquotient (N∨ ⊗ N )0;
consequently we would have

H0(N∨ ⊗ N ⊗ F ′
ρ(t

1/m)) = H0(N∨ ⊗ N )

in terms of a basis of (N∨ ⊗ N )0, as in Lemma 9.2.3. We would thus get a
nontrivial splitting of N itself, contrary to hypothesis.

We now have that Nρ is refined for every ρ ∈ (α, 1). Choose ρ ∈ (α, 1) such

that p p−h/(p−1) < I R(N ⊗ Fρ) < p p−h+1/(p−1) for some nonnegative integer
h. Apply Theorem 10.4.2 to form the h-fold Frobenius antecedent P of N⊗Fρ ,
which is still refined. We may then apply Proposition 6.8.4(a) to deduce that
P⊗n has the same spectral radius as P and Proposition 6.8.4(b) to deduce that
(∧n P∨)⊗P⊗n has a strictly greater spectral radius than P . However, these two
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contradict each other because ∧n P∨ is the h-fold Frobenius antecedent of the
trivial module (∧n N∨)⊗ Fρ . This contradiction yields the desired result.

21.5 The general case

We now make the step from rank prime to p to arbitrary rank. The trick used
here is one familiar from elementary group theory, e.g., it is used in the proof
of the Sylow theorems. See the exercises for another example of its use.

Lemma 21.5.1. For arbitrary N, we may choose L , F ′ such that N⊗RF RL ,F ′
is either unipotent or reducible.

Proof. By Lemma 21.4.1 it suffices to consider N of rank n divisible by p.
Then the trace-0 component of N∨ ⊗ N has rank n2 − 1, which is not divis-
ible by p. By repeated application of Lemma 21.4.1, we can force the trace-0
component of (N∨⊗ N )⊗RF RL ,F ′ to acquire a unipotent component. In par-
ticular, the space V = H0((N∨ ⊗ N ) ⊗RF RL ,F ′) has F ′-dimension greater
than 1.

We may view V as a finite-dimensional, not necessarily commutative, F ′-
algebra. A standard fact about such algebras (exercise) is that, for some finite
extension F ′′ of F ′, V ⊗F ′ F ′′ fails to be a division algebra. Thus for suitable
F ′′ we can find a pair of nonzero horizontal that endomorphisms of N ⊗RL ,F ′′
which compose to zero. This forces N to be reducible.

Proof of Theorem 20.1.4. It suffices to consider M as irreducible. By
Lemma 21.5.1, we may choose L , F ′ such that M⊗RRL ,F ′ is either unipotent
or reducible. In the former case we are done, as this implies that M ⊗R RL is
also unipotent. Otherwise, M ⊗RRL ,F ′ contains a proper nonzero differential
submodule N . By applying Lemma 21.5.1 repeatedly, we may keep replacing
N by a submodule (after changing L and F ′) until N becomes unipotent.

Apply� to (M ⊗RRL)⊗K ′ F ′ on the left and Gal(F ′/K ′) on the right. The
images of N fill out a submodule of the form N0⊗K ′ F ′, where N0 is a nonzero
differential submodule of M stable under �. The module N0 is unipotent
because N0⊗K ′ F ′ is unipotent. Consequently M ⊗RRL has a nonzero unipo-
tent submodule N0 stable under �, so we may apply the induction hypothesis
to (M ⊗R RL)/N0 to conclude.

Notes

The approach to Theorem 20.1.4 presented here is modeled on that given by
Mebkhout [171] in the absolute case, except that Mebkhout describes only
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the first of our two proofs of Lemma 21.2.1. The approach of André [5] is
substantively similar but formally different, as it is phrased in the language of
Tannakian categories.

In the course of proving Lemma 21.3.1, we noticed that if φ is not an
absolute Frobenius lift, then the condition of admitting an extension of φ is
a highly nontrivial restriction on finite separable extensions of κK ((t)). This
phenomenon was noted in the context of p-adic Hodge theory by Berger and
Colmez [18, Proposition 6.2.2].

Exercises

(1) Let G be a finite p-group and let τ : G → GL(V ) be a complex linear
representation of G. Prove that if τ is nontrivial then either τ or τ∨ ⊗
τ has a nontrivial one-dimensional subrepresentation. (Hint: consider the
possible dimensions of irreducible representations of G.)

(2) Let V be a finite-dimensional, not necessarily commutative, F-algebra.
Prove that there exists a finite extension F ′ of F such that V ⊗F ′ F is not a
division algebra. (Hint: we may assume that V itself is a division algebra.
Pick any nonzero x ∈ V , view x as a linear transformation from V to V
via left multiplication, and subtract an eigenvalue of this transformation.)
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Picard–Fuchs modules

In this final part of the book, we touch briefly on some areas of application of
the theory of p-adic differential equations. These chapters are intended more to
inspire than to inform, with statements that are more illustrative than definitive.

In the present chapter we revisit the territory of Chapter 0, briefly discussing
how Picard–Fuchs modules give rise to differential equations with Frobenius
structures and what this has to do with zeta functions.

22.1 Origin of Picard–Fuchs modules

The original source for p-adic differential equations, which inspired the
general theory, was the following construction.

Definition 22.1.1. Let K be a field of characteristic 0. Let t be a coordinate
on the projective line P1

K . Let f : X → P1
K be a proper, flat, generically

smooth morphism of algebraic varieties. Let S ⊂ P1
K be a zero-dimensional

subscheme containing ∞ (for convenience) and all points over which f is
not smooth. The Picard–Fuchs modules on P1

K \ S associated with f are cer-
tain finite locally free differential modules Mi for i = 0, . . . , 2 dim( f ) over
�(P1

K \ S,O) with respect to the derivation d/dt ; they also have regular sin-
gularities with rational exponents at each point of S. For λ /∈ S, the fibre of
Mi at λ can be canonically identified with the i th de Rham cohomology of the
fibre f −1(λ).

Although the classical construction of the Picard–Fuchs module is analytic
(it involves viewing f as an analytically locally trivial fibration and integrating
differentials against moving homology classes), there is an algebraic construc-
tion, due to Katz and Oda [123], involving a Leray spectral sequence for the
algebraic de Rham cohomology of the total space.

347
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Example 22.1.2. Perhaps the most fundamental example of a Picard–Fuchs
module comes from the Legendre family of elliptic curves

y2 = x(x − 1)(x − t),

with S = {0, 1,∞}. In this case, the Picard–Fuchs module is precisely the
differential module derived from the hypergeometric differential equation

y′′ + c − (a + b + 1)z

z(1 − z)
y′ − ab

z(1 − z)
y = 0,

with parameters (a, b, c) = (1/2, 1/2, 1), as considered in Chapter 0. See
[213, §7] for an algebraic derivation of this fact, in the manner of Katz
and Oda.

22.2 Frobenius structures on Picard–Fuchs modules

The example considered in Chapter 0 was just one of a number of explicit
examples studied by Dwork and others, in which there seemed to be some
strong relationship between the Picard–Fuchs equations derived in character-
istic 0 and the zeta functions observed over finite fields. Dwork was able to give
a somewhat systematic explanation, in some cases, in terms of Frobenius struc-
tures; nowadays, the technology of p-adic cohomology (about which more in
Chapter 23) can be used to give a fairly general explanation.

We first give an explicit statement to the effect that Picard–Fuchs modules
always carry Frobenius structures. See the notes for a more detailed discussion.

Theorem 22.2.1. With notation as above, assume that the field K is complete
for a discrete valuation. Also suppose that f extends to a proper morphism
X → P1

oK
such that the intersection of P1

k with the nonsmooth locus is con-
tained in the intersection of P1

k with the Zariski closure of S (i.e., the morphism
is smooth over all points of P1

k that are not the reductions of points in S). Let Mi

be the ith Picard–Fuchs module for f , and let φ : P1
oK

→ P1
oK

be a Frobenius
lift (e.g., t �→ t p) that acts on oK as a lift of the absolute Frobenius morphism.
Then, for some α ∈ (0, 1), there exists an isomorphism φ∗(Mi ) ∼= Mi over the
Fréchet completion R of �(P1

K \ S,O) for the ρ−1-Gauss norm and the Gauss
norms |t − λ| = ρ, ρ ∈ [α, 1) and λ ∈ S.

Remark 22.2.2. Geometrically, the Frobenius structure is defined on the com-
plement in P1

K of a union of discs around the points of S, each of radius less
than 1. (This includes a disc of radius less than 1 around ∞, by which we mean
the complement of a disc of radius greater than 1 around 0.) In particular, by
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working in a unit disc not containing any points of S, we obtain a differen-
tial module with Frobenius structure over K �t�0. In a unit disc containing one
or more points of S, we obtain a differential module with Frobenius structure
only over ∪α>0 K 〈α/t, t�0. If the disc contains exactly one point of S and the
exponents at that point are all 0, we can also obtain a differential module with
Frobenius structure over K �t�0 for the derivation td/dt , provided that φ fixes
that point.

Example 22.2.3. In Example 22.1.2, Theorem 22.2.1 applies directly except
when p = 2. In that case the reduction modulo p fails to be generically
smooth; one must change the defining equation to get a usable description
mod 2.

22.3 Relationship to zeta functions

We next give an explicit statement to the effect that the Frobenius structure on
a Picard–Fuchs module can be used to compute zeta functions. (The condition
on λ allows for a unique choice in each residue disc, by Lemma 15.2.6.)

Theorem 22.3.1. Retain the notation of Theorem 22.2.1, but now assume that
κK = Fq with q = pa and that φ is a qth-power Frobenius lift on P1

oK
.

Suppose that λ ∈ oK satisfies φ(t − λ) ≡ 0 (mod t − λ) and that f extends
smoothly over the residue disc containing λ. Then

ζ( f −1(λ), T ) =
2 dim( f )∏

i=0

det(1 − T�, (Mi )λ)
(−1)i+1

.

This suggests an interesting strategy for computing zeta functions, which
was described by Alan Lauder.

Remark 22.3.2. Suppose that we have in hand the differential module Mi ,
plus the action of � on some individual (Mi )λ. (This data would ordinarily be
specified by a basis of Mi , the matrix of action of D, and the matrix of action
of � modulo t − λ.) View the equation

N A + d A

dt
= dφ(t)

dt
Aφ(N )

as a differential equation with initial condition provided by (Mi )λ; we may
then solve for A and evaluate at another λ.

More explicitly, let us suppose for simplicity that λ = 0 is the starting value
and λ = 1 is the target value. In the open unit disc around 0, we can compute
U such that
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U−1 NU + U−1 dU

dt
= 0

and then write down

A = U A0φ(U
−1).

This gives only a power series representation around t = 0 with radius of
convergence 1; it does not give any way in which we can specialize to λ = 1.

However, Theorem 22.2.1 implies that the entries of A can be written as
uniform limits of rational functions with limited denominators. For the pur-
poses of computing the zeta function, we can limit how much p-adic accuracy
is needed in the computations by giving some bounds on the degrees of the
polynomials that appear and the sizes of the coefficients (e.g., using the Weil
conjectures, Theorem 0.2.5). To obtain this much accuracy, we must compute
A modulo some particular power of p. This means that we must determine
some rational function whose degree we can (in principle) control, so it suf-
fices to determine suitably many terms in the power series expansion around
0. We can then reconstruct a sufficiently good rational function approximation
to A and evaluate at λ = 1.

Remark 22.3.3. One can recover from Theorem 22.3.1 the example of Dwork
discussed in Chapter 0. In that example one is separating the Picard–Fuchs
module, which has rank 2, into a unit-root component and a component
of slope log p. For this to be possible, one must be in the situation of
Theorem 15.3.4; this fails precisely at the residue discs at which the Igusa
polynomial vanishes, which is why one must invert the Igusa polynomial in
the course of the computation.

Notes

The notion of algebraic de Rham cohomology was introduced by Grothendieck
in [98], where he gave an algebraic construction of the topological de Rham
cohomology of a complex algebraic variety. The construction involves com-
mingling the straightforward cohomology of the de Rham complex (con-
structed from a module of Kähler differentials) with the cohomology of
coherent algebraic sheaves. The subject was further developed by Hartshorne
[105, 106]. A thorough treatment of Grothendieck’s theorem can be found
in [97].

In the final footnote to [98], Grothendieck gave what we believe was the
first suggestion that one should consider in general what we call Picard–Fuchs
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modules. His suggestion was based on Manin’s work on the Mordell conjec-
ture over function fields; partly for this reason, Picard–Fuchs modules are also
commonly known as Gauss–Manin connections. (This terminology is appar-
ently due to Grothendieck. The name presumably refers to Gauss’s study of
hypergeometric differential equations, which incorporated the original Picard–
Fuchs equation governing the periods of elliptic curves.) A good collection of
onward references can be found in [109].

The fact that a Picard–Fuchs module has regular singularities with rational
exponents can be proved in several ways, both geometric (Griffiths, Landman)
and arithmetic (Katz). One can also formulate a more abstract version, con-
cerning polarized variations of Hodge structures; this was proved by Borel and
extended by Schmid (see the notes to Chapter 20 for further discussion of this
last point). Again, see [109] for references.

The construction of Frobenius structures on Picard–Fuchs modules is a
consequence of general results in the theory of p-adic cohomology, which
we discuss further in the next chapter. For the moment we point out that
Theorem 22.2.1 in its stated form can be found in [211, Theorem 3.3.1].

Lauder’s strategy for computing zeta functions (also called the deforma-
tion method) was introduced in [154]; it has been worked out in detail for
hyperelliptic curves by Hubrechts [116]. Hubrechts implemented the resulting
algorithm in version 2.14 of the computer algebra system Magma. A version
for hypersurfaces was described by Gerkmann [96].
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Rigid cohomology

It has been suggested several times in this book that the study of p-adic
differential equations is deeply connected with the theory of p-adic cohomol-
ogy for varieties over finite fields. In particular, the Frobenius structures arising
on Picard–Fuchs modules, discussed in the previous chapter, appear within this
theory.

In this chapter, we introduce a little of the theory of rigid p-adic cohomol-
ogy, as developed by Berthelot and others. In particular, we illustrate the role
played by the p-adic local monodromy theorem in a fundamental finiteness
problem in the theory.

23.1 Isocrystals on the affine line

We start with a concrete description of p-adic cohomology in a very special
case, namely the cohomology of “locally constant” coefficient systems on the
affine line over a finite field. This is due to Crew [62].

Definition 23.1.1. Let k be a perfect (for simplicity) field of characteristic p >
0. Let K be a complete discrete (again for simplicity) nonarchimedean field of
characteristic 0 with κK = k. An overconvergent F-isocrystal on the affine line
over k (with coefficients in K ) is a finite differential module with Frobenius
structure on the ring A = ∪β>1 K 〈t/β〉, for some absolute Frobenius lift φ;
as in Proposition 17.3.1 the resulting category is independent of the choice of
Frobenius lift.

Definition 23.1.2. Let M be an overconvergent F-isocrystal on the affine
line over k. Let R be a copy of the Robba ring with series parameter t−1,
so that we can identify A as a subring of R. (We can write explicitly R =
∪β>1 K 〈β−1/t−1, t−1}.) Define
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H0(A1
k,M) = ker(D,M),

H1(A1
k,M) = coker(D,M),

H0
loc(A

1
k,M) = ker(D,M ⊗A R),

H1
loc(A

1
k,M) = coker(D,M ⊗A R),

H1
c (A

1
K ,M) = ker(D,M ⊗A (R/A)),

H2
c (A

1
K ,M) = coker(D,M ⊗A (R/A)).

By taking kernels and cokernels in the short exact sequence

0 → M → M ⊗A R → M ⊗A (R/A)→ 0

and applying the snake lemma, we get an exact sequence

0 → H0(A1
k,M)→ H0

loc(A
1
k,M)→ H1

c (A
1
k,M)

→ H1(A1
k,M)→ H1

loc(A
1
k,M)→ H2

c (A
1
k,M)→ 0.

Remark 23.1.3. Crew [62] showed that in this construction Hi computes the
rigid cohomology of M , Hi

c computes the rigid cohomology with compact
supports, and Hi

loc computes some sort of local cohomology at ∞.

Crew’s main result in this setting was the following.

Theorem 23.1.4 (Crew). The spaces Hi (A1
k,M), Hi

c (A
1
k,M), Hi

loc(A
1
K ,M)

are all finite-dimensional over K . Moreover, the Poincaré pairings

Hi (A1
k,M)× H2−i

c (A1
k,M∨)→ H2

c (A
1
k,A) ∼= K ,

Hi
loc(A

1
k,M)× H1−i

loc (A
1
k,M∨)→ H1

loc(A
1
K ,A) ∼= K

are perfect.

The key ingredient is the fact that, by the p-adic local monodromy theorem
(Theorem 20.1.4), M ⊗A R is quasiunipotent which implies the finiteness
of Hi

loc(A
1
k,M). This further implies the finite dimensionalities, except for

H1
c (A

1
k,M) and H1(A1

k,M); however, these are related by a map with finite-
dimensional kernel and cokernel. Moreover, they carry incompatible topolo-
gies: the former is a Fréchet space while the latter is dual to a Fréchet space.
This incompatibility can be resolved only if both spaces are finite-dimensional.

23.2 Crystalline and rigid cohomology

Next, we briefly discuss how the previous example fits into a broader theory of
p-adic cohomology, deferring most references to the notes.
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Motivated by the work of Dwork and also by related work of Monsky and
Washnitzer, Grothendieck proposed a method of constructing an analogue of
algebraic de Rham cohomology in positive characteristic. This was developed
by Berthelot and Ogus into the theory of crystalline cohomology. An impor-
tant example of this is the fact that if X is a smooth proper scheme over Zp

then the algebraic de Rham cohomology of X carries a Frobenius action that
computes the zeta function of the special fibre. (This generalizes to explain
the results on Frobenius structures and zeta functions discussed in the previous
chapter.)

One defect of crystalline cohomology is that it gives a coherent cohomo-
logy theory only for schemes over a finite field that are smooth and proper.
By contrast, the work of Monsky and Washnitzer had given a good theory
for smooth affine schemes. To fuse these theories, Berthelot introduced the
theory of rigid cohomology as well as a theory of locally constant coefficient
objects, overconvergent F-isocrystals. The example in the previous paragraph
demonstrates the computation of the cohomology of coefficients on the affine
line; a theory of cohomology with compact supports, and a local cohomology
theory, are also demonstrated by Crew’s construction.

For trivial coefficients, it was shown by Berthelot that rigid cohomology has
all the desired properties of a Weil cohomology: finite dimensionality, Poincaré
duality, Künneth formula, cycle class maps, the Lefschetz trace formula for
Frobenius morphisms, etc. These were extended to nonconstant coefficients
by Kedlaya, using a relative version of Theorem 23.1.4.

Berthelot also suggested a theory of constructible coefficients, based on
ideas from the theory of algebraic D-modules. (These are modules over a ring
of differential operators; they are the natural coefficient objects in algebraic de
Rham cohomology.) Recent work of Caro, Kedlaya, and Tsuzuki has shown
that they form a good theory of coefficients, enjoying the same formal proper-
ties as their �-adic étale counterparts. For example, one can execute a proof of
the Weil conjectures entirely using p-adic cohomology [132].

23.3 Machine computations

In recent years, interest has emerged in explicit computation of the zeta func-
tions of algebraic varieties defined over finite fields. Some of this interest
has come from cryptography, in particular the use of the Jacobians of elliptic
(and later hyperelliptic) curves over finite fields as “black box abelian groups”
for certain public-key cryptography schemes (Diffie-Hellman, ElGamal). For
elliptic curves, a good method for doing this was proposed by Schoof [196]. It
amounts to computing the trace of the Frobenius morphism on the �-torsion
points, the set of which is otherwise known as the étale cohomology with
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F�-coefficients, for values of � small enough to determine uniquely the one
unknown coefficient of the zeta function within the range prescribed by the
Hasse–Weil bound.

It turns out to be somewhat more difficult to execute Schoof’s scheme for
curves of higher genus, as discovered by Pila [180]. One is forced to work with
higher-division polynomials in order to compute the torsion of the Jacobian
of the curve; an interpretation in terms of étale cohomology is of little value
because the definition of étale cohomology is not intrinsically computable. (It
is easy to write down cohomology classes, but it is difficult to test two such
classes for equality.)

It has been noticed by several authors that rigid cohomology is intrinsically
more computable and so lends itself better to this sort of task. Specifically,
Kedlaya [124] proposed an algorithm using rigid cohomology to compute the
zeta function of a hyperelliptic curve over a finite field of small odd character-
istic. The limitation to odd characteristic was lifted by Denef and Vercauteren
[72]; the limitation to small characteristic was somewhat remedied by Harvey
[108], who improved the dependence on the characteristic p from O(p) to
O(p1/2+ε).

More recently, interest has emerged in considering also higher-dimensional
varieties; this has come partly from potential applications in the study of mir-
ror symmetry for Calabi–Yau varieties. In this case étale cohomology is of no
help at all, since there is no geometric interpretation of Hi

et for i > 1 analo-
gous to the interpretation for i = 1 in terms of the Jacobian. Rigid cohomology
should still be computable, but relatively little progress has been made in mak-
ing these computations practical (one exception being the treatment of smooth
surfaces in projective 3-space in [3]). It may be necessary to combine these
techniques with Lauder’s deformation method (see Remark 22.3.2) to obtain
the best results.

Notes

Crew’s work, and subsequent work that builds on it (e.g., [131]), makes essen-
tial use of nonarchimedean functional analysis, as was evident in the discussion
of Theorem 23.1.4. We recommend Schneider’s book [195] as a user-friendly
introduction to this topic.

For general surveys of the subject of p-adic cohomology, we recom-
mend [117] (for crystalline cohomology only) and [141] (broader but more
advanced). Also useful at this level of generality is Berthelot’s original article
outlining the theory of rigid cohomology [22].

For the basics of crystalline cohomology, see [27] and references within
(largely to Berthelot’s thesis [21]). For the work of Monsky and Washnitzer
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which motivated it, in addition to the original papers [172, 173, 174] there is
also a useful survey by van der Put [213].

Until recently no comprehensive introductory text on rigid cohomology was
available. That state of affairs was remedied by the appearance of the book
of Le Stum [157]. Berthelot’s own attempt at a foundational treatise remains
incomplete, but what does exist [23] may also be helpful. Some of the function
of a foundational text has been served by Berthelot’s articles concerning finite
dimensionality [24] and Poincaré duality [25].

For coefficients in an overconvergent F-isocrystal, the basic properties
(finite dimensionality, Poincaré duality, the Künneth formula) are proved in
[131] using techniques similar to those of Crew in [62]. However, these
techniques do not appear to suffice for the construction of a full coefficient
theory. For this, one needs a higher-dimensional analogue of Theorem 20.1.4,
called the semistable reduction theorem for overconvergent F-isocrystals. This
asserts that an overconvergent F-isocrystal on a noncomplete variety can
always be extended to a logarithmic isocrystal on some compactification, after
pulling back along a generically finite cover; such a result allows reductions
to arguments about (logarithmic) crystalline cohomology. (Except for the part
of the theorem that concerns the cover, this is analogous to Deligne’s theory
of canonical extensions in [68].) See [134, 137, 140, 143] for the proof; the
original results from the present book feature prominently in [143].

Berthelot wrote a useful survey of his theory of arithmetic D-modules [26].
It is this theory that has been developed by Caro (in part jointly with Tsuzuki)
into a full theory of p-adic coefficients. This work is quite expansive and
requires a summary more detailed than we can provide here; see [35, 36] for a
representative sample.

On the subject of machine calculations, as a companion to our original paper
on hyperelliptic curves [124] we recommend Edixhoven’s course notes [83].
Some discussion is also included in [93, Chapter 7]. We gave a condensed
summary of the general approach in [127]. For more on the role of elliptic and
hyperelliptic curves in cryptography (including the relevance of the problem of
the machine computation of zeta functions), the standard first reference is [55]
even though it is some years behind the frontiers of this fast-moving subject.
(For instance, it predates the growing area of pairing-based cryptography.)
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p-adic Hodge theory

For our last application we turn to the subject of p-adic Hodge theory. Recall
that in Chapter 19 we described a “nonabelian Artin–Schreier” construction,
giving an equivalence of categories between continuous representations of the
absolute Galois group of a positive characteristic local field on a p-adic vec-
tor space and certain differential modules with Frobenius structures. In this
chapter, we describe an analogous construction for the Galois group of a
mixed-characteristic local field. We also mention a couple of applications of
this construction.

Hypothesis 24.0.1. Throughout this chapter, let K be a finite extension of Qp,
let V be a finite-dimensional Qp-vector space, and let τ : G K → GL(V ) be a
continuous homomorphism for the p-adic topology on V .

24.1 A few rings

We begin with the “field of norms” construction of Fontaine and Wintenberger.

Definition 24.1.1. Put Kn = K (ζpn ) and K∞ = ∪n Kn . Let F = Frac W (κK )

and F ′ be the maximal subfields of K and K∞, respectively, that are unramified
over Qp. Put HK = G K∞ and �K = G K∞/K = G K /HK .

Definition 24.1.2. Put o = oCp . Let Ẽ+ be the inverse limit of the system

· · · → o/po → o/po,

in which each map is the p-power Frobenius morphism (which is a ring homo-
morphism). More explicitly, the elements of Ẽ+ are sequences (x0, x1, . . . )

of elements of o/po for which x p
n+1 = xn for all n. In particular, for any

nonzero x ∈ Ẽ+, the quantity pnvp(xn) is the same for all n for which

357
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xn �= 0; we call this quantity v(x) and conventionally put v(0) = +∞. Choose
ε = (ε0, ε1, . . . ) ∈ Ẽ+ with ε0 = 1 and ε1 �= 1. (This choice is somewhat
analogous to the choice of a square root of −1 in C.)

The following observations were made by Fontaine and Wintenberger [92].

Proposition 24.1.3. The following are true.
(a) The ring Ẽ+ is a domain in which p = 0, with fraction field Ẽ =

Ẽ+[(ε − 1)−1].
(b) The function v : Ẽ+ → [0,+∞] extends to a valuation on Ẽ under

which Ẽ is complete and oẼ = Ẽ+.

(c) The field Ẽ is the algebraic closure of κK ((ε − 1)). (The embedding of
κK ((ε − 1)) into Ẽ exists because v(ε − 1) = p/(p − 1) > 0.)

Definition 24.1.4. Let Ã be the ring of Witt vectors of Ẽ, i.e., the unique
complete discrete valuation ring with maximal ideal p and residue field Ẽ. The
uniqueness follows from the fact that Ẽ is algebraically closed, hence perfect.
In particular, the p-power Frobenius morphism on Ẽ lifts to an automorphism
φ of Ã. (See the notes for Chapter 14 for further discussion of Witt vectors.)

Definition 24.1.5. Each element of Ã can be uniquely written as the sum∑∞
n=0 pn[xn], where xn ∈ Ẽ and [xn] denotes the Teichmüller lift of xn (the

unique lift of xn that has a pm th root in Ã for all positive integers m); note
that φ([x]) = [x p] = [x]p. We may thus equip Ã with a weak topology,
in which a sequence xm = ∑∞

n=0 pn[xm,n] converges to zero if, for each n,
v(xm,n) → +∞ as m → +∞. Let AQp be the completion of Zp[([ε] − 1)±]
in Ã for the weak topology; as a topological ring, it is isomorphic to the ring oE
defined over the base field Qp with its own weak topology. It is also φ-stable
because φ([ε]) = [ε]p.

Definition 24.1.6. Let A be the completion of the maximal unramified
extension of AQp , viewed as a subring of Ã. Put

AK = AHK ,

where the right-hand side makes sense because we have chosen all the rings so
far in a functorial fashion, so that they indeed carry a G K -action. Note that AK

can be written as a ring of the form oE , but with coefficients in F ′ rather than
in Qp.

Definition 24.1.7. For any ring denoted with a boldface A so far, define the
corresponding ring with A replaced by B by tensoring over Zp with Qp. For
instance, B̃ = Ã ⊗Zp Qp is the fraction field of Ã.
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24.2 (φ, �)-modules

We are now ready to describe the mechanism, introduced by Fontaine, for con-
verting Galois representations into modules over various rings equipped with
much simpler group actions.

Definition 24.2.1. Recall that V is a finite-dimensional vector space equipped
with a continuous G K -action. Put

D(V ) = (V ⊗Qp B)HK ;
by the Hilbert–Noether theorem, D(V ) is a finite-dimensional BK -vector
space, and the natural map D(V ) ⊗BK B → V ⊗Qp B is an isomorphism.
Since we have taken only HK -invariants, D(V ) retains a semilinear action of
G K /HK = �K ; it also inherits an action of φ from B. That is, D(V ) is a
(φ, �)-module over BK , i.e., a finite free BK -module equipped with semilin-
ear φ and �K -actions that commute with each other. It is also étale, which is to
say the φ-action is étale (unit-root), because, as in Definition 19.2.4, one can
find a G K -invariant lattice in V .

Theorem 24.2.2 (Fontaine). The functor D, from the category of continuous
representations of G K on finite-dimensional Qp-vector spaces to the category
of étale (φ, �)-modules over BK , is an equivalence of categories.

Proof. The inverse functor is

V = (D(V )⊗BK B)φ=1.

The argument is similar to that in the proof of Proposition 19.1.5; see [89].

In much the same way that Proposition 19.1.5 was refined by
Theorem 19.3.1, Theorem 24.2.2 was refined by Cherbonnier and Colmez as
follows [38]. The big difference is that no additional restriction on the Galois
representations is imposed.

Definition 24.2.3. Let B†
Qp

be the image of the bounded Robba ring E†, under
the identification of E (having coefficients in Qp) with BQp , sending t to [ε]−
1. Let B†

K be the integral closure of B†
Qp

in BK . Again, B†
K carries the actions

of φ and �K .

Definition 24.2.4. Let A† be the set of x = ∑∞
n=0 pn[xn] ∈ A such that

lim inf
n→∞ {v(xn)/n} > −∞.

Define
D†(V ) = (V ⊗Qp B†)HK ;

it is an étale (φ, �)-module over B†
K .
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The following is the main result of [38].

Theorem 24.2.5 (Cherbonnier–Colmez). The functor D†, from the category
of continuous representations of G K on finite-dimensional Qp-vector spaces to
the category of étale (φ, �)-modules over B†

K , is an equivalence of categories.

Remark 24.2.6. By Theorem 24.2.2, to check Theorem 24.2.5 it suffices to
check that the base extension functor from étale (φ, �)-modules over B†

K
to étale (φ, �)-modules over BK is an equivalence. The full faithfulness of
this functor is elementary and it follows from Lemma 16.3.2. The essential
surjectivity is much deeper; it amounts to the fact that the natural map

D†(V )⊗B†
K

B† → V ⊗Qp B†

is an isomorphism. Verifying this requires the development of an appropriate
analogy to Sen’s theory of decompletion; this analogy has been developed into
a full abstract Sen theory by Berger and Colmez [18].

A further variant was proposed by Berger [14].

Definition 24.2.7. Using the identification B†
Qp

∼= E†, put

B†
rig,K = B†

K ⊗B†
Qp

R,

where R is the Robba ring over Qp; the subscript “rig” indicates “rigid” in
the sense of rigid analytical geometry. Note that B†

rig,K admits continuous
extensions (for the LF-topology) of the actions of φ and �K . Define

D†
rig(V ) = D†(V )⊗B†

K
B†

rig,K ;

it is an étale (φ, �)-module over B†
rig,K .

Theorem 24.2.8 (Berger). The functor D†
rig, from the category of continuous

representations of G K on finite-dimensional Qp-vector spaces to the category
of étale (φ, �)-modules over B†

rig,K , is an equivalence of categories.

Remark 24.2.9. The principal new content in Theorem 24.2.8 is that the base
extension functor from étale φ-modules over E† to étale φ-modules over R is
fully faithful; this follows from Corollary 16.3.4. The essential surjectivity of
the functor is almost trivial, since the étaleness of the φ-action is defined over
the Robba ring by base extension from E† (Definition 16.3.1). One need only
check that the �K -action also descends to any étale lattice, but this is easy: the
proof is similar to that of Lemma 17.4.2.
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24.3 Galois cohomology

Since the functor D and its variants lose no information about Galois represen-
tations, it is unsurprising that they can be used to recover basic invariants of a
representation, such as its Galois cohomology.

Definition 24.3.1. Assume for simplicity that �K is procyclic; this eliminates
only the case where p = 2 and {±1} ⊂ �, for which see Remark 24.3.2
below. Let γ be a topological generator of �. Define the Herr complex over
BK associated with V as the complex (with the first nonzero term placed in
degree 0)

0 → D(V )→ D(V )⊕ D(V )→ D(V )→ 0;
here the first map is m �→ ((φ−1)m, (γ −1)m) and the second is (m1,m2)→
(γ − 1)m1 − (φ − 1)m2. (The fact that this is a complex follows from the
commutativity of φ and γ .) Similarly, define the Herr complex over B†

K or

B†
rig,K by replacing D(V ) by D†(V ) or D†

rig(V ), respectively.

Remark 24.3.2. In a more conceptual description, which also covers the case
where �K need not be profinite, one takes the total complex associated with

0 → C ·(�K , D(V ))
φ−1→ C ·(�K , D(V ))→ 0,

where C ·(�K , D(V )) is the usual cochain complex for computing Galois
cohomology (as in [199, §I.2.2]). One might think of this as the “monoid
cohomology” of �K × φZ≥0 acting on D(V ).

Theorem 24.3.3. The cohomology of the Herr complex computes the Galois
cohomology of V .

Proof. For BK , the desired result was established by Herr [111]. The argument
proceeds in two steps. One takes first the cohomology of the Artin–Schreier
sequence

0 → Qp → B
φ−1→ B → 0,

after tensoring with V . This reduces the claim to the fact that the inflation
homomorphisms

Hi (�K , D(V ))→ Hi (G K , V ⊗Qp B)

are bijections; this is proved by adapting a technique introduced by Sen.
For B†

K and B†
rig,K , the desired result was established by Liu [160]; his argu-

ment proceeds by comparison with the original Herr complex rather than by
imitation of the above argument, though one could probably do that also.
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Remark 24.3.4. As in [111, 160], one can make Theorem 24.3.3 more precise.
For instance, the construction of Galois cohomology is functorial; there is also
an interpretation in the Herr complex of the cup product in cohomology.

Remark 24.3.5. One can also use the Herr complex to recover Tate’s fun-
damental theorems on Galois cohomology (finite dimensionality, the Euler–
Poincaré characteristic formula, local duality). This was done by Herr in [112].

24.4 Differential equations from (φ, �)-modules

One of the original goals of p-adic Hodge theory was to associate finer invari-
ants with p-adic Galois representations, so as, for instance, to distinguish those
representations which arise in geometry (i.e., from the étale cohomology of
varieties over K ). This was originally done using a collection of “period rings”
introduced by Fontaine; more recently, Berger’s work has demonstrated that
one can reproduce these constructions using (φ, �)-modules. Here is a brief
description of an example that shows the relevance of p-adic differential equa-
tions to this study. We will make reference to Fontaine’s rings BdR,Bst without
giving definitions of them, for which see [15].

Definition 24.4.1. Let χ : �K → Z×
p denote the cyclotomic character; that is,

for all nonnegative integers m and all γ ∈ �K ,

γ (ζpm ) = ζ
χ(γ )
pm .

For γ ∈ �K sufficiently close to 1, we may compute

∇ = log γ

logχ(γ )

as an endomorphism of D(V ), using the power series for log(1+x). The result
does not depend on γ .

Remark 24.4.2. If one views �K as a one-dimensional p-adic Lie group over
Zp then ∇ is the action of the corresponding Lie algebra.

Definition 24.4.3. Note that ∇ acts on B†
rig,K with respect to

f �→ [ε] log[ε] d f

d[ε] .

As a result, it does not induce a differential module structure with respect
to d/dt on D(V ), but only on D(V ) ⊗ B†

rig,K [(log[ε])−1]. We say that V is
de Rham if there exists a differential module with Frobenius structure M over
B†

rig,K and an isomorphism
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D(V )⊗ B†
rig,K [(log[ε])−1] → M ⊗ B†

rig,K [(log[ε])−1]
of differential modules with Frobenius structure.

One then has the following results of Berger [14].

Theorem 24.4.4 (Berger).
(a) The representation V is de Rham if and only if it is de Rham in

Fontaine’s sense, i.e., if

DdR(V ) = (V ⊗Qp BdR)
G K

satisfies

DdR(V )⊗K BdR ∼= V ⊗Qp BdR.

(b) Suppose that V is de Rham. If V is semistable in Fontaine’s sense,
i.e., if

Dst(V ) = (V ⊗Qp Bst)
G K

satisfies

Dst(V )⊗F Bst ∼= V ⊗Qp Bst

then there exists an M as in Definition 24.4.3 that is unipotent. Con-
versely, if such an M exists then V is potentially semistable, i.e., it
becomes semistable upon restriction to GL for some finite extension
L of K .

Applying Theorem 20.1.4 then yields the following corollary, which was
previously a conjecture of Fontaine [90, 6.2].

Corollary 24.4.5 (Berger). Every de Rham representation is potentially
semistable.

Remark 24.4.6. The descriptor “de Rham” is meant to convey the fact that
if V = Hi

et(X ×K K alg,Qp) for X a smooth proper variety over K then
V is de Rham and one can use the aforementioned constructions to recover
Hi

dR(X, K ) functorially from V (solving Grothendieck’s “problem of the
mysterious functor”). See [15] for more of this story.

24.5 Beyond Galois representations

The category of arbitrary (φ, �)-modules over B†
rig,K turns out to have its own

representation-theoretic interpretation: it is equivalent to the category of B-
pairs introduced by Berger [16]. One can associate “Galois cohomology” with
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such objects using the Herr complex; it has been shown by Liu [160] that the
analogues of Tate’s theorems (see Remark 24.3.5) still hold. These functors
can be interpreted as the derived functors of Hom(D†

rig(V0), ·) when V0 is the
trivial representation [142, Appendix].

It may be wondered why we should be interested in (φ, �)-modules over
B†

rig,K if ultimately we have in mind an application concerning only Galois
representations. One answer is that converting Galois representations into
(φ, �)-modules exposes extra structure that is not visible without such a
conversion.

Definition 24.5.1 (Colmez). We say that V is trianguline if D†
rig(V ) is a

successive extension of (φ, �)-modules of rank 1 over B†
rig,K . The point is

that these need not be étale, so V need not be a successive extension of
representations of dimension 1.

Trianguline representations have the dual benefits of being relatively easy to
classify and also somewhat commonplace. On one hand, Colmez [58] classi-
fied the two-dimensional trianguline representations of GQp ; the classification
included a parameter (the L-invariant) relevant to p-adic L-functions. On
the other hand, a result of Kisin [146] shows that the Galois representations
associated with many classical modular forms are in fact trianguline.

Notes

Our presentation here was largely a summary of Berger’s [15], which we highly
recommend. For detailed study, the recent notes by Brinon and Conrad for the
2009 Clay Mathematics Institute summer school [32] may be of considerable
value.

A variant of the theory of (φ, �)-modules was introduced by Kisin [147],
using the Kummer tower K (p1/pn

) instead of the cyclotomic tower K (ζpn ).
This leads to certain advantages, particularly when studying crystalline rep-
resentations. For instance, Kisin was able to use his construction to establish
some classification theorems for finite flat group schemes and for p-divisible
groups, as conjectured by Breuil. Kisin’s work was based on an earlier paper
of Berger [17]; both of these use slope filtrations (as in Theorem 16.4.1)
to recover a theorem of Colmez and Fontaine classifying semistable Galois
representations in terms of certain linear algebraic data.

After [14] had appeared, Fontaine succeeded in giving a direct proof of
Corollary 24.4.5 that did not involve p-adic differential equations; see [91].



References

[1] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, Amer. J.
Math. 124 (2002), 879–920.

[2] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, II, Doc.
Math. extra vol. (2003), 5–72.

[3] T. G. Abbott, K. S. Kedlaya, and D. Roe, Bounding Picard numbers of surfaces using
p-adic cohomology, in Arithmetic, Geometry and Coding Theory (AGCT 2005), Societé
Mathématique de France, 2009, pp. 125–159.

[4] Y. André, Différentielles non commutatives et théorie de Galois différentielle ou aux
différences, Ann. Sci. École Norm. Sup. (4) 34 (2001), 685–739.

[5] Y. André, Filtrations de type Hasse–Arf et monodromie p-adique, Invent. Math. 148 (2002),
285–317.

[6] Y. André, Dwork’s conjecture on the logarithmic growth of solutions of p-adic differential
equations, Compos. Math. 144 (2008), 484–494.

[7] Y. André and F. Baldassarri, De Rham Cohomology of Differential Modules on Algebraic
Varieties, Progress in Math. 189, Birkhäuser, 2001.

[8] Y. André and L. Di Vizio, q-difference equations and p-adic local monodromy, Astérisque
296 (2004), 55–111.

[9] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley,
Reading, 1969.

[10] F. Baldassarri, Continuity of the radius of convergence of differential equations on p-adic
analytic curves, arXiv:0809.2479v3 (2009).

[11] F. Baldassarri and L. Di Vizio, Continuity of the radius of convergence of p-adic differential
equations on Berkovich analytic spaces, arXiv:0709.2008v3 (2008).

[12] M. Baker and R. Rumely, Potential Theory and Dynamics on the Berkovich Projective Line,
Math. Surveys and Monographs 159, Amer. Math. Soc., 2010.

[13] A. Beilinson, S. Bloch, and H. Esnault, ε-factors for Gauss–Manin determinants, Moscow
J. Math. 2 (2002), 477–532.

[14] L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002),
219–284.

[15] L. Berger, An introduction to the theory of p-adic representations, in Geometric Aspects of
Dwork Theory, Vols. I, II, de Gruyter, Berlin, 2004, 255–292.

[16] L. Berger, Construction de (ϕ, �)-modules: représentations p-adiques et B-paires, Algebra
and Num. Theory 2 (2008), 91–120.

[17] L. Berger, Équations différentielles p-adiques et (φ, N )-modules filtrés, Astérisque 319
(2008), 13–38.

[18] L. Berger and P. Colmez, Familles de représentations de de Rham et monodromie p-adique,
Astérisque 319 (2008), 303–337.

365



366 References

[19] V. G. Berkovich, Spectral Theory and Analytic Geometry over Non-Archimedean Fields,
Math. Surveys and Monographs 33, Amer. Math. Soc., Providence, 1990.

[20] V. G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHÉS
78 (1993), 5–161.

[21] P. Berthelot, Cohomologie Cristalline des Schémas de Caractéristique p > 0, Lecture Notes
in Math. 407, Springer-Verlag, Berlin, 1974.

[22] P. Berthelot, Géométrie rigide et cohomologie des variétés algébriques de caractéristique
p, in Introductions aux cohomologies p-adiques (Luminy, 1984), Mém. Soc. Math. France
(N.S.) 23 (1986), 7–32.

[23] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre. Première par-
tie, Prépublication IRMAR 96-03, available at http://perso.university-rennes1.fr/pierre.
berthelot/.

[24] P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide (with an appendix in
English by A. J. de Jong), Invent. Math. 128 (1997), 329–377.

[25] P. Berthelot, Dualité de Poincaré et formule de Künneth en cohomologie rigide, C.R. Acad.
Sci. Paris 325 (1997), 493–498.

[26] P. Berthelot, Introduction à la théorie arithmétique des D-modules, cohomologies p-adiques
et applications arithmétiques, II, Astérisque 279 (2002), 1–80.

[27] P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton University Press,
Princeton, 1978.

[28] R. Bhatia, Matrix Analysis, Graduate Texts in Math. 169, Springer-Verlag, New York,
1997.

[29] J. M. Borger, Conductors and the moduli of residual perfection, Math. Annalen 329
(2004), 1–30.

[30] S. Bosch, Lectures on formal and rigid geometry, preprint (2008) available at
http://wwwmath1.uni-muenster.de/sfb/about/publ/bosch.html.

[31] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean Analysis, Grundlehren der Math.
Wiss. 261, Springer-Verlag, Berlin, 1984.

[32] O. Brinon and B. Conrad, p-adic Hodge theory, notes from the 2009 Clay Mathematics
Institute summer school, available online at http://math.stanford.edu/ ˜conrad/.

[33] S. Boucksom, C. Favre, and M. Jonsson, Valuations and plurisubharmonic singularities,
Publ. Res. Inst. Math. Sci. 44 (2008), 449–494.

[34] K. Buzzard and F. Calegari, Slopes of overconvergent 2-adic modular forms, Compos. Math.
141 (2005), 591–604.

[35] D. Caro, F-isocristaux surconvergents et surcohérence différentielle, Invent. Math. 170
(2007), 507–539.

[36] D. Caro, Dévissages des F-complexes de D-modules arithmétiques en F-isocristaux
surconvergents, Invent. Math. 166 (2006), 397–456.

[37] N. L. Carothers, A Short Course on Banach Space Theory, Cambridge University Press,
2004.

[38] F. Cherbonnier and P. Colmez, Représentations p-adiques surconvergentes, Invent. Math.
133 (1998), 581–611.

[39] B. Chiarellotto and G. Christol, On overconvergent isocrystals and F-isocrystals of rank
one. Compos. Math. 100 (1996), 77–99.

[40] B. Chiarellotto and A. Pulita, Arithmetic and Differential Swan conductors of rank one
representations with finite local monodromy, arXiv:0711.0701v1 (2007); to appear in Amer.
J. Math.

[41] B. Chiarellotto and N. Tsuzuki, Logarithmic growth and Frobenius filtrations for solutions
of p-adic differential equations, J. Inst. Math. Jussieu 8 (2009), 465–505.

[42] G. Christol, Modules Différentiels et Equations Différentielles p-adiques, Queen’s Papers
in Pure and Applied Math. 66, Queen’s University, Kingston, 1983.



References 367

[43] G. Christol, Un théorème de transfert pour les disques singuliers réguliers, in Cohomologie
p-adique, Astérisque 119–120 (1984), 151–168.

[44] G. Christol, About a Tsuzuki theorem, in p-adic Functional Analysis (Ioannina, 2000),
Lecture Notes in Pure and Appl. Math. 222, Dekker, New York, 2001, 63–74.

[45] G. Christol, Thirty years later, in Geometric Aspects of Dwork Theory, Vol. I, de Gruyter,
Berlin, 2004, 419–436.

[46] G. Christol, Le Théorème de Turritin p-adique, in preparation; draft available at http://
people.math.jussieu.fr/∼christol.

[47] G. Christol and B. Dwork, Effective p-adic bounds at regular singular points, Duke Math.
J. 62 (1991), 689–720.

[48] G. Christol and B. Dwork, Differential modules of bounded spectral norm, in p-adic Meth-
ods in Number Theory and Algebraic Geometry, Contemp. Math. 133, Amer. Math. Soc.,
Providence, 1992.

[49] G. Christol and B. Dwork, Modules différentielles sur les couronnes, Ann. Inst. Fourier 44
(1994), 663–701.

[50] G. Christol and Z. Mebkhout, Sur le théorème de l’indice des équations différentielles, II,
Annals of Math. 146 (1997), 345–410.

[51] G. Christol and Z. Mebkhout, Sur le théorème de l’indice des équations différentielles, III,
Annals of Math. 151 (2000), 385–457.

[52] G. Christol and Z. Mebkhout, Sur le théorème de l’indice des équations différentielles, IV,
Invent. Math. 143 (2001), 629–672.

[53] R. C. Churchill and J. J. Kovacic, Cyclic vectors, in Differential Algebra and Related Topics
(Newark, NJ, 2000), World Scientific, River Edge NJ, 2002, 191–218.

[54] D. Clark, A note on the p-adic convergence of solutions of linear differential equations,
Proc. Amer. Math. Soc. 17 (1966), 262–269.

[55] H. Cohen and G. Frey (eds.), Handbook of Elliptic and Hyperelliptic Curve Cryptography,
Discrete Math. and its Applications 34, Chapman & Hall/CRC, 2005.

[56] R. M. Cohn, Difference Algebra, John Wiley & Sons, New York, London, Sydney, 1965.
[57] R. F. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent. Math. 69 (1982),

171–208.
[58] P. Colmez, Représentations triangulines de dimension 2, Astérisque 319 (2008), 213–258.
[59] B. Conrad, Several approaches to non-archimedean geometry, in M. Baker et al.

(eds.), p-adic Geometry: Lectures from the 2007 Arizona Winter School, University Lec-
ture Series 45, Amer. Math. Soc., 2008.

[60] F. T. Cope, Formal solutions of irregular linear differential equations, II, Amer. J. Math. 58
(1936), 130–140.

[61] R. Crew, F-isocrystals and p-adic representations, in Algebraic Geometry (Brunswick,
Maine, 1985), Proc. Symp. Pure Math. 46, Part 2, Amer. Math. Soc., Providence, 1987,
111–138.

[62] R. Crew, Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve,
Ann. Sci. Éc. Norm. Sup. 31 (1998), 717–763.

[63] R. Crew, Canonical extensions, irregularities, and the Swan conductor, Math. Ann. 316
(2000), 19–37.

[64] N. E. Csima, Newton–Hodge filtration for self-dual F-crystals, arXiv:0706/2530v1 (2007).
[65] A. J. de Jong, Homomorphisms of Barsotti–Tate groups and crystals in positive characteris-

tic, Invent. Math. 134 (1998), 301–333; erratum, ibid. 138 (1999), 225.
[66] A. J. de Jong, Barsotti–Tate groups and crystals, in Proc. Int. Congress of Mathematicians,

Vol. II (Berlin, 1998), Doc. Math. Extra Vol. II (1998), 259–265.
[67] A. J. de Jong and F. Oort, Purity of the stratification by Newton polygons, J. Amer. Math.

Soc. 13 (2000), 209–241.
[68] P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math.

163, Springer-Verlag, Berlin, 1970.



368 References

[69] P. Deligne, La conjecture de Weil, II, Publ. Math. IHÉS 52 (1980), 137–252.
[70] P. Deligne and N. Katz (eds.), Groupes de Monodromie en Géométrie Algébrique II, Proc.

Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Lecture Notes in
Math. 340, Springer-Verlag, Berlin, New York, 1973.

[71] M. Demazure, Lectures on p-divisible Groups, Lecture Notes in Math. 302, Springer-
Verlag, New York, 1972.

[72] J. Denef and F. Vercauteren, An extension of Kedlaya’s algorithm to hyperelliptic curves in
characteristic 2, J. Cryptology 19 (2006), 1–25.

[73] L. Di Vizio, Local analytic classification of q-difference equations with |q| = 1, J. Non-
commutative Geom. 3 (2009), 125–149.

[74] B. Dwork, p-adic cycles, Publ. Math. IHÉS 37 (1969), 27–115.
[75] B. Dwork, On p-adic differential equations, II. The p-adic asymptotic behavior of solutions

of ordinary linear differential equations with rational function coefficients, Ann. Math. (2)
98 (1973), 366–376.

[76] B. Dwork, On p-adic differential equations, III. On p-adically bounded solutions of ordi-
nary linear differential equations with rational function coefficients, Invent. Math. 20 (1973),
35–45.

[77] B. Dwork, Bessel functions as p-adic functions of the argument, Duke Math. J. 41 (1974),
711–738.

[78] B. Dwork, Lectures on p-adic Differential Equations, Grundlehren der Math. Wissens-
chaften 253, Springer-Verlag, New York, 1982.

[79] B. M. Dwork, On exponents of p-adic differential modules, J. reine angew. Math. 484
(1997), 85–126.

[80] B. Dwork, G. Gerotto, and F. Sullivan, An Introduction to G-Functions, Ann. Math. Studies
133, Princeton University Press, Princeton, 1994.

[81] B. Dwork and P. Robba, On ordinary linear p-adic differential equations, Trans. Amer. Math.
Soc. 231 (1977), 1–46.

[82] B. Dwork and P. Robba, Effective p-adic bounds for solutions of homogeneous linear
differential equations, Trans. Amer. Math. Soc. 259 (1980), 559–577.

[83] B. Edixhoven, Point counting after Kedlaya, course notes (2006) available at http://
www.math.leidenuniv.nl/ ˜edix/oww/mathofcrypt/carls_edixhoven/kedlaya.pdf.

[84] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate
Texts in Math. 150, Springer-Verlag, New York, 1995.

[85] P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130
(1973), 309–317.

[86] G. Faltings, Coverings of p-adic period domains, research announcement (2007) available
at http://www.mpim-bonn.mpg.de/preprints/.

[87] C. Favre and M. Jonsson, The Valuative Tree, Lecture Notes in Math. 1853, Springer-Verlag,
Berlin, 2004.

[88] C. Favre and M. Jonsson, Valuations and multiplier ideals, J. Amer. Math. Soc. 18 (2005),
655–684.

[89] J.-M. Fontaine, Représentations p-adiques des corps locaux, I, in The Grothendieck
Festschrift, Vol. II, Progress in Math. 87, Birkhäuser, Boston, 1990, 249–309.

[90] J.-M. Fontaine, Représentations p-adiques semi-stables, in Périodes p-adiques (Bures-sur-
Yvette, 1988), Astérisque 23 (1994), 113–184.

[91] J.-M. Fontaine, Représentations de de Rham et représentations semi-stables, Orsay preprint
number 2004-12, available online at http://www.math.u-psud.fr/ ˜biblio/pub/2004/.

[92] J.-M. Fontaine and J.-P. Wintenberger, Le “corps de normes” de certaines extensions
algébriques de corps locaux, C.R. Acad. Sci. Paris Sér. A, B 288 (1979), A367–A370.

[93] J. Fresnel and M. van der Put, Rigid Analytic Geometry and its Applications, Progress in
Mathematics 218, Birkhäuser, Boston, 2004.



References 369

[94] W. Fulton, Intersection Theory, second edition, Springer-Verlag, Berlin, 1998.
[95] W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull.

Amer. Math. Soc. (N.S.) 37 (2000), 209–249.
[96] R. Gerkmann, Relative rigid cohomology and deformation of hypersurfaces, Int. Math. Res.

Papers 2007 (2007), article ID rpm003 (67 pp.).
[97] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Interscience, New York,

1978.
[98] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. Math. IHÉS 29

(1966), 95–103.
[99] A. Grothendieck, in Revêtements Étales et Groupe Fondamental, Proc. Séminaire de

Géométrie Algébrique du Bois-Marie 1960–1961 (SGA 1), Lecture Notes in Math. 224,
Springer-Verlag, Berlin, 1971.

[100] H. Hahn, Über die nichtarchimedische Größensysteme, in Gesammelte Abhandlungen I,
Springer, Vienna, 1995.

[101] U. Hartl, Period spaces for Hodge structures in equal characteristic, arXiv:math/0511686v2
(2006).

[102] U. Hartl, On a conjecture of Rapoport and Zink, arXiv:0605254v1 (2006).
[103] U. Hartl, On period spaces for p-divisible groups, C.R. Math. Acad. Sci. Paris 346 (2008),

1123–1128.
[104] U. Hartl and R. Pink, Vector bundles with a Frobenius structure on the punctured unit disc,

Compos. Math. 140 (2004), 689–716.
[105] R. Hartshorne, Residues and Duality, Lecture Notes in Math. 20, Springer, New York,

1966.
[106] R. Hartshorne, On the de Rham cohomology of algebraic varieties, Publ. Math. IHÉS 45

(1975), 5–99.
[107] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag, New

York, 1977.
[108] D. Harvey, Kedlaya’s algorithm in larger characteristic, Int. Math. Res. Notices 2007 (2007),

article ID rnm095 (29 pages).
[109] M. Hazewinkel, Gauss–Manin connection, in Encyclopedia of Mathematics, third edition,

Kluwer, 2001; available online at http://eom.springer.de/G/g043470.htm.
[110] M. Hazewinkel, Witt vectors, part 1, arXiv:0804.3888v1 (2008).
[111] L. Herr, Sur la cohomologie galoisienne des corps p-adiques, Bull. Soc. Math. France 126

(1998), 563–600.
[112] L. Herr, Une approche nouvelle de la dualité locale de Tate, Math. Ann. 320 (2001),

307–337.
[113] W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. III (reprint of the 1954

original), Cambridge University Press, Cambridge, 1994.
[114] A. Horn, On the eigenvalues of a matrix with prescribed singular values, Proc. Amer. Math.

Soc. 5 (1954), 4–7.
[115] A. Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225–241.
[116] H. Hubrechts, Point counting in families of hyperelliptic curves, Found. Comp. Math. 8

(2008), 137–169.
[117] L. Illusie, Crystalline cohomology, in Motives (Seattle, WA, 1991), Proc. Symp. Pure Math.

55, Part 1, Amer. Math. Soc., Providence, 1994, 43–70.
[118] I. Kaplansky, Maximal fields with valuations, Duke Math. J. 9 (1942), 303–321.
[119] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case,

in Algebraic K -theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math.
83, Amer. Math. Soc., Providence, 1989, 101–131.

[120] N. M. Katz, Slope filtration of F-crystals, in Journées de Géométrie Algébrique de Rennes
(Rennes, 1978), Vol. I, Astérisque 63 (1979), 113–163.



370 References

[121] N. M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987),
13–61.

[122] N. M. Katz, A simple algorithm for cyclic vectors, Amer. J. Math. 109 (1987), 65–70.
[123] N. M. Katz and T. Oda, On the differentiation of de Rham cohomology classes with respect

to parameters, J. Math. Kyoto Univ. 8 (1968), 199–213.
[124] K. S. Kedlaya, Counting points on hyperelliptic curves using Monsky–Washnitzer cohomol-

ogy, J. Ramanujan Math. Soc. 16 (2001), 323–338; errata, ibid. 18 (2003), 417–418.
[125] K. S. Kedlaya, A p-adic local monodromy theorem, Annals of Math. 160 (2004), 93–184.
[126] K. S. Kedlaya, Full faithfulness for overconvergent F-isocrystals, in Geometric Aspects of

Dwork Theory (Vol. II), de Gruyter, Berlin, 2004, 819–835.
[127] K. S. Kedlaya, Computing zeta functions via p-adic cohomology, in Algorithmic Number

Theory (ANTS VI), Lecture Notes in Comp. Sci. 3076, Springer-Verlag, 2004, 1–17.
[128] K. S. Kedlaya, Local monodromy of p-adic differential equations: an overview, Int. J.

Number Theory 1 (2005), 109–154; errata at http://math.mit.edu/ ˜kedlaya/papers/.
[129] K. S. Kedlaya, Slope filtrations revisited, Documenta Math. 10 (2005), 447–525; errata, ibid.

12 (2007), 361–362.
[130] K. S. Kedlaya, Frobenius modules and de Jong’s theorem, Math. Res. Lett. 12 (2005),

303–320.
[131] K. S. Kedlaya, Finiteness of rigid cohomology with coefficients, Duke Math. J. 134 (2006),

15–97.
[132] K. S. Kedlaya, Fourier transforms and p-adic “Weil II”, Compos. Math. 142 (2006),

1426–1450.
[133] K. S. Kedlaya, Swan conductors for p-adic differential modules, I: A local construction,

Algebra and Number Theory 1 (2007), 269–300.
[134] K. S. Kedlaya, Semistable reduction for overconvergent F-isocrystals, I: Unipotence and

logarithmic extensions, Compos. Math. 143 (2007), 1164–1212.
[135] K. S. Kedlaya, The p-adic local monodromy theorem for fake annuli, Rend. Sem. Math.

Padova 118 (2007), 101–146.
[136] K. S. Kedlaya, Slope filtrations for relative Frobenius, Astérisque 319 (2008), 259–301.
[137] K. S. Kedlaya, Semistable reduction for overconvergent F-isocrystals, II: A valuation-

theoretic approach, Compos. Math. 144 (2008), 657–672.
[138] K. S. Kedlaya, Swan conductors for p-adic differential modules, II: Global variation,

arXiv:0705.0031v3 (2008); to appear in J. Institut Math. Jussieu.
[139] K. S. Kedlaya, Effective p-adic cohomology for cyclic cubic threefolds, preprint (2008)

available at http://math.mit.edu/ ˜kedlaya/papers/.
[140] K. S. Kedlaya, Semistable reduction for overconvergent F-isocrystals, III: Local semistable

reduction at monomial valuations, Compos. Math. 145 (2009), 143–172.
[141] K. S. Kedlaya, p-adic cohomology, in Algebraic Geometry (Seattle 2005), Proc. Symp. Pure

Math. 80, Amer. Math. Soc., 2009, 667–684.
[142] K. S. Kedlaya, Some new directions in p-adic Hodge theory, J. Théorie Nombres Bordeaux

21 (2009), 285–300.
[143] K. S. Kedlaya, Semistable reduction for overconvergent F-isocrystals, IV: Local semistable

reduction at nonmonomial valuations, arXiv:0712.3400v3 (2009).
[144] K. S. Kedlaya, Good formal structures for flat meromorphic connections, I: Surfaces,

arXiv:0811.0904v4(2009); to appear in Duke Math. J.
[145] K. S. Kedlaya and Liang Xiao, Differential modules on p-adic polyannuli, J. Inst. Math.

Jussieu 9 (2010), 155–201.
[146] M. Kisin, Overconvergent modular forms and the Fontaine–Mazur conjecture, Invent. Math.

153 (2003), 373–454.
[147] M. Kisin, Crystalline representations and F-crystals, in Algebraic Geometry and Number

Theory, Progress in Math. 253, Birkhäuser, Boston, 2006, 459–496.



References 371

[148] R. E. Kottwitz, Isocrystals with additional structure, Comp. Math. 56 (1985), 201–220.
[149] R. E. Kottwitz, Isocrystals with additional structure. II, Comp. Math. 109 (1997), 255–339.
[150] R. E. Kottwitz, On the Hodge–Newton decomposition for split groups, Int. Math. Res.

Notices 26 (2003), 1433–1447.
[151] W. Krull, Allgemeine Bewertungstheorie, J. für Math. 167 (1932), 160–196.
[152] F.-V. Kuhlmann, Elimination of ramification I: The generalized stability theorem, preprint

available at http://math.usask.ca/ ˜fvk/; to appear in Trans. Amer. Math. Soc.
[153] S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555–563.
[154] A. G. B. Lauder, Deformation theory and the computation of zeta functions, Proc. London

Math. Soc. 88 (2004), 565–602.
[155] G. Laumon, Cohomology of Drinfeld Modular Varieties I, Cambridge Studies in Advanced

Math. 41, Cambridge University Press, 1996.
[156] M. Lazard, Les zéros d’une fonction analytique d’une variable sur un corps valué complet,

Publ. Math. IHÉS 14 (1962), 47–75.
[157] B. Le Stum, Rigid Cohomology, Cambridge Tracts in Math. 172, Cambridge University

Press, 2007.
[158] A. H. M. Levelt, Jordan decomposition for a class of singular differential operators, Ark.

Mat. 13 (1975), 1–27.
[159] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes in Math. 338,

Springer, 1973.
[160] R. Liu, Cohomology and duality for (φ, �)-modules over the Robba ring, Int. Math. Res.

Not. 2007, article ID rnm150 (32 pages).
[161] F. Loeser, Exposants p-adiques et théorèmes d’indice pour les équations différentielles

p-adiques (d’après G. Christol et Z. Mebkhout), in Proc. Séminaire Bourbaki, Vol. 1996/97,
Astérisque 245 (1997), 57–81.

[162] A. Loewy, Über einen Fundamentalsatz für Matrizen oder lineare homogene Differential-
systeme, Sitzungsberichte der Heidelberger Akademie der Wissenschaften, 5. Abhandlung
(1918), 1–36.

[163] E. Lutz, Sur l’équation y2 = x3 + Ax + B sur les corps p-adiques, J. reine angew Math.
177 (1937), 238–247.

[164] B. Malgrange, Sur les points singuliers des équations différentielles, Enseign. Math. 20
(1974), 147–176.

[165] B. Malgrange, Connexions méromorphes 2: le réseau canonique, Invent. Math. 124 (1996),
367–387.

[166] Yu. I. Manin, The theory of commutative formal groups over fields of finite characteristic
(in Russian), Usp. Math. 18 (1963), 3–90; English translation, Russian Math. Surveys 18
(1963), 1–80.

[167] A. Marmora, Irrégularité et conducteur de Swan p-adiques, Doc. Math. 9 (2004), 413–433.
[168] S. Matsuda, Local indices of p-adic differential operators corresponding to Artin–Schreier–

Witt coverings, Duke Math. J. 77 (1995), 607–625.
[169] S. Matsuda, Katz correspondence for quasi-unipotent overconvergent isocrystals, Comp.

Math. 134 (2002), 1–34.
[170] S. Matsuda, Conjecture on Abbes–Saito filtration and Christol–Mebkhout filtration, in

Geometric Aspects of Dwork Theory. Vols. I, II, de Gruyter, Berlin, 2004, 845–856.
[171] Z. Mebkhout, Analogue p-adique du théorème de Turrittin et le théorème de la monodromie

p-adique, Invent. Math. 148 (2002), 319–351.
[172] P. Monsky, Formal cohomology, II: the cohomology sequence of a pair, Ann. Math. 88

(1968), 218–238.
[173] P. Monsky, Formal cohomology, III: Fixed point theorems, Ann. Math. 93 (1971),

315–343.
[174] P. Monsky and G. Washnitzer, Formal cohomology, I, Ann. Math. 88 (1968), 181–217.



372 References

[175] M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Math. 13, John Wiley &
Sons, New York, 1962.

[176] F. Oort and T. Zink, Families of p-divisible groups with constant Newton polygon, Doc.
Math. 7 (2002), 183–201.

[177] O. Ore, Theory of non-commutative polynomials, Ann. Math. 34 (1933), 480–508.
[178] B. Osserman, The Weil conjectures, in W. T. Gowers (ed.), The Princeton Companion to

Mathematics, Princeton University Press, 2008.
[179] A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z. 39 (1935),

269–404.
[180] J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields, Math.

Comp. 55 (1990), 745–763.
[181] E. Pons, Modules différentiels non solubles. Rayons de convergence et indices, Rend. Sem.

Mat. Univ. Padova 103 (2000), 21–45.
[182] B. Poonen, Maximally complete fields, Enseign. Math. (2) 39 (1993), 87–106.
[183] S. Priess-Crampe and P. Ribenboim, Differential equations over valued fields (and more),

J. reine angew. Math. 576 (2004), 123–147.
[184] A. Pulita, Frobenius structure for rank one p-adic differential equations, in Ultramet-

ric functional analysis, Contemp. Math. 384, Amer. Math. Soc., Providence, 2005,
247–258.

[185] A. Pulita, Rank one solvable p-adic differential equations and finite Abelian characters via
Lubin–Tate groups, Math. Ann. 337 (2007), 489–555.

[186] J.-P. Ramis, Théorèmes d’indices Gevrey pour les équations différentielles ordinaires, Mem.
Amer. Math. Soc. 48 (1984).

[187] P. Ribenboim, The Theory of Classical Valuations, Springer-Verlag, New York, 1999.
[188] J. F. Ritt, Differential Algebra, Colloq. Pub. XXXIII, Amer. Math. Soc., New York, 1950.
[189] P. Robba, Lemmes de Hensel pour les opérateurs différentiels. Application à la réduction

formelle des équations différentielles, Enseign. Math. (2) 26 (1980), 279–311.
[190] P. Robba, Indice d’un opérateur différentiel p-adique. IV. Cas des systèmes. Mesure de

l’irrégularité dans un disque. Ann. Inst. Fourier (Grenoble), 35 (1985), 13–55.
[191] A. M. Robert, A Course in p-adic Analysis, Graduate Texts in Math. 198, Springer-Verlag,

New York, 2000.
[192] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[193] W. H. Schikhof, Ultrametric Calculus: An Introduction to p-adic Analysis, Cambridge

Studies in Advanced Math. 4, Cambridge University Press, 1984.
[194] W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent.

Math. 22 (1973), 211–319.
[195] P. Schneider, Nonarchimedean Functional Analysis, Springer-Verlag, Berlin, 2002.
[196] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p,

Math. Comp. 44 (1985), 483–494.
[197] E. Schörner, Ultrametric fixed point theorems and applications, in Valuation Theory and its

Applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Communications 33, Amer. Math.
Soc., 2003, 353–359.

[198] J.-P. Serre, Local Fields, Graduate Texts in Math. 67, Springer-Verlag, New York, 1979.
[199] J.-P. Serre, Galois Cohomology, Corrected reprint of the 1997 English edition, Springer

Monographs in Math., Springer-Verlag, Berlin, 2002.
[200] J. H. Silverman, The Arithmetic of Elliptic Curves, second printing, Graduate Texts in Math.

106, Springer-Verlag, New York, 1991.
[201] M. F. Singer and M. van der Put, Galois Theory of Difference Equations, Lecture Notes in

Math. 1666, Springer-Verlag, Berlin, 1997.
[202] M. F. Singer and M. van der Put, Galois Theory of Linear Differential Equations,

Grundlehren der Math. Wiss. 328, Springer-Verlag, Berlin, 2003.



References 373

[203] J. Tate, p-divisible groups, in Proc. Conf. on Local Fields (Driebergen, 1966), Springer-
Verlag, Berlin, 1967, 158–183.

[204] T. Terasoma, Confluent hypergeometric functions and wild ramification, J. Algebra 185
(1996), 1–18.

[205] A. Thuillier, Théorie du potentiel sur les courbes en géométrie analytique non archimédi-
enne. Applications à la theorie d’Arakelov, thesis, Université de Rennes 1, 2005.

[206] N. Tsuzuki (as T. Nobuo), The overconvergence of morphisms of étale φ-∇-spaces on a
local field, Compos. Math. 103 (1996), 227–239.

[207] N. Tsuzuki, Finite local monodromy of overconvergent unit-root F-isocrystals on a curve,
Amer. J. Math. 120 (1998), 1165–1190.

[208] N. Tsuzuki, The local index and the Swan conductor, Comp. Math. 111 (1998), 245–288.
[209] N. Tsuzuki, Slope filtration of quasi-unipotent overconvergent F-isocrystals, Ann. Inst.

Fourier (Grenoble) 48 (1998), 379–412.
[210] N. Tsuzuki, Morphisms of F-isocrystals and the finite monodromy theorem for unit-root

F-isocrystals, Duke Math. J. 111 (2002), 385–419.
[211] N. Tsuzuki, On base change theorem and coherence in rigid cohomology, Doc. Math. extra

volume in honour of Kazuya Kato’s fiftieth birthday (2003), 891–918.
[212] H. L. Turrittin, Convergent solutions of ordinary linear homogeneous differential equations

in the neighborhood of an irregular singular point, Acta Math. 93 (1955), 27–66.
[213] M. van der Put, The cohomology of Monsky and Washnitzer, in Introductions aux

cohomologies p-adiques (Luminy, 1984), Mém. Soc. Math. France 23 (1986), 33–59.
[214] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Monographs and Textbooks in

Pure and Applied Math. 51, Marcel Dekker, New York, 1978.
[215] M. Vaquié, Valuations, in Resolution of Singularities (Obergurgl, 1997), Progr. Math. 181,

Birkhäuser, Basel, 2000, 539–590.
[216] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced

Math. 38, Cambridge University Press, Cambridge, 1994.
[217] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differen-

tialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann.
71 (1912), 441–479.

[218] H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc.
Nat. Acad. Sci. USA 35 (1949), 408–411.

[219] L. Xiao, On ramification filtrations and p-adic differential equations, I: equal characteristic
case, arXiv:0801.4962v2 (2008).

[220] L. Xiao, On ramification filtrations and p-adic differential equations, II: mixed characteristic
case, arXiv:0811.3792v1 (2008).

[221] L. Xiao, Non-archimedean differential modules and ramification theory, thesis, Mas-
sachusetts Institute of Technology, 2009.

[222] P. T. Young, Radii of convergence and index for p-adic differential operators, Trans. Amer.
Math. Soc. 333 (1992), 769–785.

[223] H. Zassenhaus, Über eine Verallgemeinerung des Henselschen Lemmas, Arch. Math.
(Basel) 5 (1954), 317–325.

[224] I. B. Zhukov, A approach to higher ramification theory, in Invitation to higher local
fields (Münster, 1999), Geom. Topol. Monographs 3, Geom. Topol. Publ., Coventry, 2000,
143–150.

[225] I. B. Zhukov, On ramification theory in the case of an imperfect residue field (in Russian),
Mat. Sb. 194 (2003), 3–30; translation, Sb. Math. 194 (2003), 1747–1774.

[226] T. Zink, On the slope filtration, Duke Math. J. 109 (2001), 79–95.
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| · |ρ (ρ-Gauss (semi)norm), 26

|A| (norm of a matrix), 56, 63

Cp (completed algebraic closure of
Qp), 28

D(V )
equal characteristic, 314
mixed characteristic, 359

D†(V )
equal characteristic, 317, 318
mixed characteristic, 359

D†
rig(V ), 360

Diag(σ1, . . . , σn) (diagonal
matrix), 55

disc( f, r) (discrepancy), 202

E (completion of oK ((t))⊗oK K ), 156

E† (overconvergent series), 263
EL (unramified extension of E), 314
E†

L (unramified extension of E†), 316
Eφ (perfection of E), 269

E†
φ (perfection of E†), 269

Ẽ (completed maximal unramified extension
of E), 314

[E : F] (degree of a field extension), 27
Ext(·, ·) (Yoneda extension group), 82

Falg (algebraic closure), 45
Fρ (completion of K (t) for | · |ρ ), 155
F ′
ρ (completion of K (t p) for | · |ρ p ), 171

F ′′
ρ (completion of K ((t − 1)p − 1) for

| · |ρ p ), 181
Fsep (separable closure), 45
|F×| (multiplicative value group), 16

G E/F (Galois group), 45
G F (absolute Galois group), 45
�K (in p-adic Hodge theory), 357

H0, H1

of difference modules, 245
of differential modules, 78

HK (in p-adic Hodge theory), 357

I R(V ) (intrinsic radius), 157

K (complete discretely valued field), 243
K (complete nonarchimedean

field), 135
K 〈α/t, t�0 (bounded series on an

annulus), 137
K 〈α/t, t/β〉 (series on a disc or

annulus), 136
K 〈α/t, t/β} (series on a half-open annulus),

143
K 〈α/t, t/β�an (analytic elements on a

half-open annulus), 144
K �α/t, t/β�an (analytic elements on an open

annulus), 144
K 〈t/β〉 (series on a disc), 137
K {t/β} (series on an open disc), 143
K �t/β�0 (series with bounded

coefficients), 137
K �t/β�an (analytic elements on a

disc), 144
K �t�δ (series with logarithmic

growth), 308

mF (maximal ideal), 17

oF (valuation ring), 17

Qp (field of p-adic numbers), 26
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R (Robba ring), 264
RL (extension of R), 327
R(M) (radius of convergence), 154
R{T } (ring of twisted polynomials)

over a difference ring, 246
over a differential ring, 85

R̃ (extended Robba ring), 282
R(V ) (generic radius of convergence), 156
R× (group of units), 13

s·( f ) (slope of a function), 185

·T (transpose), 55
·∗ (transpose, Hermitian), 56
·−T (inverse transpose), 55
|T |· (operator norm), 94
Tμ (translation), 185

|T |sp,· (spectral radius), 94
vr (Gauss semivaluation), 26

Wm (differential module), 171

Zp (ring of p-adic integers), 26
Zq (unramified extension of Zp), 7

κF (residue field), 17
λ (type of field element), 17
ϕ∗ (Frobenius pullback), 171
ϕ∗ (Frobenius pushforward), 171
χ (cyclotomic character), 362
φ (Frobenius lift), 362
ψ∗ (off-center Frobenius pullback), 181
ψ∗ (off-center Frobenius pushforward), 181
ω (equals p−1/(p−1) when p > 0), 156
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Boldface page numbers indicate definitions of terms or statements of results

abelian group
complete, 14
separated, 14

absolute Frobenius lift, 265
absolute value, see also norm
additive value group, 16
adjoint form (of a twisted polynomial), 86, 246
analytic elements, 144, 156
approximation lemmas, 20, 30, 147, 206
Artin–Hasse exponential series, 162, 293
Artin–Schreier extension, 51, 317, 334, 341
Artin–Schreier theory

nonabelian, 259, 315, 357
average norm (of a difference module), 281

B-pair, 363
Bézout domain, 276
Baer sum, 82
Banach contraction mapping theorem, 41, 269
Banach space, 23
Barsotti–Tate group, see also p-divisible

group
base change

of a difference module, 244
of a differential module, 81, 98, 107, 178

Berkovich spaces, 8
Bessel differential equation, 120, 328
binomial series, 50
Birkhoff factorization, 149
bounded homomorphism, 14, 94
bounded Robba ring, 217, 263, 359

Calabi–Yau variety, 355
Cauchy sequence, 14
Cauchy theorem, 120

p-adic, 154, 302

center (of a Frobenius lift), 265
change-of-basis matrix, 81, 244
clean differential module, 214
Cohen structure theorem, 333
coherent locally free module, 144
compactness (of a closed interval), 136,

203, 208
companion matrix, 64
compatible seminorm on a module, 17
complete abelian group, 14
completion (of an abelian group), 15
connection, 81, 91
constant subring (of a differential ring), 78
constituents (of a differential module), 80
contraction mapping theorem, 41, 269
convexity, 190
Cramer’s rule, 66
Crew’s conjecture, 335
crystalline cohomology, 353
cyclic vector

of a difference module, 246
of a differential module, 84
theorem, 84, 89, 246, 260, 311

cyclotomic character, 362

de Rham cohomology, 347
de Rham representation, 336, 362
decomposition theorem

for difference modules, 252
refined strong, 179, 214
refined visible, 113
strong, 177
visible, 107

derivation of rational type, 164
Dieudonné–Manin classification theorem, 258,

283, 316, 332
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difference
field, 244

difference-closed, 247
isometric, 249

Galois theory, 258
ideal, 244
module, 244
ring, 244

differential
Galois theory, 91
ideal, 78
module, 78

normed, 96
on an open annulus, 152
trivial, 78
unipotent, 78, 153

ring or field, 77
slopes, 211

dimensioned constants, 27
discrepancy

of a differential module, 203
of a function, 202

discretely valued field, 16
dual

of a difference module, 245
of a differential module, 82

duality for convex functions, 43
dualizable difference module, 245
Dwork

exponential series, 181, 292
trick, 273, 275, 280, 281, 295,

329, 336

eigenvalues
prepared, 123
weakly prepared, 123

elementary divisors, 63
elementary matrix, 55
elementary row or column

operation, 56
elliptic curve, 3
elliptic integral, 5
equivalence (of p-adic exponents), 224
étale cohomology, 5, 354
étale difference module, see also unit-root

difference module
étale fundamental group, 323
exponents

of a differential module, 122
of a p-adic differential module, 226

extended Robba ring, 282
exterior power, 57, 82
exterior product ∧, 57
extrinsic generic radius of convergence, 157

Fekete’s lemma, 94
field of norms, 357

filtration
lower numbering, 52
upper numbering, 52, 321

finite local monodromy (p-adic), 318
formal adjoint (of a twisted polynomial), 86,

246
Fréchet completeness, 139
Frobenius

antecedent, 173, 181, 213, 225, 303, 341,
342

descendant, 171, 181, 193, 196, 206
lift, 265

absolute, 265
standard, 297
zero-centered, 266

off-center, 181, 196
structure (on a differential module), 160,

291, 327
Fuchs theorem, 125

p-adic, 221, 231, 302
Fuchsian singularities, 130
full spectrum, 100
fundamental solution matrix, 123, 221, 234,

295, 302, 308

Galois cohomology, 363
Galois descent, 129, 173
Gauss

(semi)norm, 26, 138, 282
for twisted polynomials, 104

(semi)valuation, 26
for twisted polynomials, 104

Gauss–Jordan elimination, 63, 141
Gauss–Manin connection, 351
generalized power series, 31, 282
generic Newton polygon, 266, 280
generic point, 160
generic radius of convergence, 156

extrinsic, 157
intrinsic, 157

Gevrey functions, 130
gluing lemma, 142, 208

Hadamard three-circle theorem, 139
Hahn–Banach theorem, 32
Hasse–Arf theorem, 322
Hasse’s theorem, 3
henselian field, 46, 263
Hensel’s lemma, 41
Hermitian transpose, 56
Herr complex, 361
Hilbert–Noether theorem, 173, 314, 359
Hodge polygon

of a difference module, 254
of a matrix, 63

Hodge–Newton decomposition, 65
for difference modules, 254
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homomorphism
bounded, 14
isometric, 14

horizontal
element (of a differential module), 78
morphism (of differential modules), 81

Horn inequalities, 71
hypergeometric

differential equation, 5, 120, 159,
222, 348

series, 5, 159

Igusa polynomial, 6
index

of a differential module, 126
of nilpotency, 123

inertia group, 49, 323
intrinsic

generic radius of convergence, 157
radius, 157
subsidiary generic radii of

convergence, 162
invariant factors, 63
inversive difference ring, 245
irregularity, 119, 162
isoclinic difference module, 250
isometric

difference field, 249
homomorphism, 14

Jordan–Hölder constituents, 80

Kiehl–Tate theorems, 149
Kummer theory, 50

Lang torsor, 259
Lefschetz

principle, 119
trace formula, 5

limit (of a sequence), 14
Liouville number, 219
Littlewood–Richardson

numbers, 71
local horizontal section, 154
locally free module, 84
lower convex hull, 36, 105
lower numbering filtration, 52

Mal’cev–Neumann series, 31, 282
master factorization theorem, 39, 104, 140,

142, 246
matrix of action, 80, 244
maximally complete field, 28
metrically equivalent seminorms, 14
minor (of a matrix), 61
mirror symmetry, 355
monodromy transformation, 122

multiplicative
seminorm, 15
value group, 16

mysterious functor, 363

Newton above Hodge theorem, 64
for difference modules, 254

Newton polygon
generic, 266, 280
of a difference module, 254, 279
of a matrix, 64
of a polynomial, 36
of a power series, 138
of a twisted polynomial, 104, 246
semicontinuity theorem, 266, 280, 311, 329
special, 266, 280

Newton’s method, 264
nilpotency index, 123
nonarchimedean

group, ring, field, 16
seminorm, 16

norm, 14
Gauss, 26

for twisted polynomials, 104
p-adic, 26
spectral, 95
supremum, 17
t-adic, 25
trivial, 25

normal (matrix), 60
normed differential module, 96

off-center Frobenius antecedents and
descendants, 181, 196

operator norm, 56, 94, 121
opposite

difference ring/module, 245
ring, 86

optimal basis, 198
order of log-growth, 308
Ostrowski’s theorem, 17, 27
outer provinces, rebellious, 300
overconvergent F-isocrystal (on the affine

line), 352

p-adic
Cauchy theorem, 154, 302
Fuchs theorem, 221, 231, 302
Hodge theory, 357
integers, ring of, 26
Liouville number, 219
local monodromy theorem, 2, 114, 234,

279, 327
unit-root, 318

norm, 26
numbers, field of, 26
Turrittin theorem, 338
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p-divisible group, 285, 336, 364
p-power roots of unity, 226
perfection, 249, 339
(φ, �)-module, 359
Picard–Fuchs

equation, 7
module, 88, 122, 294, 347

piecewise affine function, 136
Poincaré pairing, 353
potentially semistable representation,

336, 363
prepared eigenvalues, 123
principal minor (of a matrix), 61
product formula, 26
product seminorm, 23
projective module, 84
pseudoconvergent sequence, 30
pseudolimit, 30
pure

difference module, 250, 277
differential module, 100

quasiconstant differential module, 327
quasiunipotent

differential module, 327
monodromy, 122

quotient seminorm, 16

radii of optimal convergence, 198
radius of convergence (of a differential

module), 154
ramification numbers, 211
Rapoport–Zink spaces, 285
rational type, 164
real

semivaluation, 16
valuation, 16

rebellious outer provinces quelled by
Frobenius, 300

refined decomposition theorem
strong, 179, 214
visible, 113

refined differential module, 100, 342
regular differential module, 119,

234, 347
residue field (of a nonarchimedean field), 17
rigid analytic geometry, 8
rigid cohomology, 353
Robba condition, 223
Robba ring, 264, 360

bounded, 217, 263, 359
extended, 282

Schauder basis, 32
semiabsolute value, see also seminorm
semicontinuity theorem for Newton polygons,

266, 280, 311, 329

seminorm, 13
compatible, 17
Gauss, 26
metrically equivalent, 14
multiplicative, 15
product, 23
quotient, 16
submultiplicative, 15
supremum, 17
topologically equivalent, 14

semistable
difference module, 281

semivaluation, 16
Gauss, 26

separated abelian group, 14
shearing transformation, 125, 226, 227,

234, 310
Shilov boundary, 149
singular value, 95

archimedean, 56
decomposition, 56
nonarchimedean, 63

slope (of a polynomial), 36
slope filtration theorem, 279, 298,

340, 364
Smith normal form, 63
solvable differential module, 211, 294, 302
special Newton polygon, 266, 280
spectral norm, 95
spectral radius, 94
spectrum

full, 100
visible, 105

spherically complete metric space, 28
standard Frobenius lift, 297
strong decomposition theorem, 177
strong triangle inequality, 16
strongly difference-closed difference

field, 247
subharmonicity, 190
submultiplicative seminorm, 15
subsidiary (generic) radii (of convergence),

162
supersingular elliptic curve, 6
supremum (semi)norm, 17
supremum-equivalent seminorm, 18

t-adic valuation, 25
tame degree (of an extension), 49
tamely ramified extension, 49, 101, 113, 179,

323
Taylor series, 90, 159, 173, 226, 296
Teichmüller lift, 7, 259, 358
tensor product

of difference modules, 244
of differential modules, 81

topologically equivalent seminorms, 14
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totally ramified extension, 48
totally wildly ramified extension, 49
trace (element or component), 82
trace-zero component, 82
transfer theorem, 158

regular singular, 234, 295
triangle inequality, 14

strong, 16
trianguline representation, 364
trivial

difference module, 244
differential module, 78

Turrittin–Levelt–Hukuhara decomposition
theorem, 114, 128, 338

twisted polynomial
over a difference ring, 246
over a differential ring, 85

type (of a field element), 218

ultrametric seminorm, 16
unipotent differential module,

78, 153
unit-root

difference module, 250, 298,
315, 318

p-adic local monodromy theorem, 318
unramified extension, 47
upper numbering filtration, 52, 321

valuation, 16
Gauss, 26

for twisted polynomials, 104
t-adic, 25

valuation ring (of a nonarchimedean field), 17
value group, 16
variation of Hodge structures, 335
visible decomposition theorem, 107, 176

refined, 113
visible spectrum, 105

weak equivalence (of p-adic exponents), 224
weak topology, 358
weakly difference-closed difference field, 247
weakly prepared eigenvalues, 123, 221
wedge power, see also exterior power
Weierstrass preparation, 140
Weil conjectures, 4
well-ordered set, 31, 282
width (of a polynomial), 35
wild inertia subgroup, 49
wildly ramified extension, 49
Witt vectors, 258, 293, 358

Yoneda extension group, 82, 245

zero-centered Frobenius lift, 266
zeta function, 4, 349, 354
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