Polyfold-Fredholm theory

M-polyfold bundles and Fredhdem sections
literature: *Hofer-Wy socki-Zehnder

- Hofar - surreys
- Falert-Fish-Godorko-Wehrkeim: "Plyfolds-A firrt and second book"

Ex: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ Morse function, lit $f=\{0\}$
$\bar{M}_{\text {More }}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)=\sigma^{-1}(0)$ for M-polyfold Fred holm section $\varepsilon$
$\left.\frac{\downarrow}{6}\right) 6$

$$
|\Psi|=\bigcup_{L>0} H^{\prime}\left([-L, L], \mathbb{R}^{n}\right) \underset{\text { prague }}{\bigcup} H^{\prime}\left([0, \infty), \mathbb{R}^{n}\right) \times H^{\prime}\left((-\infty, 0], \mathbb{R}^{n}\right)
$$

second countable metric space
M-polyfold charts


- near $\left(\gamma_{-}^{0}, \gamma_{+}^{0}\right)$

$$
\begin{aligned}
& {\left[0, v_{0}\right) \times \underbrace{\left.H\right|^{\prime}\left([0, \infty), \mathbb{R}^{n}\right) \times\left(H^{\prime}\left((-\infty, 0], \mathbb{R}^{n}\right)\right.}}
\end{aligned}
$$

$$
\begin{aligned}
& \iint_{\text {honeamopp(com }}^{\varphi} \varphi:\left(v, \xi_{-1} \xi_{+}\right) \mapsto \bigoplus_{11} \oplus_{R(v)}\left(\gamma_{-}^{0}+\xi_{-1}, \gamma_{+}^{0}+\xi_{+}\right) \\
& \left(\begin{array}{ll}
\beta & 1-\beta
\end{array}\right)\left(\begin{array}{cc}
\tau_{R} & 0 \\
0 & \tau_{-R}
\end{array}\right)\binom{\gamma_{0}^{0}+\xi_{-}}{\gamma_{+}^{+}+\xi_{+}} \\
& \begin{array}{c}
\begin{array}{c}
\text { sc-retract } \\
\text { (splicing core) }
\end{array}
\end{array} \Pi_{R}=\left(\begin{array}{cc}
\tau_{-R} & 0 \\
0 & \tau_{R}
\end{array}\right)\left(\begin{array}{cc}
\beta & 1-\beta \\
\beta-1 & \beta
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\beta & 1-\beta \\
\beta-1 & \beta
\end{array}\right)\left(\begin{array}{cc}
\tau_{R} & 0 \\
0 & \tau_{-R}
\end{array}\right) \\
& \operatorname{Obj} x={\underset{\gamma}{i}}^{u_{i}} u_{i} \cup \underset{\left(\gamma_{-1}^{j}, \gamma_{+}^{\prime}\right)}{\bigcup_{j}}
\end{aligned}
$$

transition maps ( $-\operatorname{tos}^{-1}$ for $(s \times t):$ Nor $X \rightarrow O_{b j} X$ )

$$
\begin{aligned}
& U_{j} \supset \varphi_{j}^{-1}\left(\varphi_{i}\left(U_{i}\right)\right) \xrightarrow{s c^{\infty}} U_{i} \quad(\theta, \xi) \mapsto\left(\frac{L_{j}}{L_{i}} \theta,\left(\gamma_{j}+\xi\right)\left(\frac{L_{i}}{L_{i}} \cdot\right)-\gamma_{i}\right) \quad \text { is infant } e^{\infty}\left(\mu^{k}\right) \nvdash k \\
& \begin{array}{ccc}
{\left[0, v_{0}\right) \times \mathbb{E}_{j} \supset r_{j}^{-1}(\ldots)} \\
\downarrow r_{j} & \downarrow r_{j} \\
0_{j} \supset \varphi_{j}^{\infty}\left(\varphi_{i}\left(u_{i}\right)\right) & \longrightarrow u_{i}
\end{array} \iota^{\mathbb{E}_{i}} \\
& \left(v, \xi_{-,} \xi_{+}\right) \longmapsto \oplus_{R(v)}\left(\gamma_{-}^{j}+\xi_{-1} \gamma_{+}^{j}+\xi_{+}\right)\left(R(v)^{-1} \cdot\right)-\gamma_{i} \\
& {\left[0, v_{0}\right) \times \mathbb{E}_{j} \supset r_{j}^{-1}(\ldots) \xrightarrow{s c^{\infty}}\left[0, v_{0}^{v}\right) \times \mathbb{E}_{i}} \\
& r_{j} \text { projects along here } \oplus \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { using fixed } R_{i}(v)=R_{j}(v) \\
& \text { sc follows as for splicing when using exponential ghning profile } \\
& R_{0}(\omega)=e^{1 / v}-e
\end{aligned}
$$

Ex: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ Morse function, lent $f=\{0\}$


$$
\begin{aligned}
& \mid X_{\mid}=U_{>0} \\
& H^{\prime}\left([-L, L], \mathbb{R}^{n}\right) \\
& \uparrow \prod_{|\sigma|}^{U} \\
& |\varepsilon|
\end{aligned}
$$

M-poly bundle charts

$$
\begin{aligned}
& \text { - near } \gamma_{0}^{:[-L, L] \rightarrow \mathbb{R}^{n}} \\
& \underbrace{\mathbb{R} \times H^{\prime}\left([-L, L], \mathbb{R}^{n}\right)} \supset U \quad \sim \operatorname{nbhd}(\gamma) \subset X \\
& \theta, \xi) \longrightarrow\left(\gamma_{0}+\xi\right)\left(\theta^{-1} \cdot\right)
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\text {Res) }}\left(\xi_{-1} \xi_{+}\right)=0 \\
& \left.\left.\left.\operatorname{Obj} \varepsilon\right|_{O_{\text {cOnj }} x} ^{\downarrow G}=\bigcup_{v \in\left(0, v_{0}\right)}\{v\} \times \operatorname{im} \pi_{R(v)} \times \operatorname{im} \prod_{R(v)} \quad\left(v_{1}\right\}_{-1} \xi_{+1} D_{R(v)}\left(\xi_{-1}\right\}_{+}\right)\right) \\
& \left.\uparrow\left(\pi_{R(y)} \times \Pi_{R(x)}\right)_{v \in\left[0, V_{0}\right)} \quad \Pi_{R}\right|_{F_{1}}=\pi_{R} \\
& {\left[0, v_{0}\right) \times \mathbb{E} \times \underbrace{H^{p}\left([0, \infty), \mathbb{R}^{n}\right) \times \mathbb{H}^{0}\left((-\infty, 0], \mathbb{R}^{n}\right)}_{\mathbb{F}}} \\
& \text { defused for ald }\left(\xi_{-1} \xi_{+}\right) \in \mathbb{E} \\
& \text { "Filled section" } \\
& \text { - near }\left(\gamma^{0}, \gamma^{0}\right) \\
& \int \frac{d}{d t}+\nabla f \\
& \left.H^{0}\left(-\theta \alpha_{1} \theta\right), \mathbb{R}^{n}\right) \\
& \stackrel{\sim}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\text {Res) }}\left(\xi_{-1} \xi_{+}\right)=0 \\
& \left.\left.\left.\operatorname{Obj} \varepsilon\right|_{O_{\text {cOG }} x} ^{\downarrow G}=\bigcup_{v \in\left(0, v_{0}\right)}\{v\} \times \operatorname{im} \pi_{R(v)} \times \operatorname{im} \prod_{R(v)} \quad\left(v_{1}\right\}_{-1} \xi_{+1} D_{R(v)}\left(\xi_{-1}\right\}_{+}\right)\right) \\
& \left.\uparrow\left(\pi_{R(y)} \times \Pi_{R(x)}\right)_{v \in\left[0, V_{0}\right)} \quad \Pi_{R}\right|_{F_{1}}=\pi_{R} \\
& {\left[0, v_{0}\right) \times \mathbb{E} \times \underbrace{H^{p}\left([0, \infty), \mathbb{R}^{n}\right) \times \mathbb{H}^{0}\left((-\infty, 0], \mathbb{R}^{n}\right)}_{\mathbb{F}}} \\
& \text { defused for ald }\left(\xi_{-1} \xi_{+}\right) \in \mathbb{E} \\
& \text { "Filled section" } \\
& D_{\infty}\left(\xi_{-}, \xi_{+}\right)=\left(\left(\frac{d}{d t}+\nabla f\right)\left(\gamma^{0}+\zeta_{-}\right),\left(\frac{d}{d t}+\nabla f\right)\left(\gamma_{+}^{0}+\xi_{+}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow \frac{d}{d t}+\nabla^{2} f(0)
\end{aligned}
$$

Definition 6.1.4. An M -polyfold bundle is an $s c^{\infty}$ surjection $p: \mathcal{Y} \xrightarrow{=\boldsymbol{\varepsilon}} \boldsymbol{\mathcal { X }}$ between two M-polyfolds together with a real vector space structure on each fiber $\mathcal{Y}_{x}:=p^{-1}(x) \subset \mathcal{Y}$ over $x \in \mathcal{X}$ such that, for a sufficiently small neighbourhood $U \subset \mathcal{X}$ of any point in $\mathcal{X}$ there exists a local sctrivialization $\Phi: \mathcal{Y} \supset p^{-1}(U) \rightarrow \mathcal{R}$. The latter is an $s c^{\infty}$ diffeomorphism to an sc-bundle retract $\mathcal{R}=\bigcup_{p \in \mathcal{O}}\{p\} \times \mathcal{R}_{p} \subset \mathbb{E} \times \mathbb{F}$ that covers an $M$-polyfold chart $\phi: U \rightarrow \mathcal{O} \subset \mathbb{E}$ in the sense that $\operatorname{pr}_{\mathcal{O}} \circ \Phi=\phi \circ p$, and preserves the linear structure in the sense that $\left.\Phi\right|_{\mathcal{y}_{x}}: \mathcal{Y}_{x} \rightarrow\{\phi(x)\} \times \mathcal{R}_{\phi(x)}$ is an isomorphism in every fiber over $x \in U$.

$$
\varepsilon_{(v, I)}=\left\{\begin{array}{lc}
H^{0}\left([-L, L], \mathbb{R}^{n}\right) & ; v>0 \\
\left.H^{0}(0, \infty), \mathbb{R}^{n}\right) \times H^{0}\left((-\infty, 0], \mathbb{R}^{n}\right)
\end{array}\right\} \simeq \underset{\min }{ } \pi_{v} \quad \mathbb{R}=\bigcup\{(v, I)\} \times i m \pi_{v}
$$

Definition 6.1.1. Let $\mathcal{O} \subset[0, \infty)^{k} \times \mathbb{E}$ be an sc-retract with corners in the sense of Definition 5.3.4, and let $\mathbb{F}$ be an sc-Banach space. Then a sc-bundle retract over $\mathcal{O}$ in $\mathbb{F}$ is a family of subspaces $\left(\mathcal{R}_{p} \subset \mathbb{F}\right)_{p \in \mathcal{O}}$ that are scale smoothly parametrized by $p \in \mathcal{O}$ in the following sense: There exists a

$$
\begin{align*}
& \text { sc-retraction of bundle type, } \\
& \text { spticing } \tag{10}
\end{align*} \quad(v, e) \pi_{v} f
$$

given by a neat sc-retraction $r: \mathcal{U} \rightarrow[0, \infty)^{k} \times \mathbb{E}$ with image $r(\mathcal{U})=\mathcal{O}$ and a family of linear projections $\Pi_{(v, e)}: \mathbb{F} \rightarrow \mathbb{F}$ that are parametrized by $(v, e) \in \mathcal{U}$, and whose images for $p=(v, e) \in$ $\mathcal{O}$ are the given subspaces $\Pi_{p}(\mathbb{F})=\mathcal{R}_{p}$.

Definition 6.2.8. An $s c^{\infty}$ section $s: \mathcal{X} \rightarrow \mathcal{Y}$ of an M-polyfold bundle is $a \mathrm{sc}$-Fredholm section if $s$ is regularizing ${ }^{\text {in }}$ in the sense of Definition 6.1.8 and for each $x \in \mathcal{X}_{\infty}$ there is a local sc-trivialization $\Phi: p^{-1}(U) \rightarrow \mathcal{R}$ in the sense of Definition 6.1.4 over a neighbourhood $U \subset \mathcal{X}$ of $x$ with $\Phi(x, 0)=$ 0 , such that $\Phi_{*}$ s has a Fredholm filling in the sense of Definition 6.2.7. © in trivializations:

Definition 6.2.7. Let $s: \mathcal{O} \rightarrow \mathcal{R}, s(p)=(p, f(p))$ be an $s c^{\infty}$ section of an $M$-polyfold bundle model $\operatorname{pr}_{\mathcal{O}}: \mathcal{R} \rightarrow \mathcal{O}$ as in Definition 6.1.1, whose base is an sc-retract $\mathcal{O} \subset[0, \infty)^{k} \times \mathbb{E}$ containing $0 \in[0, \infty)^{k} \times \mathbb{E}$, and with fibers $\mathcal{R}_{p} \subset \mathbb{F}$ for $p \in \mathcal{O}$. Then a Fredholm filling at 0 for s over $\mathcal{O}$ consists of

- acsctraction of bundle type $R: \mathcal{U} \times \mathbb{F} \rightarrow \mathcal{U} \times \mathbb{F}, R(p, h)=\left(r(p), \Pi_{p} h\right)$ on an open subset $\mathcal{U} \subset[0, \infty)^{k} \times \mathbb{E}$ such that $r(\mathcal{U})=\mathcal{O}$ and $\Pi_{p} \mathbb{F}=\mathcal{R}_{p}$ for all $p \in \mathcal{O}$,
- an sc ${ }^{\infty} \operatorname{map} \bar{f}: \mathcal{U} \rightarrow \mathbb{F}$ that is sc-Fredholm at 0 in the sense of Definition 6.2.4, with the following properties:
(i) $\left.\bar{f}\right|_{\mathcal{O}}=f$;
(ii) if $p \in \mathcal{U}$ such that $\bar{f}(p) \in \mathcal{R}_{r(p)}$ then $p=r(p)$, that is $p \in \mathcal{O}$; $\} \Rightarrow \bar{f}^{-1}(\mathbf{O})=\boldsymbol{f}^{-1}(\mathbf{0})$
(iii) The linearisation of the map $[0, \infty)^{k} \times \mathbb{E} \rightarrow \mathbb{F}, p \mapsto\left(\mathrm{id}_{\mathbb{F}}-\Pi_{r(p)}\right) \bar{f}(p)$ at each $p \in \mathcal{O}$ restricts to an isomorphism from $\operatorname{ker} \mathrm{D}_{p} r$ to $\operatorname{ker} \Pi_{p} . \sim_{(v, \xi) \mapsto\left(i d-\Pi_{v}\right)} \bar{f}(v, \xi)$

$$
\left.\operatorname{her} D_{\left.N_{0}, \xi_{0}\right)}(v, 3) \mapsto \pi_{v} \xi\right) \quad \operatorname{per} \pi_{v_{0}}
$$

$$
\mathbb{M}^{k} \times \mathbb{E}=T_{p} \mathcal{O} \oplus T_{p} \mathcal{O}^{\perp} \supset T_{p}^{\prime \prime} \mathcal{O}^{\perp} \xrightarrow[I_{p}]{\longrightarrow} \varepsilon_{p}^{\prime \prime} \subset \varepsilon_{p} \oplus \varepsilon_{p}^{1}=\mathbb{F}
$$

$$
\dot{m} D_{p} r \oplus \operatorname{ler} D_{p} r
$$

$$
i n \pi_{p} \oplus \operatorname{per} \pi_{p}
$$

$$
\text { at ( }\left(v_{0}, \xi_{0}\right) \in \bar{F}^{-1}(0)<\mathcal{O}
$$

Note: $I_{p}$ isomorphism $\Rightarrow\left(D \bar{f}\right.$ surjective $\left.\operatorname{lff} \Pi_{v_{0}} \cdot D \bar{F}\right|_{T_{p} \omega}$ surjective $)$

$$
\begin{aligned}
& (v, \xi) \mapsto\left(v, I_{1} f(v, I)\right) \\
& f(v, z) \in F_{i} \Rightarrow(v, \xi) \in \mathbb{R}^{k} \times E_{i} \\
& {\left[0, v_{0}\right) \times H^{\prime}((0, \infty)) \times H^{\prime}((-\infty, 0)) \xrightarrow{\bar{f}} H^{0}((0, \infty)) \times H^{0}((-\infty, 0))} \\
& \left(v, \xi_{-1} \zeta_{+}\right) \longmapsto \begin{cases}\left(\left(\frac{d}{d t}+\nabla f\right)\left(\gamma_{-}^{0}+\xi_{-}\right),\left(\frac{d}{d t}+\nabla f\right)\left(\gamma_{+}^{0}+\zeta_{+}\right)\right) & i v=0 \\
\boxplus_{R(v)}^{-1}\left(\left(\frac{d}{d t}+\nabla f\right)\left(\oplus_{R(v)}\left(\gamma_{-}^{0}+\xi_{-}, \gamma_{+}^{0}+\xi_{+}\right)\right),\left(\frac{d}{d t}+\nabla^{2} f(0)\right)\left(\Theta_{R(v)}\left(\zeta_{-} \zeta_{+}\right)\right)\right) & i v>0\end{cases}
\end{aligned}
$$

Definition 6.3.1. A scale smooth section $s: \mathcal{X} \rightarrow \mathcal{Y}$ is called transverse (to the zero section) if for every $x \in s^{-1}(0)$ the linearization $\mathrm{D}_{x} s: \mathrm{T}_{x} \mathcal{X} \rightarrow \mathcal{Y}_{x}$ is surjective. Here the linearization $\mathrm{D}_{x} s$ is represented by the differential $\left.\mathrm{D}_{\phi(x)}(\Pi \circ f \circ r)\right|_{\mathrm{T}_{\phi(x)} \mathcal{O}}: \mathrm{T}_{\phi(x)} \mathcal{O} \rightarrow \Pi_{\phi(x)}(\mathbb{F})$ in any local sctrivialization $p^{-1}(U) \xrightarrow{\sim} \bigcup_{p \in \mathcal{O}} \Pi_{p}(\mathbb{F})$ which covers $\phi: \mathcal{X} \supset U \xrightarrow{\sim} \mathcal{O}=r(\mathcal{U}) \subset \mathbb{E}$ and transforms s to $p \mapsto(p, f(p))$.


## $\Downarrow$ I.F.Thm. of scale calculus

Theorem 6.3.2 ([HWZ2], Thm. 5.14). Let $s: \mathcal{X} \rightarrow \mathcal{Y}$ be a transverse sc-Fredholm section. Then the solution set $\mathcal{M}:=s^{-1}(0)$ inherits from its ambient space $\mathcal{X}$ a smooth structure as finite dimensional manifold. Its dimension is given by the Fredholm index of $s$ and the tangent bundle is given by the kernel of the linearized section, $\mathrm{T}_{x} \mathcal{M}=\operatorname{ker} \mathrm{D}_{x} s$.
t.b.d

Theorem 6.3.7. ([HWZ2],Theorem 5.22) Let $\mathrm{pr}: \mathcal{Y} \rightarrow \mathcal{X}$ be a strong $M$-polyfold bundle modeled on sc-Hilbert spaces, and let $s: \mathcal{X} \rightarrow \mathcal{Y}$ be a proper Fredholm section.
(i) For any auxiliary norm $N: \mathcal{Y}_{1} \rightarrow[0, \infty)$ and neighbourhood $s^{-1}(0) \subset \mathcal{U} \subset \mathcal{X}$ controlling compactness, there exists an scllon -section $\nu: \mathcal{X} \rightarrow \mathcal{Y}_{1}$ with $\operatorname{supp} \nu \subset \mathcal{U}$ and $\sup _{x \in \mathcal{X}} N(\nu(x))<$ 1, and such that $s+\nu$ is transverse to the zero section. In particular, $(s+\nu)^{-1}(0)$ carries the structure of a smooth compact manifold.
(ii) Given two transverse perturbations $\nu_{i}: \mathcal{X} \rightarrow \mathcal{Y}_{1}$ for $i=0,1$ as in (i), controlled by auxiliary norms and neighbourhoods $\left(N_{i}, \mathcal{U}_{i}\right)$ controlling compactness, there exists an sc ${ }^{+}$-section $\widetilde{\nu}$ : $\mathcal{X} \times[0,1] \rightarrow \mathcal{Y}_{1}$ such that $\{(x, t) \in \mathcal{X} \times[0,1] \mid s(x)+\widetilde{\nu}(x, t)\}$ is a smooth compact cobordism from $\left(s+\nu_{0}\right)^{-1}(0)$ to $\left(s+\nu_{1}\right)^{-1}(0)$.

