Polyfold-Fredholm theory

M-polyfolds - retracts and splicings

- scale smooth maps between them
- a "finite dimensional" example
- preglening as M-polyfold chart
literature: Hofer-Wysocki-Zehnder
- Ho far - surveys
-Fabert-Fish-Golorko-Wehrheim: "Plyfolds - A first and second book"

Definition 5.0.3. An M-polyfold is a second countable and metrizable space \mathcal{X} together with an open covering by the images of M-polyfold charts (see Definition 5.1.1), which are compatible in the sense that the transition map induced by the intersection of the images of any two charts is scale smooth (see Definition 5.2.3).

$\boldsymbol{O}_{i} \leftarrow U_{U_{i}} \leftarrow \mathbb{U}_{i}$

Definition 5.1.1. An M-polyfold chart
is a triple (U, ϕ, \mathcal{O}) consisting of an open subset $U \subset \mathcal{X}$, an sc-retract $\mathcal{O} \subset \mathbb{E}$ (see Definition 5.1.2) in an sc-Banach space \mathbb{E}, and a homeomorphism $\phi: U \rightarrow \mathcal{O}$.
${ }^{\lrcorner}$Definition 5.1.2. A scale smooth retraction (for short $\mathbf{s c}$-retraction) on an sc-Banach space \mathbb{E} is an sc ${ }^{\infty}$ map $r: \mathcal{U} \rightarrow \mathcal{U} \subset \mathbb{E}$ defined on an open subset $\mathcal{U} \subset \mathbb{E}$, such that $r \circ r=r$, and hence $\left.r\right|_{r(\mathcal{U})}=\left.\mathrm{id}\right|_{r(\mathcal{U})}$.

A sc-retract in \mathbb{E} is a subset $\mathcal{O} \subset \mathbb{E}$ that is the image $r(\mathcal{U})=\mathcal{O}$ of an sc-retraction on \mathbb{E}.
\vec{D} definition 5.2.3. Let $f: \mathcal{O} \rightarrow \mathcal{R}$ be a map between sc-retracts $\mathcal{O} \subset \mathbb{E}$ and $\mathcal{R} \subset \mathbb{F}$, and let $\iota_{\mathcal{R}}: \mathcal{R} \rightarrow \mathbb{F}$ denote the inclusion map. Then we say that f is sc for $k \in \mathbb{N}$ or $k=\infty$ if $\iota_{\mathcal{R}} \circ f \circ r: \mathcal{U} \rightarrow \mathbb{F}$ is sc ${ }^{k}$ for some choice of sc-retraction $r: \mathcal{U} \rightarrow \mathcal{U} \subset \mathbb{E}$ with $r(\mathcal{U})=\mathcal{O}$.
$\overline{\text { Definition 5.2.1. The } \mathbf{~ s c - t a n g e n t ~ b u n d l e ~ o f ~ a n ~ s c - r e t r a c t ~} \mathcal{O} \subset \mathbb{E} \text { is the image } \mathrm{TO}:=\operatorname{Tr}(\mathrm{TU}) \subset, ~}$ TE of the tangent map for any choice of retraction $r: \mathcal{U} \rightarrow \mathcal{U} \subset \mathbb{E}$ with $r(\mathcal{U})=\mathcal{O}$. In particular, its fibers are the tangent spaces ${ }^{22}$

$$
\begin{aligned}
& \mathrm{T}_{p} \mathcal{O}:=\operatorname{Tr}\left(\{p\} \times E_{0}\right)=\{p\} \times \operatorname{imD}_{p} r \subset\{p\} \times E_{0} . \\
& \underset{D_{r}}{E_{i d-D r}}=\operatorname{mon} D_{p} r \oplus \underbrace{\operatorname{ker} D_{p r}}_{i m\left(i d-D_{p} r\right)} \\
& \text { complementary projections }
\end{aligned}
$$

Lemma:
(a) r, r^{\prime} sc-retractions, $r(u)=0=r^{\prime}\left(u^{\prime}\right) \Rightarrow$ in $D_{p} r=i m D_{p} r^{\prime}$
(b) $T_{p} \mathcal{O}=\left\{\dot{\gamma}(0) \mid \gamma:(-\varepsilon, \varepsilon) \rightarrow \mathcal{O} \subset \mathbb{E} s c^{\prime}, \gamma(0)=p\right\}$

Examples of sc-retractions:

$$
\begin{aligned}
& \text { Examples of sc-retractions: } \\
& \mathbb{R}^{n} \times \mathbb{E}^{\prime} \rightarrow \mathbb{R}^{n} \times \mathbb{E}^{\prime} \quad\left(\pi_{v}\right): \begin{array}{l}
\mathbb{R} \times \mathbb{L}^{2}(\mathbb{R}) \rightarrow \mathbb{L}^{2}(\mathbb{R}) \\
(v, f) \mapsto\left(v, \Pi_{v} f\right)
\end{array} \quad \begin{array}{ll}
\left\langle f_{1} \beta_{v}, \beta_{v} ; v>0\right. \\
0 & i v \leqslant 0
\end{array}
\end{aligned}
$$

${ }^{-}$Definition 5.1.3. A sc-smooth splicing on an sc-Banach space \mathbb{E}^{\prime} is a family of linear projections $\left(\pi_{v}: \mathbb{E}^{\prime} \rightarrow \mathbb{E}^{\prime}\right)_{v \in U}$, that is $\pi_{v} \circ \pi_{v}=\pi_{v}$, that are parametrized by an open subset $U \subset \mathbb{R}^{d}$ in a finite dimensional space and are $s c^{\infty}$ as map

$$
\pi: U \times \mathbb{E}^{\prime} \rightarrow \mathbb{E}^{\prime}, \quad(v, f) \mapsto \pi_{v}(f) . \quad\binom{\text { not requiring continuity }}{U \rightarrow L\left(E^{\prime}\right), v \mapsto \pi_{v}}
$$

The splicing core of a splicing $\left(\pi_{v}\right)_{v \in U}$ is the subset of $\mathbb{R}^{d} \times \mathbb{E}^{\prime}$ given by the images of the projections,

$$
\begin{aligned}
& K^{\pi}:=\left\{(v, e) \in U \times \mathbb{E}^{\prime} \mid \pi_{v} e=e\right\}=\bigcup_{v \in U}\{v\} \times \operatorname{im} \pi_{v} \subset \mathbb{R}^{d} \times \mathbb{E}^{\prime} . \\
& \rho\left(U \times \mathbb{E}^{\prime}\right) \text { sc-retract } \\
& \left\{\begin{array}{l}
\mathbb{R} \beta_{v} ; v>0 \\
{[0] ; v \leq 0}
\end{array}\right. \\
& \frac{0 \leftharpoonup \beta v_{i}}{0 \longleftarrow v_{i}} \quad \forall f \in L^{2}\left\langle f_{1} \beta_{\left.v_{i}\right\rangle \rightarrow 0}\right.
\end{aligned}
$$

Exercise: $T_{(v, 0)} K^{\pi}=\left\{\begin{array}{l}T_{v} \mathbb{R} \times[0] ; v \leq 0 \\ T_{v} \mathbb{R} \times \mathbb{R} \beta_{v} ; v>0\end{array} \quad T_{(v, e)} k^{\pi}\right.$ spanned by β_{v} and
$\left.\begin{array}{rl}\text { Preqfuing as } M \text {-polyfold chart } \\ \text { (ambient space tor } b^{\circ}(0)=M_{\text {move }}\left(\mathbb{R}^{\nu}, \mathbb{R}^{n}\right) \\ c r i t f=(a)\end{array}\right)$

$$
X=\bigcup_{L \geqslant 0} H^{\prime}\left([-L, L], \mathbb{R}^{n}\right) \text { preghe } H^{\prime}\left([0, \infty), \mathbb{R}^{n}\right) \times H^{\prime}\left((-\infty, 0], \mathbb{R}^{n}\right)
$$

neighbourhood of $\left(\gamma_{-}^{0}, \gamma_{+}^{0}\right) \in \nsupseteq:\left\{\Theta_{R}\left(\gamma_{-1}, \gamma_{+}\right) \mid \gamma_{ \pm} \approx \gamma_{ \pm}^{0}, R \in\left(R_{0}, \infty\right]\right\}=U$

$$
\begin{aligned}
&\left(R_{0}, \infty\right] \times \times\left.\right|^{\prime}\left([0, \infty), \mathbb{R}^{n}\right) \times\left(H^{\prime}\left((-\infty, 0], \mathbb{R}^{n}\right)\right. \\
& \downarrow^{\left.\left(\pi_{R}\right)_{R}\right) R_{0}} \mathbb{E} \\
& \boldsymbol{O} \simeq \bigcup_{R>R_{0}}\left\{\begin{array}{l}
V(R)\}
\end{array} \operatorname{im} \mathbb{\pi}^{R}\right. \\
&
\end{aligned}
$$

$$
\mathbb{T}^{R}= \begin{cases}\text { projection to complement of ker } \oplus_{R} & ; R<\infty \\ \text { id } & i R=\infty\end{cases}
$$

Anti-preghuing

$$
\begin{aligned}
& \Theta_{R}\left(\gamma_{-1} \gamma_{+}\right)=\text {"data forgotten by } \Theta_{R}\left(\gamma_{-1} \gamma_{+}\right)^{\prime \prime} \\
& \oplus_{R} \times \Theta_{R}: \mathbb{E} \simeq H^{\prime}\left(\left[-R_{1} R\right], \mathbb{R}^{n}\right) \times H_{*}^{\prime}\left((-\infty, \infty), \mathbb{R}^{n}\right) \\
& \Rightarrow \mathbb{E}=\operatorname{ber} \Theta_{R} \oplus \operatorname{fer} \Theta_{R}
\end{aligned}
$$

$\begin{aligned} \pi_{e^{-1 / R}}:= & \text { projection to } \operatorname{ker} \theta_{R} \text { along fer } \Theta_{R} \\ \left(\gamma_{-}, \gamma_{+}\right) & \longmapsto\left(\eta_{-}, \eta_{+}\right)\end{aligned} \quad\left\{\begin{array}{l}\Theta_{R}\left(\eta_{-}, \eta_{+}\right)=\Theta_{R}\left(\gamma_{-}, \gamma_{+}\right) \\ \Theta_{R}\left(\eta_{-}, \eta_{+}\right)=0\end{array}\right.$

The Anti-pre-gluing splicing

$$
\left.\begin{array}{l}
\mathbb{E}=H^{\prime}\left((0, \infty), \mathbb{R}^{n}\right) \times \mathbb{H}^{\prime}\left((-\infty, 0], \mathbb{R}^{n}\right) \\
\Theta_{R} \times \Theta_{R}: \mathbb{E} \simeq \mathbb{H}^{\prime}\left(\left[-R_{1}, R\right], \mathbb{R}^{n}\right) \times \mathbb{H}_{*}^{\prime}\left((-\infty, \infty), \mathbb{R}^{n}\right) \\
\left(\gamma-1, \gamma_{r}\right)
\end{array}\right)\left(\begin{array}{c|c}
\beta \cdot \gamma_{-}(\cdot+\mathbb{R}) & (\beta-1) \gamma_{-}(\cdot+\mathbb{R}) \\
+(1-\beta) \gamma_{+}(\cdot-\mathbb{R}) & +\beta \gamma_{+}(\cdot-R)
\end{array}\right) .
$$

$$
\begin{aligned}
& \pi_{R}:=\text { projection to her } \Theta_{R} \text { along her } \oplus_{R} \\
&=\left(\begin{array}{cc}
\tau_{-R} & 0 \\
0 & \tau_{R}
\end{array}\right)\left(\begin{array}{cc}
\beta-\beta \\
\beta-1 & \beta
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
\beta & 1-\beta \\
\beta-1 & \beta
\end{array}\right)\left(\begin{array}{cc}
\tau_{R} & 0 \\
0 & \tau_{-R}
\end{array}\right) \quad\left\{\begin{array}{l}
\Theta_{R}\left(\eta-1 \eta_{+}\right)=\Theta_{R}\left(\gamma-1 \gamma_{+}\right) \\
\Theta_{R}\left(\eta-1 \eta_{+}\right)=0
\end{array}\right. \\
&\left(\gamma-1, \gamma_{+}\right) \mapsto\binom{\eta_{-}=\frac{\beta^{2}}{\beta^{2}+\left(1-\beta \beta^{2}\right.}(-R) \gamma-+\frac{\beta(1-\beta)}{\beta^{2}+(1-\beta)^{2}}(\cdot-R) \gamma+(\cdot-2 R)}{\eta_{+}=\frac{\beta(1-\beta)}{\beta^{2}+(1-\beta)^{2}(1+R) \gamma-(1+2 R)+\frac{(1-\beta)^{2}}{\beta^{2}+(1-\beta)^{2}}(\cdot+R) \gamma+}}
\end{aligned}
$$

Prop ${ }^{n}:\left(v, \gamma_{-}, \gamma_{+}\right) \longmapsto\left(R, \eta_{-}, \eta_{+}\right)$is sc c^{∞} for $R(v)=e^{1 / v}-e$ $(\Leftrightarrow v(R)=1 / \ln (R-e))$

Thm [HWZ]: \exists polyfoed B
p. Fredholm section $\sigma_{J}: B \rightarrow \varepsilon^{J} \quad \forall J \in \mathcal{J}(M, \omega)$

$$
\begin{gathered}
\text { st. }\left|\sigma_{j}^{-1}(0)\right| \simeq \bigcup_{A * 0} \bar{M}(A, J) \\
G \text { romov }
\end{gathered}
$$

Main
Steps of Proof
$\underset{\text { compacteabion }}{\text { Gromor }}\left\{u: \mathbb{P}^{\prime} \rightarrow M \mid \bar{\partial}_{j} u=0, u_{i}\left[\mathbb{P}^{\prime}\right]=A\right\} / A n t \mathbb{P}^{\prime}$

- object level: cover \bar{M} with local Fredholm descriptions
$\checkmark(a)$ near smooth curve $[u] \in \bar{M}$
(b) near nodal curve log. ($\left[u^{-}\right],\left[u^{+}\right]$)

$$
\begin{aligned}
& \begin{array}{l}
\ell \\
\downarrow \\
\ell
\end{array}\left(a, v_{-}, v_{+}\right) \mapsto \begin{cases}\bar{\partial}_{j} \#_{a}\left(v_{-}, v_{+}\right) & ; a \neq 0 \\
\left(\bar{\partial}_{j} v_{-}, \overline{\partial_{j}} v_{+}\right) & ; a=0\end{cases} \\
& O \subset \bigcup_{|a|<\varepsilon}\{a\} \times \operatorname{im} \pi_{a} \\
& U_{\sigma^{-1}(0)} \longleftrightarrow \bar{M}(A, J) \\
& \left.\begin{array}{l}
\mathbb{E}=\left\{\left(\xi_{--}, \xi_{+}\right) \in H^{k}\left(\mathbb{P}_{1}^{\prime} u_{-}^{*} T M\right) \times H^{k}\left(\mathbb{P}_{1}^{1}, u_{+}^{+} T M\right)\right. \\
\xi_{-}(z) \in T H_{z}^{-} \text {for } z=0,1, \xi_{+}(z) \in T H_{z}^{+} \text {for } z=1 \infty 00 \\
\xi_{-}(\infty)=\xi_{+}(0)
\end{array}\right\}_{k \geq 3} \\
& \left(a_{1}, v_{-}, v_{+}\right) \longmapsto\left\{\begin{array}{l}
{\left[\# a\left(v_{-}, v_{+}\right)\right]} \\
\left(\left[v_{-}\right],\left[v_{+}\right]\right)
\end{array}\right. \\
& \Pi_{a}=\text { "projection to } \operatorname{ker} \Theta_{a} \text { along } \operatorname{ker} \Theta_{a} \text { " }
\end{aligned}
$$

$$
\begin{gathered}
i m \pi_{a}=\text { "complement to kor \#a" } \\
a=0: i m \pi_{a}=\mathbb{E} \approx e^{\infty}\left(\mathbb{P}^{\prime}\right) \times e^{\infty}(\mathbb{P}) \\
a \neq 0: \operatorname{im} \pi_{a} \subset \mathbb{E} \quad \infty \text {-dim } \\
22 \\
e^{\infty}\left(P^{\prime} \cdot B_{a}(00)\right) \times e^{\infty}\left(\mathbb{P}^{\prime} \backslash B_{a}(0)\right)
\end{gathered}
$$

M-polyfold chart
TODO: bundle structure on E
Fredhclm property of 6
morphisms
functoriality of 6

