Polyfold-Fredholm theory

- implicit function theorem for nomlinear sc. Fredholm maps
- Gromov - Witter application near smooth curves
- towards Fredholm description near nodal curves
literature: Hofer-Wysocki-Zehnder
- Hofor - surveys
- Fabert-Fish-Golorko-Wehrheim: "Plyfolds-A first and second book"
- Wehrheim: "Fredhelm notions in scale calculus and Hamiltonian Floes Theory"
of L2s (vides)
Correction: $\tau: F_{\infty} \rightarrow E_{\infty}$ sc ${ }^{0}$ extends to scale-differentiable $\mathbb{F} \rightarrow \mathbb{E}$

$$
\begin{aligned}
& \text { if } \forall x \in F_{1} \quad \exists D_{x} \tau: F_{1} \rightarrow E_{0}: \quad \forall k \geqslant 0 \\
& * \frac{\left\|\tau(x+h)-\tau(x)-D_{x} \tau(h)\right\|_{E_{k}}}{\|h\|_{F_{k+1}}} \|_{\|h\|_{F_{k+1}} \rightarrow 0} 0 \quad\left(\left.\Leftrightarrow \tau\right|_{F_{k+1}}: F_{k+1} \rightarrow E_{k} \text { duferentiable } \forall k\right) \\
& * \quad \forall x \in F_{k+1} \sup _{h \neq 0} \frac{\left\|D_{x} \tau(h)\right\|_{E_{k}}}{\|h\|_{F_{k}}}<\infty \quad(\Leftrightarrow D \tau: \underbrace{\mathbb{F}^{2} \times \mathbb{F}}_{\left(F_{k+1}, k F_{k}\right)_{k \in N_{0}}} \rightarrow \mathbb{E},(f, e) \omega D_{f} \tau \cdot e)
\end{aligned}
$$

Implicit Function Theorem:
\mathbb{E}, \mathbb{F} sc-Banach spaces
$f: \mathbb{E} \rightarrow \mathbb{F} s c^{\infty}$, sc-Fredholm
$f \pitchfork O\left(\right.$ He $f^{-1}(0): D_{e} f: \mathbb{E} \rightarrow \mathbb{F}$ subjective $)$
$\Rightarrow f^{-1}(0) \subset E_{\infty} \quad$ submanifold of (local) dimension ind Vf

Proof: Contraction Mapping Principle
Lemma: $f: \mathbb{E} \rightarrow \mathbb{F} s c^{\infty}$, regularizing
(w.)

- uniformly $e^{\prime} u p$ to finite dimensions $\}$
$\left.\begin{array}{l}\text { - uniformly } e^{\prime} \text { up to finite dimensions } \\ \text { - uniformly linearized } \begin{array}{l}\text { Fred holm } \\ \text { near } e=0\end{array}\end{array}\right\}$

$$
\begin{aligned}
f: \mathbb{E}=\mathbb{R}^{d} \times \widetilde{\mathbb{E}} & \longrightarrow \mathbb{F} \\
(r, e) & f_{r}(e)
\end{aligned}
$$

- $\forall k, r$ small : $f_{r}: \tilde{E}_{k} \rightarrow F_{k}$ classically e^{\prime}
- continuity of $D f_{r}: \tilde{E}_{k} \rightarrow L\left(\tilde{E}_{k}, F_{k}\right)$ uniform for $(r, e) \approx(0,0)$

$$
\left(\forall \delta>0, k \in \mathbb{N}_{0} \exists \varepsilon>0:|r|,\|e\|_{k},\left\|\in-e^{\prime}\right\|_{k}<\varepsilon \Rightarrow\left\|D_{e} f_{r}-D_{e} f_{r}\right\|_{L\left(\tilde{E}_{L_{H}} F_{k}\right)}<\delta\right)
$$

- $r_{i} \rightarrow 0,\left\|e_{i}\right\|_{E_{k}} \leqslant 1,\left\|D_{0} f_{r_{i}}\left(e_{i}\right)\right\| \rightarrow 0 \Rightarrow\left\|D_{0} f_{0}(e i)\right\|_{F_{k}} \rightarrow 0$
- $D_{0} f_{r}: \widetilde{\mathbb{E}} \rightarrow \mathbb{F}$ sc-Fredholm operator $\forall r$ small with index independent of r

Chm [HWZ]: \exists polyfoed B
p. Fredholm section $\sigma_{J}: \mathscr{B} \rightarrow \varepsilon^{J} \quad \forall J \in \mathcal{J}(\mu, \omega)$

$$
\text { s.t. }\left|\sigma_{j}^{-1}(0)\right| \simeq \bigcup_{A * 0} \bar{M}(A, J)
$$

$\underset{\substack{\text { Gromov } \\ \text { compacticabion }}}{ }\left\{u: \mathbb{P}^{\prime} \rightarrow M \mid \bar{\partial}_{j} u=0, u_{*}\left[\mathbb{P}^{\prime}\right]=A\right\} /$ Ant \mathbb{P}^{\prime}
Main
Steps of Proof

- object level: cover \bar{M} with local Fredholm descriptions
(a) near smooth curve $[u] \in \bar{M}$

VL2 scale Banach bundle $\varepsilon l_{x}=\bigcup_{U^{0}}{\overline{\Omega^{01}}\left(\mathbb{P}_{1}^{1}, \cup^{*} T M\right)}_{H^{2}}$
scale smooth
scale Banach manifold $\begin{aligned} & \downarrow \\ & U\end{aligned}=\left\{v \in H^{3}\left(\mathbb{P}^{\prime}, M\right) \mid d(v, u)<\delta, v(z) \in H_{z}\right.$ for $\left.z=0,1, \infty\right\}$

$$
\sigma^{-1}(0) / \Gamma=\operatorname{stab}(u) \underset{u}{c} F_{u p a n} \subset \bar{M} \quad \text { homeomorphism }
$$

CHECK: $\mathbb{E}=\left\{\xi \in H^{3+k}\left(\mathbb{P}_{1}^{\prime}, u^{*} T M\right) \mid j(z) \in T_{\text {may }} H_{z} \text { for } z=0,1, \infty\right\}_{k \geq 0} \xrightarrow{f} \mathbb{F}=\left(H^{2 H k}\left(P^{\prime}, \Lambda^{a 1} u^{*} T M\right)\right)_{k \geq 0}$
is sc-Fredholm

$$
\left.\xi \longmapsto \bar{\partial}_{j} \exp \right\}
$$

- regularizing: $f(e) \in F_{k} \Rightarrow e \in E_{k}$ ie. $\left.\bar{\partial}_{j} \exp _{n}(\xi) \in H^{2+k} \Rightarrow\right\} \in H^{3+k} \quad$ if $u \in e^{\infty}$
(. $\forall k, r \ldots: f_{r}: \widetilde{E}_{k}=E_{k} F_{k}$ class colly e^{\prime}

Continuity of $D f_{r}: \tilde{E}_{k} \rightarrow L\left(\tilde{E}_{k}, F_{k}\right)$ uniform for $\left(r_{1} e\right) \approx(0,0)$

$$
\nless r_{i} \rightarrow 0,\left\|e_{i}\right\|_{E_{k}} \leqslant 1,\left\|D_{0} f_{r_{i}}\left(e_{i}\right)\right\|_{k_{k}} \rightarrow 0 \Rightarrow \| D_{0} f_{0}\left(e_{i} \|_{k_{k}} \rightarrow 0\right.
$$

- $D_{0} f_{r}: \mathbb{E} \rightarrow \mathbb{F}$ sc-Fredhelm operator $\forall D$ Small

$$
\begin{aligned}
D_{0} f=D_{u} \bar{\partial}_{J} \quad & \cdot S C^{0} \text { with index indendent of } r \\
& \cdot D_{u} \bar{\partial}_{j}: H^{3+k} \rightarrow H^{2+k} \quad \text { bounded } \forall k \\
& \cdot E_{0} \rightarrow F_{0} \text { Fredholm } \rightarrow D_{u} \bar{\partial}_{j}: H^{3} \rightarrow H^{2}
\end{aligned}
$$

- object level: $V(a)$ near smooth curve $[u] \in \bar{m}$
(b) near nodal curve

$$
\leadsto O_{j} B=\sqcup_{u} u, O_{b j} \varepsilon=\left.\bigsqcup_{u} \varepsilon\right|_{u},\left.\sigma\right|_{u}=\sigma_{u} \text { with } \bigcup_{u} F_{u}=\bar{m}
$$

- morphism level:
(a) $\leftrightarrow(a) \operatorname{Mor} B \supset(s \times t)^{-1}\left(u, U^{\prime}\right)=\left\{(v, \varphi) \in U \times A u t \mathbb{P}^{\prime} \mid v \circ \varphi \in U^{\prime}\right\}$ scale Banach manifold (locally $\simeq u$)
(For $u \in U, \varphi_{0} \in A u\left(P^{\prime}\right)$ s.t. $u 0 \varphi_{0} \in U^{\prime}$ $\left.\begin{array}{l}\text { have nhl }(u) \approx(s \times t)^{-1}(\text { nhl }(u) \text {, ibid (no }(,)) \text {) via } v \rightsquigarrow(v, \varphi) \\ \text { with } \varphi \approx \varphi_{0} \text { determined by } \varphi(z)=v^{-1}\left(H_{z}^{\prime}\right) \cap \text { nbhd }\left(\varphi_{0}(z)\right) \text { for } z=0,1, \infty\end{array}\right)$
- structme $\frac{\text { maps }}{s_{L 21}}$

$$
\begin{aligned}
& \text { id : Obj } B \rightarrow \operatorname{Mor} B, \quad v \mapsto(v, i d) \\
& s: \operatorname{Mor} B \rightarrow \operatorname{Obj} B,(v, \varphi) \mapsto v \\
& t: \operatorname{Mor} B \rightarrow \operatorname{Obj} B,(v, \varphi) \mapsto \operatorname{vo\varphi } \circledast \\
& 0: \operatorname{Mor} B=\operatorname{Mor} B \rightarrow \operatorname{Mor} B,((v, \varphi),(v \circ \varphi, \psi)) \mapsto(v, \psi \circ \varphi)
\end{aligned}
$$

- functoriality $\mathrm{Obj} \varepsilon \Rightarrow \eta_{\|} \stackrel{\text { Mar } \xi}{\longleftrightarrow} \eta 0 d \varphi \in O b j \varepsilon$

Chm [HWZ]: \exists polyfoed B
p. Fredholm section $\sigma_{J}: B \rightarrow \varepsilon^{J} \quad \forall J \in J(M, \omega)$

$$
\text { s.t. }\left|\sigma_{j}^{-1}(0)\right| \simeq \bigcup_{A \& 0} \bar{M}(A, J)
$$

Main
Steps of Proof

- object level: cover \bar{M} with local Fredholm descriptions
\checkmark (a) near smooth curve $[u] \in \bar{m}$
(b) near nodal curve e.g. ($\left[u^{-}\right],\left[u^{+}\right]$)

Goal: $\begin{aligned} & \varepsilon_{u} \\ & \downarrow \\ & \rho\end{aligned} \sigma_{u} \quad$ s.t. $\quad \sigma_{u}^{-1}(0) \simeq \operatorname{nbhd}\left([u],\left(u^{+}\right]\right) \subset \bar{m}$

([u], $\left.\left[u_{r}\right]\right)$
$\left.\varepsilon\right|_{u_{\infty}} \Rightarrow\left[\bar{\partial}_{j} u\right)$

$$
\begin{gathered}
\left(\left[u_{-}\right],\left[u_{r}\right]\right) \\
\downarrow \\
\Rightarrow\left(\left[\bar{\partial}_{j} u_{-}\right],\left[\bar{\partial}_{2} u_{+}\right]\right)
\end{gathered} \quad \cdots
$$

Need scale smooth structure near $\left(\left[u u_{1}\left[u^{+}\right]\right)\right.$in which σ_{u} is sc ${ }^{\infty}$, Fredhblm.
Idea: Generalize notion of Banach manifold so that preghing is a chart.

$$
\left(v_{-}, v_{+}, a\right) \longmapsto \begin{cases}\left(\left[v_{-}\right],\left[v_{+}\right]\right), & ; a=0 \\ {\left[\#_{a}\left(v_{-}, v_{+}\right)\right] ;} & ; a \neq 0\end{cases}
$$

$$
\downarrow \rho \quad \begin{array}{ll}
& \text { retraction } \tag{im}\\
\left(\rho^{2}=\rho\right)
\end{array}
$$

$$
\begin{aligned}
& i m \pi \pi_{a}=" \text { complement to kor } \pi_{a} \text { " } \\
& a=0: i m \pi_{a}=\mathbb{E} \approx e^{\infty}\left(P^{\prime}\right) \times e^{\infty}\left(P^{\prime}\right) \\
& a \neq 0: \operatorname{im}_{v 2} \pi_{a} \subset \mathbb{E} \quad \substack{\infty-\operatorname{dim}_{\infty}-\text { codim }} \\
& e^{\infty}\left(P^{\prime} \cdot B_{\alpha}(00)\right) \times e^{20}\left(P^{\prime} \cdot B_{a}(0)\right)
\end{aligned}
$$

M-polyfold chart

