Polyfold-Fredholm theory
Scale Calculus.

- relation to classical calculus
- use in polyfold description
- relation to elliptic operators
- implicit function theorem \& Fredholm notions

Literature: -Hofer-Wysocki-Zehnder

- Hotter - surreys
- Falert-Fish-Goooko-Wehrkeim: "Plyfords-A first and second book"
- Wehrheim : "Fredherm notions in scale calculus and Hamiltonian Floor Theory"

SCALE CALCULUS,
Guiding Example: $\tau: s^{\prime} \times e^{\infty}\left(s^{\prime}\right) \rightarrow e^{\infty}\left(s^{\prime}\right)$
$S^{\prime}=\mathbb{R} / \mathbb{Z}$

$$
(s, \gamma) \longmapsto \gamma(s+\cdot)
$$

is soale-smooth on sc-Banach space $\mathbb{E}:=\left(e^{k}\left(s^{\prime}\right)\right)_{k \in N_{0}}$

- $\tau: s^{\prime} \times e^{k+1}\left(s^{\prime}\right) \rightarrow e^{k}\left(s^{\prime}\right)$ is classically e^{l} for $k, l \geq 0$
- norms $\|\cdot\|_{1},\|\cdot\|_{2}$ on finite dim. v-spaces are equivalent $\frac{1}{c}\|\cdot\|_{1} \leqslant\|\cdot\|_{2} \leqslant C\|\cdot\|_{1}$
$\Rightarrow \tau: S^{\prime} \times N \rightarrow e^{\infty}\left(s^{\prime}\right)$ is smooth for $N \subset e^{\infty}\left(s^{\prime}\right)$ finite dim. subonfd
General Facts:
$\mathbb{E}=\left(E_{k}\right)_{k \in N_{0}}$ scale-Banach space
(i) E_{∞} finite dim. $\Rightarrow E_{k}=E_{\infty} \forall k \quad\left(\right.$ ce. $\left.\|\cdot\|_{k} \sim\|\cdot\|_{j} \quad \forall k, j\right)$
(ii) E_{∞} finite dim. $\Leftarrow E_{k}=E_{j}$ for $k \neq j\left(c . e,\|\cdot\|_{k} \sim \|_{0} \cdot u_{j}\right)$
- $\left(E_{k},\|\cdot\|_{k}\right)$ Banach space $\forall k$
- $E_{k} \hookrightarrow E_{j}$ continuous, compact $\forall k>j$ \& $i d: E_{k} \rightarrow E_{k}$ compact $\Leftrightarrow \operatorname{dim} E_{k}<\infty$
- $E_{\infty}:=\bigcap_{j \in N_{0}} E_{j} \subset E_{k}$ dense $\forall k$
\& $\operatorname{dim} E_{\infty}<\infty \Rightarrow \bar{E}_{\infty}^{n \cdot n}=E_{\infty}$

Soboler spaces as scale-Banach spaces

$$
\begin{aligned}
& \Omega \text { compact } \leadsto W^{\ell_{1} P}(\Omega):=\left(W^{2+k, P}(\Omega)\right)_{k \geqslant 0} \leftrightarrow E_{\infty}=e^{\infty}(\Omega) \\
& \longrightarrow W_{\underline{\Omega}}^{\ell_{1} P}(\mathbb{R} \times \Omega):=\left(W_{\delta_{k}}^{\ell+k, p}(\mathbb{R} \times \Omega)\right)_{k \geqslant 0} \quad 0 \leqslant \delta_{0}<\delta_{1}<\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } E_{k} \hookrightarrow E_{j} \text { continuous, compact } \forall k>j \\
& \text { - } E_{0}:=\cap E_{j} \subset E_{k} \text { dense } \forall k \\
& E_{\infty} \supset e_{c}^{\infty} \\
& { }^{4} \text { compact support }
\end{aligned}
$$

General Facts for $\tau: \mathbb{F} \rightarrow \mathbb{E}$
(0) scale-continuous $\left(\left.\tau\right|_{F_{k}}: F_{k} \rightarrow E_{k} e^{0} \forall k\right) \Rightarrow \tau: F_{\infty} \rightarrow E_{\infty} \begin{aligned} & \text { determines } \\ & \tau \text { uniquely }\end{aligned}$
(i) scale-differentiable $\Leftrightarrow \forall k \geqslant 0 \quad|\tau|_{F_{k+1}}: F_{k+1} \rightarrow E_{k}$ differentiable $\forall k$

$$
\left.\xrightarrow[\|h\|_{F_{k+1}}\left\|\tau(x+h)-\tau(x)-D_{x} \tau(h)\right\|_{E_{k}}\|\hbar\|_{F_{k+1} \rightarrow 0}]{\|\tau(L)\|_{-}} 0 \quad D \tau:{\left.\underset{\left(F_{k+1}, \kappa F_{k}\right)_{k \in N_{0}}}{\mathbb{F}^{1} \mathbb{F}} \rightarrow \mathbb{E},(f, e) \mapsto D_{f} \tau \cdot e\right)}_{\|}^{\|}\right)
$$

and $\forall x \in F_{k, 1} \sup _{h \neq 0} \frac{\left\|D_{x} \tau(h)\right\|_{E_{k}}<\infty}{\|h\|_{F_{k}}}$
(ii) $\tau s c^{\prime} \Leftrightarrow$ (i) for $k=0, D \tau \quad s c^{0}$
$\tau s c^{l} \Leftrightarrow$ (i) for $k=0, D \tau$ sc $\quad \Rightarrow \tau: F^{k+l} \rightarrow E^{k} e^{l} \forall k *$
(iii) $\tau s c^{\infty}, N \subset F_{\infty}$ finite dim. $\Rightarrow \tau \|_{N}: N \rightarrow E_{\infty} \quad e^{\infty}$ wot $\| \cdot U_{E_{k}} \forall k$

Chain Rule: $f: \mathbb{E} \rightarrow \mathbb{F}, g: \mathbb{F} \rightarrow \mathbb{G} \quad s c^{\prime}$
$\Rightarrow g \circ f: \mathbb{E} \rightarrow \mathbb{G} s c^{\prime}, T(g \circ f)=T g \circ T f: T \mathbb{E} \rightarrow T \mathbb{C}$

$$
\begin{aligned}
\left(E_{k+1} \times E_{k}\right)_{k \times 10}= & \mathbb{E}^{\prime} \times \mathbb{E} \quad \mathbb{G}^{\prime} \times \mathbb{G} \\
& \left.(e, x) \mapsto(g \circ f)(e) D_{e}(g \circ f) x\right)
\end{aligned}
$$

Note have how dhows rule for " e ' after shift" does not hold.

Chm [HWZ]: \exists polyfoed B
p. Fredholm section $\sigma_{j}: B \rightarrow \varepsilon^{J} \quad \forall J \in \mathcal{J}(\mu, \omega)$

$$
\text { s.t. }\left|\sigma_{j}^{-1}(0)\right| \simeq \bigcup_{A * 0} \bar{M}(A, J)
$$

$\underset{\substack{\text { Gromov } \\ \text { compatcabion }}}{ }\left\{u: \mathbb{P}^{\prime} \rightarrow M \mid \bar{\partial}_{j} u=0, u_{+}\left[\mathbb{P}^{\prime}\right]=A\right\} / A_{n t} \mathbb{P}^{\prime}$

- object level near smooth curve $\left.[u] \in \bar{M} \quad \sigma^{-1}(0) / \Gamma=\operatorname{stab}(u)\right] F_{u} \subset \bar{M}$ ppm homeomorphism scale Banach bundle $\left.E\right|_{x}=\bigcup_{v \in u} \bar{\Omega}^{0^{1}}\left(\mathbb{P}_{1}^{1}, V^{* T} T M\right) H^{H^{2}}$ ᄂ $\pi \downarrow$ 位 $\downarrow \bar{\partial}_{j}=\sigma_{u} \quad$ Fredholm section scale Banach manifold $\ddot{U}=\left\{v \in H^{3}\left(\mathbb{P}^{\prime}, M\right) \mid d(v, u)<\delta, v(z) \in H z\right.$ for $\left.z=0,1, \infty\right\}$ $\psi_{\text {Hausdorff space }}$ locally homeomorphic to sc-Banach space with $s c^{\infty 0}$ transition maps
$\pi S C^{\infty}$ with linear structure on fibers
- morphism level:

$$
\begin{aligned}
& \text { More } \mathcal{B} \supset(s \times t)^{-1}\left(u, u^{\prime}\right)=\left\{(v, \varphi) \in U \times A u t \mathbb{P}^{\prime} \mid v \circ \varphi \in \mathcal{U}^{\prime}\right\} \\
& \text { ecg. } u \times s t a b(u) \simeq(s \times t)^{-1}(u, u) \\
& \text { scale Banach manifold } \\
& (v, g) \longmapsto(v, \varphi) \underbrace{\varphi \approx g \text { set. } v \circ \varphi \in U}_{\Leftrightarrow \varphi(z)=v^{-1}\left(H_{z}\right) \cap g(n \text { bal }(z)) \text { for } z=0,1, \infty 0}
\end{aligned}
$$

This determines $\varphi \in \operatorname{sint}(P)$ uniquely.

- structure
maps:

$$
\begin{aligned}
& i d: \operatorname{Obj} B \rightarrow \operatorname{Mor} B, v \mapsto(v, i d) \\
& s: \operatorname{Mor} B \rightarrow \operatorname{Obj} B,(v, \varphi) \mapsto v \\
& t: \operatorname{Mor} B \rightarrow \operatorname{Obj} B,(v, \varphi) \mapsto \operatorname{vo\varphi } \quad * \\
& 0: \operatorname{Mor} B=\operatorname{Mor} B \rightarrow \operatorname{Mor} B,((v, \varphi),(v \circ \varphi, \psi)) \mapsto(v, \psi \circ \varphi)
\end{aligned}
$$

TODO: objets \& morphisms near nodal curves

Ellipáic Operators and Scale Calculus
Ex: $D:=\partial_{s}+J_{0} \partial_{t}: e^{\infty}\left(T^{2}, \mathbb{C}^{n}\right) \rightarrow e^{\infty}\left(T^{2}, \mathbb{C}^{n}\right) \quad T^{2}=\frac{\mathbb{R}^{2} / \mathbb{L}^{2}}{}$ compact domain

- "first order" : $D: \mathbb{E} \rightarrow \mathbb{F}_{\widehat{l}} s c^{0} \quad \mathbb{E}=\left(W^{k+1, p}\right)_{k \geq 0} \quad, \mathbb{F}=\left(W^{k, p}\right)_{k i 0}$ $\left.D\right|_{E_{k}}: E_{k} \rightarrow F_{k}$ bounded linear operator th
- "elliptic regularity": $D u \in \underset{\substack{\mid k, p}}{F_{k}} \Rightarrow u \in \underset{W_{k}}{W_{k}^{k+1, p}} \quad$ ("regularizing")
- Fredholm : $\left.D\right|_{E_{0}}: \underset{\substack{10 \\ W^{\prime P}}}{E_{0} \rightarrow F_{0}} \quad$ has kernel $=\operatorname{ker} D \subset E_{\infty} \quad$ finctedim cokernel $=\frac{F_{0}}{D E_{0}} \quad$ finite dim.

Lemma: $D: \mathbb{E} \rightarrow \mathbb{F}$ linear $\} \Rightarrow$ sc-Fredholm

$$
\begin{aligned}
& \text { - so } \\
& \text { - regularizing } \\
& \text { - } D: E_{0} \rightarrow F_{0} \text { Fredholm }
\end{aligned}
$$

$\left.D\right|_{\mathbb{E}^{c}}: \mathbb{E}^{c} \rightarrow \mathbb{I n} D$ sc-isomorphism

ie. $\forall k$
$\forall k: D I_{E_{k}}: E_{k} \rightarrow F_{k}$ Fredholm

$$
\left.\begin{array}{l}
\left.\operatorname{ser} D\right|_{E_{k}}=\left.\operatorname{ser} D\right|_{E_{0}} \\
\frac{F_{k}}{D E_{k}} \\
=\frac{F_{0}}{D E_{0}}
\end{array}\right\} \Rightarrow \text { ind }\left.D\right|_{E_{k}}=\left.\operatorname{ind} D\right|_{E_{0}}
$$

Implicit Function Theorem:
E, F Banach spaces

$$
f: E \rightarrow F \quad e^{\infty}
$$

Fredhrem \& transverse

$$
\left(\begin{array}{rl}
\forall e e f^{-1}(0): D_{e} f: E \rightarrow F & \text { Fredhbim } \\
& \text { surjective }
\end{array}\right)
$$

$\Rightarrow f^{-1}(0) \subset E$ submanifold
of (local) dimension ind Of

DREAM
\mathbb{E}, \mathbb{F} sc-Banach spaces
$f: \mathbb{E} \rightarrow \mathbb{F} s c^{\infty}$, regularizing.
sc-Fredholm \& transverse

$$
\left(\begin{array}{cr}
\forall e e f_{n}^{-1}(0): D_{e} f: \mathbb{E} \rightarrow \mathbb{F} & \text { sc- Fredhlm } \\
\hat{E}_{\infty} & \text { surjective }
\end{array}\right)
$$

$\Rightarrow f^{-1}(0) \subset E_{\infty}$ submanifold
of (local) dimension ind Of

DREAM
PROOF local chart near $e \in f^{-1}(0)$ from Newton iteration

$$
\begin{aligned}
& E_{\infty}=\operatorname{ker} D_{e} f \rightarrow f^{-1}(0) \quad \xi \in E_{\infty}^{c} \\
& X \longmapsto e+X+\xi \quad f(e+X+j)=0 \\
& \left\{\begin{array}{l}
\xi_{0}=0 \\
\xi_{n+1}=\xi_{n}-Q f\left(e+x+\xi_{n}\right)
\end{array}\right. \\
& D_{e} f: \mathbb{E}^{\stackrel{c}{c} \underset{\sim}{\underset{Q}{\leftrightarrows}}} \operatorname{Im} D_{c} f \\
& \left\|\bar{\zeta}_{n+1}-\xi_{n}\right\|_{E_{k}}=\left\|Q f\left(e+x+\xi_{n}\right)\right\|_{E_{k}} \leqslant\|Q\|_{L\left(F_{k}, E_{k}\right)}^{\left\|f\left(e+x+\zeta_{n}\right)\right\|_{F_{k}}}
\end{aligned}
$$

\Rightarrow proof needs more differentiability for contraction property

Implicit Function Theorem:
\mathbb{E}, \mathbb{F} sc-Banach spaces
$f: \mathbb{E} \rightarrow \mathbb{F} s c^{\infty}$, sc-Fredholm
$f \pitchfork O\left(\right.$ Wee ${ }^{-1}(0): D_{e} f: \mathbb{E} \rightarrow \mathbb{F}$ sujective $)$
$\Rightarrow f^{-1}(0) \subset E_{\infty} \quad$ submanifold of (local) dimension ind $D f$

Def ${ }^{n}: f: \mathbb{E} \rightarrow \mathbb{F}$ is $s c$-Fredholm

- regularizing: $f(e) \in F_{k} \Rightarrow e \in E_{k}$
- contraction in local coordinates near each $e \in f^{-1}(0)$

$$
\begin{aligned}
& \mathbb{R}^{n} \times \mathbb{E}^{c} \rightarrow \mathbb{R}^{m} \times \mathbb{F}^{c} \\
& (v, w) \longmapsto(A(v, w), w-B(v, w)
\end{aligned}
$$

$\forall k \in \mathbb{N}_{0}, \theta>0 \quad \exists \varepsilon>0: \forall\|v\|,\left\|w_{1}\right\|_{\Sigma_{k}},\left\|w_{2}\right\|_{\varepsilon_{k}}<\varepsilon:$
$\left\|B\left(v_{1} w_{1}\right)-B\left(v_{1}, w_{2}\right)\right\|_{F_{k}} \leq \theta\left\|w_{1}-w_{2}\right\|_{E_{k}}$

Lemma: $f: \mathbb{E} \rightarrow \mathbb{F} s c^{\infty}$, regularizing

- uniformly e^{\prime} up to finite dimensions $\} \Rightarrow$ contraction in local coordinates
- uniformly linearized Fredholm $\left.\begin{array}{rl}\text { near } e=0\end{array}\right\} \Rightarrow$ contraction in local coordinates

