Polyfold-Fredholm theory

- overview
- scale calculus
litarature: *Hofer-Wy socki-Zehnder
- Hofar - surveys
- Falert-Fish-Godorko-Wehrkeim: "Plyfolds-A firrt and second book"

General Form of Polyfold Regularization
\bar{M} compact netrizable moduli space
 and Fredhodm section $\sigma: B \rightarrow \mathcal{E}$ s.t. $M \simeq\left|\sigma^{-1}(0)\right|=\frac{\sigma^{-1}(0)<0 b_{B} B}{M_{0}-B}$

Thy $\exists P=\{v 内 10\} \subset\left\{\begin{array}{l}\text { multi- } \\ \text { sections }\end{array}\right.$ of $\left.\varepsilon \rightarrow B\right\}$:

- $\forall \gamma \in P:\left|(\sigma+\gamma)^{-1}(\sigma)\right| \begin{aligned} & \text { weighted branched } \\ & \text { manifold } \\ & \partial^{k}\end{aligned} \partial^{k}\left|(\sigma+r)^{-1}(0)\right|=\mid(\sigma+r)^{-1}(0) \cap \partial^{k}(\mid$
- $\forall \mu \in P:\left|(\sigma+\mu)^{-1}(0)\right|$ cobordant
- if $\left.\sigma\right|_{U} \pitchfork 0$ for $U \subset O_{j_{B}}$ open, $\left|\sigma^{-1}(0)_{n} U\right|$ compact then $\exists r \in P$:
- if r^{2} no then $\exists r \in \infty: \sim l_{\partial \beta}=r^{2}$

$$
\left.v\right|_{u} \equiv 0
$$

- $\sigma_{1}+\nu_{1} \pitchfork O, \sigma_{2}+r_{2} \pitchfork O \Rightarrow \sigma_{1} \times \sigma_{2}+r_{1} \times v_{2} \nrightarrow O$

TOO': $\left.\begin{array}{l}\text { - choice of }(\varepsilon, X, \sigma) \\ \text { - variation of J }\end{array}\right\}$ yield $\underset{4, \text { equivalent }}{\text { equilyfold Fredhelm sections }}$

Examples: SFT Fredhelm sections for PSS moduli spaces
Conj.[HWz-in progress]: \exists polyfoeds $B_{ \pm \cup} B_{ \pm}(\gamma), B_{0}, B_{\text {strewh }}$ p.bundles $\varepsilon_{ \pm}, \varepsilon_{0}, \varepsilon_{\text {strach }}$
p. Freaholm sections $\sigma_{*}: \mathbb{W}_{*} \rightarrow \varepsilon_{*}$
S.t. $e V_{0 / 00}: B_{*} \rightarrow M$ p. - smooth,$\partial B_{\text {stertech }}=B_{0}^{-} \cup B_{+} \times B_{P_{H}}$, $\left|\sigma_{*}^{-1}(0)\right| \simeq \bar{N}_{*}$ SFT compactifications of

$$
\underset{n}{N_{0}}:=\left\{\underset{0, \infty}{\left.\left\{\hat{u}: \mathbb{P}^{\prime} \rightarrow \mathbb{P}^{\prime} \times M \mid \bar{\partial} \hat{j}_{0} \hat{u}=0,[\hat{u}]=[i d] \times[u], E(u)<\infty\right\} / \mathbb{A} t(\mathbb{P})\right) .}\right.
$$

$$
\bar{N}_{0}
$$

Examples: SFT Fredhlem sections for PSS moduli spaces
$\left.\begin{array}{rl}\text { Conj.: polyfolds } & B_{ \pm}, B_{0}, B_{\text {stewh }} \\ \text { p.bundles } & \varepsilon_{ \pm}, \varepsilon_{0}, \varepsilon_{\text {stubeh }} \\ \text { are upto equivalence }\end{array}\right\} \begin{aligned} & \text { uniqudy determined by }\end{aligned}$ p. Fredhoem sections $\left.\sigma_{*}: B_{*} \rightarrow \varepsilon_{*}\right\}$ uniquely determined by

- polyfolds: $\left|B_{0}\right|_{\text {dan }}\left\{\hat{u}: \mathbb{P}^{\prime} \mathcal{C}^{e} \rightarrow \mathbb{P}^{\prime} \times M \mid[\hat{u}]=[i d] \times[u], E(u)<\infty\right\} / A u t(\mathbb{P})$

$$
\begin{aligned}
& B_{\text {sebech }}=[0, \infty) \times B_{0} \text { proce } B_{+} \times B_{D_{H}}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\varepsilon_{ \pm}^{\mathrm{j}}\right|_{\text {dane }} \cdots
\end{aligned}
$$

- Fredholen sections: $\left.\sigma\right|_{\text {denes }}=\bar{\partial} \hat{j}_{0}$ on B_{0}
subret $\bar{\partial}_{j_{1}}$ on $B_{ \pm}$

$$
\begin{aligned}
& (R, \hat{u}) \mapsto \bar{\partial} \hat{\partial}_{R} \hat{u} \\
& \left(\hat{u}_{+}, \hat{u}_{-}\right) \mapsto\left(\bar{\partial}_{j_{+}} \hat{u}_{+}, \bar{\partial}_{j} \hat{u}_{-}\right) \quad \text { on } \mathcal{B}_{\text {rtaten }}
\end{aligned}
$$

Chm $[H W Z]: \exists$ polyfoed B
p. Fredholm section $\sigma_{J}: B \rightarrow \mathcal{E}^{J} \quad \forall J \in \mathcal{J}(\mu, \omega)$

$$
\text { s.t. }\left|\sigma_{j}^{-1}(0)\right| \simeq \bigcup_{A * 0} \bar{M}(A, J)
$$

Main
Steps of Proof
$\underset{\substack{\text { Gromov } \\ \text { compacteabion }}}{ }\left\{u: \mathbb{P}^{\prime} \rightarrow M \mid \bar{\partial}_{j} u=0, u_{i}\left[\mathbb{P}^{\prime}\right]=A\right\} / A_{\text {ant }} \mathbb{P}^{\prime}$

- object level: cover \bar{M} with local Fredholm descriptions
(a) near smooth curve $[u] \in \bar{M}$ pick representative u s.t. $d_{2} u$ injective for $z=0,400$ \checkmark LI
submenifolds $H_{z} \subset M, H_{z}$ 由 u putz) -n-
Banach bundle $\quad \varepsilon_{u}=\bigcup_{v \in u} \overline{\Omega^{0_{1}^{\prime}}\left(\mathbb{P}_{1}^{\prime}, v^{* T M}\right)}$
Banach manifold $\quad \stackrel{\downarrow}{U}=\left\{v \in H^{3}\left(\mathbb{P}^{\prime}, M\right) \mid d(v, u)<\delta, v(z) \in H_{z}\right.$ for $\left.z=0,1, \infty\right\}$ $\sigma^{-1}(0) / \Gamma=$ Stable) $\underset{u}{c} F_{u p a n} \bar{M} \quad$ homeomorphism
(b) near nodal curve

TODD $\rightarrow \rightarrow$ M opolyfold
$\leadsto \operatorname{Obj} B=\sqcup_{u} u, O_{b j} \varepsilon={\underset{u}{u}} \varepsilon l_{u},\left.\sigma\right|_{u}=\sigma_{u} \quad$ with $\bigcup_{u} F_{u}=\bar{M}$

- morphism level:
(a) \leftrightarrow (a) $\operatorname{Mor} B \supset(s \times t)^{-1}\left(u, U^{\prime}\right)=\left\{(v, \varphi) \in U \times \operatorname{Aut} \mathbb{P}^{\prime} \mid v \circ \varphi \in U^{\prime}\right\}$ scale Banach manifold (locally $\simeq u)$

$(a) \leftrightarrow(b)$
$(b) \leftrightarrow(b)$ TOO \rightarrow sole $\begin{gathered}\text { sole } \\ \text { smooth }\end{gathered}$ maps between M-polyfolds

SCALE CALCULUS
Guiding Example: $\quad \tau: s^{\prime} \times e^{\infty}\left(s^{\prime}\right) \rightarrow e^{\infty}\left(s^{\prime}\right) \quad s^{\prime}=\mathbb{R} / \mathbb{Z}$

$$
(s, \gamma) \longmapsto \gamma(s+\cdot)
$$

Goal: Notion of smooth structure on $e^{\omega \prime}\left(s^{\prime}\right)$ s.t.

- τ is smooth - implicit function theorem
- chain rule recovering dassion smooth structure

Facts:
(0) $\tau: s^{\prime} \times e^{k}\left(s^{\prime}\right) \rightarrow e^{k}\left(s^{\prime}\right)$ continuous $\forall k \in \mathbb{N}_{0}$
(i) $\tau: s^{\prime} \times e^{k+1}\left(s^{\prime}\right) \rightarrow e^{k}\left(s^{\prime}\right)$ differentiable $\forall k$
(ii) $D \tau: s^{\prime} \times e^{k+1}\left(s^{\prime}\right) \rightarrow L\left(\mathbb{R} \times e^{h+1}\left(s^{\prime}\right), e^{k}\left(s^{\prime}\right)\right)$ continuous $\forall \mathbf{V}$

$$
(s, \gamma) \longmapsto D_{(s, \gamma)} \tau:(S, \Gamma) \longrightarrow S \cdot \dot{\gamma}(s+\cdot)+\Gamma(s+\cdot)
$$ to bounded linear operators

$D \tau: s^{\prime} \times e^{k}\left(s^{\prime}\right) \rightarrow L\left(R \times e^{k}\left(s^{\prime}\right), e^{k}\left(s^{\prime}\right)\right) \quad$ ill defined for $\gamma \in e^{k}, e^{k+1}$
$D \tau: s^{\prime} x e^{\infty}\left(s^{\prime}\right) \rightarrow L\left(\mathbb{R} \times e^{k}\left(s^{\prime}\right) e^{k}\left(s^{\prime}\right)\right)$
not continuous w.r.t. S^{\prime}

$$
\sup _{\|\Gamma\|_{e^{0}=1}\|\Gamma(s+0)-\Gamma\|_{e^{0}}}=2
$$

(iii) $D \tau: s^{\prime} \times e^{k+1}\left(s^{\prime}\right) \times \mathbb{R} \times e^{k}\left(s^{\prime}\right) \rightarrow e^{k}\left(s^{\prime}\right)$ continuous $V \mathbf{V}$

$$
(s, \gamma, s, \Gamma) \quad \mapsto D_{(s, \gamma)} \tau(s, \Gamma)=S \cdot \underbrace{\boldsymbol{\gamma}(s+\cdot)}_{\tau(s, \dot{\gamma})}+\underbrace{\Gamma(s+\cdot)}_{\tau(s, r)}
$$

SCALE CALCULUS
Lemma: $\tau: S^{\prime} \times \mathbb{E} \rightarrow \mathbb{E}$ is scale-smooth on sc-Banach space

$$
(s, \gamma) \longmapsto \gamma(s+\cdot)
$$

$$
\mathbb{E}:=\left(e^{k}\left(S^{\prime}\right)\right)_{k \in \mathbb{N}_{0}}
$$

Def ${ }^{n}$: $\mathbb{E}=\left(E_{k}\right)_{k \in \mathbb{N}_{0}}$ scale-Banach space consists of

- ($E_{k},\|\cdot\|_{k}$) Banach space $\forall k$
- $E_{k} \hookrightarrow E_{j}$ continuous, compact injection $\forall k>j$
- $E_{\infty}:=\bigcap_{j \in थ_{0}} E_{j} \subset E_{k}$ dense $\forall k$

Def n: $\tau: \mathbb{F} \rightarrow \mathbb{E}$ is

$$
\mathbb{F}=\left(s_{\mathbb{R}}\left(x e^{k}\right)_{k \in \mathbb{N}_{0}}\right.
$$

$\mathbb{R}_{\text {r.ppece }}$
(0) scale-continuous $\left(s c^{0}\right)$ if $\left.\tau\right|_{F_{k}}: F_{k} \rightarrow E_{k} e^{0} \forall k$
(i) scalk-differentiable if $s c^{0},\left.\tau\right|_{F_{k+1}}: F_{k+1} \rightarrow E_{k}$ differentiable $\forall k$ and derivative map $D \tau: \underbrace{\mathbb{F}^{1} \times \mathbb{F}}_{\left(F_{k+1} \times F_{k}\right)_{k, 0}} \rightarrow \mathbb{E},(f, e) \mapsto D_{f} \tau \cdot e$ well defined
(ii) l-fold continuously scale-ditferentiable ($s c^{l}$) if $(0),(i)$, $D \tau$ is $s c^{l-1}$
(iii) scale-smooth $\left(s c^{\infty}\right)$ if $s c^{l} \forall l \in \mathbb{N}_{0}$

