B) Moduli spaces of pseudoholomorphic curves (M, ω) symplectic, $]$ compatible almost complex structure
MAIN EXAMPLE: $A \in H_{2}(M)$ fixed $\bar{\partial}_{j}^{-1}(0) \subset\left\{u \in W^{i P}\left(\mathbb{P}_{1}^{\prime} M\right)[n]=A\right\}$ i) zero set of Frechem section

$$
\left.\bar{M}_{0,1}\left(A_{1}\right]\right)=\bar{M}=\widetilde{M}_{M} \bigcup_{\text {Alt thing }}\left\{\begin{array}{l}
\text { bubble trees with } 1 \text { marked point }\}
\end{array}\right.
$$

Tharels a continuous evaluation map iv: $\bar{M} \rightarrow M$ given by $[u] \mapsto u(\infty)$ on $\pi /$ /hat and we wish to define $[\bar{M}] \in H_{3}(\bar{M})$ or at least $e_{*}[\bar{M}] \in H_{*}(M)$.
We have no description $\bar{M}=s^{1 /} 0$) as zero sets of a section, just a subset $\partial_{j}^{-1}(0) / A u t \subset \tilde{M}$ that may nob even be dense.
In some cases, perturbations of $J \in \mathcal{J}(M, \omega)$ provide regularization, corresponding to Ant-equivariant transverse perturbations $p=\bar{\partial}_{J 1}-\bar{\partial}_{J}$ for $J^{\prime} \in y^{\prime} y(\mu, \omega)$ which moreover "preserve compactification type".

$$
\begin{aligned}
& M=\tilde{M} / \text { Alt } \quad \operatorname{Aut}\left(\mathbb{P}_{1}^{\prime} \infty\right)=\left\{\begin{array}{c}
\varphi G \mathbb{P}^{\prime}, \varphi^{*} i=i \\
\varphi(\infty)=\infty
\end{array}\right\}=\{\varphi(z)=a z+b \mid a \neq 0\} \\
& \text { noncompact } 4 \text {-dim }
\end{aligned}
$$

OTHER EXAMPLES of moduli spaces of prendohdomorphic are all essentially of the form
$\bar{M}=\tilde{M} /$ Ant going $^{\cup}$ \{nodal/brokon curves\}
where $\tilde{M}=\bar{\partial}_{j}^{-1}(0)$ is a zero set of a Fredholm section ${\underset{\sim}{B}}_{j}^{j} \bar{\partial}_{j}$

$$
\begin{aligned}
& \text { over } \\
& \mathcal{B}=\left\{u:(\Sigma, j) \rightarrow(M, J) \left\lvert\, \begin{array}{c}
{[n]=A, u(\partial \Sigma) c L,} \\
y \\
\text { lived (relative) Lagrangian }
\end{array}\right.,(\Sigma, j) \in D M,(M, J) \in D\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { smooth families }
\end{aligned}
$$

with
Mut $=\left\{\right.$ biholomorphisms between $\left.(\Sigma, j),\left(\Sigma^{\prime}, j^{\prime}\right) \in D M\right\}$
and nodallbrohancurves arising from \cdot bubbling

- compactification of DM/Aut
- compartification of D

Examples of smooth families and compactifications
domain: \sum fixed, $j \in\{$ complex structures on $\Sigma\}$ Dligne-Mumford compactification of $\left\{j\right.$ on $\left.\sum\right\}$
contains (stable) nodal curves $\sim \varphi^{*} j \quad \forall \varphi \in D i f \sum$ contains (stable) nodal curves

target (SFT-type splitting)

$$
\begin{equation*}
D=\left\{\left(M_{0}, J_{0}\right) \underset{T}{\#}\left(M_{1}, J_{1}\right) \mid T \geqslant 0\right\} \text { with compactification }\left(M_{0}, J_{0}\right) \cup\left(M_{1}, J_{1}\right) \tag{1}
\end{equation*}
$$

this forces cures to break

