Moduli spaces of pseudoholomorphic curves (M,ω) symplectic,) compatible almost complex structure

MAIN EXAMPLE: $A \in H_2(M)$ fixed $\frac{\partial_1}{\partial_1}(0) \subset \{u \in W^{1p}(P_1^1M) | [u] = A\}$ $\widetilde{M} = \{u : P^1 \rightarrow M | u_*(P^1) = A, \overline{\partial_1}u = 0\}$ but noncompact due to action of \mathcal{I}

 $M = \widetilde{M}_{Aut} \quad \text{Aut} \quad (P_i'\infty) = \left\{ \begin{array}{l} \varphi(a) = i \\ \varphi(a) = \infty \end{array} \right\} = \left\{ \begin{array}{l} \varphi(a) = a + b \left(a + 0 \right) \\ \varphi(a) = \infty \end{array} \right\} \quad \text{noncompact } 4 \text{-aim}$ $\widetilde{M}_{0,i}(A_i) = \widetilde{M} = \widetilde{M}_{i} \quad \text{with } 1 \text{ marked point}$ $\widetilde{M}_{0,i}(A_i) = \widetilde{M} = \widetilde{M}_{i} \quad \text{with } 1 \text{ marked point}$ $\widetilde{M}_{0,i}(A_i) = \widetilde{M} = \widetilde{M}_{i} \quad \text{with } 1 \text{ marked point}$

There is a continuous evaluation map ex: M -> M given by [u] is u(00) on M/Aut and ne wish to define $[\overline{M}] \in H_*(\overline{M})$ or at least $cv_*[\overline{M}] \in H_*(M)$. We have no description M=57/0) as zero set of a section, just a subset 35 10)/Aut - in that may not even he dense.

In some cases, perturbations of $J \in \mathcal{J}(M, \omega)$ provide regularization, corresponding to Ant-equivariant transverse perturbations $p = \overline{\partial}_{J} \cdot \overline{\partial}_{J}$ for $J \in \mathcal{J}^{reg}(M, \omega)$ which moreover preserve compactification type.

OTHER EXAMPLES of modulispaces of pseudohdomorphic curies

are all essentially of the form

where $\widetilde{M} = \widetilde{M}_{Ant}$ gluing {nodal/broken curves}

where $\widetilde{M} = \widetilde{\partial}_{3}^{-1}(0)$ is a zero set of a Fredholm section \widetilde{B} $\widetilde{\partial}_{3}$ over $B = \{u: (\overline{Z}_{ij}) \rightarrow (M_{i}) | [u] = A, u(\partial \Sigma) \subset L, (\overline{Z}_{ij}) \in DM, (M_{i}) \in D\} \}$ fixed (relative) Lagrangian finite dinansional homology/homotopy (for each boundary) smooth families

with Aut = {biholomorphisms between $(\Sigma, \dot{g}), (\Sigma', \dot{g}') \in DM$ } and nodallbroken curves arising from . bubbling

- · compactification of DM/Aut
- · compactification of D

Examples of smooth families and compactifications

domain: Σ fixed, $j \in \{\text{complex structures on } \Sigma\}$ Oblight - Munford compactification of $\{j \text{ on } \Sigma\}$ contains (stable) nodal curves $j \sim \psi j \quad \forall \psi \in \text{Diff } \Sigma$

target (SFT-type splitting)

 $\mathcal{D} = \left\{ (M_0, J_0) \# (M_1, J_1) \middle| T_{70} \right\} \text{ with compactification } \left(M_0, J_0 \right) \cup \left(M_1, J_1 \right) \right\}$

this forces curves to break

	(\S , j)	(M, J)	curves added in "compactification"
genus zero Gromov-Witten	(P', i) + marked points	fixed compact	
Gromov-Witten	I fixed + marked points j can vary	-4-	nodes
Hamiltonian Floer	(R×S¹, i) CC/Z		b reaking
Lagrangian Floer	(R×[0,1],i)		
Fukaya A _{so} -algebra	(D, i) + maded points on 2D disk in C	—7 —	8 80 0
Fukaya Az-Category	(D\{Zo,,Ze},i) Zo,,Zek €0D	-4-	2 7 76
contact homology	1 nes. pucture	R×Y	"buildings" & "nodes"
Symplectic Field Theory	Punctured Riemann Surfaces	(R*xy+	buildings & nodes & sphee bubbles
rclative SFT	punctured Riemann surfaces with borndary		buildings & interior/boundary nodes & sphere/disk bubbles