Exercises on holomorphic curves #3 8/6/2009 Easy) 1 verify/correct 253 + 7(4)263 $\Delta \xi := \partial_s^2 \xi + \partial_t^2 \xi = (\partial_s - J \partial_t) \overline{\partial}_J \xi - (\nabla_{\partial_{t_0}} J) \partial_t \xi + (\nabla_{\partial_{t_0}} J) \partial_s \xi$ 2 for SCC compact domain and 3 E C (SI, R) , 310 = 0 show $\|d\xi\|_{12} \le \|\Delta\xi\|_{12} + \|\xi\|_{12}$ by partial integration 2) same for JECO(E, R) on closed Riemann surface 5 Δ3 = *d*d3 with Hodge * given by a metric on Σ Medium (2") For 3∈e∞(Z,R) show ||3||_{W12} ≤ ||∆3||_{(W12)*} + 2||3||_{L2} where ||f||(w12) = sup ||q|| || | f · q | 3 bubbling - as in #2 $u_{\varepsilon}[x:y] = [x^2 : \varepsilon y^2 : xy]$ Consider the maps $W_{\varepsilon}[x:y] = [\sqrt{\varepsilon}x^2:\sqrt{\varepsilon}y^2:xy], V_{\varepsilon}[x:y] = [\varepsilon x^2:y^2:xy]$ describe their limits as E-D. In which topology I on which subset does the convergence hold? How is that related to the behaviour of Iduel, ldvel, ldwel?

ard) (4) Shoi	w tha	t Au	t(s	?,o,₹,	。) a	cts	fre	æly	,							
	Ñ(J.								-		1 = L	`S²×	ρŧ]	١, 4	(30)	=po	3
	a	nd p	operl	y di	scon	tinu	ousl	!y									
for e	xercise.	s	- ⑤	on l	ooar	d s	ee	le	ctu) K	sc	rip	ot	7			