Exercises on Holomorphic Curves \# 1

Problem 1 (Integrability)

(i) Given a complex structure on a vector space $\left(J: V \rightarrow V, J^{2}=-\mathbb{1}\right)$, show that for any nonzero $v \in V$ the vectors $v, J v$ are linearly independent.
(ii) The Nijenhuis tensor N_{J} for an almost complex structure on a manifold M is given by

$$
N_{J}(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]
$$

for all vector fields $X, Y: M \rightarrow T M$. Show that it automatically vanishes for $\operatorname{dim} M=2$.

$$
\text { Hint: } N_{J}(X, X)=0, N_{J}(X, J X)=0 \text {, use (i). }
$$

Problem 2 (Cauchy-Riemann equation in local coordinates) Let (Σ, j) be a Riemann surface and (M, J) an almost complex manifold. Show that the following are equivalent (and find the formula for $J_{\mathcal{U}}$):
(i) u is (J, j)-holomorphic, i.e. $\bar{\partial}_{J} u:=\frac{1}{2}(\mathrm{~d} u+J \circ \mathrm{~d} u \circ j)=0$,
(ii) In local coordinates $(\Sigma, j) \supset \mathcal{U} \cong \Omega \subset(\mathbb{C}, i)$ the map $\left.u\right|_{\mathcal{U}} \cong v: \Omega \rightarrow M$ satisfies

$$
\partial_{s} v(s, t)+J_{\mathcal{U}}(v(s, t)) \partial_{t} v(s, t)=0 \quad \forall s+i t \in \Omega
$$

Problem 3 (Automorphisms of the sphere) Consider the sphere $\left(S^{2}, j_{0}\right)=$ $\left(\mathbb{C} P^{1}, i\right)$ with its standard complex structure. Identify its automorphism group Aut $\left(S^{2}, j_{0}\right)$ (the group of diffeomorphisms preserving the complex structure) with the $\left(j_{0}, j_{0}\right)$-holomorphic maps of degree 1 ,

$$
\left\{\phi: S^{2} \rightarrow S^{2} \mid \operatorname{deg} \phi=1, \phi^{*} j_{0}=j_{0}\right\}
$$

and with the group $\operatorname{PSL}(2, \mathbb{C})$ of Möbius transformations

$$
\phi: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}, \quad \phi(z)=\frac{a z+b}{c z+d} ; \quad a d-b c=1
$$

Hints/Facts:

- $\operatorname{deg} \phi$ is the total multiplicity of $\phi^{-1}\left(z_{0}\right)$ for any fixed $z_{0} \in S^{2}$.
- The $\left(j_{0}, j_{0}\right)$ holomorphic maps are rational functions $u: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}, u(z)=p(z) / q(z)$.
- If p, q are coprime polynomials then $\operatorname{deg}(p / q)=\max \{\operatorname{deg} p, \operatorname{deg} q\}$.

Problem 4 (Moduli spaces) Let (M, J) be an almost complex manifold and fix a point $p_{0} \in M$. Let $\left(S^{2}, j_{0}\right)$ denote the standard complex structure on the sphere and fix a point $z_{0} \in S^{2}$. Identify the following moduli spaces:
$\left\{C \subset M \mid J\right.$-holomorphic submanifold, $\left.C \stackrel{\text { diff }}{\cong} S^{2}, p_{0} \in C\right\}$,
$\left\{u: S^{2} \rightarrow M \mid\left(J, j_{0}\right)\right.$-holomorphic embedding, $\left.\exists z \in S^{2}: u(z)=p_{0}\right\} / \operatorname{Aut}\left(S^{2}, j_{0}\right)$,
$\left\{u: S^{2} \rightarrow M \mid\left(J, j_{0}\right)\right.$-holomorphic embedding, $\left.u\left(z_{0}\right)=p_{0}\right\} / \operatorname{Aut}\left(S^{2}, j_{0}, z_{0}\right)$,
where $\operatorname{Aut}\left(S^{2}, j_{0}, z_{0}\right)=\left\{\phi: S^{2} \rightarrow S^{2} \mid\right.$ diffeomorphism, $\left.\phi^{*} j_{0}=j_{0}, \phi\left(z_{0}\right)=z_{0}\right\}$.
Ponder about how to include homotopy or homology classes, and how to replace "embedding" by " map" for the case $M=S^{2} \times T^{2 n-2}$ that we will need for Gromov nonsqueezing.

Problem 5 Let $u: S^{2} \rightarrow M$ be a smooth map to an almost complex manifold (M, J). Convince yourself that the vector-valued 1-forms $\Omega^{1}\left(S^{2}, u^{*} T M\right)$ form a complex vector bundle over S^{2}, which splits

$$
\Omega^{1}\left(S^{2}, u^{*} T M\right)=\Omega^{1,0}\left(S^{2}, u^{*} T M\right) \oplus \Omega^{0,1}\left(S^{2}, u^{*} T M\right)
$$

into bundles of complex linear and complex antilinear vectors (with respect to $j_{0}: T S^{2} \rightarrow T S^{2}$ and $\left.J: T M \rightarrow T M\right)$.
Compare the projection formulas with the Cauchy-Riemann operator $\bar{\partial}_{J}$.

