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1. Introduction

The purpose of this survey is to explain an approach to the Atiyah-Floer
conjecture via a new instanton Floer homology with Lagrangian boundary
conditions. This is a joint project with Dietmar Salamon; see [Sa2] for an
earlier exposition. This paper also provides a rough guide to the analysis of
anti-self-dual instantons with Lagrangian boundary conditions in [W3, W4],
which is the crucial ingredient of our approach.

Atiyah [A] and Floer conjectured a natural isomorphism between the
instanton Floer homology HFinst

∗ (Y ) of a homology 3-sphere Y and the
symplectic Floer homology HFsymp

∗ (RΣ, LH0 , LH1) of a pair of Lagrangians
LH0 , LH1 in the symplectic moduli space RΣ of flat SU(2)-connections, as-
sociated to a Heegard splitting Y = H0 ∪ΣH1. Both homologies were intro-
duced by Floer [F1, F2], but the symplectic Floer homology is not strictly
defined in this case due to singularities of RΣ. Taubes [T] proved that
the Euler characteristics both agree with the Casson invariant of Y . The
main task in identifying the homology groups is a comparison between the
trajectories: pseudoholomorphic curves in RΣ with Lagrangian boundary
conditions and anti-self-dual instantons on R×Y (which has no boundary).

The basic idea of our approach is to introduce a third Floer homology1

HFinst
∗ ([0, 1] × Σ,LH0 ×LH1) whose trajectory equation couples the anti-

self-duality equation on R× [0, 1]×Σ with Lagrangian boundary conditions.
We expect that two different degenerations of the metric on [0, 1] × Σ will
give rise to isomorphisms that would prove the Atiyah-Floer conjecture 2

HFinst
∗ ([0, 1] × Σ,LH0 ×LH1)

∼= HFinst
∗ (H0 ∪Σ H1),(1)

HFinst
∗ ([0, 1] × Σ,LH0 ×LH1)

∼= HFsymp
∗ (RΣ, LH0 , LH1).(2)

1This is a special case of the invariant HFinst
∗ (Y,L) introduced below for a 3-manifold

Y with boundary and a Lagrangian submanifold L in the space of connections over ∂Y .
2There are moreover product structures on all three Floer homologies that should be

intertwined by the isomorphisms, as sketched in [Sa2]. Our analytic setup should allow
for their definition and identification, but we do not discuss this topic here.

1



2 KATRIN WEHRHEIM

This approach separates the difficulties: The first isomorphism is a purely
gauge theoretic comparison between anti-self-dual instantons over domains
with and without boundary. The second isomorphism requires a comparison
between anti-self-dual instantons and pseudoholomorphic curves (both with
Lagrangian boundary conditions), that would be a generalization of the
adiabatic limit of Dostoglou-Salamon [DS], which they used to prove an
analogon of the Atiyah-Floer conjecture for mapping tori. The mapping
torus case does not involve boundary conditions. Moreover, the underlying
bundle is nontrivial so that the moduli space of flat connections is smooth.
In contrast, the Heegard splitting case deals with trivial bundles for which
the moduli space RΣ and its Lagrangian submanifolds are always singular.

So the Atiyah-Floer conjecture poses as a first task (which we do not ap-
proach here) the construction of a symplectic Floer homology for symplectic
and Lagrangian manifolds with quotient singularities. In fact, the singular
symplectic space RΣ is the symplectic quotient (in the sense of Atiyah and
Bott [AB]) of a Hamiltonian group action (the infinite dimensional gauge
group) on an infinite dimensional symplectic space (the space of connections
over a Riemann surface). In the case of a finite dimensional Hamiltonian
group action with smooth and monotone symplectic quotient, Gaio and Sala-
mon [GS] have identified the Gromov-Witten invariants of the symplectic
quotient with new invariants arising from the symplectic vortex equations.

The anti-self-duality equation on R × [0, 1] × Σ is the exact analogue of
the symplectic vortex equations for RΣ. We will show in section 3 that
the analytic behaviour of these trajectories of the new Floer homology is a
mixture of local effects in the interior – as they are expected for anti-self-
dual instantons – and surprising semiglobal effects near the boundary that
resemble to the behaviour of pseudoholomorphic curves in RΣ. This shows
that the new Floer homology indeed provides a good interpolation between
the two Floer homologies in the Atiyah-Floer conjecture.

More generally, an instanton type Floer homology for 3-manifolds with
boundary should naturally use Lagrangian boundary conditions. Fukaya
[Fu] gives such a setup in the case of a nontrivial bundle: The anti-self-
duality equation is coupled via a degeneration of the metric to the pseudo-
holomorphic curve equation in the moduli space of flat connections (which
is smooth in this case). Our new trajectory equation is a different setting
that arises naturally from the Chern-Simons functional – the Morse function
in the instanton Floer theory. It works in the gauge theoretic setting up to
the boundary, which has the advantage that the Lagrangians are smooth
Banach submanifolds of a symplectic Banach space, although the quotients
might be singular. We thus give a setup for an instanton Floer homology
HFinst

∗ (Y,L) of a compact 3-manifold Y with boundary and a gauge invariant
Lagrangian submanifold L in the space of SU(2)-connections over ∂Y .
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This program is carried through in [SW] for the case where L = LH arises
from a disjoint union of handle bodies H with boundary ∂H = ∂Y = Σ such
that Y ∪Σ H is a homology 3-sphere. We expect that the isomorphism (1)
will be true in this more general setting,

(1’) HFinst
∗ (Y,LH) ∼= HFinst

∗ (Y ∪Σ H).

The assumption L = LH is more of technical nature and is not required
for the basic compactness in theorem 3.4. We also have an approach to
removing this assumption in theorems 3.5 and 3.7, based on Mrowka’s un-
derstanding of the gauge group in borderline Sobolev cases. More essentially,
we need the nontrivial flat connections on Y with boundary condition in L
to be irreducible (i.e. to have discrete isotropy in the gauge group). For
the same reason, the original instanton Floer homology is only defined for
homology 3-spheres. Now starting from a Heegard splitting H0 ∪Σ H1 of a
general closed 3-manifold, the irreducibility could be achieved by perturbing
the Lagrangians LH0 and LH1 . Thus the problem of reducible connections
can be transferred to transversality questions in our new instanton Floer
homology with Lagrangian boundary conditions.

Section 2 provides an introduction to the gauge theoretic background.
For the symplectic background we refer to [MS1]. We explain the Chern-
Simons functional and the moment map picture of the gauge group ac-
tion and give the setup for an instanton Floer homology HFinst

∗ (Y,L) with
Lagrangian boundary conditions. In section 3 we specialize to the case
Y = [0, 1] × Σ and the Lagrangian submanifold LH = LH0 × LH1 arising
from two handle bodies H = H0 tH1 such that H0 ∪Σ H1

∼= Y ∪ΣtΣ H
is a homology 3-sphere. We give a detailed account of the new Floer
homology HFinst

∗ ([0, 1] × Σ,LH0 ×LH1), comparing its definition and the
analytic properties of its trajectories to those of HFinst

∗ (H0 ∪Σ H1) and
HFsymp

∗ (RΣ, LH0 , LH1) (what it would be if these quotients were smooth).
In section 4 we sketch the ideas for proofs of the isomorphisms (1) and (2).

The last two sections are a rough guide to the analysis of anti-self-dual
instantons with Lagrangian boundary conditions, which was established in
[W2, W3, W4, W5] in full technical detail. Section 5 provides an overview
of the properties of gauge invariant Lagrangian submanifolds in the space of
connections over a Riemann surface. It moreover describes the special exten-
sion properties of Lagrangian submanifolds that arise from handle bodies. In
section 6 we sketch the proofs of the analytic results in section 3. We put the
proofs into context with the standard proofs of Uhlenbeck compactness (for
anti-self-dual instantons) and Gromov compactness (for pseudoholomorphic
curves) since – just as the results – each proof requires a subtle combina-
tion of the best techniques from both gauge theory and symplectic topology,
which we hope the reader will find entertaining.
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2. Gauge theory and symplectic topology

We give an introduction to some gauge theoretic concepts and notations.
More details and proofs can be found in e.g. [DK, W1].

Let G be a compact Lie group. The Lie algebra g = T1lG is equipped
with a Lie bracket [·, ·] and with a G-invariant inner product 〈 ·, · 〉. For the
instanton Floer theories we will be using G = SU(2) with the commutator
[ξ, η] = ξη− ηξ and the trace 〈 ξ, η 〉 = −tr(ξη) for ξ, η ∈ su(2). We describe
a connection on the trivial G-bundle G × X → X over a manifold X
as a g-valued 1-form A ∈ Ω1(X; g) and thus denote the space of smooth
connections by

A(X) := Ω1(X; g).

(The discussion in this section generalizes to nontrivial bundles, where con-
nections are given by 1-forms with values in an associated bundle.) On the
trivial bundle a 1-form A ∈ A(X) corresponds to an equivariant distribution
{(−gA(Y ), Y )

∣

∣ Y ∈ TxX} ⊂ T(g,x)(G ×X) of horizontal subspaces. The
corresponding covariant derivative on sections s : X → E of a trivial vector
bundle with structure group G ⊂ Hom(E) is ∇As : Y 7→ ∇s(Y ) +A(Y )s.

The curvature of a connection A ∈ A(X) is given by the 2-form

FA := dA+ 1
2 [A ∧A] ∈ Ω2(X; g).

Throughout [·∧·] indicates that the values of the differential forms are paired
by the Lie bracket. The differential of the map A 7→ FA at a connection
A ∈ A(X) is the ’twisted’ exterior derivative dA : Ω1(X; g) → Ω2(X; g). In
general, dA : Ωk(X; g) → Ωk+1(X; g) acts on g-valued differential forms by

dAη := dη + [A ∧ η].

One checks that dAdAη = [FA ∧ η], so dA
2 = 0 iff the curvature vanishes.

Such connections are called flat and we denote the set of flat connections by

Aflat(X) := {A ∈ A(X)
∣

∣ FA = 0}.

Moreover, a connection is flat iff the horizontal distribution is locally inte-
grable. So parallel transport with respect to a flat connection around a loop
is given by an element in the group G that is invariant under homotopy of
the loop with fixed base point x ∈ X. Thus the holonomy induces a map

holx : Aflat(X) → Hom(π1(X,x),G).

Next, connections that are the same up to a bundle isomorphism are called
gauge equivalent. The bundle isomorphisms of the trivial bundle can be
identified with maps u : X → G that are called gauge transformations.
Composition of bundle isomorphisms corresponds to multiplication of gauge
transformations, so the space of smooth gauge transformations has the struc-
ture of a group, called the gauge group

G(X) := C∞(X,G).
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The action of G(X) on the space of connections A(X), called the gauge
action, is given by pullback of the connection (i.e. the horizontal subspace
or the covariant derivative), hence

u∗A := u−1Au+ u−1du for u ∈ G(X), A ∈ A(X).

The space of flat connections Aflat(X) is obviously invariant under G(X),
and the curvature transforms by Fu∗A = u−1FAu. The holonomy of a flat
connection A ∈ Aflat(X) transforms by conjugation under u ∈ G(X), more
precisely holx(u

∗A) = u(x)−1holx(A)u(x) for the holonomy based at x ∈ X.
Similarly, a change of the base point also transforms the holonomy by con-
jugation. Hence the holonomy descends to a map

hol : Aflat(X)/G(X) → Hom(π1(X),G)/G =: RX ,

where the action of G is by conjugation. If there are no nontrivial G-bundles
over X,3 then this is in fact an isomorphism and we will identify the repre-
sentation space RX with Aflat(X)/G(X). In general this is an isomorphism
when taking the union over all isomorphism classes of bundles on the left
hand side, see e.g. [DK, Proposition 2.2.3].

Uhlenbeck compactness.
The observations above shows that the moduli space of flat connections

is a compact subset of A(X)/G(X) (in the C∞-topology). Uhlenbeck’s weak
compactness theorem is a remarkable generalization of this compactness to
connections with small curvature. It is the starting point for all analysis in
gauge theory, so this is a good point to introduce the Sobolev completions
of the spaces of connections and gauge transformations. For a compact
manifold X and for k ∈ N0 and 1 ≤ p ≤ ∞ let

Ak,p(X) := W k,p(X,T∗X ⊗ g), Gk,p(X) := W k,p(X,G).

For kp > dimX the gauge group Gk,p(X) is a Banach manifold, on which
multiplication and inversion are smooth, and it acts smoothly on Ak−1,p(X).
We equip X with a metric, then for any p ≥ 1 the Lp-norm of the curvature,

‖FA‖
p
p =

∫

X
|FA|

p,

is a gauge invariant quantity. For p = 1
2 dimX this is the conformally

invariant Yang-Mills energy of the connection, which can concentrate at
single points. Thus for p ≤ 1

2 dimX one cannot expect the compactness of
a set of connections with bounded Lp-norm of the curvature. Uhlenbeck’s
result [U2] says that for p > 1

2 dimX however, every such set is compact in

the weak W 1,p-topology on the quotient A1,p(X)/G2,p(X).

3This is for example the case for dim X = 2 or 3 and a connected, simply connected
group as G = SU(2). It also holds for a handle body X and any connected group G.
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Theorem 2.1. (Weak Uhlenbeck Compactness)
Let X be a compact manifold and let p > 1

2 dimX. Suppose that Ai ∈ A(X)
is a sequence of connections such that ‖FAi

‖p is uniformly bounded. Then,
after going to a subsequence, there exists a sequence of gauge transformations
ui ∈ G(X) such that u∗iAi → A∞ converges in the weak W 1,p-topology to a
connection A∞ ∈ A1,p(X).

In fact, one even has a weak W 1,dimX/2-compactness if one assumes that
every point in X has a neighbourhood on which the Yang-Mills energy is
bounded by a small constant. We will need the slightly stronger W 1,p-
compactness since it allows us to globally (not just locally over small balls
inX) work in in a local slice of the gauge action. The local slice theorem says
that any connection A′ that is suitably close to a fixed reference connection
A can be put into relative Coulomb gauge, i.e. u∗A′−A is L2-orthogonal to
the gauge orbit through A. The linearized gauge action T1lG(X) → TAA(X)
at A ∈ A(X) is given by dA : Ω0(X; g) → Ω1(X; g). Its formal adjoint is
d∗
A = − ∗ dA∗. More generally, with m(X, k) = (dimX − k)(k − 1) the

twisted coderivative is

d∗
A := −(−1)m(X,k) ∗ dA∗ : Ωk(X; g) → Ωk−1(X; g).

Here we only give the sequential form of the local slice theorem. A stronger
statement and proof can be found e.g. in [W1, Theorem F].

Theorem 2.2. (Local Slice Theorem)
Let X be a compact Riemannian manifold with smooth boundary and let
p > 1

2 dimX. Suppose that Ai ∈ A1,p(X) is a sequence of connections such

that Ai → A ∈ A(X) in the weak W 1,p-topology. Then for sufficiently large
i there exist gauge transformations ui ∈ G2,p(X) such that u∗iAi → A and

{

d∗
A(u∗iAi −A) = 0,

∗(u∗iAi −A)|∂X = 0.

To see the strength of these two theorems consider the following example:
Let X be a compact Riemannian 4-manifold. The extrema of the Yang-
Mills energy

∫

X |FA|2 are called Yang-Mills instantons. They satisfy
the equation d∗

AFA = 0 and the boundary condition ∗FA|∂X = 0, which –
augmented with the local slice conditions – pose an elliptic boundary value
problem. Uhlenbeck’s compactness theorem for Yang-Mills instantons with
Lp-bounded curvature then is a corollary of theorems 2.1 and 2.2.

Theorem 2.3. (Strong Uhlenbeck Compactness):
Let Ai ∈ A(X) be a sequence of Yang-Mills instantons such that ‖FAi

‖p is
uniformly bounded for some p > 2. Then, after going to a subsequence, there
exists a sequence of gauge transformations ui ∈ G(X) such that u∗iAi → A∞

converges in the C∞-topology to another Yang-Mills instanton A∞ ∈ A(X).



LAGRANGIAN BOUNDARY CONDITIONS FOR ASD INSTANTONS 7

Anti-self-dual instantons on an oriented Riemannian 4-manifold X are
solutions A ∈ A(X) of the first order equation

FA + ∗FA = 0.

By the Bianchi identity dAFA = 0 these are special solutions of the Yang-
Mills equation d∗

AFA = 0. On a manifold with boundary however, the anti-
self-duality equation with boundary condition ∗FA|∂X = 0 is an overdeter-
mined boundary value problem comparable to Dirichlet boundary conditions
for holomorphic maps. This is another reason why it is natural to consider
(weaker) Lagrangian boundary conditions for anti-self-dual instantons.

The moduli space of flat connections over a Riemann surface.
Let Σ be a Riemann surface. The natural symplectic form on the space

of connections A(Σ) = Ω1(Σ; g) is

(3) ω(α, β) :=

∫

Σ
〈α ∧ β 〉 for α, β ∈ Ω1(Σ; g).

Here and throughout 〈 ·∧· 〉 indicates that the values of the differential forms
are paired by the inner product. Note that for any metric on Σ the Hodge
operator ∗ is a complex structure on A(Σ), which is compatible with ω and
induces the L2-metric ω(α, ∗β) = 〈α, β 〉L2 .

It was observed by Atiyah and Bott [AB] that the action of the gauge
group G(Σ) on A(Σ) can be viewed as Hamiltonian action of an infinite
dimensional Lie group. The Lie algebra of G(Σ) is Ω0(Σ; g) and the infini-
tesimal action of ξ ∈ Ω0(Σ; g) is given by the vector field

Xξ : A(Σ) → Ω1(Σ; g), Xξ(A) = dAξ.

This is the Hamiltonian vector field of the function A 7→
∫

Σ〈µ(A) , ξ 〉, where

µ : A(Σ) → Ω0(Σ; g), µ(A) = ∗FA

can be considered as a moment map. Its differential is dµ(A) = ∗dA, so one
indeed has for all β ∈ Ω1(Σ; g)

ω(Xξ(A) , β) =

∫

Σ
〈dAξ ∧ β 〉 = −

∫

Σ
〈 ξ , ∗dAβ 〉 = −

∫

Σ
〈dµ(A)β , ξ 〉.

The zero set of µ is the set of flat connections. So the moduli space of flat
connections on Σ can be seen as the symplectic quotient of the gauge action,

RΣ = Aflat(Σ)/G(Σ) = µ−1(0)/G(Σ) = A(Σ)//G(Σ).

This quotient RΣ
∼= Hom(π1(Σ),G)/G is singular at the reducible represen-

tations, but for irreducible4 A ∈ Aflat(Σ) it is a smooth manifold near the
gauge equivalence class [A]. To understand its tangent space, notice that the

4A connection A ∈ Aflat(Σ) is called irreducible if its isotropy subgroup of G(Σ) (the
group of gauge transformations that leave A fixed) is discrete, i.e. dA|Ω0 is injective. For
a closed Riemann surface this is equivalent to d∗

A|Ω1 being surjective.
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linearized action T1lG(Σ) → TAA(Σ) is given by dA : Ω0(Σ; g) → Ω1(Σ; g).
At a flat connection A ∈ Aflat(Σ) it fits into a chain complex with the
differential of the moment map (since dA ◦ dA = 0),

Ω0(Σ; g)
dA−→ Ω1(Σ; g)

∗dA−→ Ω0(Σ; g).

So the tangent space to RΣ at [A] is the twisted first homology group, which
can be identified with the harmonic 1-forms,

T[A]RΣ = ker ∗dA/imdA ∼= ker dA ∩ ker d∗
A =: h1

A.

Hodge theory gives a corresponding L2-orthogonal splitting

(4) Ω1(Σ; g) = imdA ⊕ im (∗dA) ⊕ h1
A,

where imdA ⊕ h1
A = ker ∗dA is the tangent space to µ−1(0) = Aflat(Σ) and

im (∗dA) ⊕ h1
A = (im dA)⊥ is the local slice of the gauge action through A.

We have seen that the moduli space of flat connections RΣ is a smooth
manifold of dimension (2g−2) dim G with singularities at the reducible con-
nections. Moreover, the symplectic structure (3) on A(Σ) is G(Σ)-invariant
and induces a symplectic structure on the smooth part of RΣ. For harmonic
representatives α, β ∈ h1

A
∼= T[A]RΣ it is again given by ω(α, β) =

∫

Σ〈α∧β 〉.
In this representation of the tangent space we also see that the Hodge oper-
ator ∗ descends to RΣ. So (RΣ, ω) is a (singular) symplectic manifold with
compatible almost complex structure ∗.

The Chern-Simons functional and instanton Floer homology.
Let Y be a compact oriented 3-manifold. The Chern-Simons 1-form λ

on the space of connections A(Y ) is given by

λA(α) :=

∫

Y
〈FA ∧ α 〉 for α ∈ TAA(Y ) = Ω1(Y ; g).

This 1-form is equivariant, λu∗A(u−1αu) = λA(α). If ∂Y = ∅ or FA|∂Y = 0,
then λ is also horizontal and thus descends to the (singular) moduli space5

B(Y ) := A(Y )/G(Y ). Indeed, a tangent vector to the gauge orbit through
A ∈ A(Y ) has the form α = dAξ with ξ ∈ Ω0(Y ; g), and by Stokes’ theorem
and the Bianchi identity

(5) λA(dAξ) = −

∫

Y
〈dAFA , ξ 〉 +

∫

∂Y
〈FA , ξ 〉 = 0.

To calculate the differential of λ consider α, β ∈ Ω1(Y ; g) as (constant)
vector fields on A(Y ), then their Lie bracket vanishes and

dλ(α, β) = ∇α(λ(β)) −∇β(λ(α))

=

∫

Y
〈dAα ∧ β 〉 −

∫

Y
〈dAβ ∧ α 〉 =

∫

∂Y
〈α ∧ β 〉.(6)

5Note that B(Y ) is not the moduli space of flat connections RY , but the infinite
dimensional and singular space of all connections modulo gauge equivalence.
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So for ∂Y = ∅ the Chern-Simons 1-form descends to a closed 1-form on
B(Y ). In fact, λ is the differential of the Chern-Simons functional

CS(A) := 1
2

∫

Y
〈A ∧

(

FA − 1
6 [A ∧A]

)

〉.

For a more illuminating definition let X be a compact 4-manifold with
boundary ∂X = Y , then for any Ã ∈ A(X) with Ã|∂X = A

CS(A) = 1
2

∫

X
〈FÃ ∧ FÃ 〉.

For closed X the right hand side is a topological invariant of the bundle. We
fix G = SU(2), then this invariant is 4π2c2(P ), where Ã is a connection on
the bundle P → X. From this one can see that the Chern-Simons functional
descends to an S1-valued functional CS : B(Y ) → R/4π2

Z since it changes
by CS(A) − CS(u∗A) = 4π2 deg(u) ∈ 4π2

Z under gauge transformations.
If Y is a homology 3-sphere, then Floer [F1] used the generalized Morse
theory for this functional to define the instanton Floer homology HFinst

∗ (Y ).
Roughly speaking, the Floer complex is generated by the zeros of dCS = λ,
i.e. by the flat connections A ∈ Aflat(Y ) modulo G(Y ). The differential on
the complex is defined by counting negative gradient flow lines, so we choose
a metric on Y and thus fix an L2-metric on A(Y ). Then the gradient of CS
is A 7→ ∗FA and a negative gradient flow line is a path A : R → A(Y )
satisfying

∂sA = − ∗ FA.

Equivalently, one can view this path as connection Ξ = Φds+A ∈ A(R×Y )
in the special gauge Φ ≡ 0. Then the above equation is the anti-self-duality
equation FΞ+∗FΞ = 0 for Ξ. For a general connection Ξ ∈ A(R×Y ) this so-
called temporal gauge can always be achieved by the solution u ∈ G(R×Y ) of
∂su = −Φu with u|s=0 ≡ 1l. So the negative gradient flow lines of the Chern-
Simons functional modulo G(Y ) are in one-to-one correspondence with the
anti-self-dual connections Ξ ∈ A(R × Y ) modulo G(R × Y ). An extensive
discussion of instanton Floer homology for closed 3-manifolds can be found
in Donaldson’s book [D].

If Y has nonempty boundary ∂Y = Σ, then the differential (6) is the
symplectic form ω on α|Σ, β|Σ ∈ A(Σ), compare (3). To render λ closed, it
is natural6 to pick a Lagrangian submanifold L ⊂ A(Σ) and restrict λ to

A(Y,L) := {A ∈ A(Y ) |A|Σ ∈ L}.

More precisely, we fix a p > 2 and make the following assumptions to ensure
that λ defines a closed 1-form on B(Y,L) := A(Y,L)/G(Y ).

6If L ⊂ A(Σ) is any submanifold, then the closedness of λ|A(Y,L) is equivalent to

ω|L ≡ 0, and the maximal such submanifolds are precisely the Lagrangian submanifolds.
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(i) L ⊂ A0,p(Σ) is a Banach submanifold that is isotropic, ω|L ≡ 0, and
coisotropic in the sense of the following implication for all α ∈ A0,p(Σ):
If ω(α, β) = 0 for all β ∈ TAL, then α ∈ TAL.

(ii) L is invariant under G1,p(Σ).

(iii) L ⊂ A0,p
flat(Σ) lies in the space of weakly flat connections.7

Here (ii) ensures that G(Y ) acts on A(Y,L), and (iii) implies that λ is hori-
zontal by (5). These assumptions also imply that L descends to a (singular)
Lagrangian submanifold in the (singular) moduli space of flat connections,

L := L/G1,p(Σ) ⊂ RΣ = Aflat(Σ)/G(Σ).

The assumptions (i)-(iii) also imply the orthogonal splitting, see section 5,

Ω1(Σ; g) = TAL ⊕ ∗TAL for allA ∈ L.

Compare this to (4) and note that imdA ⊂ TAL ⊂ ker dA due to (ii),(iii). So
the TAL are determined up to a choice of Lagrangian subspaces in h1

A. Con-
versely, any Lagrangian L ⊂ RΣ lifts to a (possibly nonsmooth) L ⊂ A0,p(Σ)
as above. In order to obtain a well defined Floer homology one should
moreover assume that L is simply connected (which ensures a monotonicity
property). In general, L is not simply connected, but its fundamental group
cancels with that of G(Σ). This is the reason why λ is not exact but can only
be written as the differential of the multi-valued Chern-Simons functional

CSL(A) = 1
2

∫

Y
〈A ∧

(

FA − 1
6 [A ∧A]

)

〉 +

∫ 1

0

∫

Σ
〈 Ã(t) ∧ ∂tÃ(t) 〉dt.

This involves the choice of a path Ã : [0, 1] → L with Ã(1) = A|Σ and

Ã(0) = A0 a fixed reference connection in L. Again we fix G = SU(2) to
obtain a functional CSL : A(Y,L) → R/4π2

Z, which directly descends to
B(Y,L) since the gauge group G(Y ) is connected. We now propose to define
a new Floer homology HFinst

∗ (Y,L) from the generalized Morse theory of the
functional CSL : B(Y,L) → R/4π2

Z.
A critical point in this theory is a flat connection A ∈ Aflat(Y ) with

Lagrangian boundary condition A|Σ ∈ L (modulo G(Y )), and a negative
gradient flow line is a path A : R → A(Y ) (modulo G(Y )) satisfying

(7) ∂sA = − ∗ FA, A(s)|Σ ∈ L ∀s ∈ R.

Again, this is the anti-self-duality equation for Ξ = A+ Φds ∈ A(R× Y ) in
the temporal gauge Φ ≡ 0. So the gauge equivalence classes of the gradi-
ent flow lines are in one-to-one correspondence with the gauge equivalence
classes of anti-self-dual instantons with Lagrangian boundary conditions, i.e.
solutions Ξ ∈ A(R × Y ) of the boundary value problem

(8) FΞ + ∗FΞ = 0, Ξ|{s}×Σ ∈ L ∀s ∈ R.

7See [W2, Sec. 3] or use the fact A0,p
flat(Σ) = G1,p(Σ)∗Aflat(Σ) as definition. The

conditions (ii) and (iii) are equivalent when G is connected and [ �
,

� ] = � , e.g. for SU(2).
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Lagrangians and handle bodies.
We have seen before how a Riemann surface Σ gives rise to a (singular)

symplectic manifold RΣ = Hom(π1(Σ),G)/G, which is a finite dimensional
reduction of a symplectic Banach space A(Σ) = Ω1(Σ; g) that arises from
gauge theory on Σ. We will now discuss a class of examples of Lagrangian
Banach submanifolds LH ⊂ A(Σ) that arise from gauge theory on a handle
body H with ∂H = Σ, and that reduce to finite dimensional (singular) La-
grangian submanifolds LH ∼= Hom(π1(H),G)/G ⊂ RΣ. Here and through-
out a handle body is an oriented 3-manifold with boundary that is obtained
from the 3-ball by attaching a finite number of 1-handles.

For this purpose let G be a compact, connected, and simply connected
Lie group (e.g. G = SU(2)) and let Σ be a Riemann surface. For a start let
H be any compact 3-manifold with boundary ∂H = Σ. Then

LH :=
{

Ã|Σ
∣

∣ Ã ∈ Aflat(H)
}

⊂ A(Σ)

satisfies the assumptions (ii) LH ⊂ Aflat(Σ), (iii) G(Σ)∗LH = LH ,8 and is

isotropic: Consider paths Ã1, Ã2 : (−ε, ε) → Aflat(H) with Ãi(0) = Ã, then

dÃ∂tÃi(0) = ∂t
∣

∣

t=0
FÃi

= 0 and hence with the symplectic form (3)

ω
(

∂tÃ1(0) , ∂tÃ2(0)
)

=
∫

∂H〈 ∂tÃ1(0) ∧ ∂tÃ2(0) 〉

=
∫

H〈dÃ∂tÃ1(0) ∧ ∂tÃ2(0) 〉 − 〈 ∂tÃ1(0) ∧ dÃ∂tÃ2(0) 〉 = 0.

So LH descends to an isotropic subset in the symplectic quotient

LH := LH/G(Σ) ⊂ RΣ = A(Σ)//G(Σ).

The holonomy provides an isomorphism

LH ∼= Hom
( π1(Σ)
∂π2(H,Σ) ,G

)

/G ⊂ RΣ
∼= Hom(π1(Σ),G)/G.

This is since the holonomy of a flat connection on H is trivial on the con-
tractible loops in ∂π2(H,Σ); and all representations of π1(Σ)/∂π2(H,Σ) can
be realized by a flat connection on H since that quotient embeds into π1(H)
by the long exact sequence for homotopy

· · · → π2(H) → π2(H,Σ)
∂
→ π1(Σ)

ι
→ π1(H) → π1(H,Σ) → . . .

This also shows that π1(Σ)
∂π2(H,Σ)

∼= π1(H) if H is a handle body (so π2(H)

and π1(H,Σ) vanish). Now consider the commuting diagram of long exact
sequences for homology and cohomology with the vertical Poincare duality:

H2(H,Σ)
∂

−→ H1(Σ)
ι

−→ H1(H)
l l l

H1(H)
ι∗
−→ H1(Σ)

∂∗
−→ H2(H,Σ)

8This uses the assumption π1(G) = {0} and the fact that π2(G) = {0} for every
compact Lie group, so that every gauge transformation u : Σ → G extends to ũ : H → G.
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One can read off that (im ∂)⊥ ∼= (im ι∗)⊥ = (ker ∂∗)⊥ = im ∂, and we obtain

dim H1(Σ)
∂H2(H,Σ) = 1

2 dimH1(Σ). Hence dimLH = 1
2 dimRΣ at smooth points.

So a general compact 3-manifold H with ∂H = Σ gives rise to a (singular)
Lagrangian LH ⊂ RΣ, and in fact LH ⊂ A(Σ) is Lagrangian up to possible
singularities. If H is a handle body, then one can prove that LH is in fact

smooth, 9 which is essentially due to the fact that π1(Σ)
∂π2(H,Σ)

∼= π1(H) is a

free group.
This correspondence between low dimensional topology, symplectic topol-

ogy, and gauge theory is summarized in a table on page 20. To round off this
discussion, note that a Heegard splitting H0 ∪Σ H1 of a 3-manifold into two
handle bodies H0,H1 with common boundary ∂Hi = Σ gives rise to a pair
of (singular) Lagrangians in a symplectic manifold, LH0 , LH1 ⊂ RΣ. Now by
the Atiyah-Floer conjecture there should be a natural isomorphism between
the topological invariant HFinst

∗ (H0 ∪Σ H1) and the symplectic invariant
HFsymp

∗ (RΣ, LH0 , LH1) – assuming that the first is defined, i.e. H0 ∪H1 is
a homology 3-sphere, and that the second can be defined in spite of the
singularities. On the gauge theoretic side one obtains two smooth (though
infinite dimensional) Lagrangian submanifolds LH0 ,LH1 ⊂ A(Σ), to which
we can associate the new invariant HFinst

∗ ([0, 1] × Σ,LH0 × LH1). This in-
variant is more generally defined in the setting below, where we again fix
G = SU(2). Here we replace [0, 1] × Σ by a more general 3-manifold Y
with boundary with boundary ∂Y = Σ. Then for a union of handle bodies
H =

⊔

Hi with boundary ∂H =
⊔

Σi = Σ we denote by LH ⊂ A(Σ) the
Lagrangian submanifold LH0 × · · · × LHN

⊂ A(Σ0) × · · · × A(ΣN ).

Theorem 2.4. ([SW]) Let Y be a compact, oriented 3-manifold with
boundary Σ. Let H be a disjoint union of handle bodies with ∂H = Σ, and
suppose that Y ∪ΣH is a homology 3-sphere (with Z-coefficients). Then the
Floer homology HFinst

∗ (Y,LH) is well-defined and independent of the metric
and perturbations of (7) and (8) used to define it.

In this setting, Floer’s original invariant HFinst
∗ (Y ∪Σ H) is also defined,

and we expect our invariant to carry the same information.

Conjecture 2.5. There is a natural isomorphism

HFinst
∗ (Y,LH) ∼= HFinst

∗ (Y ∪Σ H).

Hence the new Floer homology with Lagrangian boundary conditions fits
into the Atiyah-Floer conjecture as well as for an approach to defining an
invariant for more general 3-manifolds. In the next section we explain its def-
inition in more detail for the model case Y = [0, 1]×Σ and LH = LH0 ×LH1 ,
which also is the relevant case for the Atiyah-Floer conjecture.

9Its Lp-completion is a Banach submanifold of A0,p(Σ), see section 5.
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3. Instanton and symplectic Floer homologies

This section sketches the instanton and symplectic versions of Floer theory
and compares the analytic behaviour of the underlying trajectory equations.
The purpose of this is to explain the definition of the new instanton Floer
homology with Lagrangian boundary conditions (in-L) and to show how it
fits between the instanton Floer homology (inst) and the symplectic Floer
homology (symp) and thus provides an intermediate invariant for approach-
ing the Atiyah-Floer conjecture. In fact, its trajectories exhibit this inter-
polation between anti-self-dual instantons (in their interior behaviour) and
pseudoholomorphic curves (in their semiglobal behaviour at the boundary).

(inst): Let Y be a homology 3-sphere, i.e. a compact oriented 3-manifold
with integer homologyH∗(Y,Z) ∼= H∗(S

3,Z). The instanton Floer homology
HFinst

∗ (Y ) was defined by Floer [F1]. The basic analytic results for this setup
that will be quoted below are mainly due to Uhlenbeck [U1, U2].

(in-L): Let Y = H0 ∪ΣH1 be the Heegard splitting of a homology 3-sphere
into two handle bodies H0,H1 with common boundary ∂Hi = Σ. We de-
scribe the special case HFinst

∗ ([0, 1] × Σ,LH0 × LH1) of the new instanton
Floer homology with Lagrangian boundary conditions of theorem 2.4. The
analytic results for this case are established in [W3, W4].

(symp): Let (M,ω) be a compact symplectic manifold and assume that
it is simply connected, positive (c1(TM) = λ[ω] with λ > 0), and has
minimal Chern number N ≥ 2 (where 〈 c1, π2(M) 〉 = NZ). Let L0, L1 ⊂M
be two simply connected Lagrangian submanifolds. Then the symplectic
Lagrangian intersection Floer homology HFsymp

∗ (M,L0, L1) is defined by
[F2] and many other authors. The underlying analytic fact here is Gromov’s
compactness for pseudoholomorphic curves [G].

The instanton cases use the trivial SU(2)-bundle as before. In the third
case one should think of M = RΣ and Li = LHi

. However, their Floer ho-
mology is not yet well-defined due to the quotient singularities. We do not
give complete definitions of the Floer homologies here. More detailed expo-
sitions can be found in e.g. [D, Sa1]. In particular, we do not mention the
necessary perturbations of the equations for critical points and trajectories.

Definition 3.1. A critical point is

(inst): a flat connection A ∈ Aflat(Y ).

(in-L): a flat connection A+ Ψdt ∈ Aflat([0, 1] × Σ) with Lagrangian
boundary conditions A(j) ∈ LHj

for j = 0, 1.

(symp): an intersection point x ∈ L0 ∩ L1.

In all three cases, the Floer chain complex is generated by the critical points,

CF∗ =
⊕

x crit.pt.

Z〈x 〉.
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(In the two instanton cases the generators actually are gauge equivalence
classes x = [A] or x = [A+ Ψdt], and the trivial connection is disregarded.)
The boundary operator ∂ : CF∗ → CF∗ is defined by counting trajectories,

∂〈x− 〉 =
∑

x+ crit.pt.

#M0(x−, x+) 〈x+ 〉.

Here M0(x−, x+) is the 0-dimensional part of the space of trajectories from
x− to x+. This will be a smooth, compact, oriented manifold, so its points
can be counted with signs. The trajectory equations will be given below for
the three cases. The main issue that we then discuss is the compactness
of the space of trajectories, which will allow the definition of ∂. To obtain
a chain complex, one moreover has to establish ∂ ◦ ∂ = 0 by identifying
the boundary of the 1-dimensional part of the space of trajectories with the
broken trajectories that contribute to ∂ ◦ ∂. The Floer homology in the
different cases then is the homology H∗(CF, ∂) of the corresponding Floer
chain complex. It is graded modulo 8 in the instanton cases and modulo 2N
in the symplectic case.

The trajectory equation depends on the choice of auxiliary data, that the
Floer homology will not depend on. In the instanton cases this is a metric
on Y or [0, 1]×Σ respectively. (In the second case we will give the equation
for a product metric.) In the symplectic case we fix an ω-compatible almost
complex structure J on M . The moduli space of trajectories then is the
space of solutions of the trajectory equation modulo time shift (in the R-
variable) and modulo gauge equivalence in the instanton cases.

Definition 3.2. A trajectory is a solution of the trajectory equation (T ).

(inst): An anti-self-dual instanton on R × Y :

B : R → A(Y ) satisfying

(T ) ∂sB + ∗FB = 0

(in-L): An anti-self-dual instanton on R × [0, 1] × Σ with Lagrangian
boundary conditions:

(A,Ψ) : R × [0, 1] → A(Σ) × C∞(Σ, su(2)) satisfying

(T )











∂sA+ ∗(∂tA− dAΨ) = 0

∂sΨ + ∗FA = 0

A(s, j) ∈ LHj
∀s ∈ R, j ∈ {0, 1}

(symp): A J-holomorphic strip with Lagrangian boundary conditions:

u : R × [0, 1] →M satisfying

(T )

{

∂su+ J∂tu = 0

u(s, j) ∈ Lj ∀s ∈ R, j ∈ {0, 1}
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Pictures of these trajectories and a table that summarizes the definitions
and results for the three Floer theories can be found on page 20 and 21.
The equation in case (in-L) is ∂sB + ∗FB = 0 for B = A + Ψdt, and in
both instanton cases this is the anti-self-duality equation for the connection
Ξ = 0ds+B in temporal gauge; c.f. section 2.

To ensure that the trajectories converge to critical points as the R-variable
tends to ±∞, one needs some a priori bound. This is provided by energy
functionals given in the lemma below (a consequence of theorems 3.4, 3.5).

Lemma 3.3. If a trajectory has finite energy E, then it converges (expo-
nentially) to critical points as R 3 s→ ±∞.

(inst): E(B) =

∫

�
×Y

|∂sB|2 <∞

⇒ B(s) −→
s→±∞

B± ∈ Aflat(Y )

(in-L): E(A,Ψ) =

∫

�
×[0,1]×Σ

|∂sAi|
2 + |FAi

|2 <∞

⇒ A(s) + Ψ(s)dt −→
s→±∞

A± + Ψ±dt ∈ Aflat([0, 1] × Y );

A±(0) ∈ LH0 , A
±(1) ∈ LH1

(symp): E(u) =

∫

�
×[0,1]

|∂su|
2 <∞

⇒ u(s, ·) −→
s→±∞

x± ∈ L0 ∩ L1

In the two instanton cases, the energy of a trajectory equals to the Yang-
Mills energy 1

2

∫

|FΞ|2 of the corresponding anti-self-dual connection. In all
cases the energy is conformally invariant, so by rescaling one solution one
can obtain a sequence of solutions (on a ball) whose energy is bounded, but
that blows up at one point – where all the energy concentrates. This effect
can be excluded by assuming that the energy density does not blow up. For
all three equations, this is enough to obtain C∞

loc-compactness.

Theorem 3.4. (Compactness) Consider a sequence of trajectories and
suppose that their energy density is locally uniformly bounded:

(inst): |∂sBi|2 is locally uniformly bounded on R × Y .

(in-L): ‖∂sAi‖2
L2(Σ) + ‖FAi

‖2
L2(Σ) is locally uniformly bounded on R× [0, 1].

(symp): |∂sui|2 is locally uniformly bounded on R × [0, 1].

Then, after going to a subsequence, and in the cases (inst), (in-L) applying a
sequence of gauge transformations gi ∈ G(R×Y ) or gi ∈ G(R×[0, 1]×Σ), the
trajectories converge uniformly with all derivatives on every compact subset
(i.e. in the C∞

loc-topology) to a new trajectory.



16 KATRIN WEHRHEIM

The compactness statement in case (in-L) in fact also holds when the
Lagrangians LHi

are replaced with general gauge invariant Lagrangians as
on page 10. This result was proven in [W3] under the (stronger) standard
assumption from gauge theory that |∂sBi|2 = |∂sAi|2 + |FAi

|2 is locally uni-
formly bounded on R × [0, 1] × Σ (or is locally Lp-bounded for p > 2).
The weaker assumption above implies pointwise bounds in the interior by a
mean value inequality. Near the boundary this is not a direct consequence,
but an extra argument [W4, Lemma 2.4] provides local Lp-bounds for any
p < 3. Thus we can state the compactness result in this form, which already
hints at a similar behaviour to pseudoholomorphic curves on R× [0, 1]. This
stronger statement becomes crucial in the bubbling analysis below.

The goal of our analytic discussion of the trajectory equation is to un-
derstand the compactness or compactification of the k-dimensional part
Mk(x−, x+) of the space of trajectories with fixed limits x±. (Here k = 0
and k = 1 are relevant for the definition of ∂ and for the proof of ∂ ◦ ∂ = 0.)

The assumptions in theorem 3.4 are too strong for that purpose since we
only have a bound on the energy, not on the energy density, of trajectories in
Mk(x−, x+). In fact, in the three present cases the energy of a trajectory is
uniquely determined by its limits x−, x+ and its index k via a monotonicity
formula. So we need to consider a sequence of trajectories with fixed en-
ergy and analyze the possible divergence of the sequence when the uniform
bounds in theorem 3.4 do not hold. This divergence is usually described by
the ’bubbling off’ of some part of the trajectory: In the case (inst) the ’bub-
bles’ are instantons on S4; in the case (symp) they are pseudoholomorphic
spheres or disks. In the new case (in-L) we also encounter instantons on
S4 ’bubbling off’ at both interior or boundary points. Additional ’bubbles’
in the form of anti-self-dual instantons on the half space were expected in
[Sa2]. Our result below now seems to indicate a semiglobal bubbling effect
at the boundary, which conjecturally might be described as a holomorphic
disk in the space of connections A(Σ). Fortunately, the geometric under-
standing of the bubbles is not necessary for the purpose of Floer theory in
the monotone case. It can be replaced by an analytic understanding of the
bubbling in the form of the following energy quantization result.

For the purpose of this statement we abbreviate Y = [0, 1] × Σ in case
(in-L) and Y = [0, 1] in case (symp), so all trajectories are defined on R×Y .

Theorem 3.5. (Energy Quantization) There exists a constant ~ > 0
such that the following holds. Consider a sequence of trajectories whose
energy is bounded by some E <∞.

Then, after going to a subsequence, the energy densities are locally uni-

formly bounded as in theorem 3.4 on (R×Y )\
⋃N
k=1 Pk, the complement of a

finite union of bubbling loci Pk as below. At each bubbling locus Pk there is
a concentration of energy of at least ~ on neighbourhoods with radii εi → 0.
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(inst): Each bubbling locus is a point Pk = xk ∈ R × Y with
∫

Bεi
(xk)

|∂sBi|
2 ≥ ~.

(in-L): Each bubbling locus is
either an interior point Pk = xk ∈ R × (0, 1) × Σ with

∫

Bεi
(xk)

|∂sAi|
2 + |FAi

|2 ≥ ~,

or a boundary slice Pk = {(sk, tk)} × Σ, (sk, tk) ∈ R × {0, 1} with
∫

Bεi
(sk ,tk)

‖∂sAi‖
2
L2(Σ) + |FAi

|2L2(Σ) ≥ ~.

(symp): Each bubbling locus is a point Pk = (sk, tk) ∈ R × [0, 1] with
∫

Bεi
(sk,tk)

|∂sui|
2 ≥ ~.

In case (in-L) both an instanton on S4 bubbling off at a boundary point
and the conjectural holomorphic disk in A(Σ) are described by a boundary
slice as bubbling locus. The proof in case (in-L) goes along the lines of
an energy quantization principle explained in [W5] but deals with some
additional difficulties. In the cases (inst) and (symp) the above result can be
obtained straight forward from this principle and a control on the Laplacian
(and normal derivative) of the energy density. See section 6 for details.

The combination of theorems 3.4 and 3.5 can be rephrased as: ’There is a
C∞

loc-convergent subsequence if the energy is locally small.’ In the cases (inst)
and (symp) it is sufficient to assume that every point in R × Y or R× [0, 1]
respectively has a neighbourhood on which the energy of each trajectory in
the sequence is less than ~. In the case (in-L) this assumption is the same
for points in the interior R× (0, 1)×Σ. For a point (s, j, z) ∈ R×{0, 1}×Σ
on the boundary however, it is not enough to assume that the energies are
small on a neighbourhood of that point, but one needs to assume that there
is a neighbourhood of the whole boundary slice {(s, j)} × Σ on which the
energy of each trajectory in the sequence is less than ~.

The full consequence of theorems 3.5 and 3.4 is the following compactness.

Corollary 3.6. Consider a sequence of trajectories with energy bounded
by E < ∞. Then, after going to a subsequence, there exist finitely many
bubbling loci P1, . . . , PN as in theorem 3.5, and in the cases (inst) and (in-L)

there exists a sequence of gauge transformations in G((R × Y ) \
⋃k
i=1 Pk),

such that the trajectories converge (after gauge transformation) in the C∞
loc-

topology on (R × Y ) \
⋃k
i=1 Pk to a new solution of the trajectory equation

(T) on (R × Y ) \
⋃k
i=1 Pk with energy E ≤ E −N~.
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Keep in mind that the bubbling loci Pk and thus the singularities of the
new solution obtained in corollary 3.6 are always points, except for the case
(in-L) where 2-dimensional singularities can occur at the boundary. The
next step in the compactification (or proof of compactness) of the spaces
of trajectories is to remove these singularities. We give a general statement
that is a consequence of the subsequent removable singularity theorems for
the local models of the singularities.

Here Bn denotes the unit ball in R
n centered at 0, and D2 := B2 ∩ H

2 is
the unit half ball in the half space H

2 = {(s, t) ∈ R
2
∣

∣ t ≥ 0} with center 0.
In the two boundary cases, the Lagrangian submanifold LH or L can be
either of the two LHi

or Li respectively.

Theorem 3.7. (Removal of Singularities) Consider a smooth solution

of the trajectory equation (T) on (R×Y )\
⋃N
k=1 Pk that has finite energy E.

Then (in case (inst) and (in-L) after applying a gauge transformation in

G((R × Y ) \
⋃N
k=1 Pk)) the solution extends to a trajectory on R × Y with

energy E.

(inst), (in-L,interior): Suppose that Ξ ∈ A(B4 \ {0}) satisfies

FΞ + ∗FΞ = 0 and

∫

B4\{0}
|FΞ|

2 <∞.

Then there exists a gauge transformation g ∈ G(B4 \ {0}) such that g∗Ξ

extends to a solution Ξ̃ ∈ A(B4).

(in-L,boundary): Suppose that Ξ ∈ A((D2 \ {0}) × Σ) satisfies
{

FΞ + ∗FΞ = 0

Ξ|{(s,0)}×Σ ∈ LH ∀s
and

∫

D2\{0}

∫

Σ
|FΞ|

2 <∞.

Then there exists a gauge transformation g ∈ G((D2 \ {0}) × Σ) such that

g∗Ξ extends to a solution Ξ̃ ∈ A(D2 × Σ).

(symp,boundary): Suppose that u ∈ C∞(D2 \ {0},M) satisfies
{

∂su+ J∂tu = 0

u(s, 0) ∈ L ∀s
and

∫

D2\{0}
|∂su|

2 <∞.

Then u extends to a solution ũ ∈ C∞(D2,M).

(symp,interior): Suppose that u ∈ C∞(B2 \ {0},M) satisfies

∂su+ J∂tu = 0 and

∫

B2\{0}
|∂su|

2 <∞.

Then u extends to a solution ũ ∈ C∞(B2,M).
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In the case (in-L) Uhlenbeck’s removable singularity theorem [U1] applies
to the bubbling loci in the interior. At the boundary we have to remove 2-
dimensional singularities of an anti-self-dual instanton. In the interior there
would be an obstruction to removing such singularities: The holonomies of
small loops around the singularity might have a nontrivial limit. So it is im-
portant to note that this ’pseudoholomorphic behaviour’ of the (in-L) trajec-
tories only occurs at the boundary, where one does not have an obstruction
since there are no loops around the singularity. One can then imitate the
removal of the singularity of a pseudoholomorphic curve on D2 \ {0} with
Lagrangian boundary conditions to remove the singularity of an anti-self-
dual instanton on (D2 × {0}) ×Σ. This uses an isoperimetric inequality for
a local Chern-Simons functional instead of the local symplectic action. So
far, the definition of this local Chern-Simons functional crucially uses the
fact that the Lagrangian boundary condition arises from a handle body.

The final result of the analysis of trajectories in theorems 3.4, 3.5, and 3.7
is that the moduli spaces of trajectories are compact up to ’bubbling’ and
’breaking of trajectories’. Here ’bubbling’ means the concentration of energy
at a bubbling locus as in theorem 3.5. The ’breaking of trajectories’ occurs
when a sequence of trajectories with constant energy converges smoothly
on every compact set to a new trajectory, but the limit has less energy. In
that case, the energy difference must have moved out to s → ±∞ and can
be recaptured as the energy of a limit of shifted trajectories. A standard
iteration of such shifts yields a finite collection of trajectories (a ’broken
trajectory’) whose total energy equals to the fixed energy of the sequence.

To proceed with the definition of ∂ and the proof of ∂ ◦∂ = 0 one needs to
perturb the trajectory equation (T) so that the moduli spaces Mk(x−, x+)
of trajectories become smooth manifolds. Here a priori k ∈ Z is the index of
a Fredholm operator (the linearization of (T)) associated to the trajectories.
For a smooth moduli space, k equals to the dimension of the component,
hence Mk(x−, x+) is empty for k ≤ −1. By a monotonicity formula, k
moreover determines the energy of the trajectories such that a trajectory
of lower energy has to lie in a moduli space of lower dimension. From this
one can deduce that M0(x−, x+) is compact (and thus can be counted to
define ∂): It consists of trajectories with the minimal energy that allows
to connect x− to x+. So bubbling can be ruled out since (after removal of
the singularities) it would lead to a trajectory of even lower energy. The
breaking of trajectories is ruled out by a similar index-energy argument.

Bubbling is also excluded in Mk(x−, x+) for k ≤ 7 (or 2N−1 in the sym-
plectic case) since x− and x+ determine the index k modulo 8 (or 2N). So
a loss of energy corresponds to a jump by 8 (or 2N) in the dimension. The
breaking of trajectories is no longer ruled out; on the contrary, ∂ ◦ ∂ = 0 fol-
lows from the fact that the ends of the 1-dimensional moduli spaces exactly
correspond to the broken trajectories which are counted by ∂ ◦ ∂.
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∂sB + ∗FB = 0
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∂sA+ ∗(∂tA− dAΨ) = 0

∂sΨ + ∗FA = 0

A(s, j) ∈ LHj

u : R × [0, 1] →M
{

∂su+ J∂tu = 0

u(s, j) ∈ Lj

energy :

∫

R×Y

|∂sB|2 ≤ C

∫

R×[0,1]×Σ

|∂sA|
2 + |FA|

2 ≤ C

∫

R×[0,1]

|∂su|
2 ≤ C

uniform bounds
for compactness :

sup
R×Y

|∂sB|2 <∞ sup
R×[0,1]

‖∂sA‖
2
L2(Σ) + ‖FA‖

2
L2(Σ) <∞ sup

R×[0,1]

|∂su|
2 <∞

bubbling loci : points x ∈ R × Y interior points x ∈ R × (0, 1) × Σ,

boundary slices {(s, j)} × Σ

interior points (s, t) ∈ R × (0, 1),

boundary points (s, j) ∈ R × {0, 1}

removable
singularities :

B4 \ {0} B4 \ {0}

(D2 × Σ) \ ({0} × Σ)

B2 \ {0}

D2 \ {0}
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4. The Atiyah-Floer conjecture

To give a precise statement of the Atiyah-Floer conjecture we need to refine
the notion of handle bodies and Heegard splittings. A handle body is
an oriented 3-manifold with boundary that is obtained by attaching finitely
many 1-handles to a 3-ball. The spine of a handle body H is a graph
S ⊂ H embedded in its interior that arises from replacing the ball by a
vertex and the handles by edges with ends on this vertex. Its significance is
that H \ S ∼= [0, 1) × ∂H, so H retracts onto S. For each genus g ∈ N0 we
fix a standard handle body and spine S ⊂ H.

Definition 4.1. A Heegard splitting of a closed oriented 3-manifold Y
consists of two embeddings ψi : H ↪→ Y of a standard handle body H such
that ψ0(∂H) = ψ1(∂H) = imψ0∩ imψ1. We abbreviate the Heegard splitting
by Y = H0 ∪Σ H1, where Hi := ψi(H) ⊂ Y and Σ := ψi(∂H) = H1 ∩H2.

Next, a homology 3-sphere is a compact oriented 3-manifold Y whose
integer homology is that of a 3-sphere, H∗(Y,Z) ∼= H∗(S

3,Z).

Conjecture 4.2. (Atiyah–Floer) Let Y be a homology 3-sphere. Then
every Heegard splitting Y = H0 ∪Σ H1 induces a natural isomorphism

HFinst
∗ (Y ) ∼= HFsymp

∗ (RΣ, LH0 , LH1).

Here ’natural’ in particular means that the isomorphism should be in-
variant under isotopies of the Heegard splitting. Note that for nonisotopic
Heegard splittings of the same genus one can identify the RΣ, but the pairs of
Lagrangians (and thus the conjectured isomorphism) will be different. The
conjecture would then provide isomorphisms between the symplectic Floer
homologies arising from different Heegard diagrams of the same 3-manifold.

The first task posed by this conjecture is to give a precise definition of
the symplectic Floer homology for the Lagrangians LH0 , LH1 in the singular
symplectic space RΣ. They can be viewed as symplectic quotients of the
gauge action on the smooth Banach-manifolds LH0 ,LH1 ⊂ A(Σ) (see [AB]
and section 2). For finite dimensional Hamiltonian group actions, Salamon
et al. introduced invariants based on the symplectic vortex equations on the
total space, see e.g. [CGMS]. Gaio and Salamon [GS] identified these with
the Gromov-Witten invariants for smooth and monotone symplectic quo-
tients. In view of this result, a plausible definition of HFsymp

∗ (RΣ, LH0 , LH1)
could be to replace its ill-defined trajectories (pseudoholomorophic curves
in the singular symplectic quotient) by solutions of the corresponding sym-
plectic vortex equations: A triple of maps A : R × [0, 1] → A(Σ) and
Φ,Ψ : R × [0, 1] → C∞(Σ, su(2)) ∼= T1lG(Σ) that satisfy

(9)











(∂sA− dAΦ) + ∗(∂tA− dAΨ) = 0,

∂sΨ − ∂tΦ + [Φ,Ψ] + ∗FA = 0,

A(s, i) ∈ LHi
∀s ∈ R, i ∈ {0, 1}.
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Here Φ 7→ dAΦ is the infinitesimal action and A 7→ ∗FA is the moment
map of the gauge action, where ∗ is the Hodge operator of a metric gΣ on Σ.
This system is the anti-self-duality equation with Lagrangian boundary con-
ditions for the connection Φds+Ψdt+A on R × [0, 1] × Σ with respect to the
metric ds2+dt2+gΣ, i.e. the trajectory equation of definition 3.2 in temporal
gauge Φ = 0. So in this case the symplectic vortex equations lead directly to
the new Floer homology HFinst

∗ ([0, 1] × Σ,LH0 ×LH1), which is well-defined
since ([0, 1] × Σ) ∪ (H0 tH1) ∼= H0 ∪Σ H1 is a homology 3-sphere. Defining
HFsymp

∗ (RΣ, LH0 , LH1) via (9) would reduce the Atiyah-Floer conjecture 4.2
to the subsequent special case of conjecture 2.5. We intend however to give
a less far fetched definition of the symplectic Floer homology and use the
following only as first step towards a proof of the Atiyah-Floer conjecture.

Conjecture 4.3. Every Heegard splitting Y = H0 ∪Σ H1 of a homology
3-sphere induces a natural isomorphism

HFinst
∗ (Y ) ∼= HFinst

∗ ([0, 1] × Σ,LH0 ×LH1).

To prove this, one has to identify the critical points and trajectories of
both Floer homologies. Our idea for a proof uses the following decom-
position of Y . We restrict the embeddings ψi to the complement of the
spine H \ S ∼= [12 , 1) × Σ and glue them at { 1

2} ×Σ to obtain an embedding

ψ : (0, 1) × Σ ↪→ Y such that ψ( 1
2 , ·) = idΣ and ψ(t,Σ) converges to the spine

ψi(S) ⊂ Hi as t→ i for i = 0, 1. Then

Y = Hδ
0 t Yδ tH

δ
1 ; Yδ := ψ([δ, 1 − δ] × Σ).

Here the Hδ
i ⊂ Y are isotopic to the open handle bodies int(Hi) and

Yδ ∼= [0, 1] × Σ via ψ ◦ τδ, where τδ : [0, 1]×Σ → [δ, 1 − δ]×Σ is the obvious
linear isomorphism. With this the critical points can be identified elemen-
tary as follows: Every Ã ∈ Aflat(Y ) can be decomposed and pulled back

to a triple (A, Ã0, Ã1) of A ∈ Aflat([0, 1] × Σ) and Ãi ∈ Aflat(Hi) such that

A|{i}×Σ = Ãi|∂Hi
. So every critical point [Ã] ∈ RY corresponds to the gauge

equivalence class of a flat connection on [0, 1] × Σ with boundary values in
LH0 and LH1 . One can check that this in fact gives a bijection between the
critical points. In order to prove conjecture 4.3 one needs to show that the
induced map between the Floer complexes is a chain isomorphism.

For that purpose we fix a metric on Y and for a corresponding met-
ric on [0, 1] × Σ try to establish a bijection between the trajectories that
contribute to the differential on the two Floer complexes. (Of course, we
have to prove later that the isomorphism is independent of the choices).
A fixed metric on Y gives rise to a family of metrics gδ on [0, 1] × Σ
via pullback by ψ ◦ τd : [0, 1] × Σ → Yδ ⊂ Y . The metrics gδ degenerate on
{0} × Σ and {1} × Σ for δ → 0, but for sufficiently small δ > 0 we ex-
pect to find a bijection between the trajectories of HFinst

∗ (Y ) and those of
HFinst

∗ ([0, 1] × Σ,LH0 ×LH1) with respect to gδ.
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The first are anti-self-dual instantons (in temporal gauge) on R×Y , that
is B : R → A(Y ) satisfying

∂sB + ∗FB = 0 on R × Y.

The latter are anti-self-dual instantons (in temporal gauge) A + Ψdt on
R × [0, 1] × Σ with Lagrangian boundary conditions. Here the metric gδ on
[0, 1] × Σ is not of product form, so the equation (T) in definition 3.2 has
to be adjusted: The pair (A,Ψ) is a trajectory if A+ Ψdt = τ ∗δ ψ

∗B, where
B : R → A(Yδ) is anti-self-dual with respect to the fixed metric on Y and
has boundary values in LH0 and LH1 , that is











∂sB + ∗FB = 0 on R × Yδ,

B|ψ({δ}×Σ) = B̃0 for some B̃0 : R → Aflat(H
δ
0),

B|ψ({1−δ}×Σ) = B̃1 for some B̃1 : R → Aflat(H
δ
1).

The task in identifying the trajectories is to consider anti-self-dual instantons
on Yδ and transfer between extensions B̃i : R → A(Hδ

i ) that are slicewise flat

(FB̃i
= 0) and extensions that are anti-self-dual (∂sB̃i + ∗FB̃i

= 0). Here the

handle bodies Hδ
i ⊂ Y are small tubes around their spines ψi(S) ⊂ Y . The

restriction of given (anti-self-dual) connections B̃i to the spines is up to gauge
equivalence determined by their holonomies, i.e. SU(2)-representations of
π1(Hi). One can then pick flat connections on the H δ

i that have the same

holonomy and are close to the B̃i (compared to their energy). For the con-

verse we will have to use special flat extensions B̃i with a control on ∂sB̃i
as in lemma 5.3. Combined with the small volume of H δ

i this should make

B̃i close to anti-self-dual.

ds2 + ε2gΣ
gδ ds2 + gΣ

Degenerations of the metric on [0, 1]× Σ

The key to this plan of proof is the fact that one can degenerate the metric
on [0, 1] × Σ (as sketched on the left in the above figure) without changing
the invariant HFinst

∗ ([0, 1] × Σ,LH0 ×LH1). In the limit of the degeneration
one should obtain the invariant HFinst

∗ (Y ) for the closed manifold. The basic
idea of the second step for the Atiyah-Floer conjecture is to use a second
degeneration (on the right in the above sketch) to transfer from anti-self-
dual instantons to pseudoholomorphic curves. This idea was successfully
employed by Dostoglou and Salamon [DS] in their proof of a mapping torus
analogon of the Atiyah-Floer conjecture.
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A trajectory of the symplectic Floer homology should be a pseudoholo-
morphic map u : R × [0, 1] → RΣ with boundary values in LH0 and LH1 ,

(10) ∂su+ J(u)∂tu = 0, u(s, i) ∈ LHi
∀s ∈ R, i = 0, 1.

Here we choose the almost complex structure J on RΣ that is induced by
the Hodge operator of some fixed metric gΣ on Σ. Let us first assume that
u takes values in the irreducible representations, so the pseudoholomorphic
equation for u actually makes sense since RΣ is smooth near its image. If
we consider a lift A : R × [0, 1] → A(Σ) of u, then this means that every
A(s, t) has stabilizer {±1l} ⊂ G(Σ), or equivalently dA(s,t) is injective on

Ω0(Σ; su(2)). This lift is not unique, but it always takes values in Aflat(Σ).
So for every A = A(s, t) one has the Hodge decomposition (4)

Ω1(Σ; su(2)) = dAΩ0(Σ; su(2)) ⊕ ∗dAΩ0(Σ; su(2)) ⊕ h1
A.

Here h1
A = ker dA∩ker d∗

A
∼= T[A]RΣ and dAΩ0(Σ; su(2)) is the tangent space

of the G(Σ)-orbit through A. So one can express ∂su+ J(u)∂tu = 0 in terms
of the lift: The projection of ∂sA+ ∗∂tA onto h1

A
∼= T[A]RΣ vanishes; i.e.

∂sA+ ∗∂tA = dAΦ + ∗dAΨ for some Φ,Ψ : R × [0, 1] → Ω0(Σ; su(2)). More
precisely, (10) for u mapping to the irreducible representations is equivalent
to the existence of a lift A : R × [0, 1] → A(Σ), u(s, t) = [A(s, t)], and some
Φ,Ψ : R × [0, 1] → Ω0(Σ; su(2)) such that

(11)











∂sA− dAΦ + ∗
(

∂tA− dAΨ
)

= 0,

∗FA = 0,

A(s, i) ∈ LHi
∀s ∈ R, i = 0, 1.

One can also consider this as a boundary value problem for the connection
Φds + Ψdt + A on R × [0, 1] × Σ. Just note that A determines Φ and Ψ
uniquely since ∆AΦ = dA∂sA, ∆AΨ = dA∂tA, and ∆A = d∗

AdA is invertible
for irreducible A = A(s, t). If A is allowed to become reducible, then Φ and
Ψ have some extra freedom. If for example A ≡ 0, then any two functions
Φ,Ψ : R × [0, 1] → su(2) would provide a solution of (11). Quotienting
out by the gauge action, this moduli space is still infinite dimensional. We
expect however that one can use perturbations of (11) to obtain finite di-
mensional smooth moduli spaces of trajectories in the cases that are relevant
for HFsymp

∗ (RΣ, LH0 , LH1), i.e. when at least one critical point is irreducible.
Once this symplectic Floer homology is defined via (11), one should be able
to adapt the adiabatic limit in [DS] to this boundary value problem and
establish the following second step towards the Atiyah-Floer conjecture.

Conjecture 4.4. If Y = H0 ∪Σ H1 is a Heegard splitting of a homology
3-sphere, then there is a natural isomorphism

HFinst
∗ ([0, 1] × Σ,LH0 ×LH1)

∼= HFsymp
∗ (RΣ,LH0 ,LH1).
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Again, the critical points of both Floer theories are naturally identified.
In the instanton Floer homology the critical points are flat connections on
A + Ψdt on [0, 1] × Σ (where flatness means FA = 0 and Ȧ − dAΨ = 0)
with boundary values A(0) ∈ LH0 and A(1) ∈ LH1 . One can always make
Ψ vanish by a gauge transformation, then A becomes t-independent, so
A(0) = A(1) ∈ LH0 ∩ LH1 . Thus the gauge equivalence classes of these
critical points can be identified with intersection points of the Lagrangian
submanifolds LH0 and LH1 in the moduli space RΣ – which are exactly the
critical points of the symplectic Floer homology.

In order to identify the moduli spaces of trajectories we can choose an
appropriate metric on [0, 1] × Σ in the definition of the instanton Floer
homology. Let us fix the metric gΣ on Σ as in (11) and consider the family
of metrics dt2 + ε2gΣ for ε > 0. With respect to these metrics the trajectory
equation (9) of the instanton Floer homology becomes

(12)











∂sA− dAΦ + ∗
(

∂tA− ∗dAΨ
)

= 0,

∂sΨ − ∂tΦ + [Φ,Ψ] + ε−2 ∗ FA = 0,

A(s, i) ∈ LHi
∀s ∈ R, i ∈ {0, 1},

for the triple of A : R × [0, 1] → A(Σ) and Φ,Ψ : R × [0, 1] → Ω0(Σ; su(2)).
Their energy

E(A,Φ,Ψ) =

∫

�
×[0,1]×Σ

|∂sA− dAΦ|2 + ε−2|FA|
2

is determined, independently of ε, by the index and the limits at ±∞ (via
a monotonicity formula). Analogously to [DS] we expect that sequences of
such anti-self-dual instantons for ε→ 0 converge (modulo gauge) to solutions
of (11). Now the gauge equivalence classes of these solutions would exactly
be the trajectories of the symplectic Floer homology. Conversely, an implicit
function argument should show that for sufficiently small ε > 0 near every
solution of (11) one finds a solution of (12). This would give the required
bijection between the trajectories of the symplectic and the instanton Floer
homology.

Dostoglou and Salamon indeed dealt with the same equations. However,
they considered a mapping torus R × Σ/ ∼ (with (t + 1, z) ∼ (t, f(z))
for some diffeomorphism f of Σ) instead of our manifold with boundary
[0, 1] × Σ, so the boundary conditions in (11) and (12) are replaced by a
twisting condition. The analytic setup for the definition of the new instan-
ton Floer homology should also allow to deal with the boundary conditions
in this context. There are however additional difficulties due to reducible
connections on the trivial SU(2)-bundle over Σ, whereas [DS] deals with the
nontrivial SO(3)-bundle over Σ that has no reducible connections.
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5. Lagrangians in the space of connections

The purpose of this section is to describe some more properties of the La-
grangian submanifolds in the space of connections that were introduced in
section 2. We again consider more generally a trivial G-bundle over a Rie-
mann surface Σ, where G is any compact Lie group with Lie algebra g. We
fix p > 2, then the space of Lp-regular connections A0,p(Σ) is a symplectic
Banach space with symplectic form ω given by (3). The gauge group G1,p(Σ)
acts smoothly on A0,p(Σ) and preserves ω. Moreover, recall that if we equip
Σ with any Riemannian metric, then the corresponding Hodge ∗ operator
induces an ω-compatible complex structure on A0,p(Σ).

We have proven in [W2, Theorem 3.1] that an Lp-connection is flat in
the weak sense iff it is gauge equivalent to a smooth flat connection. So
for our purposes here we simply define the space of flat Lp-connections as
A0,p

flat(Σ) := G1,p(Σ)∗Aflat(Σ) ⊂ A0,p(Σ). With this definition it is clear that
the based holonomy at any z ∈ Σ is well-defined as a map

holz : A0,p
flat(Σ) → Hom(π1(Σ),G).

(Here and in the following one actually has to fix one point z in each con-
nected component of Σ.) It is invariant under the based gauge group

G1,p
z (Σ) :=

{

u ∈ G1,p(Σ)
∣

∣ u(z) = 1l
}

.

Next, we call a Banach submanifold L ⊂ A0,p(Σ) Lagrangian if is isotropic,
ω|L ≡ 0, and coisotropic in the sense of the following implication for all
A ∈ L and α ∈ A0,p(Σ): If ω(α, β) = 0 for all β ∈ TAL, then α ∈ TAL. The
main properties of gauge invariant Lagrangian submanifolds are summarized
below. For proofs see [W2, Lemma 4.2,4.3]. (In the case G = SU(2) and
for any other connected, simply conected Lie group with discrete center,
the gauge invariance and Lagrangian property imply that L lies in the flat
connections; for general groups we make this additional assumption.)

Lemma 5.1. Let L ⊂ A0,p(Σ) be a Lagrangian submanifold. Suppose that

L ⊂ A0,p
flat(Σ) and that L is invariant under the action of G1,p(Σ). Then the

following holds:

(i) L ⊂ (A(Σ), ∗) is totally real with respect to the Hodge ∗ operator for
any metric on Σ. That is Ω1(Σ; su(2)) = TAL⊕ ∗TAL for all A ∈ L.

(ii) Fix any z ∈ Σ. Then L has the structure of a principal G1,p
z (Σ)-bundle

G1,p
z (Σ) ↪→ L

holz−→M.

Here M ⊂ Hom(π1(Σ),G) is a smooth manifold of dimension g ·dimG.

Property (i) is crucial for the elliptic theory for the boundary value prob-
lem (8) in the proof of theorem 3.4. Property (ii) gives rise to Banach
submanifold coordinates for the Lagrangian that fit well with the Hodge
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decomposition of Ω1(Σ; su(2)). This also is the crucial point that forces us
to work on Lp-spaces with p > 2. One does not have a corresponding state-
ment for Lagrangians in A0,2(Σ) unless one can find a generalization of the
based gauge group in the W 1,2-regular gauge transformations. This would
have to be a subgroup that acts freely but has finite codimension.

Next, we consider the Lagrangians given by handle bodies. For that
purpose we suppose that G is connected and simply connected and that
Σ = ∂H is the boundary of a handle body H. (Both H and Σ might have
several connected components, in which case ’fixing z ∈ Σ’ below should be
replaced by ’fixing a point in each component’.)

Let LH be the Lp(Σ)-closure of the set of smooth flat connections on Σ
that can be extended to a flat connection on H,

LH := cl
{

A ∈ Aflat(Σ)
∣

∣ ∃Ã ∈ Aflat(H) : Ã|Σ = A
}

⊂ A0,p(Σ).

Here again the assumption p > 2 is crucial for the subsequent properties. In
particular, it is not clear whether the L2-closure is a smooth submanifold.

Lemma 5.2. [W2, Lemma 4.6]

(i) LH =
{

u∗(A|Σ)
∣

∣A ∈ Aflat(H), u ∈ G1,p(Σ)
}

(ii) LH ⊂ A0,p(Σ) is a Lagrangian submanifold.

(iii) LH ⊂ A0,p
flat(Σ) and LH is invariant under the action of G1,p(Σ).

(iv) Fix any z ∈ Σ. Then 10

LH =
{

A ∈ A0,p
flat(Σ)

∣

∣ holz(A) ∈ Hom(π1(H),G) ⊂ Hom(π1(Σ),G)
}

,

So LH obtains the structure of a G1,p
z (Σ)-bundle over the g-fold product

M = G × · · · × G ∼= Hom(π1(H),G),

G1,p
z (Σ) ↪→ LH

holz−→ Hom(π1(H),G).

Next, although the Lagrangian LH does not necessarily have a smooth
L2-closure, the L2(Σ)-norm on LH can be used to control the corresponding
flat connections on H in L3(H). This extension property is the crucial trick
that circumvents dealing with the W 1,2-topology on the gauge group.

Lemma 5.3. There exists a constant CH such that the following holds.

(i) For every smooth path A : (−ε, ε) → LH ∩ A(Σ) there exists a path

Ã : (−ε, ε) → Aflat(H) with Ã(s)|∂H = A(s) such that

‖∂sÃ(0)‖L3(H) ≤ CH‖∂sA(0)‖L2(Σ).

(ii) For all A0, A1 ∈ LH ∩ A(Σ) there exist extensions Ã0, Ã1 ∈ Aflat(H)

with Ai = Ãi|∂H such that

(13) ‖Ã0 − Ã1‖L3(H) ≤ CH‖A0 −A1‖L2(Σ).

10Here we identify Hom(π1(H),G) ∼=
�
ρ ∈ Hom(π1(Σ), G) �� ρ(∂π2(H,Σ)) = {1l} � .
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The proof in [W4, Lemma 1.6] uses the coordinates in lemma 5.2 (iv).
Extensions with the correct holonomy can be constructed by hand, and the
estimates are immediate on this finite dimensional part. For dealing with the
gauge transformations the crucial fact is that there is a continuous extension
operator from W 1,2(Σ) to W 1,3(H). In (i) this fact is used for functions with
values in su(2), whereas (ii) requires the nonlinear version for maps to SU(2).
The latter is a nontrivial construction of Hardt-Lin [HrL] in this borderline
Sobolev case (the maps are not automatically continuous).

6. Rough guide to the analysis

In this section we give outlines of the proofs of theorems 3.4, 3.5, and 3.7 for
instantons with Lagrangian boundary conditions.11 The detailed proofs can
be found in [W3, W4]. They actually hold for more general domains and
metrics than considered here, which becomes important when proving the
metric independence of the Floer homology, and when defining products. We
study the boundary value problem (8) for SU(2)-connections Ξ ∈ A(H2×Σ),

(14) FΞ + ∗FΞ = 0, Ξ|{(s,0)}×Σ ∈ LH ∀s ∈ R.

Here H
2 = {(s, t) ∈ R

2
∣

∣ t ≥ 0} denotes the half space and we equip H
2 × Σ

with a metric ds2 + dt2 + gs,t, where the metric gs,t on Σ varies smoothly
with (s, t) ∈ H

2 and is constant outside of a compact subset.

6.1. Proof of Compactness.
For all results in this subsection the Lagrangian LH in (14) can be re-

placed by a general gauge invariant Lagrangian submanifold L ⊂ A0,p(Σ).
The compactness theorem 3.4 in case (in-L) is a consequence of the fol-
lowing lemma and theorem. The lemma yields the local Lp-bounds that are
assumed in the theorem. It is based on mean value inequalities and will thus
be proven later in section 6.2. Here Br(x) ⊂ R

2 is the closed 2-dimensional
ball of radius r > 0 centered at x ∈ R

2, and we denote Dr(x) := Br(x)∩H
2.

In particular, Dr := Dr(0) ⊂ H
2 is the closed half ball of radius r.

Lemma 6.1. [W4, Lemma 2.4] Let Ξν ∈ A(H2 ×Σ) be a sequence of anti-
self-dual connections and suppose that for some x0 ∈ H

2 and δ > 0

sup
ν

sup
x∈D2δ(x0)

∥

∥FΞν (x)
∥

∥

L2(Σ)
<∞.

Then for every 2 < p < 3 sup
ν

∥

∥FΞν

∥

∥

Lp(Dδ(x0)×Σ)
<∞.

If in fact Bδ(x0) ∩ ∂H = ∅, then moreover sup
ν

∥

∥FΞν

∥

∥

L∞(Bδ(x0)×Σ)
<∞.

11The methods will be suitable for generalization to gauge invariant Lagrangians as on
page 10. The special form of the Lagrangians arising from handle bodies is only used for
the bound on ∂

∂ν
e in lemma 6.4 and for the isoperimetric inequality in proposition 6.6.
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Theorem 6.2. Let p > 2. Suppose that Ξν ∈ A(H2 × Σ) is a sequence of
solutions of (14) such that supν ‖FΞν‖Lp(K) < ∞ for every compact subset
K ⊂ H × Σ. Then there exists a subsequence (again denoted by Ξν) and a
sequence of gauge transformations uν ∈ G(H2×Σ) such that uν ∗Ξν converges
uniformly with all derivatives on every compact subset of H

2 × Σ.

Note that it is crucial to establish this compactness for 2 < p < 3 since the
previous lemma only provides those curvature bounds near the boundary.
Next, we outline the steps of the proof in [W3, Theorem B] of theorem 6.2.
By standard gauge theoretic arguments it boils down to the boundary reg-
ularity theory in 5b)–f) below. The crucial step is f), where the Lagrangian
enters as totally real boundary condition for a Cauchy-Riemann equation.
The case 2 < p ≤ 4 requires a separate treatment described in a’) and f’).
1) Reduction to compact domains: By a Donaldson-Kronheimer trick
[W1, Prop. 7.6] it suffices to prove the assertion on Dk×Σ for every k ∈ N.
Then the gauge transformations onDk×Σ can be extended to H

2×Σ and can
be interpolated with gauge transformations obtained on larger domains. A
diagonal subsequence then satisfies the claimed C∞

loc-convergence on H
2 ×Σ.

So we consider a sequence Ξν ∈ A(H2 × Σ) of solutions whose curvature
is in particular Lp-bounded on U × Σ, where U ⊂ H

2 is some compact
domain with smooth boundary and Dk ⊂ int(U). Then we need to find
gauge transformations and a convergent subsequence on Dk × Σ.

In the subsequent steps one frequently gets a new estimate only on a
smaller domain Ui ⊂ int(U). (Note that the interior includes points on
∂H

2.) However, we can always choose these such that Dk ⊂ int(Ui).
2) Weak convergence: We can apply Uhlenbeck’s weak compactness the-
orem 2.1 on U × Σ. It provides a subsequence (still denoted Ξν) and gauge
transformations uν ∈ G2,p(U ×Σ) such that uν ∗Ξν → Ξ∞ in the weak W 1,p-
topology with a limit connection Ξ∞ ∈ A1,p(U × Σ).
3) Regularity for limit solution: The limit Ξ∞ now also solves (14).
For the boundary conditions this is due to the compact Sobolev embedding
W 1,p(U × Σ) ↪→ C0(U , Lp(Σ)). In the nonstandard case 2 < p ≤ 4 this
embedding is established in [W3, Lemma 2.5].

Now one finds a gauge transformation u ∈ G(U1 × Σ) such that u∗Ξ∞ is
smooth on U1 × Σ. (This is proven analogously to the iteration in 5), with
estimates replaced by regularity statements. For the local slice theorem in
4) it suffices to pick a smooth connection Ξ0 that is W 1,p-close to Ξ = Ξ∞.)
One thus finds that (uνu)∗Ξν → Ξ0 in the weak W 1,p-topology on U1 × Σ,
with a smooth limit Ξ0 = u∗Ξ∞.
4) Relative Coulomb gauge: Next, the local slice theorem 2.2 provides a
sequence of gauge transformations vν ∈ G(U1×Σ) such that still vν ∗Ξν → Ξ0

converges W 1,p-weakly, and in addition each Ξ = vν ∗Ξν satisfies

(15) d∗
Ξ0

(Ξ − Ξ0) = 0, ∗(Ξ − Ξ0)|∂U1×Σ = 0.
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5) Elliptic estimates for (14)&(15): From 2–4) we have a subsequence
and gauge transformations vν such that each Ξ = vν ∗Ξν satisfies (14),
(15), and ‖Ξ‖W 1,p(U1×Σ) ≤ C1 for some uniform constant C1. By iterat-
ing the following steps a)–f) one next finds uniform constants C` such that
‖Ξ‖W `,p(U`×Σ) ≤ C` for all ` ∈ N and for all Ξ = vν ∗Ξν . Finally, due to the

compact Sobolev embeddings W `,p(Dk×Σ) ↪→ C`−2(Dk×Σ) one then finds
a diagonal subsequence that converges with all derivatives on Dk ×Σ. This
is what was to be shown according to 1).

For a)–f) we give the arguments in the case ` = 2 and p > 4. This first
step is considerably harder for 2 < p ≤ 4 and requires a separate iteration,
which is roughly indicated in a’) and f’). The iteration for ` ≥ 3 and any
p > 2 then works completely analogous to the arguments below.
a) Interior estimates: From (14) and (15) we obtain the Hodge Laplacian

∆Ξ = −d∗
(

1
2 [Ξ ∧ Ξ] + 1

2 ∗ [Ξ ∧ Ξ]
)

+ dd∗
Ξ0

Ξ0 + d ∗ [Ξ0 ∧ ∗Ξ].(16)

Here the right hand side is bounded in Lp, and the leading order of the
left hand side in local coordinates is the Laplacian on the components of Ξ.
Thus the elliptic estimate for the Laplace equation yields a W 2,p-bound on
Ξ in the interior of U1 \ ∂H

2.
Going through the arguments up to this point also proves theorem 3.4 in

the instanton case (inst) without boundary.
a’) Special iteration for W2,p-bounds with 2 < p ≤ 4: In this case the
right hand side of (16) lies in Lq for some q < p, so one only obtains a W 2,q-

bound. However, by a Sobolev embedding, this also gives a W 1,p′-bound
for some p′ > p. Iteration of a) then yields W 2,qi-bounds for a strictly
increasing sequence which reaches qN ≥ p after finitely many steps. An
analogous iteration will work for steps b–f).
b) Splitting the equation near the boundary: It remains to obtain a
W 2,p-bound on Ξ near Dk ∩∂H2. For that purpose we rewrite (14) and (15)
in the splitting Ξ = Φds+ Ψdt+A (and analogous for the smooth Ξ0) with
Φ,Ψ ∈W 1,p(U1 × Σ; su(2)) and A ∈W 1,p(U1 × Σ,T∗Σ ⊗ su(2)),

(17)































(∂sA− dAΦ) + ∗(∂tA− dAΨ) = 0,

∂sΨ − ∂tΦ + [Φ,Ψ] + ∗FA = 0,

∇s(Φ − Φ0) + ∇t(Ψ − Ψ0) − d∗
A0

(A−A0) = 0,

(Ψ − Ψ0)|t=0 = 0,

A(s, 0) ∈ L ∀s ∈ R.

Here we use the notation ∇s = ∂s + [Φ0, ·] and ∇t = ∂t + [Ψ0, ·].
c) Estimates for Ψ: From (16) we know that ∆Ψ is Lp-bounded. In
addition, we have the inhomogeneous Dirichlet condition Ψ|t=0 = Ψ0|t=0.
Thus the elliptic estimate for the Dirichlet boundary value problem implies
a W 2,p-bound on Ψ up to the boundary.
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d) Estimates for Φ: Again, ∆Φ is Lp-bounded due to (16). Moreover, we
have an inhomogeneous Neumann condition ∂tΦ|t=0 = (∂sΨ0 + [Φ,Ψ0])|t=0

since the Lagrangian boundary condition with L ⊂ A0,p
flat(Σ) in particular

implies FA|t=0 = 0. Then the elliptic estimate for the Neumann boundary
value problem (e.g. [W1, Theorem 3.2]) provides a W 2,p-bound on Φ.
e) Estimates for ∇ΣA: We can now rewrite (17) to express the differential
and codifferential of A(s, t) ∈ Ω1(Σ; su(2)) for every (s, t) ∈ U1 as

∗dΣA = −1
2 ∗ [A ∧A] − ∂sΨ + ∂tΦ − [Φ,Ψ],

d∗
ΣA = ∇s(Φ − Φ0) + ∇t(Ψ − Ψ0) + ∗[A0 ∧ ∗A] − d∗

A0
A0.

Due to the previously established bounds on Φ and Ψ the right hand sides are
bounded in W 1,p(U2 × Σ), that is in W 1,p(U2, L

p(Σ)) and Lp(U2,W
1,p(Σ)).

Now the elliptic estimates from the Hodge decomposition for each (s, t) ∈ U2

can be integrated to give bounds on ∇ΣA in the same spaces, and hence a
W 1,p-bound. For a detailed statement and proof see [W3, Lemma 2.9].
f) Estimates for ∂sA, ∂tA: So far A is bounded in Lp(U2,W

2,p(Σ)) and
W 1,p(U2,W

1,p(Σ)). To achieve a W 2,p-bound it remains to find an estimate
in W 2,p(U2, L

p(Σ)), that is on ∂sA and ∂tA. At this point, the full La-
grangian boundary condition needs to be used. Up to now, we only used its
local part, the slice-wise flatness. The additional holonomy conditions are
of global type (requiring knowledge of the connection on loops in Σ), so this
information is lost when one localizes, i.e. goes to a coordinate chart in Σ.

The solution is to consider A as map from U1 to the Banach space A0,p(Σ).
This is a complex space when equipped with the Hodge ∗ operator. So we
can rewrite (17) and recall lemma 5.1 (i) to see that A satisfies a Cauchy-
Riemann equation with totally real boundary conditions:

(18) ∂sA+ ∗∂tA = dAΦ + ∗dAΨ, A(s, 0) ∈ L ∀s ∈ R.

Now one basically has to go through the proof of theorem 3.4 for the holo-
morphic curves in case (symp) with the extra difficulty that the target space
is infinite dimensional. This would be fairly standard for a Hilbert space.
However, the iteration only works for p > 2 and we also need to work with
p > 2 to make sure that the Lagrangians are smooth submanifolds.

Here we use the general theory in [W2] for maps to a complex Ba-
nach space X. The crucial assumption is that X is a closed subspace of
an Lp-space for some 1 < p <∞ on a closed manifold (for example X =
A0,p(Σ)). Then the elliptic Lp-estimates (with the same Sobolev expo-
nent as in X) hold for the Dirichlet and Neumann problem. One can then
use the usual argument for the Cauchy-Riemann equation with totally real
boundary conditions: In a submanifold chart the components of the map
u : U → Tz0L× Tz0L

∼= X satisfy Dirichlet and Neumann boundary condi-
tions – at the expense of the complex structure becoming u-dependent. From
an Lp-bound on (∂2

s + ∂2
t )u one then obtains a W 2,p-estimate on u. Due to
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this nonlinearity from the complex structure however, the Lp-estimate on
(∂2
s + ∂2

t )u requires W 1,2p-bounds on u and ∂su+J∂tu. (The W `,p-estimates
with ` ≥ 3 only require W `−1,p-bounds, so p > 2 suffices.)

In (18) the right hand side is bounded in W 1,p(U , Lp(Σ)) due to the pre-
vious bounds on Φ and Ψ (on some domain U ⊂ int(U1) with U2 ⊂ int(U)).
By the above discussion we now have to write p = 2p′ and we only obtain
W 2,p′-estimates for A : U → X = A0,p′(Σ) with ∂sA+ ∗∂tA ∈W 1,2p′(U , X).

So this last step yields a bound on Ξ in W 2, p
2 (U2 × Σ). For p > 4 we still

have p
2 > 2 and the further iteration yields W `, p

2 -bounds for all ` ∈ N.

f ’) Special case 2 < p ≤ 4 for W2,p-bounds: In this case we only have
q < p in the W 2,q- and W 1,q-bounds on Φ,Ψ, and ∇ΣA from c)–e). So the
right hand side in (18) is of even lower regularity that will not fit in the
above arguments. However, it is bounded in Lr(U , Lp(Σ)) for some r > p.
So one can use the submanifold charts for L ⊂ A0,p(Σ) to write A as a map
u : U → TA0L × TA0L, where TA0L ⊂ A0,p(Σ) is a closed subspace. The
two components of u then satisfy weak Dirichlet and Neumann equations
with the weak Laplacian in W−1,r(U , Lp(Σ)). The previous general theory
unfortunately only works when we replace the r > p by p and it would then
give a bound on u in W 1,p(U2, L

p(Σ)), which is what we started out with.
However, one can use all the usual elliptic estimates when the target is a
Hilbert space. So we consider u as map into A0,2(Σ)×A0,2(Σ) with a W−1,r-
bound on its weak Laplacian. This yields aW 1,r(U2, L

2(Σ))-bound on u with
r > p. The previous bounds in e) moreover imply a W 1,q(U2, L

s(Σ))-bound
on u, where q < p but s > p since it results from the Sobolev embedding
W 1,q(Σ) ↪→ Ls(Σ). Now these two bounds can be interpolated to obtain a

W 1,p′(U2 × Σ)-bound with p′ > p. This bound on u also translates into a

W 1,p′-bound on A, which fits into the same iteration as in a’).

6.2. Mean value inequalities.
The proof of theorems 3.5 and 3.7 as well as lemma 6.1 makes use of

some mean value inequalities which we summarize here. These are based
on a generalization of the mean value inequality for subharmonic functions.
Here we state it for the Euclidean half space H

n. In the interior case this is
wellknown for general metrics. In the case of balls intersecting the boundary
this was proven in [W5, Theorem 1.3] for the Euclidean metric.

Proposition 6.3. For every n ≥ 2 there exists a constant C and for all
a, b ≥ 0 there exists ~(a, b) > 0 such that the following holds:

Let Dr(y) ⊂ H
n be the partial ball of radius r > 0 and centre y ∈ H

n.
Suppose that e ∈ C2(Dr(y), [0,∞)) satisfies for some constants A,B ≥ 0

{

∆e ≤ Ae+ ae
n+2

n ,
∂
∂ν

∣

∣

∂ � n e ≤ Be+ be
n+1

n ,
and

∫

Dr(y)
e ≤ ~(a, b).
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Then e(y) ≤ C
(

A
n
2 +Bn + r−n

) ∫

Dr(y) e.

For all three types of Floer theory that are discussed in section 3, the
energy densities satisfy the differential inequalities for proposition 6.3 with
exactly the critical nonlinearities. These estimates are summarized below.

Lemma 6.4. Consider a solution of the trajectory equation (T) in defini-
tion 3.2. Its energy density e satisfies the following nonlinear bounds on ∆e
and ∂

∂ν e with constants a, b, C.

(inst): e = |∂sB|2 : R × Y → [0,∞) satisfies ∆e ≤ C e+ a e
3
2 .

(in-L,interior): e = |∂sA|2 + |FA|2 : R × [0, 1] × Σ → [0,∞) satisfies

∆e ≤ C e+ a e
3
2 .

(in-L,boundary): e = ‖∂sA‖2
L2(Σ)+‖FA‖2

L2(Σ) : R×[0, 1] → [0,∞) satisfies

∆e ≤ C
(

1 + ‖FA‖L∞(Σ)

)

e, ∂
∂ν e ≤ C e+ b e

3
2 .

(symp): e = |∂su|2 : R × [0, 1] → [0,∞) satisfies

∆e ≤ a e2, ∂
∂ν e ≤ b e

3
2 .

Indications of proofs of lemma 6.4:
For the holomorphic curves in case (symp) one picks up linear terms in

the estimates if the almost complex structure J varies over the domain.
The bound on the Laplacian can be found in e.g. [MS2, Lemma 4.3.1].
The bound on the normal derivative was wellknown and is proven in [W5,
Lemma A.1] using Darboux-Weinstein coordinates near the Lagrangian.

For the anti-self-dual instantons in case (inst) this estimate is a direct
consequence of a Bochner-Weitzenböck formula, see e.g. [W5, Lemma A.2].
It was used by Uhlenbeck [U1, Lemma 3.1] in a slightly different formulation.
For the anti-self-dual instantons with Lagrangian boundary conditions, one
has the same bound on the Laplacian, as stated in (in-L,interior). However,
this only provides estimates in the interior (on balls that do not intersect
the boundary) since one does not have a bound on the normal derivative.

In view of the global methods in section 6.1 f) that were necessary for the
proof of the basic compactness theorem 3.4 it should not be surprising that

we were not able to obtain any bound on ∂
∂ν e in terms of e, let alone by b e

5
4 .

It is highly unclear how the (nonlocal) holonomy part of the Lagrangian
boundary condition should be utilised for such a local estimate. On the
other hand, there are examples showing that such an estimate cannot follow
only from the (local) flatness part of the Lagrangian boundary condition.

Thus it seems natural that the full Lagrangian boundary condition is only
captured by the 2-dimensional energy density given in (in-L,boundary). In-
deed, we obtain the same bound on the normal derivative as in case (symp).
The proof in [W4, Lemma 2.3] works as follows: A simple calculation using
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the trajectory equation (T) in definition 3.2 (that is (14) in temporal gauge)
gives the normal derivative at the t = 0 boundary component:

−1
2
∂
∂te

∣

∣

t=0
= −

∫

Σ
〈 ∂sA ∧ ∗∂s

(

∗∂sA
)

〉
∣

∣

t=0

≤
(

C
∥

∥∂sA
∥

∥

2

L2(Σ)
+

∫

Σ
〈 ∂sA ∧ ∂2

sA 〉
)
∣

∣

∣

t=0
.

Recall that e = ‖∂sA‖2
L2(Σ) + ‖FA‖2

L2(Σ) and FA
∣

∣

t=0
= 0 by the boundary

condition. So the first term on the right hand side is just Ce for a constant C.
The crucial second term is ω(∂sA, ∂

2
sA) for a path A : (−ε, ε) → LH in the

Lagrangian and with the symplectic form (3).
This term would vanish if the Lagrangian was straight – as in Darboux-

Weinstein coordinates. Otherwise the curvature of the Lagrangian leads
to a cubic term. For general infinite dimensional Lagrangians the curva-
ture might not be suitably bounded, and it is not clear whether Darboux-
Weinstein coordinates even exist. Fortunately, we are dealing with La-
grangians that are compact modulo gauge transformations. A proof along
this line would require a subtle linear estimate for gauge transformations
in the critical Sobolev space W 1,2(Σ), which has not been carried out yet.
For the special Lagrangian LH arising from a handle body we can use the
following trick based on the extension property in lemma 5.3 (i).

We have A(s) = Ã(s)|∂H for a path of extensions Ã : (−ε, ε) → Aflat(H)

such that ‖∂sÃ‖L3(H) ≤ C‖∂sA‖L2(Σ). Now Stokes’ theorem gives
∫

Σ
〈 ∂sÃ ∧ ∂2

s Ã 〉 =

∫

H
〈dÃ∂sÃ ∧ ∂2

s Ã 〉 −

∫

H
〈 ∂sÃ ∧ dÃ∂

2
s Ã 〉

=

∫

H
〈 ∂sÃ ∧ [∂sÃ ∧ ∂sÃ] 〉

≤ ‖∂sÃ‖
3
L3(H) ≤ C3‖∂sA‖

3
L2(Σ) = C3e

3
2 .

Here we used the fact that FÃ ≡ 0, hence dÃ∂sÃ = ∂sFÃ = 0, and moreover

0 = ∂2
sFÃ = dÃ∂

2
s Ã+ [∂sÃ ∧ ∂sÃ]. This proves ∂e/∂ν ≤ C e+ b e3/2.

The price for going to the more global energy density in (in-L,boundary)
has to be paid when considering the Laplacian. The straight forward calcu-
lations in [W4, Lemma 2.3] yield

∆e ≤ C
(

‖∂sA‖
2
L2(Σ) + ‖FA‖

2
L2(Σ)

)

− 20〈FA , [∂sA ∧ ∂sA] 〉L2(Σ).

The first term is just Ce. The second term should also be bounded in terms
of the L2-norms of the curvature components ∂sA and FA. However, the
best bound that we can find is ‖FA‖L∞(Σ)‖∂sA‖

2
L2(Σ) ≤ ‖FA‖L∞(Σ)e. Here

we use the L∞-norm on FA since this has better analytic properties, in par-
ticular Dirichlet boundary conditions FA|t=0 = 0, whereas ∂sA only satisfies
Lagrangian boundary conditions (of global type). This will be crucial in
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the proof of the energy quantization theorem 3.5, where we will find that
∆e ≤ C(1 + ‖FA‖L∞(Σ))e is essentially bounded by Ce2.

Proof of lemma 6.1: This is a consequence of the mean value inequality in
proposition 6.3 applied to the energy densities eν = |∂sAν |2+|F νA|

2 = 1
2 |FΞν |2

from case (in-L,interior) of lemma 6.4. The assumption can be read as

(19)

∫

Σ
eν(x, ·) ≤ K for all x ∈ D2δ(x0)

with some uniform constant K. On 4-dimensional balls B4
ε (y) that are

entirely contained in D2δ(x0) ×Σ this implies
∫

B4
ε (y) eν ≤ πKε2. Now there

is a maximal radius ε0 ∈ (0, δ) such that for all ε ≤ ε0 this energy is less
than ~(a) and thus one has the mean value inequality

(20) eν(y) ≤ C(1 + ε−4)πKε2.

In the interior case, one fixes a radius 0 < ε ≤ ε0 less than the distance
dist(Bδ(x0), ∂H

2) > 0. Then all balls B4
ε (y) for y ∈ Bδ(x0)×Σ are contained

in D2δ(x0) × Σ and (20) is the claimed uniform bound.
In the boundary case x0 = (s0, t0) with t0 ≤ δ one cannot use a fixed ra-

dius for the balls near the boundary. At y = (s, t, z) ∈ Dδ(x0)×Σ the max-
imal ball that is entirely contained in D2δ(x0) × Σ has radius ε = min(t, δ).
So for all (s, t, z) ∈ Dδ(x0) × Σ with 0 < t ≤ ε0 the mean value inequality
(20) gives

eν(s, t, z) ≤ C ′(t2 + t−2).

Away from the boundary, for t ≥ ε0, this also holds with some modified
constant C ′ by (20) with a fixed radius. Now this bound blows up as t→ 0,

but it can be interpolated with (19) to give an Lp-bound on |FΞν | = (eν)
1/2

by the following integral which is finite for 2 < p < 3.
∫

Dδ(x0)×Σ
(eν)

p
2 ≤

∫

Dδ(x0)

(

C ′(t2+t−2)
)

p
2
−1

∫

Σ
eν ≤ C ′′

(

1+

∫ t0+δ

0
t2−pdt

)

.

6.3. Proof of Energy Quantization.
The proof of theorem 3.5 for anti-self-dual instantons without boundary

and for the holomorphic curves is a direct consequence of the mean value
inequality in proposition 6.3 applied to the energy densities in lemma 6.4.
(See [W5, Theorem 2.1] for this general energy quantization principle.) For
(inst) and the interior of (in-L) this is the simplest version of the argument
– on balls with no boundary condition in dimension n = 4. Here we give
the argument for the holomorphic curves in (symp), more generally for a
sequence of energy density functions ei : R × [0, 1] → [0,∞) satisfying

∆ei ≤ K ei + a e2i ,
∂
∂ν ei ≤ B ei + b e

3
2
i .
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We need to prove that if the energy densities blow up at some x ∈ R× [0, 1],

(21) sup
i

sup
Dδ(x)

ei = ∞ ∀δ > 0,

then (for a subsequence) a fixed energy quantum ~ > 0 concentrates there,

(22)

∫

Dδ(x)
ei > ~ ∀δ > 0.

The same needs to be proven in case (in-L) for boundary points x. For
these anti-self-dual instantons with Lagrangian boundary conditions we use
the energy density ei = ‖∂sAi‖2

L2(Σ) + ‖FAi
‖2
L2(Σ) as in (in-L,boundary) of

lemma 6.4. So the constant K above is replaced by the unbounded function
C(1 + ‖FAi

‖L∞(Σ)). Moreover, the assertion (22) in this case implies the
concentration of energy near {x} × Σ ⊂ R × [0, 1] × Σ.

So let us assume (21). Then we find a subsequence and points xi → x
such that ei(xi) = R2

i blows up with a certain rate Ri → ∞. We will now

try to apply proposition 6.3 on the balls Dδi(xi) of radius δi := R
−1/2
i > 0.

For that purpose we need to assume that
∫

Dδi
(xi)

ei ≤ ~ = ~(a, b). If that is

the case then we obtain the mean value inequality

R2
i = e(xi) ≤ C

(

K +B2 + δ−2
i

)

∫

Bδi
(xi)

ei.

Multiplication by R−2
i = δ2iR

−1
i then implies

1 ≤ C~
(

KR−2
i +B2R−2

i +R−1
i

)

.

First assume that K is constant. Then the right hand side converges to 0.
Thus the assumption must have failed for all sufficiently large i ∈ N, that is
∫

Dδi
(xi)

ei > ~. This implies the energy concentration (22).

IfK is not a constant, then this argument still works as long asK ≤ C ′R2
i .

In that case the limit i→ ∞ implies 1 ≤ CC ′
~. If one chooses ~ ≤ (2CC ′)−1,

then this gives a contradiction and thus proves the energy concentration.
So for anti-self-dual instantons with Lagrangian boundary conditions in

case (in-L) we have to prove that if ei = R2
i blows up, then the functions

K = C(1 + ‖FAi
‖L∞(Σ)) are bounded by C ′R2

i . This statement is slightly

weaker than a direct bound ‖FA‖L∞(Σ) ≤ C‖FΞ‖2
L2(Σ) = Ce would be, but

it still shows that ∆e ≤ C(1 + ‖FA‖L∞(Σ))e is essentially bounded by Ce2.
By using the Hofer trick [HZ, 6.4 Lemma 5] within the previous argument

one can additionally control ei by the blowup rate on small neighbourhoods.
One then needs to establish the following as in [W4, Proposition 2.7].
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Lemma 6.5. (Crucial Estimate): Let Ξi = Φids+Ψidt+Ai ∈ A(H2×Σ)
be a sequence of solutions of (14). Consider a sequence of blowup points
H

2 3 xi → 0 with the blowup speed Ri → ∞. Assume an L2(Σ)-control on
the full curvature on (partial) balls of radius 2εi → 0 such that εiRi → ∞,

‖FΞi
(x, ·)‖L2(Σ) ≤ Ri ∀x ∈ D2εi

(xi).

Then one obtains an L∞-control on the curvature component

‖FAi
(x, ·)‖L∞(Σ) ≤ CR2

i ∀x ∈ Dεi
(xi).

The proof combines all previous techniques to a subtle contradiction. This
is what remains of the usual energy quantization proof via local rescaling:
1.) Assume the contrary: Then one finds sequences of solutions Ξi, points
(xi, zi) → (0, z) ∈ H

2 × Σ, and Ri → ∞, εi → 0, Ci → ∞ with εiRi → ∞,

supx∈Dεi
(xi) ‖FΞi

(x, ·)‖L2(Σ) ≤ Ri, |FAi
(xi, zi)| ≥ (CiRi)

2.

2.) Local rescaling: The crucial case is when xi = (si, ti) converges to
∂H

2 so fast that even tiRiCi → 0. So for simplicity we assume here that
xi ∈ ∂H

2. Then we can restrict Ξi to half balls of radius δi := (CiRi)
−1 ≤ εi

and rescale them to connections Ξ̃i(y) := Ξi((xi, zi) + δiy) on the half ball
D4 ⊂ H

4 of radius 1 centered at 0. The rescaled connections then satisfy

(23) |FÃi
(0)| ≥ 1.

3.) Lp-decay of F
Ξ̃

for p < 3: By a calculation similar to lemma 6.1 for
the curvature of the rescaled connections one obtains for all 2 < p < 3

(24) ‖FΞ̃i
‖Lp(D4) → 0.

4.) C0-estimates for F
Ã

in terms of Lp-bounds on F
Ξ̃

for p > 8
3
:

From (24) for p > 2 and Uhlenbeck’s weak compactness theorem 2.1 we
know that (up to gauge and taking a subsequence) the rescaled connections

Ξ̃i ∈ A(D4) converge to a flat connection in the weak W 1,p-topology. One
obtains stronger estimates from the fact that the rescaling preserves the
anti-self-duality equation. This implies C∞-convergence of the Ξ̃i away from
the boundary ∂H

4. At the boundary, the local rescaling has lost the global
part of the Lagrangian boundary condition, but the slice-wise flatness per-
sists, FΞ̃i

|{(s,0)}× �
2 = 0. With this one can go through the steps b)–e) in

section 6.1 to obtain W 2,q-estimates on some components of the Ξ̃i. One
then feeds these back into c) and d) to obtain W 2,q-bounds on ∇Φ̃i and ∇Ψ̃i,
where the derivative ∇ is only in the R

2-directions corresponding to TΣ.
Now we need to assume (24) with p > 8

3 , then we can work with q > 2

and the above bounds are just strong enough to imply C0-convergence of the
curvature part ∗FÃ = ∂tΦ̃− ∂sΨ̃+ [Ψ̃, Φ̃]. Since this convergence is to a flat
connection, it provides a contradiction to (23). Note that this contradiction

between 3) and 4) crucially relies on the celebrated fact 8
3 < 3 .
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6.4. Proof of Removability of Singularities.
The proof of theorem 3.7 in case (in-L,boundary) proceeds through the

subsequent three propositions. Throughout we denote by Dr := Dr(0) ⊂ H
2

the half ball of radius r > 0, by D∗
r := Dr \ {0} the punctured half ball, and

we will use polar coordinates (r, φ) ∈ D∗
1 with r ∈ (0, 1] and φ ∈ [0, π].

We will consider solutions of (14) on D∗
1 × Σ, that is anti-self-dual con-

nections which satisfy the Lagrangian boundary condition on {(s, 0)} × Σ
for s 6= 0. An important tool for a connection Ξ ∈ A(D∗

1 × Σ) with finite
energy

∫

D∗
1×Σ |FΞ|2 <∞ is its energy function E : (0, 1] → [0,∞) given by

E(r) := 1
2

∫

D∗
r×Σ

|FΞ|
2

[

= lim
δ→0

1
2

∫

(Dr\Dδ)×Σ
|FΞ|

2 = lim
δ→0

(

E(r) − E(δ)
)

.

]

The above calculation shows that finite energy directly implies E(δ) → 0 as
δ → 0. For a finite energy solution of (14) one thus obtains mean value
inequalities as in section 6.2 on sufficiently small punctured balls.

Proposition 6.6. [W4, Lemma 5.4] There are constants C and ε > 0 such
that the following holds. Let Ξ ∈ A(D∗

1×Σ) be a solution of (14) and suppose
that E(2r) ≤ ε for some r ∈ (0, 1

2 ]. Then for all φ ∈ [0, π]

(i) ‖FΞ(r, φ)‖L2(Σ) ≤ Cr−1
√

E(2r) ,

(ii) ‖FΞ(r, φ)‖L∞(Σ) ≤ C(r sinφ)−2
√

E(2r) .

Sketch of Proof: The estimate (ii) is the mean value inequality for e = |FΞ|2

that follows from proposition 6.3. Since lemma 6.4 does not provide a con-
trol on ∂

∂ν e we can only work on balls that are entirely contained in D∗
2r×Σ.

When centered at (r, φ, z) ∈ D∗
1 × Σ, their maximal radius is r sinφ.

Next, write the connection as Ξ = Φds + Ψdt + A. For the curvature
component FA, which vanishes at the boundary φ ∈ {0, π}, we can improve
(ii) to ‖FA(r, φ)‖L∞(Σ) ≤ Cr−2. This follows from ‖FΞ(r, φ)‖L2(Σ) ≤ Cr−1

similar to lemma 6.5 (‖FA‖L∞(Σ) is essentially bounded by ‖FΞ‖2
L2(Σ)). The

latter estimate is proven by an indirect argument as in section 6.3. This uses
the mean value inequality for e = ‖FΞ‖2

L2(Σ) from proposition 6.3, based on

lemma 6.4 and again lemma 6.5.
Once ‖FA(r, φ)‖L∞(Σ) ≤ Cr−2 is established that way, one can use it again

in the mean value inequality for e = ‖FΞ‖2
L2(Σ). It provides ∆e ≤ Cr−2e on

(partial) balls of radius 1
2r around (r, φ). The claim (i) then follows directly.

The curvature decay established here is almost sufficient to remove the
singularity. The exponent of r only has to be slightly improved to achieve the
conditions in the following removable singularity result. This improvement
will finally be achieved in the crucial proposition 6.8 by a control on the
speed of convergence of the energy function E(r) → 0 as r → 0.
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Proposition 6.7. [W4, Theorem 5.3] Let Ξ ∈ A(D∗
1 ×Σ) and suppose that

for some constants C and β > 0 and for all (r, φ) ∈ D∗
1

(i) ‖FΞ(r, φ)‖L2(Σ) ≤ Crβ−1 ,

(ii) ‖FΞ(r, φ)‖L∞(Σ) ≤ C(sinφ)−2rβ−2 .

Then there exists p = p(β) > 2 and a gauge transformation u ∈ G2,p(D∗
1×Σ)

such that u∗Ξ extends to a connection Ξ̃ ∈ A1,p(D1 × Σ).

Moreover, if Ξ is a solution of (14), then Ξ̃ automatically solves (14) on

D1 ×Σ. A further gauge tranformation then makes Ξ̃ ∈ A(D1 ×Σ) smooth.

Sketch of Proof: To control the connection in terms of its curvature we
fix a special gauge: Trivializing the bundle along rays 0 < r ≤ 1 for fixed
φ = π

2 and z ∈ Σ and then along 0 ≤ φ ≤ π for fixed r and z ∈ Σ we obtain

Ξ = A+R dr + 0dφ with R|φ= π
2

= 0.

Here A : D∗
1 → Ω1(Σ; su(2)) and R : D∗

1 → Ω0(Σ; su(2)). In this gauge we
have |∂rΞ|

∣

∣

φ= π
2
≤ |FΞ| and |∂φΞ| ≤ r|FΞ| since the curvature decomposes as

|FΞ|
2 = |FA|

2 + |∂rA− dAR|
2 + r−2|∂φR|

2 + r−2|∂φA|
2.

The bounds (i) and (ii) combine to |FΞ| ∈ Lp(D1 × Σ) for some p > 2 that
only depends on β. Roughly, they also imply Ξ|{(r,π

2
)}×Σ → A0 ∈ A0,p(Σ)

and Ξ|{r}×[0,π]×Σ → A0 ∈ C0([0, π],A0,p(Σ)) as r → 0, and A0 provides the
extension over {0} × Σ. In practice one constructs a family of connections
(Ξε)ε≥0 on D1 × Σ that coincide with Ξ outside of D2ε × Σ and equal to
A(ε, π2 ) on Dε × Σ. Using (i) and (ii) this cutoff construction can be done
such that ‖FΞε − FΞ‖Lp(D1×Σ) → 0 as ε→ 0.

By Uhlenbeck’s compactness theorem 2.1 one then finds a sequence εi → 0
and gauge transformations ui ∈ G(D1 ×Σ) such that u∗iΞεi

converges W 1,p-

weakly to a limit connection Ξ̃ ∈ A1,p(D1×Σ). Note that on every compact
subset of D∗

1 ×Σ the sequence Ξεi
eventually coincides with Ξ. So the above

convergence also implies that (for a subsequence) the gauge transformations

ui converge to a limit u ∈ G2,p
loc (D

∗
1 ×Σ) in the weak W 2,p-topology on every

compact set. Then by the uniqueness of the limit u∗Ξ = Ξ̃|D∗
1×Σ, so Ξ̃ is

the claimed extension. If moreover Ξ and hence Ξ̃ are solutions of (14) then
the regularity theorem [W3, Theorem A] for this boundary value problem

asserts that Ξ̃ is gauge equivalent to a smooth solution.

Proposition 6.8. [W4, Lemma 4.1] Let Ξ ∈ A(D∗
1 × Σ) be a solution of

(14) with finite energy E(1) <∞. Then for all r ∈ (0, 1]

E(r) ≤ r
1
π E(1).
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Sketch of Proof: By the anti-self-duality equation ∗FΞ = −FΞ we have

1
2

∫

(Dr0\Dδ)×Σ
〈FΞ ∧ ∗FΞ 〉 = 1

2

∫

(Dr0\Dδ)×Σ
d〈Ξ ∧ (FΞ − 1

6 [Ξ ∧ Ξ]) 〉.

This converges to E(r0) as δ → 0. On the other hand, Stokes’ theorem
expresses this as integral over ∂(Dr0 \Dδ) × Σ. Our goal is to rewrite it as
F(Aδ)−F(Ar0) for a functional F depending onAr := A(r, ·) : [0, π] → A(Σ).
Here as in proposition 6.7 we work in the special gauge Ξ = A+Rdr. Then
proposition 6.6 (i) gives ‖∂φAr‖L2(Σ) ≤ C

√

E(2r) → 0 as r → 0, so the paths

Ar are L2-short paths connecting Ar(0), Ar(π) ∈ LH . These contribute to
F on the boundary components {r0} × [0, π] ×Σ and {δ} × [0, π] ×Σ. So it
remains to deal with the boundary components12 at φ = 0 and φ = π.
We identify these with ([−r0,−δ] ∪ [δ, r0]) × Σ and glue in the domain
([−r0,−δ] ∪ [δ, r0]) × H. Now extending the families Ar(0), Ar(π) ∈ LH
by Ãr(0), Ãr(π) ∈ Aflat(H) preserves the value of

∫

〈FΞ ∧ FΞ 〉, and

(25) E(r0) = CS(Aδ , Ãδ) − CS(Ar0 , Ãr0).

Here we introduce the Chern-Simons functional for a path A : [0, π] → A(Σ)

with L2-close ends Ã(0), Ã(π) ∈ LH and extensions Ã(0), Ã(π) ∈ Aflat(H),

CS(A, Ã) = −1
2

∫ π

0

∫

Σ
〈A ∧ ∂φA 〉 + 1

12

[
∫

H
d〈 Ã(φ) ∧ [Ã(φ) ∧ Ã(φ)] 〉

]φ=π

φ=0

= −1
2

∫ π

0

∫ φ

0

∫

Σ
〈 ∂φA(θ) ∧ ∂φA(φ) 〉dθ dφ

− 1
12

∫

H
〈
[

(Ã(0) − Ã(π)) ∧ (Ã(0) − Ã(π))
]

∧
(

Ã(0) − Ã(π)
)

〉.

This magic identity together with the special choice of extensions as in
lemma 5.3 (ii) allow us to obtain the isoperimetric inequality

∣

∣CS(Ar, Ãr)
∣

∣ ≤ 1
2

(
∫ π

0

∥

∥∂φAr
∥

∥

L2(Σ)
dφ

)2

+ 1
12

(

∥

∥Ãr(0) − Ãr(π)
∥

∥

L3(Y )

)3

≤
(

1
2 +

C3
H

12

∥

∥Ar(0) −Ar(π)
∥

∥

L2(Σ)

)

(
∫ π

0

∥

∥∂φAr
∥

∥

L2(Σ)
dφ

)2

.

For sufficiently short Ar this implies |CS(Ar, Ãr)| ≤ π
∫ π
0

∥

∥∂φAr
∥

∥

2

L2(Σ)
. As

seen before this converges to 0 as r = δ → 0, and moreover it is bounded
πrĖ(r). So (25) provides the differential inequality E(r) ≤ πr Ė(r). Integrat-
ing d

dr ln E(r) ≥ (πr)−1 then proves the claimed decay of E(r).

12One could eliminate these by gluing in paths A′
r : [0, π] → LH in the Lagrangian con-

necting Ar(0), Ar(π) ∈ LH . This would reach the goal with a functional F = F(Ar, A
′
r).

For the subsequent argument however, the L2-length of the path A′
r has to be controlled

by the L2-distance of its endpoints. The crucial point would be to establish this fact for
paths in a fixed gauge orbit – a subtle nonlinear W 1,2-estimate for gauge transformations.
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