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Katrin Wehrheim and Chris T. Woodward

We define relative Floer theoretic invariants arising from “quilted pseudoholomorphic sur-

faces”: Collections of pseudoholomorphic maps to various target spaces with “seam conditions”

in Lagrangian correspondences. As application we construct a morphism on quantum homology

associated to any monotone Lagrangian correspondence.
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1. Introduction

Lagrangian Floer cohomology associates to a pair of Lagrangian manifolds a chain complex whose
differential counts pseudoholomorphic strips with boundary values in the given Lagrangians. These
form a receptacle for relative invariants defined from surfaces with strip-like ends, see e.g. [15]. The
simplest instance of this invariant proves the independence of Floer cohomology from the choices
of almost complex structure and perturbation data. More complicated cases of these invariants
construct the product on Floer cohomology, and the structure maps of the Fukaya category.

This paper is one of a sequence in which we generalize these invariants to include Lagrangian cor-
respondences. The first papers in the sequence were [19], [17]; however, we have tried to make the
paper as self-contained as possible. Recall that if (M0, ω0) and (M1, ω1) are symplectic manifolds,
then a Lagrangian correspondence from M0 to M1 is a Lagrangian submanifold of M−

0 ×M1, where
M−

0 := (M0,−ω0). Whereas Lagrangian manifolds form elliptic boundary conditions for pseudoholo-
morphic curves, Lagrangian correspondences form elliptic seam conditions. For a pair of curves with
boundary in M0 and M1, a seam condition L01 roughly speaking requires corresponding boundary
values to pair to a point on L01 ⊂M−

0 ×M1. (Differently put, a neighbourhood of the seam can be
“folded up” to a pseudoholomorphic curve in M−

0 ×M1 with boundary values on L01.) Using such
seam conditions between pseudoholomorphic strips, we defined in [19] a quilted Floer cohomology
HF (L01, L12, . . . , L(k−1)k) for a cyclic sequence of Lagrangian correspondences L(ℓ−1)ℓ ⊂M−

ℓ−1×Mℓ

between symplectic manifolds M0,M1, . . . ,Mk = M0. In this paper we construct new Floer type
invariants arising from quilted pseudoholomorphic surfaces. These quilts consist of pseudoholo-
morphic surfaces (with boundary and strip-like ends in various target spaces) which satisfy seam
conditions (mapping certain pairs of boundary components to Lagrangian correspondences) and
boundary conditions (mapping other boundary components to simple Lagrangian submanifolds).
Similar moduli spaces appeared in the work of Perutz [8] and have been considered by Khovanov
and Rozansky [5] under the name of pseudoholomorphic foams. The present paper provides a general
language, invariance and gluing theorems for pseudoholomorphic quilts. Moreover, we establish an
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invariance of relative quilt invariants under strip shrinking and geometric composition of Lagrangian
correspondences. The geometric composition of two Lagrangian correspondences L01 ⊂ M−

0 ×M1,
L12 ⊂M−

1 ×M2 is

L01 ◦ L12 :=
{

(x0, x2) ∈M0 ×M2

∣

∣∃x1 : (x0, x1) ∈ L01, (x1, x2) ∈ L12

}

.

In general, this will be a singular subset of M−
0 ×M2, with isotropic tangent spaces where smooth.

However, if we assume transversality of the intersection L01 ×M1 L12 :=
(

L01 × L12

)

∩
(

M−
0 ×

∆M1 ×M2

)

, then the restriction of the projection π02 : M−
0 ×M1 ×M−

1 ×M2 → M−
0 ×M2 to

L01 ×M1 L12 is automatically an immersion. If in addition π02 is injective, then L01 ◦ L12 is a
smooth Lagrangian correspondence and we will call it an embedded geometric composition. If the
composition L(ℓ−1)ℓ ◦Lℓ(ℓ+1) is embedded, then under suitable monotonicity assumptions there is a
canonical isomorphism

(1) HF (. . . , L(ℓ−1)ℓ, Lℓ(ℓ+1), . . .) ∼= HF (. . . , L(ℓ−1)ℓ ◦ Lℓ(ℓ+1), . . .).

For the precise monotonicity and admissibility conditions see [19] or Section 4. The proof in [17, 19]
proceeds by shrinking the strip in Mℓ to width zero and replacing the two seams labeled L(ℓ−1)ℓ and
Lℓ(ℓ+1) with a single seam labeled L(ℓ−1)ℓ ◦ Lℓ(ℓ+1). In complete analogy, Theorem 5.1 shows that
the same can be done in a more general quilted surface: The two relative invariants arising from the
quilted surfaces with or without extra strip are intertwined by the above isomorphism (1) of Floer
cohomologies.

A first application of pseudoholomorphic quilts is the proof of independence of quilted Floer
homology from the choices of strip widths in [19]. As a second example we construct in Section 6
a morphism on quantum homologies ΦL01 : HF (∆M0) → HF (∆M1) associated to a Lagrangian
correspondence L01 ⊂M−

0 ×M1. This is in general not a ring morphism, simply for degree reasons,
and even on the classical level. However, using the invariance and gluing theorems for quilts, we
show that it factors ΦL01 = ΘL01 ◦ ΨL01 into a ring morphism Ψ : HF (∆M0) → HF (L01, L01) and
a morphism Θ : HF (L01, L01) → HF (∆M1) satisfying

Θ(x ◦ y) − Θ(x) ◦ Θ(y) = x ◦ TL01 ◦ y,

where the right hand side is a composition on quilted Floer cohomology with an element TL01 ∈
HF (Lt01, L01, L

t
01, L01) that only depends on L01. We hope this will be useful in studying Ruan’s

conjecture [4] that quantum cohomology rings are invariant under birational transformations with
good properties with respect to the first Chern class.

In the sequel [18] we construct a symplectic 2-category with a categorification functor via pseu-
doholomorphic quilts. In particular, any Lagrangian correspondence L01 ⊂ M−

0 × M1 gives rise

to a functor Φ(L01) : Don#(M0) → Don#(M1) between (somewhat extended) Donaldson-Fukaya
categories. Given another Lagrangian correspondence L12 ⊂ M−

1 ×M2, the algebraic composition

Φ(L01) ◦ Φ(L12) : Don#(M0) → Don#(M2) is always defined, and if the geometric composition
L01 ◦ L12 is embedded then Φ(L01) ◦ Φ(L12) ∼= Φ(L01 ◦ L12). In other words, embedded geometric
composition is isomorphic to the algebraic composition in the symplectic category, and “categorifi-
cation commutes with composition”.

We thank Paul Seidel and Ivan Smith for encouragement and helpful discussions, and the referee
for most valuable feedback.

1.1. Notation and monotonicity assumptions. One notational warning: When dealing with
functors we will use functorial notation for compositions, that is Φ0 ◦ Φ1 maps an object x to
Φ1(Φ0(x)). When dealing with simple maps like symplectomorphisms, we will however stick to the
traditional notation (φ1 ◦ φ0)(x) = φ1(φ0(x)).

For Lagrangian correspondences and (quilted) Floer cohomology we will use the notation devel-
oped in [19]. Moreover, we will frequently refer to assumptions on monotonicity, Maslov indices,
and grading of symplectic manifolds M and Lagrangian submanifolds L ⊂M . We briefly summarize
these here from [19].
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(M1): (M,ω) is monotone, that is [ω] = τc1(TM) for some τ ≥ 0.

(M2): If τ > 0 then M is compact. If τ = 0 then M is (necessarily) noncompact but satisfies “bounded
geometry” assumptions as in [15, Chapter 7].1

(L1): L is monotone, that is 2
∫

u∗ω = τI(u) for all [u] ∈ π2(M,L). Here I : π2(M,L) → Z is the
Maslov index and τ ≥ 0 is (necessarily) as in (M1).

(L2): L is compact and oriented.

(L3): L has (effective) minimal Maslov number NL ≥ 3. Here NL is the generator of I({[u] ∈
π2(M,L)|

∫

u∗ω > 0}) ⊂ N.

When working with Maslov coverings and gradings we will restrict our considerations to those
that are compatible with orientations as follows.

(G1): M is equipped with a Maslov covering LagN (M) for N even, and the induced 2-fold Maslov
covering Lag2(M) is the one described induced by the orientation of M .

(G2): L is equipped with a grading σNL : L→ LagN (M), and the induced 2-grading L→ Lag2(M) is
the one given by the orientation of L.

Finally, note that our conventions differ from Seidel’s definition of graded Floer cohomology in
[13] in two points which cancel each other: The roles of x− and x+ are interchanged and we switched
the sign of the Maslov index in the definition of the degree.

2. Invariants for surfaces with strip-like ends

We begin with a formal definition of surfaces with strip-like ends analogous to [14, Section 2.4] (in
the exact case) and [12] (in the case of surfaces without boundary). To reduce notation somewhat
we restrict to strip-like ends, i.e. punctures on the boundary. One could in addition allow cylindrical
ends by adding punctures in the interior of the surface, see Remark 2.11.

Definition 2.1. A surface with strip-like ends consists of the following data:

a) A compact Riemann surface S with boundary ∂S = C1 ⊔ . . . ⊔ Cm and dn ≥ 0 distinct points
zn,1, . . . , zn,dn

∈ Cn in cyclic order on each boundary circle Cn ∼= S1. We will use the indices
on Cn modulo dn, index all marked points by

E = E(S) =
{

e = (n, l)
∣

∣n ∈ {1, . . . ,m}, l ∈ {1, . . . , dn}
}

,

and use the notation e±1 := (n, l±1) for the cyclically adjacent index to e = (n, l). We denote
by Ie = In,l ⊂ Cn the component of ∂S between ze = zn,l and ze+1 = zn,l+1. However, ∂S may
also have compact components I = Cn ∼= S1.

b) A complex structure jS on S := S \ {ze | e ∈ E}.
c) A set of strip-like ends for S, that is a set of embeddings with disjoint images

ǫe : R
± × [0, δe] → S

for all e ∈ E such that ǫe(R
± × {0, δe}) ⊂ ∂S, lims→±∞(ǫe(s, t)) = ze, and ǫ∗ejS = j0 is

the canonical complex structure on the half-strip R± × [0, δe] of width2 δe > 0. We denote
the set of incoming ends ǫe : R− × [0, δe] → S by E− = E−(S) and the set of outgoing ends
ǫe : R+ × [0, δe] → S by E+ = E+(S).

1More precisely, we consider symplectic manifolds that are the interior of Seidel’s compact symplectic manifolds
with boundary and corners. We can in fact deal with more general noncompact exact manifolds, such as cotangent
bundles or symplectic manifolds with convex ends. For that purpose note that we do not consider cylindrical ends
mapping to noncompact symplectic manifolds, so the only technical requirement on exact manifolds is that the
compactness in Theorem 3.9 holds, see the footnote in the proof there.

2Note that here, by a conformal change of coordinates, we can always assume the width to be δe = 1. The freedom
of widths will only become relevant in the definition of quilted surfaces with strip-like ends.
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d) An ordering of the set of (compact) boundary components of S and orderings E− =
(e−1 , . . . , e

−
N−

), E+ = (e+1 , . . . , e
+
N+

) of the sets of incoming and outgoing ends. Here e±i =

(n±
i , l

±
i ) denotes the incoming or outgoing end at ze±i

.

Elliptic boundary value problems are associated to surfaces with strip-like ends as follows. Let E
be a complex vector bundle over S and F = (FI)I∈π0(∂S) a tuple of totally real subbundles FI ⊂ E|I
over the boundary components I ⊂ ∂S. Suppose that the sub-bundles FIe−1 , FIe

are constant and

intersect transversally in a trivialization of E near ze.
3 Let

DE,F : Ω0(S,E;F) → Ω0,1(S,E)

be a real Cauchy-Riemann operator acting on sections with boundary values in FI over each com-
ponent I ⊂ ∂S. Transversality on the ends implies that the operator DE,F is Fredholm. If S = S
has no strip-like ends, and S0 ⊂ S denotes the union of components without boundary, we denote
by I(E,F) the topological index

I(E,F) = deg(E|S0) +
∑

I∈π0(∂S)

I(FI),

where I(FI) is the Maslov index of the boundary data determined from a trivialization of E|(S\S0) ∼=
(S\S0) × Cr. The index theorem for surfaces with boundary [6, Appendix C] implies

(2) Ind(DE,F) = rankC(E)χ(S) + I(E,F).

Note that the topological index I(E,F) is automatically even if the fibers of F are oriented, since
loops of oriented totally real subspaces have even Maslov index and complex bundles have even
degree.

A special case of these oriented totally real boundary conditions will arise from oriented
Lagrangian submanifolds. We fix a compact, monotone (or noncompact, exact) symplectic man-
ifold (M,ω) satisfying (M1-2) and let M be equipped with an N -fold Maslov covering satisfying
(G1). For every boundary component I ⊂ π0(∂S) let LI ⊂ M be a compact, monotone, graded
Lagrangian submanifold satisfying (L1-2) and (G2). We will also write Le := LIe

for the Lagrangian
associated to the noncompact boundary component Ie ∼= R between ze−1 and ze.

These assumptions ensure that the grading |x| ∈ ZN on the Floer chain groups HF (Le, Le′)
induces a Z2-grading (−1)|x| which only depends on the orientations of (Le)e∈E(S). Moreover, we
say that the tuple (LI)I∈π0(∂S) is relatively spin if all Lagrangians LI are relatively spin with respect

to one fixed background class b ∈ H2(M,Z2), see [20] for more details.
With these preparations we can construct moduli spaces of pseudoholomorphic maps from the

surface S. For each pair (Le−1, Le) for e ∈ E+ resp. (Le, Le−1) for e ∈ E− choose a regular pair
(He, Je) of Hamiltonian and almost complex structure (as in [19]) such that the graded Floer coho-
mology HF (Le−1, Le) resp. HF (Le, Le−1) is well defined. Here Je : [0, δe] → J (M,ω) is a smooth
family in the space of ω-compatible almost complex structures on M . Let Ham(S; (He)e∈E) denote
the set of C∞(M)-valued one-forms KS ∈ Ω1(S,C∞(M)) such that KS |∂S = 0 and ǫ∗S,eKS = Hedt

on each strip-like end. Let YS ∈ Ω1(S,Vect(M)) denote the corresponding Hamiltonian vector field
valued one-form, then ǫ∗S,eYS equals to XHe

dt on each strip-like end. We denote by J (S; (Je)e∈E )

the subset of JS ∈ C∞(S,J (M,ω)) that equals to the given perturbation datum Je on each strip-like
end.

We denote by I− the set of tuples X− = (x−e )e∈E− with x−e ∈ I(Le, Le−1) and by I+ the set of
tuples X+ = (x+

e )e∈E+ with x+
e ∈ I(Le−1, Le). For each of these tuples we denote by

MS(X−, X+) :=
{

u : S →M
∣

∣ (a) − (d)
}

3As pointed out to us by the referee, one can avoid the use of trivializations here by assuming that the bundles
FI are defined over the closure I ⊂ S (which is diffeomorphic to a closed interval) and intersect transversely at the

points of S − S.
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the space of (JS ,KS)-holomorphic maps with Lagrangian boundary conditions, finite energy, and
fixed limits, that is

a) ∂J,Ku := JS(u) ◦ (du− YS(u)) − (du− YS(u)) ◦ jS = 0,
b) u(I) ⊂ LI for all I ∈ π0(∂S),
c) EKS

(u) :=
∫

S

(

u∗ω + d(KS ◦ u)
)

<∞,

d) lims→±∞ u(ǫS,e(s, t)) = x±e (t) for all e ∈ E±.

Remark 2.2. 1) For any map u : S → M that satisfies the Lagrangian boundary conditions (b)
and exponential convergence to the limits in (d) (and hence automatically also satisfies (c)) one
constructs a linearized operator Du as in [6] with a minor modification to handle the boundary
conditions: For any section ξ of Eu = u∗TM satisfying the linearized boundary conditions
in Fu =

(

(u|I)
∗TLI

)

I∈π0(∂S)
set σu(ξ) = Φu(ξ)

−1∂J,K(expu(ξ)). For the moduli space to be

locally homeomorphic to the zero set of σu, we need to define the exponential map exp such
that exp(TLI) ⊂ LI , and Φu(ξ) has to be parallel transport of (0, 1)-forms from base point u to
base point expu(ξ). To satisfy the first requirement we choose metrics gI on M that make the
Lagrangians LI totally geodesic and define the exponential map exp : S × TM → M by using
metrics varying along S, equal to gI near the boundary components I ⊂ ∂S. Restricting to a
sufficiently small neighbourhood U ⊂ TM of the zero section, we can rephrase this as exp(z, ξ) =
exp0(ξ+Q(z, ξ)) in terms of a standard exponential map exp0 : TM →M using a fixed metric
and a quadratic correction Q : S × U → TM satisfying Q(·, 0) = 0 and dQ(·, 0) = 0. In fact,
the quadratic correction is explicitly given by Q(z, ξ ∈ TpM ∩ U) := (exp0

p)
−1(exp(z, ξ)) − ξ.

To satisfy the second requirement we define the parallel transport Φu(ξ) by the usual complex
linear connection constructed from Levi-Civita connections of fixed metrics, but we do parallel
transport along the paths s 7→ expu(z)(z, sξ(z)) = exp0

u(sξ + Q(sξ)). Note that the derivative
at s = 0 of these paths still is ξ, independent of the quadratic correction.

The operator σu is well-defined for any p > 2 as a map from the W 1,p-closure of Ω0(S, u∗TM)
to the Lp-closure of Ω0,1(S, u∗TM). We denote by Du := dσu(0) its derivative at zero. The
linearized operator constructed in this way takes the same form as in [6] – it is in fact inde-
pendent of the choice of quadratic correction. So it takes the form Du = DEu,Fu

of a real
Cauchy-Riemann operator as discussed in the linear theory above. When u is holomorphic,
the operator Du is the linearized operator of (a) – defined independently from the choice of
connection and metric.

2) If the tuple of Lagrangians (LI)I∈π0(∂S) is monotone in the sense of [19], then elements

u ∈ MS(X−, X+) (and more generally maps u as in (1)) satisfy the energy-index relation

(3) 2EKS
(u) = τ · Ind(Du) + c(X−, X+).

The identity is seen by fixing one element v0 ∈ MS(X−, X+) but interpreting it as map
v0 : S− → M defined on the surface S− = (S,−j) with reversed orientation. Now given any
u ∈ MS(X−, X+) we glue it with v0 (by reparametrization that makes them constant near the
ends) to a map w = u#v0 on the compact doubled surface S#S−, in which each end of S is
glued to the corresponding end of S−. Since KS |∂S = 0 and KS ◦ u = KS ◦ v0 in the limit on
the strip-like ends, the Hamiltonian terms for u and v0 cancel and we have

∫

S#S−

w∗ω =

∫

S

u∗ω +

∫

S−

v∗0ω = EKS
(u) + EKS

(v0).

On the other hand, a linear gluing theorem as in [12, Section 3.2] provides

Ind(Du) + Ind(Dv0) = Ind(Dw) = I(w∗TM, (w∗TLI)I∈π0(∂(S#S−))) + dimM
2 χ(S#(−S))

Here the equality to the Maslov index follows from (2). Finally, we have 2
∫

S#S− w
∗ω =

τI(w∗TM, (w∗TLI)I∈π0(∂(S#S−))) by the monotonicity assumption. This proves (3) with

c(X−, X+) = τ · Ind(Dv0) − τ dimM
2 χ(S#S−) − 2EKS

(v0).
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3) If the Lagrangians (LI)I∈π0(∂S) are all oriented, then the index Ind(Du) of a map u as in (1)

is determined mod 2 by the surface S and limit conditions X−, X+. This is since in the above
index formula a change of u with fixed ends is only reflected in a change of the topological index
I(w∗TM, (w∗TLI)I∈π0(∂S#S−)). This index however is always even since by (L2) the totally
real subbundles w∗TLI are oriented.

z1

z3

z4

z2

z0

u

L2

L1
L0

M

L4L3

x

y

p

q

r

Figure 1. A holomorphic curve u ∈ MS((x, y), (p, q, r)) for a surface S with ends
E− = {2, 0} and E+ = {4, 1, 3}

Theorem 2.3. Suppose that (LI)I∈π0(∂S) is a monotone tuple of Lagrangian submanifolds satisfying
(L1-2) and (M1-2), and that regular perturbation data (He, Je) are chosen for each end e ∈ E.
Then for any HS ∈ Ham(S; (He)e∈E) there exists a dense comeagre4 subset J reg(S; (Je)e∈E ;HS) ⊂
J (S; (Je)e∈E ) such that for any tuple (X−, X+) ∈ I− × I+ the following holds.

a) MS(X−, X+) is a smooth manifold.
b) The zero dimensional component MS(X−, X+)0 is finite.
c) The one-dimensional component MS(X−, X+)1 has a compactification as a one-manifold with

boundary

∂MS(X−, X+)1 ∼=
⋃

e∈E−, y∈I(Le,Le−1)

M(x−e , y)0 ×MS(X−|x−
e →y, X

+)0

∪
⋃

e∈E+, y∈I(Le−1,Le)

MS(X−, X+|x+
e →y)0 ×M(y, x+

e )0,

where the tuple X |xe→y is X with the intersection point xe replaced by y.
d) If (LI)I∈π0(∂S) is relatively spin then there exist a coherent set of orientations ǫ on the zero

and one-dimensional moduli spaces so that the inclusion of the boundary in (c) has the signs

(−1)
P

f<e |x−
f
| (for incoming trajectories) and −(−1)

P

f<e |x+
f
| (for outgoing trajectories.)

The proof is similar to the regularity and compactness theorems [7] in monotone Floer theory;
see [15] for the exact case. In the moduli spaces of dimension 0 and 1 the bubbling of spheres and
disks is ruled out by monotonicity and (L2). The orientations are defined in [15] or [20]. We can
thus define

CΦS :
⊗

e∈E−

CF (Le, Le−1) →
⊗

e∈E+

CF (Le−1, Le)

by

CΦS

(

⊗

e∈E−

〈x−e 〉

)

:=
∑

X+∈I+

(

∑

u∈MS(X−,X+)0

ǫ(u)
)

⊗

e∈E+

〈x+
e 〉.

4A subset of a topological space is comeagre if it is the intersection of countably many open dense subsets. In a
Baire space, this intersection is still dense, and the space of smooth almost complex structures is naturally a Baire
space. For more details, see the proof of Theorem 5.2.4 in [19].
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By items (c),(d), the maps CΦS are chain maps and so descend to a map of Floer cohomologies

(4) ΦS :
⊗

e∈E−

HF (Le, Le−1) →
⊗

e∈E+

HF (Le−1, Le).

In order for the Floer cohomologies to be well defined, we have to assume in addition that all
Lagrangians in (LI)I∈π0(∂S) satisfy (L3). Floer’s argument using parametrized moduli spaces carries
over to this case to show that ΦS is independent of the choice of perturbation data, complex structure
j on S, and the strip-like ends. We sketch this argument in Section 4 for the more general quilted
case.

Remark 2.4. Recall that M is equipped with an N -fold Maslov covering and each Lagrangian
submanifold LI ⊂ M is graded. Suppose that S is connected. Then the effect of the relative
invariant ΦS on the grading is by a shift in degree of

|ΦS | =
1

2
dimM(#E+ − χ(S)) mod N.

That is, the coefficient of CΦS
(
⊗

e∈E−
〈x−e 〉

)

in front of
⊗

e∈E+
〈x+
e 〉 is zero unless the degrees |x−e | =

d(σNLe
(x−e ), σNLe−1

(x−e )) and |x+
e | = d(σNLe−1

(x+
e ), σNLe

(x+
e )) satisfy

∑

e∈E+

|x+
e | −

∑

e∈E−

|x−e | = 1
2 dimM

(

#E+ − χ(S)
)

mod N.

Here #E+ is the number of outgoing ends of S. So, for example, ΦS preserves the degree if S is a
disk with one outgoing end and any number of incoming ends.

To check the degree identity fix paths Λ̃e : [0, 1] → LagN (Txe
M) from σNLe−1

(xe) to σNLe
(xe)

for each end e ∈ E(S), and denote their projections by Λe : [0, 1] → Txe
M . Let DTxeM,Λe

be the
Cauchy-Riemann operator in Txe

M on the disk with one incoming strip-like end and with boundary
conditions Λe. Then (see [19]) we have

|x±e | = Ind(DTxeM,Λ±1
e

), e ∈ E±

with the reversed path Λ̃−1
e from σNLe

(x−e ) to σNLe−1
(x−e ) in case e ∈ E−. In this case we have

Ind(DTxeM,Λ−1
e

) + Ind(DTxeM,Λe
) = 1

2 dimM mod N

since gluing the two disks gives rise to a Cauchy-Riemann operator on the disk with bound-
ary conditions given by the loop Λ−1

e #Λe, which lifts to a loop in LagN (Txe
M) and hence has

Maslov index 0 mod N . Now consider an isolated solution u ∈ MS(X−, X+)0. For each end
e ∈ E(S) we can glue the operator DTxeM,Λ−1

e
on the disk to the linearized Cauchy-Riemann oper-

ator Du∗TM,(u∗TLI)I∈π0(∂S)
on the surface S. This gives rise to a Cauchy-Riemann operator on the

compact surface S with boundary conditions given by Lagrangian subbundles (given by u∗TLI for
compact boundary components I ⊂ ∂S and composed of u∗TLe and Λ−1

e for noncompact compo-

nents Ie) that lift to loops in LagN (M) (given by σLI
◦u|I resp. composed of σLe

◦u|Ie
and (Λ̃e)

−1).
In a trivialization of u∗TM their Maslov indices are hence divisible by N , and so the index of the
glued Cauchy-Riemann operator is

1
2 dimM · χ(S) = Ind(Du∗TM,(u∗TLI)I∈π0(∂S)

) +
∑

e∈E(S)

Ind(DTM,Λ−1
e

) mod N

= 0 +
∑

e∈E+(S)

(1
2 dimM − |x+

e |) +
∑

e∈E−(S)

|x−e | mod N.

Example 2.5 (Strip Example). If S‖ is the strip R × [0, 1] (i.e. the disk with one incoming and
one outgoing puncture) then we can choose perturbation data that preserve the R-invariance of the
holomorphic curves. Then any nonconstant solution comes in a 1-dimensional family and hence ΦS‖

is generated by the constant solutions. The same holds for the disks S∩ and S∪ with two incoming
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resp. two outgoing ends. With our choice of coherent orientations, see [20], we obtain (as map of
degree 0)

Φ‖ := ΦS‖
= Id : HF (L0, L1) → HF (L0, L1).

The disks S∩ and S∪ give rise to maps of degree − 1
2 dimM and 1

2 dimM respectively,

(5) Φ∩ := ΦS∩ : HF (L0, L1) ⊗HF (L1, L0) → Z,

(6) Φ∪ := ΦS∪ : Z → HF (L0, L1) ⊗HF (L1, L0).

We write 〈xi〉01 ∈ CF (L0, L1) resp. 〈xi〉10 ∈ CF (L1, L0) for the generators corresponding to the
intersection points I(L0, L1) ∼= I(L1, L0) = {xi | i = 1, . . .N}. Then, on the chain level, the maps
are given by CΦ‖ : 〈xi〉01 7→ 〈xi〉01 and

CΦ∩ : 〈xi〉01 ⊗ 〈xj〉10 7→ (−1)|〈xi〉01|ǫiδij , CΦ∪ : 1 7→
∑

i

ǫi〈xi〉01 ⊗ 〈xi〉10

for some signs ǫ1, . . . , ǫN ∈ {±1}.5 Here the degrees are related by |〈xi〉01| + |〈xi〉10| = 1
2 dimM as

in Remark 2.4.

The relative invariants satisfy a tensor product law for disjoint union. A careful construction of
the orientations (see [20]) leads to the following convention.

Lemma 2.6. Let S1, S2 be surfaces with strip like ends and let S1 ⊔ S2 be the disjoint union, with
ordering of boundary components and incoming and outgoing ends induced by the corresponding
orderings on S1, S2. Then

ΦS1⊔S2 = ΦS1 ⊗ ΦS2 ,

where the graded tensor product is defined by

(7) (ΦS1 ⊗ ΦS2)(〈X
−
1 〉 ⊗ 〈X−

2 〉) = (−1)|ΦS2 ||X
−
1 |ΦS1(〈X

−
1 〉)ΦS2(〈X

−
2 〉).

Moreover, the relative invariants satisfy a composition law for gluing along ends. Suppose that
e+ ∈ E+(S) and e− ∈ E−(S) are outgoing resp. incoming ends of S such that the Lagrangians agree,
Le+−1 = Le− and Le+ = Le−−1. Then we can algebraically define the trace of ΦS at (e−, e+)

Tre−,e+(ΦS) :
⊗

e∈E−(S)\{e−}

HF (Le, Le−1) →
⊗

e∈E+(S)\{e+}

HF (Le−1, Le)

Tre−,e+(ΦS) :=
(

IdE+\{e+} ⊗ Φ
e+,e0
∩

)

◦
(

Ψe+ ⊗ Ide0
)

◦
(

ΦS ⊗ Ide0
)

(8)

◦
(

Ψe− ⊗ Ide0
)

◦
(

IdE−\{e−} ⊗ Φ
e−,e0
∪

)

,

where

a) superscripts indicate the ends (and associated Floer cohomology groups) that the maps act on,
b) e0 is an additional end associated to the Floer cohomology group HF (Le−−1, Le−) =

HF (Le+ , Le+−1),
c) Ψe± are the permutations of the factors in the graded tensor product needed to make the

compositions well-defined,

Ψe− :
(

⊗

e∈E−\{e−}

〈xe〉
)

⊗ 〈xe−〉 7→ (−1)
|xe− |

P

E−∋f>e−
|xf |

⊗

e∈E−

〈xe〉,

Ψe+ :
⊗

e∈E+

〈xe〉 7→ (−1)
|xe+

|
P

E+∋f>e |xf |
(

⊗

e∈E+\{e+}

〈xe〉
)

⊗ 〈xe+〉.

5For a fixed ordered pair (L0, L1) one can refine the choice of coherent orientations such that the signs in Φ∩ are

ǫi = +1. For the reversed pair (L1, L0) this convention yields the same signs ǫ′i = +1 in Φ∩ if 1
2

dimM is odd, but

they vary, ǫ′i = (−1)|〈xi〉10|, if 1
2

dimM even. (In the latter case the signs in Φ∪ are all positive.)
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Note that the trace does not depend on the choice of the signs ǫi in (5). On the other hand,
let #

e−
e+ (S) denote the surface obtained by gluing together the ends e±, and choose an ordering of

the boundary components and strip-like ends. (There is no canonical choice for this general gluing
procedure.) The glued surface #

e−
e+ (S) can be written as the “geometric trace”

(

S
E+\{e+}
‖ ⊔ S

e+,e0
∩

)

#
(

SΨe+
⊔ Se0‖

)

#
(

S ⊔ Se0‖
)

#
(

SΨe−
⊔ Se0‖

)

#
(

S
E−\{e−}
‖ ⊔ S

e−,e0
∪

)

,

where S0#S1 denotes the gluing of all incoming ends of S0 to the outgoing ends of S1 (which must
be identical and in the same order). Here superscripts indicate the indexing of the ends of the

surfaces, so e.g S
E+\{e+}
‖ is a product of strips R × [0, 1] with both incoming and outgoing ends

indexed by E+ \ {e+}. The surfaces SΨe±
are the products of strips with incoming ends indexed

by (E− \ {e−}, e−) resp. E+ and outgoing ends indexed by E− resp. (E+ \ {e+}, e+) (in the order
indicated). The relative invariants associated to the surfaces in this geometric trace are exactly the
ones that we compose in the definition (8) of the algebraic trace. In fact, the standard Floer gluing
construction implies the following analogue of the gluing formula [14, 2.30] in the exact case.

Id⊗Φ∩

Id⊗Φ∩

ΦS ⊗ Id

Ψe+ ⊗ Id

Ψe− ⊗ Id

Figure 2. Gluing example for a connected surface S

Theorem 2.7 (Gluing Theorem). Let S be a surface with strip-like ends and (Le)e∈E(S) Lagrangians
as in Theorem 2.3, satisfying in addition (L3) and (G1-2). Suppose that e± ∈ E±(S) such that
Le+−1 = Le− and Le+ = Le−−1. Then

Φ#
e−
e+

(S) = (ǫS,#e−
e+

(S))
dim(M)/2 Tre−,e+(ΦS),

where ǫS,#e−
e+

(S) = ±1 is a universal sign depending on the surfaces, that is, the ordering of boundary

components etc.

Unfortunately it seems one cannot make the sign more precise, since there is no canonical con-
vention for ordering the boundary components etc. of the glued surface.

Sketch of Proof: By Theorem 4.1, the relative invariant for the geometric trace can be computed
using a surface with long necks between the glued surfaces. Solutions (of both the linear and
non-linear equation) on this surface are in one-to-one correspondence with pairs of solutions on
the two separate surfaces; counting the latter exactly corresponds to composition. The one-to-
one correspondence is proven by an implicit function theorem (using the fact that the linearized
operator as well as its adjoint are surjective in the index 0 case) and a compactness result (using
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monotonicity to exclude bubbling). Details for the analogous closed case can be found in [12, Chapter
5.4]. Universality of the gluing sign for the case of simultaneous gluing of all ends is proved in [20].

By definition, our algebraic trace is the composition of the relative invariants of S
E+\{e+}
‖ ⊔ S

e+,e0
∩ ,

SΨe+
⊔ Se0‖ , S ⊔ Se0‖ , SΨe−

⊔ Se0‖ , and S
E−\{e−}
‖ ⊔ S

e−,e0
∪ , see Lemma 2.6. �

In [20] we determine more explicitly the gluing signs in two special cases: Gluing a surface with
one outgoing end to the first incoming end of another surface, and gluing the ends of a surface with
single incoming and outgoing ends (which lie on the same boundary component).

Theorem 2.8. If S is a disjoint union S = S0 ⊔ S1 with ze− ∈ S0, ze+ ∈ S1, and if S1 has a
single outgoing end E+(S1) = {e+}, we define canonical orderings as follows: Suppose that e− is the
last incoming end of S0 and the boundary components containing ze− resp. ze+ are last in S0 resp.

first in S1. Then we order the boundary components and ends of the glued surface (S0)#
e−
e+ (S1) :=

#
e−
e+ (S0 ⊔ S1) by appending the additional boundaries and incoming ends of S1 to the ordering for

S0. With these conventions we have

Φ(S0)#
e−
e+

(S1) = ǫ · ΦS0 ◦ (1E−(S0)\{e−} ⊗ ΦS1),

where ǫ = 1 if n = 1
2 dimM is even or the number b1 of boundary components of S1 is odd, and in

general

ǫ = (−1)
n(b1+1)

P

e∈E−(S0)\{e−}(n−|xe|).

In our concrete situations the surfaces will usually have one boundary component, b1 = 1, and
one outgoing end, hence the gluing sign will be ǫ = +1.

Theorem 2.9. If S is connected with exactly one incoming and one outgoing end E = {e+, e−} lying
on the same, first boundary component, we define canonical orderings as follows: The glued surface
#
e−
e+ (S) has no further ends but two new compact boundary components, which we order by taking

the one labelled L1 first and that labelled L2 second, where (L1, L2) denote the ordered boundary
conditions at the outgoing end e+. (Then the ordered boundary conditions at e− are (L2, L1).) After
these new components we order the remaining boundary components in the order induced by S. With
that convention we have

(9) Φ
#

e−
e+

(S)
: 1 7→ Tr(ΦS) =

∑

i

(−1)|xi|〈CΦS(〈xi〉), 〈xi〉〉,

the (graded) sum over the 〈xi〉 coefficients of CΦS(〈xi〉).

Example 2.10. We compute the invariants for closed surfaces as follows:

a) (Disk) If S is the disk with boundary condition L, then ΦS is the number of isolated perturbed
J-holomorphic disks with boundary in L. Because of the monotonicity assumption, and since
we do not quotient out by automorphisms of the disk, each component of the moduli space of
such disks has at least the dimension of L, hence ΦS = 0.

b) (Annulus) LetA = #S‖ denote the annulus, obtained by gluing along the two ends of the infinite
strip S‖ = R × [0, 1] with boundary conditions L0 and L1. Let the boundary components be
ordered like (L0, L1), as in Theorem 2.9. Then the gluing formula produces

ΦA = Tr(Id) = rankHF even(L0, L1) − rankHF odd(L0, L1).

The same result can be obtained by decomposing the annulus into cup and cap and computing
the universal sign to ΦA = Φ∩ ◦ Φ∪.

c) (Sphere with holes) Let S denote the sphere with g + 1 disks removed and boundary condition
L over each component. S can be obtained by gluing together g − 1 copies of the surface S0,
which is obtained by removing a disk from the strip R × [0, 1]; see Figure 3. The latter defines
an automorphism ΦS0 on HF (L,L), and the gluing formulas give

ΦS = Tr(Φg−1
S0

) =
∑

(−1)|xi|〈Φg−1
S0

(〈xi〉), 〈xi〉〉.
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Figure 3. Gluing copies of S0

Remark 2.11. If M is compact, then one can also allow surfaces to have incoming or outgoing
cylindrical ends, equipped with a periodic Hamiltonian perturbation. In this case the relative invari-
ant acts on the product of Floer cohomology groups with a number of copies of the cylindrical
Floer cohomology HF (Id), isomorphic to the quantum cohomology QH(M) of M . For instance, a
disk with one puncture in the interior gives rise to a canonical element φL ∈ HF (Id). Splitting the
annulus into two half-cylinders glued at a cylindrical end gives rise to the identity

rankHF even(L0, L1) − rankHF odd(L0, L1) = 〈φL0 , φL1〉HF (Id).

By considering a disk with one interior and one boundary puncture one obtains the open-closed map
HF (L,L) → HF (Id), which is discussed by Albers [2, Theorem 3.1].

3. Invariants for quilted surfaces

Quilted surfaces are obtained from a collection of surfaces with strip-like ends by “sewing together”
certain pairs of boundary components. We give a formal definition below, again restricting to strip-
like ends, i.e. punctures on the boundary. One could in addition allow cylindrical ends by adding
punctures in the interior of the surface, see Remark 3.12.

Definition 3.1. A quilted surface S with strip-like ends consists of the following data:

a) A collection S = (Sk)k=1,...,m of patches, that is surfaces with strip-like ends as in Defini-
tion 2.1 (a)-(c). In particular, each Sk carries a complex structures jk and has strip-like ends
(ǫk,e)e∈E(Sk) of widths δk,e > 0 near marked points lims→±∞ ǫk,e(s, t) = zk,e ∈ ∂Sk. We denote
by Ik,e ⊂ ∂Sk the noncompact boundary component between zk,e−1 and zk,e.

b) A collection S =
(

{(kσ, Iσ), (k
′
σ , I

′
σ)}

)

σ∈S
of seams, that is pairwise disjoint 2-element subsets

σ ⊂

m
⋃

k=1

{k} × π0(∂Sk),

and for each σ ∈ S, a diffeomorphism of boundary components

ϕσ : ∂Skσ
∋ Iσ

∼
→ I ′σ ⊂ ∂Sk′σ

that is
i) real analytic: Every z ∈ Iσ has an open neighbourhood U ⊂ Skσ

such that ϕσ|U∩Iσ
extends

to an embedding ψz : U → Sk′σ with ψ∗
zjk′σ = −jkσ

. In particular, this forces ϕσ to reverse

the orientation on the boundary components. 6

6In order to drop the real analyticity condition, one would have to extend each part of the analysis for pseu-
doholomorphic curves with Lagrangian boundary conditions (e.g. linear theory, nonlinear regularity, and removal of
singularities) to the case of maps (u0, u1) : (H2, ∂H2) → (M0 ×M1, L01) on the half space with Lagrangian boundary
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ii) compatible with strip-like ends : If Iσ (and hence I ′σ) is noncompact, i.e. lie between marked
points, Iσ = Ikσ ,eσ

and I ′σ = Ik′σ ,e′σ , then we require that ϕσ matches up the end eσ with

e′σ − 1 and the end eσ − 1 with e′σ. That is ǫ−1
k′σ ,e

′
σ
◦ ϕσ ◦ ǫkσ,eσ−1 maps (s, δkσ ,eσ−1) 7→ (s, 0)

if both ends are incoming, or it maps (s, 0) 7→ (s, δk′σ ,e′σ ) if both ends are outgoing. We
disallow matching of an incoming with an outgoing end, and the condition on the other pair
of ends is analogous, see Figure 4.

c) As a consequence of (a) and (b) we obtain a set of remaining boundary components Ib ⊂ ∂Skb

that are not identified with another boundary component of S. These true boundary components
of S are indexed by

B =
(

(kb, Ib)
)

b∈B
:=

m
⋃

k=1

{k} × π0(∂Sk) \
⋃

σ∈S

σ.

Moreover, we can read off the quilted ends e ∈ E(S) = E−(S) ⊔ E+(S) consisting of a maximal
sequence e = (ki, ei)i=1,...,ne

of ends of patches with boundaries ǫki,ei
(·, δki,ei

) ∼= ǫki+1,ei+1(·, 0)
identified via some seam φσi

. This end sequence could be cyclic, i.e. with an additional identifi-
cation ǫkn,en

(·, δkn,en
) ∼= ǫk1,e1(·, 0) via some seam φσn

. Otherwise the end sequence is noncyclic,
i.e. ǫk1,e1(·, 0) ∈ Ib0 and ǫkn,en

(·, δkn,en
) ∈ Ibn

take value in some true boundary components
b0, bn ∈ B. In both cases, the ends ǫki,ei

of patches in one quilted end e are either all incom-
ing, ei ∈ E−(Ski

), in which case we call the quilted end incoming, e ∈ E−(S), or they are all
outgoing, ei ∈ E+(Ski

), in which case we call the quilted end incoming, e ∈ E+(S).
d) Orderings of the patches and of the boundary components of each Sk as in Definition 2.1 (d).

There is no ordering of ends of single patches but orderings E−(S) = (e−1 , . . . , e
−
N−(S))

and E+(S) = (e+1 , . . . , e
+
N−(S)) of the quilted ends. Moreover, we fix an ordering e =

(

(k1, e1), . . . (kne
, ene

)
)

of strip-like ends for each quilted end e. For noncyclic ends, this order-
ing is determined by the order of seams as in (c). For cyclic ends, we need to fix a first strip-like
end (k1, e1) to fix this ordering.

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

Sk′σ e′σe′σ − 1

eσ − 1eσ

I ′σ

Iσ

Skσ

z

ψz φσ

Figure 4. Totally real seam compatible with strip-like ends

A picture of a quilt is shown in Figure 5. Ends at the top resp. bottom of a picture will always
indicate outgoing resp. incoming ends. The alternative picture is that in which the ends are neigh-
bourhoods of punctures and we indicate by arrows whether the ends are outgoing or incoming. Here
we draw the quilted surface as a disc, but in general this could be a more general surface. Also, the
complex structures on the patches are not necessarily induced by the embedding into the plane, as

conditions such that each component ui is pseudoholomorphic with respect to a different complex structure ji on H2,
that is, Ji ◦ dui = dui ◦ ji for i = 0, 1. This seems doable, but would require a lot of hard technical work. However,
none of this work is necessary if one restricts to real analytic seams. In that case, the only fundamental difficulty is
resolved by Lemma 3.4 establishing homotopies between quilted surfaces of the same combinatorial type.
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drawn. Ignoring complex structures, the two views of the quilted surface in Figure 5 are diffeomor-
phic. In this example the end sequences are (2, 0), (1, 0) and (2, 1) for the incoming ends (at the
bottom), and (2, 2), (3, 0), (2, 3), (1, 1) for the outgoing end (at the top). (Our only choice here is
which marked point on the boundary circles of Si to label by 0.)
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Figure 5. Two views of a quilted surface

Remark 3.2. a) Every compact boundary component S1 ∼= I ⊂ ∂Sk of a surface with strip-
like ends has a uniformizing neighbourhood UI ⊂ ∂Sk such that (UI , jk) ∼= (S1 × [0, ǫ), i),
where S1 ∼= R/Z and i denotes the standard complex structure on R × R ∼= C. Due to the
strip-like ends, the same holds for noncompact boundary components R ∼= I ⊂ ∂Sk, where
(UI , jk) ∼= (R × [0, ǫ), i).

b) Seams that are compatible with the strip-like ends are automatically real analytic on these ends
since ϕσ extends to (s, δk,e − t) 7→ (s, t) resp. (s, t) 7→ (s, δk′,e′ − t).

c) In the uniformizing neighbourhoods of (a), the condition that a seam ϕσ : Iσ → I ′σ be real
analytic is equivalent to ϕσ : R → R (resp. ϕσ : S1 → S1 in the compact case) being real
analytic. As a consequence, the extensions ψz match up to an embedding ψσ : UIσ

→ Sk′σ
with ψ∗

σjk′σ = −jkσ
for some possibly smaller uniformizing neighbourhood UIσ

∼= R× [0, ǫ) with
ǫ > 0.

Remark 3.3. Equivalently, we can define a quilted surface S by specifying a single surface with strip-
like ends S̃ and a finite number of connected, non-intersecting, real analytic submanifolds Ĩσ ⊂ S̃.
(The real analytic condition means that every point z ∈ Ĩσ has a uniformizing neighbourhood

S̃ ⊃ Ũ → C that maps Ĩσ to R ⊂ C.) We only need to impose a compatibility condition between the

seams Ĩσ and the strip-like ends of S̃: On every end ǫ̃e : R± × [0, δ̃e] →֒ S̃, the seams are given by

straight lines, i.e. ǫ̃−1
e (Ĩσ) consists of none, one, or two lines R±×{t} for pairwise disjoint t ∈ [0, δ̃e].

The patches Sk of the corresponding quilted surface S are then determined by the closures of the
connected components of S̃ \

⋃

σ∈S Ĩσ. The seams and seam maps are given by the submanifolds

Ĩσ and their embedding into the two (not necessarily different) adjacent connected components.

The true boundary components of S are exactly the boundary components of S̃, and the incoming
and outgoing quilted ends E−(S) ⊔ E+(S) are exactly the incoming and outgoing ends of S̃. Hence

orderings of boundary components and ends of S̃ induce the necessary orderings for S, with the
exception that we need to specify an ordering of the patches.

Eventually, we will see that the relative quilt invariants only depend on the combinatorial structure
of a quilted surface, and the specific choice of complex structure, strip-like ends, and seam maps is
immaterial. (So it will suffice to define quilted surfaces by pictures as in Figure 5.) The following
lemma provides the homotopies for the proof in Section 4.
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Lemma 3.4. Let S0 and S1 be two quilted surfaces of same combinatorial type, i.e. with the same
patches (Sk)k=1,...,m (as oriented 2-dimensional manifolds with boundary), in- and outgoing marked
points (zk,e), seams σ ∈ S, and orderings, but possibly different complex structures jik, strip-like
ends ǫik,e, and seam maps ϕiσ for i = 0, 1. Then there exists a smooth homotopy (Sτ )τ∈[0,1] of quilted
surfaces, connecting the two. The homotopy is smooth in the sense that jτk , ǫ

τ
k,e, and ϕτσ depend

smoothly on τ .

Proof. Since the orientations and combinatorial compatibility with the ends are fixed, we can choose
homotopies of diffeomorphisms ϕτσ connecting the given seam maps. (This is since Diff+(R) = {f ∈
C∞(R,R) | f ′(x) > 0 ∀x ∈ R, limx→±∞ f(x) = ±∞} is convex.) We can moreover choose homotopies
of embeddings ǫτk,e|R±×{0} on one boundary component and homotopies δτk,e > 0 of widths for each

marked point. Then the compatibility condition for seams fixes embeddings ǫτk,e|R±×{δτ
k,e

} on all other

boundary components near marked points, except for those that are true boundary components of
Si for which we can choose the homotopy freely. Now, with fixed limits and boundary values, we
can find a homotopy of embeddings ǫτk,e for each marked point. This fixes the complex structures jτk
in neighbourhoods of each marked point. By construction, the seams are automatically real analytic
in these neighbourhoods.

Next, recall that we have (anti-holomorphic) embeddings ψiσ : U iσ → Sk′σ extending the seam maps

φiσ : Iσ → Sk′σ . We can pick the neighbourhoods to be the same U iσ = Uσ and sufficiently small such
that no two neighbourhoods or images thereof intersect each other. Then we choose homotopies
of embeddings ψτσ : Uσ → Sk′σ extending the seam maps φτσ, of standard form ((s, t) 7→ (s, δ − t)

resp. (s, δ − t) 7→ (s, t)) on the strip-like ends, connecting the given ψiσ, and preserving the empty
intersections. Now we can find homotopies of the complex structures jτkσ

|Uσ
on each of the fixed seam

neighbourhoods. This choice induces complex structures jτk′σ |ψτ
σ(Uσ) = −(ψτσ)∗j

τ
kσ

on each image of

a seam neighbourhood. This construction ensures that the homotopy of seam maps becomes a
homotopy of real analytic seams, compatible with the strip-like ends. Finally, we can extend the
complex structures to the complement of the strip-like ends and neighbourhoods of seams to find
the full homotopy of complex structures jτk on each patch Sk. �

Elliptic boundary value problems are associated to quilted surfaces with strip-like ends as follows.
Suppose that E = (Ek)k=1,...,m is a collection of complex vector bundles over the patches Sk, and
F is a collection of totally real sub-bundles

F = (Fσ)σ∈S ∪ (Fb)b∈B, Fσ ⊂ E−
kσ
|Iσ

× φ∗σ(Ek′σ |I′σ ), Fb ⊂ Ekb
|Ib
.

Here we write E− as short hand for the complex vector bundle with reversed complex structure,
(E, J)− = (E,−J). Let

Ω0(S,E;F) ⊂
⊕m

k=1Ω
0(Sk, Ek)

denote the subspace of collections of sections ξk ∈ Γ(Ek) such that (ξkσ
, ξk′σ ◦ ϕσ) maps Iσ to Fσ

for every seam σ = {(kσ, Iσ), (k
′
σ, I

′
σ)} ∈ S and ξkb

maps Ib to Fb for every boundary component
b = (kb, Ib) ∈ B.

Lemma 3.5. Suppose that, in a suitable trivialization of the bundles Ek near each end zk,e
the subbundles Fσ and Fb are constant and transverse in the sense that for each quilted end
e = (ki, ei)i=1,...,n ∈ E(S) we have

(10) Fb0 × Fσ1 × . . .× Fσn−1 × Fbn
⋔ ∆Ek1

× ∆Ek2
× . . .× ∆Ekn

.

(Here σi ∈ S are the seams between the ends and b0, bn ∈ B are the remaining boundary components
of the quilted end, resp. σn is the additional seam in the case of a cyclic end, in which case we
replace Fbn

× Fb0 above with Fσn
.) Then the direct sum of Cauchy-Riemann operators

DE,F = ⊕mk=1DEk
: Ω0(S,E;F) → Ω0,1(S,E) :=

⊕m
k=1Ω

0,1(Sk, Ek)

is Fredholm as a map between the W 1,p and Lp Sobolev completions for any 1 < p <∞.
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Proof. The Fredholm property follows from local estimates for DE,F and its formal adjoint.
For sections ξk ∈ Γ(Ek) compactly supported in the interior of Sk we have ‖ξk‖W 1,p(Sk) ≤
C(‖DEk

ξk‖Lp(Sk) + ‖ξk‖Lp(Sk)) as in the standard theory, e.g. [6]. To obtain local estimates
near a seam point z ∈ Iσ we use the embedding ψz : Skσ

⊃ U → Sk′σ and consider the section

η := (ξkσ
, ψ∗

zξk′σ ) of E−
kσ
|U × ψ∗

zEk′σ . It satisfies Lagrangian boundary conditions η(U ∩ Iσ) ⊂ Fσ
and, due to the reversal of complex structures in both E−

kσ
and by ψ∗

z , the operators DEkσ
ξkσ

and
DEk′

σ
ξk′σ combine to a Cauchy-Riemann operator on η with respect to the complex structure −jkσ

on U . Hence, if ξkσ
is supported in U and ξk′σ is supported in ψz(U), then we obtain an estimate

‖ξkσ
‖W 1,p + ‖ξk′σ‖W 1,p ≤ C

(

‖DEkσ
ξkσ

‖Lp + ‖DEk′
σ
ξk′σ‖Lp + ‖ξkσ

‖Lp + ‖ξk′σ‖Lp

)

.

Finally, given sections (ξk ∈ Γ(Ek))k=1,...,m supported sufficiently close to the marked points in
a quilted end e = (ki, ei)i=1,...,n, we can trivialize the bundles Eki

|im ǫki,ei

∼= R± × [0, δki,ei
] ×

(Vi, Ji) and boundary conditions Fσi
⊂ V −

i × Vi+1 resp. Fb0 ⊂ V1, Fbn
⊂ Vn. Then we view the

sections as tuple ξ =
(

ξki
|im ǫki,ei

: R × [0, δki,ei
] → Vi

)

i=1,...,n
of maps on strips, extended trivially

to the complement of im ǫki,ei
⊂ R × [0, δki,ei

]. The (trivialized) Cauchy-Riemann operator on
these sections can now be rewritten DE,F(ξk)k=1,...,m = (∂s + D)ξ, where D = ⊕ni=1Ji∂t is a self-

adjoint operator on ⊕ni=1L
2([0, δki,ei

], Vi) whose domain is given by W 1,2-maps γ = (γi)i=1,...,n that

satisfy the matching conditions (γi(δki,ei
), γi+1(0)) ∈ Fσi

resp. (γn(δkn,en
), γ0(0)) ∈ Fbn

× Fb0 . The
transversality assumption (10) implies that D is invertible and hence, as in [10], ∂s+D is a Banach
space isomorphism, i.e. for (ξk) supported near e as above

‖(ξk)‖W 1,2(S) :=
∑

k

‖ξk‖W 1,2(Sk) = ‖ξ‖W 1,2

≤ C‖(∂s +D)ξ‖L2 = C
∑

k

‖DEk
ξk‖L2(Sk) =: C‖DE,F(ξk)‖L2(S).

This estimate generalizes to W 1,p and Lp by the same construction as in [11, Lemma 2.4]. Putting
the estimates together we obtain ‖(ξk)‖W 1,p(S) ≤ C(‖DE,F(ξk)‖Lp(S) + ‖K(ξk)‖Lp(S) for all (ξk) ∈

Ω0(S,E;F). Here K : W 1,p(S) → Lp(S) is the restriction operator to some compact subsets of
the patches Sk followed by the standard Sobolev inclusion, hence it is a compact operator. This
estimate shows that DE,F has finite dimensional kernel and closed image. The analogous estimate
for the adjoint operator shows that DE,F has finite dimensional cokernel and hence is Fredholm. �

In the case that S has no strip-like ends, we define a topological index I(E,F) as follows. For
each patch Sk with boundary we choose a complex trivialization of the bundle Ek ∼= Sk×Crk . Each
bundle Fb ⊂ Ekb

|Ib
∼= Ib × C

rkb has a Maslov index I(Fb) depending on the trivialization of Ekb
.

Similarly,
Fσ ⊂ E−

kσ
|Iσ

× ϕ∗
σ(Ek′σ |I′σ ) ∼= Iσ × (Crkσ )− × C

rk′
σ

has a Maslov index I(Fσ) depending on the trivializations of Ekσ
and Ek′σ . Let S0 ⊂ S be the union

of components without boundary and define

I(E,F) := deg(E|S0) +
∑

σ∈S

I(Fσ) +
∑

b∈B

I(Fb).

We leave it to the reader to check that the sum is independent of the choice of trivializations. Both
the topological and analytic index are invariant under deformation, and by deforming the seam
conditions Fσ to those of split form (F̃σ × F̃ ′

σ with F̃σ ⊂ E−
kσ
|Iσ

and F̃ ′
σ ⊂ φ∗σ(Ek′σ |I′σ ) one obtains

from (2) an index formula

Ind(DE,F) =
∑

i

rankC(Ei)χ(Si) + I(E,F).

We now construct moduli spaces of pseudoholomorphic quilted surfaces. Let

M =
(

(Mk, ωk)
)

k=1,...,m
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be a collection of symplectic manifolds. A Lagrangian boundary condition for (S,M) is a collection

L = (Lσ)σ∈S ∪ (Lb ⊂Mkb
)b∈B, Lσ ⊂M−

kσ
×Mk′σ , Lb ⊂Mkb

of Lagrangian correspondences and Lagrangian submanifolds associated to the seams and boundary
components of the quilted surface. We will indicate the domains Mk, the seam conditions Lσ, and
the true boundary conditions Lb by marking the surfaces, seams and boundaries of the quilted
surfaces as in figure 6.
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Figure 6. Lagrangian boundary conditions for a quilt

We say that the tuples M and L are graded if eachMk is equipped with an N -fold Maslov covering
for a fixed N ∈ N and each Lagrangian Lσ ⊂Mkσ

×Mk′σ and Lb ⊂Mkb
is graded with respect to the

respective Maslov covering. Moreover, we assume that the gradings are compatible with orientations
in the sense of (G1-2).

We say that L is relatively spin if all Lagrangians in the tuple are relatively spin with respect to
one fixed set of background classes bk ∈ H2(Mk,Z2), see [20].

Definition 3.6. We say that the tuple of Lagrangian boundary and seam conditions L for S is
monotone if the sequences Le in (11) resp. (12) below for each end e ∈ E(S) are monotone for

Floer theory (in the sense of [19]) and the following holds: Let S#S− denote the quilted surface
obtained by gluing a copy S− of S with reversed complex structure (and hence reversed ends)
to S at all corresponding ends. This quilted surface has components (Sk#S

−
k )k=1,...,m, compact

seams φσ : Iσ
∼
→ I ′σ

∼= S1 for σ ∈ S̃ (one for each noncompact and two for each compact seam

of S), compact boundary components Ib ∼= S1 for b ∈ B̃ (one for each noncompact and two for
each compact boundary component of S), but no strip-like ends. Then for each tuple of maps
u : S#S− → M (that is uk : S−

k #Sk → Mk) that takes values in L over the seams and boundary
components (that is (ukσ

× uk′σ ◦ φσ)(Iσ) ⊂ Lσ and uk(Ib) ⊂ Lb) we have the action-index relation

2
m

∑

k=1

∫

u∗kωk = τ · I(Eu,Fu)

for Eu = (u∗kTMk)k=1,...,m and Fu =
(

(ukσ
× uk′σ ◦ φσ)

∗TLσ
)

σ∈S̃
∪ (u∗kb

TLb)b∈B̃.

Remark 3.7. Note the following analogue of the monotonicity Lemma in [19]: If each Mk is
monotone in the sense of (M1) and each Lσ and Lb is monotone in the sense of (L1), all with the
same constant τ ≥ 0, and each π1(Lσ) → π1(M

−
kσ

×Mk′σ) and π1(Lb) → π1(Mkb
) has torsion image,

then L is monotone. This is because any tuple u in Definition 3.6 is homotopic to the union of a
disc (D, ∂D) → (M−

kσ
×Mk′σ , Lσ) at each seam, a disc (D, ∂D) → (Mkb

, Lb) at each true boundary
component of the quilt, and a closed curve Σk →Mk for each patch.
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To each quilted end e± = (ki, ei)i=1,...,n ∈ E±(S) we associate the sequence of Lagrangian
correspondences of length n = ne that label the seams and boundary components which run
into the end. For an incoming quilted end e− the seams between the ends of the patches are

φσi
: Iσi

= Iki,ei−1
∼
→ I ′σi

= Iki+1,ei+1 for i = 1, . . . , n − 1, whereas for an outgoing quilted end

e+ the seams are φσi
: Iσi

= Iki,ei

∼
→ I ′σi

= Iki+1,ei+1−1. In both cases ǫ−1
ki+1,ei+1

◦ φσi
◦ ǫki,ei

is

the map (s, δki,ei
) 7→ (s, 0) for s ∈ R±. The end could be cyclic, i.e. with an additional seam

φσn
: Ikn,en−1

∼
→ Ik1,e1 resp. φσn

: Ikn,en

∼
→ Ik1,e1−1. In that case the generalized Lagrangian

correspondence associated to the end e is the cyclic correspondence

(11) Le :=
(

Lσ1 , . . . , Lσn−1 , Lσn
) =

(

−→Mk1

Lσ1−→Mk2 . . .
Lσn−1
−→ Mkn

Lσn−→
)

.

If the end is noncyclic then the boundary components Ik1,e1 = Ib0 and Ikn,en−1 = Ibn
in the incoming

case, resp. Ik1,e1−1 = Ib0 and Ikn,en
= Ibn

in the outgoing case, are true boundary components of
the quilted surface S. In that case the generalized Lagrangian correspondence associated to the end
e is the correspondence

(12) Le := (Lb0 , Lσ1 , . . . , Lσn−1 , Lbn
) =

(

{pt}
Lb0−→Mk1

Lσ1−→Mk2 . . .
Lσn−1
−→ Mkn

Lbn−→ {pt}
)

.

Equivalently, for a noncyclic end, the correspondence Lσn
in (11) is replaced by the split type

Lagrangian correspondence Lbn
× Lb0 ⊂M−

kn
×Mk1 .

Associated to each quilted end e ∈ E(S) we moreover have the widths δe = (δki,ei
)i=1,...,ne

of
the strip-like ends that constitute e. Given δe and assuming monotonicity as above, we can now as

in [19] fix regular Hamiltonian perturbations He = (Hki,ei
)i=1,...,ne

and almost complex structures

Je = (Jki,ei
)i=1,...,ne

such that the quilted Floer homology HF (Le) is well defined. In particular,

the generalized intersection points of the correspondence are a finite set for each end e ∈ E(S),

I(Le) = Lb0 ×φ1 Lσ1 ×φ2 . . . Lσn−1 ×φn
Lbn

⊂
n

∏

i=1

Mki

resp.

I(Le) = ×φ1

(

Lσ1 ×φ2 . . . Lσn−1 ×φn
Lσn

)

⊂

n
∏

i=1

Mki
.

Here φi denotes the time δki,ei
flow of the Hamiltonian Hki,ei

on Mki
. Next, let Ham(S, (He)e∈E)

denote the set of tuples

K =
(

Kk ∈ Ω1(Sk, C
∞(Mk))

)

k=1,...,m

such that Kk|∂Sk
= 0 and on each end ǫ∗k,eKk = Hk,edt. We denote the corresponding Hamiltonian

vector field valued one-forms by Y ∈ Ω1(S,Vect(M)). These satisfy ǫ∗k,eYk = XHk,e
dt on each

strip-like end. Next, let J (S, (Je)e∈E) denote the set of collections

J =
(

Jk ∈ Map(Sk,J (Mk, ωk))
)

k=1,...,m

agreeing with the chosen almost complex structures on the ends. Now we denote by I−(S,L)
resp. I+(S,L) the set of tuples X± = (x±e )e∈E±(S) consisting of one intersection tuple x±e =

(x±ki,ei
)i=1,...,ne

∈ I(Le) for each incoming resp. outgoing end e. For each pair (X−, X+) ∈

I−(S,L) × I+(S,L) we introduce a moduli space of pseudoholomorphic quilts:

MS(X−, X+) :=
{

u =
(

uk : Sk →Mk

)

k=1,...,m

∣

∣ (a) − (d)
}

is the space of collections of (J,K)-holomorphic maps with Lagrangian boundary and seam condi-
tions, finite energy, and fixed limits, that is

a) ∂Jk,Kk
uk := Jk(uk) ◦ (duk − Yk(uk)) − (duk − Yk(uk)) ◦ jk = 0 for k = 1, . . . ,m,

b) (ukσ
, uk′σ ◦ ϕσ)(Iσ) ⊂ Lσ for all σ ∈ S and uk(Ib) ⊂ Lb for all b ∈ B.

c) EK(u) =
∑m
k=1 EKk

(uk) <∞,
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d) lims→±∞ uki
(ǫki,ei

(s, t)) = x±ki,ei
(t) for all e = (ki, ei)i=1,...,ne

∈ E±(S).

Remark 3.8. 1) To show that (a)–(d) defines a Fredholm problem we proceed as usual (see
e.g. [6]): Construct a Banach manifold B of tuples of maps satisfying (b)–(d) and show that
the tuples satisfying (a) are the zeros of a Fredholm section ∂J,K of the bundle E → B of
tuples of (0, 1)-forms. As in Remark 2.2 we also define the linearized operator Du = dσu(0)
at a not necessarily holomorphic u ∈ B from a map σu : TuB → Eu given by σu(ξ) =

Φu(ξ)
−1

(

∂J,K(expu(ξ))
)

and suitable quadratic corrections. To be more precise, the tan-
gent space TuB is a Sobolev completion of the space of tuples of sections ξ of the complex

bundles Eu = (u∗kTMk)k=1,...,m satisfying boundary and seam conditions in the totally real
subbundles Fu =

(

(ukσ
× uk′σ ◦ φσ)∗TLσ

)

σ∈S
∪ (u∗kb

TLb)b∈B. The component of σu(ξ) on

the patch Sk is the (0, 1)-form Φuk
(ξ)−1(∂Jk,Kk

(exp0
uk

(ξk + Qk(ξ))), where Qk(ξ) ∈ u∗kTMk

is a quadratic correction, exp0 is the standard exponential map using a fixed metric on Mk,
and Φuk

(ξ) is parallel transport with the usual complex linear connection on T ∗Mk along

the paths s 7→ exp0
u(sξk + Qk(sξ)). The quadratic correction Qk(ξ) vanishes on the comple-

ment of uniformizing neighbourhoods of ∂Sk. Near a true boundary component Ib ⊂ ∂Sk
the correction actually only depends on ξk and is given exactly as in Remark 2.2 by interpo-
lating between the fixed metric on Mk and a metric in which Lb ⊂ Mk is totally geodesic.
Near a seam Iσ ⊂ ∂Sk that connects the patches Sk and Sk′ we use the extended seam map
ψσ : UIσ

→ Sk′ of Remark 3.2 to pair (uk, uk′) and (ξk, ξk′ ) to uσ : UIσ
→ M−

k ×Mk′ and

ξσ ∈ u∗σT (M−
k ×Mk′). Now the quadratic corrections (Qk(ξ), Qk′(ξ)), viewed as one section

Qσ(ξk, ξk′ ) ∈ u∗σT (M−
k ×Mk′) are given by interpolating the fixed product of metrics on Mk

and Mk′ to a metric on M−
k ×Mk′ in which Lσ is totally geodesic.

Thus the Sk-component of σu(ξ) in a neighbourhood of the seam Iσ actually also depends

on the section ξk′ via the quadratic correction. However, since Q(0) = 0 and dQ(0) = 0 as
in Remark 2.2, the linearized operator constructed in this way is independent of the choice of
quadratic correction and takes the same form as in [6] on each patch. So it takes the form
Du = DEu,Fu

of a direct sum of real Cauchy-Riemann operators as discussed in the linear

theory above.
2) If L is monotone, then elements u ∈ MS(X−, X+) (and more generally tuples of maps as in

(1) above) satisfy an energy-index relation

(13) 2EK(u) = τ · Ind(Du) + c(X−, X+)

The identity follows as in Remark 2.2 by gluing a fixed element v0 ∈ MS(X−, X+) to u to
obtain a quilt map w = u#v0 defined on S#S′, which satisfies the monotonicity relation by
Definition 3.6.

3) If all Lagrangians in L are oriented, then for any tuple u as in (1) the index Ind(Du) is deter-
mined mod 2 by S and the limit conditionsX−, X+. This also follows as in Remark 2.2 from the
index identity Ind(Du) + Ind(Dv0

) = Ind(Dw) = I(Ew,Fw) +
∑m

k=1
dimMk

2 χ(Sk#S
−
k ), where

the topological index I(Ew,Fw) is even since each of the totally real subbundles in Fw has an
orientation induced from the orientations of the seam and boundary conditions Lσ and Lb.

Theorem 3.9. Suppose that each Mk satisfies (M1-2), each Lagrangian in L satisfies (L1-2), and
L is monotone in the sense of Definition 3.6. Moreover, for any end e ∈ E(S) fix regular pertur-
bation data (He, Je). Then for any K ∈ Ham(S, (He)e∈E) there exists a dense comeagre subset

J (S, (Je)e∈E ,K)reg ⊂ J (S, (Je)e∈E) such that for all X± ∈ I±(S,L)

a) MS(X−, X+) is a smooth manifold whose dimension near a solution u is given by the formal
dimension Ind(Du);

b) The zero dimensional component MS(X−, X+)0 is finite;
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c) The one-dimensional component MS(X−, X+)1 has a compactification as a one-manifold with
boundary

∂MS(X−, X+)1 ∼=
⋃

e∈E−,y∈I(Le)

M(x−e , y)0 ×MS(X−|x−
e →y, X

+)0

∪
⋃

e∈E+,y∈I(Le)

MS(X−, X+|x+
e →y)0 ×M(y, x+

e )0.

Here the multi-tuple X |xe→y is X with the tuple xe replaced by y, and M(x−, x+) for x± ∈ I(Le)

are the moduli spaces of quilted Floer trajectories defined in [19] with the perturbation data
δe, He, Je.

d) If L is relatively spin, then there exists a coherent set of orientations on the zero and
one-dimensional moduli spaces so that the inclusion of the boundary in (c) has the signs

(−1)
P

f<e |x−
f
|
(for incoming trajectories) and −(−1)

P

f<e |x+
f
|
(for outgoing trajectories.)

Proof. The proof requires no new or nonstandard techniques except for the observation that a
pseudoholomorphic quilt with seam condition in a Lagrangian correspondence is locally equivalent
to a pseudoholomorphic curve with boundary condition in a Lagrangian. Formally, consider any
point z ∈ Iσ on a seam σ ∈ S. Since the seam is assumed to be real analytic we have an embedding
ψ : U → Sk′σ of a neighbourhood U ⊂ Skσ

of z that restricts to the seam map ψ|U∩∂Sk
= ϕσ|U∩Iσ

:
U ∩ Iσ → I ′σ. Given any tuple of maps u = (uk : Sk → Mk)k=1,...,m consider the map w :=

(ukσ
|U , uk′σ ◦ ψ) : U → M−

kσ
× Mk′σ . The perturbed holomorphic equation in (a) for kσ on U

and for k′σ on ψ(U) is equivalent to the perturbed holomorphic equation Jσ(w) ◦ (dw − Yσ(w)) =
(dw − Yσ(w)) ◦ (−jkσ

) on U . Here the almost complex structure Jσ := (−Jkσ
) ⊕ Jk′σ ◦ ψ−1 ∈

C∞(U ,J (Mkσ
×Mk′σ , ωσ)) is compatible with the symplectic form ωσ := (−ωkσ

) ⊕ ωk′σ , and the

perturbation Yσ := Ykσ
|U⊕ψ

∗Yk′σ ∈ Ω1(U ,Vect(Mkσ
×Mk′σ )), which corresponds to the Hamiltonian-

valued one-form Kσ := Kkσ
|U + ψ∗Kk′σ ∈ Ω1(U , C∞(Mkσ

×Mk′σ )). The seam condition in (b) for σ
on U ∩ Iσ is equivalent to w(U ∩ Iσ) ⊂ Lσ, and the contribution to the energy in (c) on U and ψ(U)
is

∫

U

(

u∗kσ
ωkσ

+ d(Kkσ
◦ ukσ

)
)

+

∫

ψ(U)

(

u∗k′σωk′σ + d(Kk′σ ◦ uk′σ)
)

=

∫

U

(

w∗ωσ + d(Kσ ◦ w)
)

.

On the quilted ends we have exponential decay by the same arguments as in [19]: The quilted end
can be seen as one simple strip-like end with values in a product of manifolds and a deformed almost
complex structure (where the deformation only stems from the different widths of strips). Here we
require just the finiteness of energy. For the compactness of moduli spaces we will need the energy
actually bounded, which follows from the energy-index relation (13) when fixing the index.

The proof of compactness follows the strategy in Lemma 3.5. We have local energy bounds
in the interior of patches, in a neighbourhood of any boundary point, and in the above “folded
neighbourhoods” around seams. The standard estimates (e.g. as in [6]) for holomorphic curves in
these neighbourhoods combine to prove compactness if we can exclude bubbling, i.e. prove uniform
gradient bounds. In the case of noncompact symplectic manifolds we moreover need to establish
a C0-bound on the curves. The latter follows from uniform gradient bounds together with the
compactness of the Lagrangian boundary and seam conditions, since we do not allow patches without
boundary. Bubbling effects can be analyzed locally, either in the interior of a single patch or in a
seam neighbourhood as above. Local rescaling near points in a seam neighbourhood where the
gradient blows up leads to spheres in M−

kσ
×Mk′σ , or to discs with boundary on Lσ.

7 These are

7In the case of noncompact symplectic manifolds, this is the one point that requires additional attention. If the
manifold has convex ends, then the maximum principle guarantees that all relevant holomorphic curves are contained
in a fixed compact set, hence we obtain convergence to a sphere or disk. More generally, one could argue with
monotonicity and an energy quantization argument as in [16], which only requires uniform bounds on the second
derivatives of the almost complex structures.
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ruled out, for the zero and one-dimensional moduli spaces, by the energy-index relation and the
assumptions (M1) and (L1-2) which ensure that two holomorphic quilts with the same ends but
different energy differ in index by at least 2, see Remark 3.8. So the limit solution after removal
of singularity at the bubbling points would have negative index. However, assuming transversality,
this moduli space is empty.

To achieve transversality we can work with almost complex structures on each patch of the quilt.
They are fixed (and only t-dependent) on the strip-like ends, but can vary freely on the rest of each
patch. By unique continuation on the ends, each element in the cokernel must be nonzero somewhere
in the complement of the strip-like ends. This can be excluded by an appropriate variation of the
almost complex structure on this complement, given by the Sard-Smale theorem from a transverse
universal moduli space.

The gluing construction, which shows the reverse inclusion in (c), is local near each quilted end
in the sense that it uses only the non-degeneracy of operator on the neck and the regularity of the
linearized operators for the Floer trajectories, which hold by the choice of the perturbation data.

Finally, orientations are defined, and coherence is proven in [20]. �

Associated to the data (S,M,L) as in Theorem 3.9 we construct a relative invariant ΦS as follows.
Define

CΦS :
⊗

e∈E−(S)

CF (Le) →
⊗

e∈E+(S)

CF (Le)

by

CΦS

(

⊗

e∈E−

〈x−e 〉

)

:=
∑

X+∈I+(S,L)

(

∑

u∈MS(X−,X+)0

ǫ(u)

)

⊗

e∈E+

〈x+
e 〉,

where

ǫ : MS(X−, X+)0 → {−1,+1}

is defined by comparing the orientation given by Theorem 3.9 (d) to the canonical orientation of a
point. By items (c),(d) of Theorem 3.9, the maps CΦS are chain maps and so descend to a map of
Floer cohomologies

(14) ΦS :
⊗

e∈E−(S)

HF (Le) →
⊗

e∈E+(S)

HF (Le).

Here we assume in addition that all Lagrangians in L satisfy (L3) and hence the Floer cohomologies
are well defined. In Section 4 below we will see that the relative invariants ΦS are indeed invariants
of the symplectic data (M,L) and the combinatorial data of the quilted surface S, i.e. they are
independent of the choices of perturbation data (K, J), complex structures j = (jk)k=1,...,m, strip-

like ends on each Sk, and seam maps φ = (φσ)σ∈S .

Remark 3.10. The effect of the relative invariant ΦS on the grading is by a shift in degree of

(15) |ΦS | =

m
∑

k=1

1
2 dimMk

(

#E+(Sk) − χ(Sk)
)

mod N.

To check this we consider an isolated solution u ∈ MS(X−, X+)0. At each end e ∈ E(S) we can
deform the linearized seam conditions

(16) (T(xk1,e1
,xk2,e2

)Lσ1 , T(xk2,e2
,xk3,e3

)Lσ2 , . . . , T(xkn,en ,xk1,e1
)Lσn

)

(and similar in the noncyclic case) to split type,

(17) (Λ′
e,1 × Λe,2,Λ

′
e,2 × Λe,3, . . . ,Λ

′
e,n × Λe,1)

for Lagrangian subspaces Λe,j,Λ
′
e,j ⊂ Txkj,ej

Mkj
, without changing the index. This is possible since

the space of Lagrangian subspaces transverse to a given one is always connected. To be more precise,
we can first homotope the Hamiltonian perturbations Hkj ,ej

on the end to zero while moving the
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Lagrangians by a Hamiltonian isotopy (φHkj ,ej acts on the second factor in T(xkj−1,ej−1
,xkj,ej

)Lσj−1 ).

This deforms the linearized operator Du through Fredholm operators to another direct sum of
Cauchy-Riemann operators. Next, homotoping the boundary conditions in (16) does not affect
the Fredholm property (and hence preserves the index) as long as the product of correspondences

remains transverse to the diagonal
(

∆Mk1
×∆Mk2

×. . .∆Mkn

)T
, where (·)T shifts the first Mk1 factor

to the end to obtain a Lagrangian submanifold of M−
k1
×Mk2 ×M

−
k2
. . .×M−

kn
×Mk1. Transversality

of the split boundary conditions (17) then means that each pair Λe,j ⋔ Λ′
e,j is transverse.

Now [19, Lemma 3.1.5] expresses the degree of each end as sum |xe| =
∑ne

j=1 d(Λ̃e,j, Λ̃
′
e,j), and

summing this over all incoming resp. outgoing ends e of S is the same as summing d(Λ0
k,e,Λ

1
k,e) over

all incoming resp. outgoing ends e of all patches Sk. Here the transverse pair Λ0
k,e ⋔ Λ1

k,e ⊂ Txk,e
Mk

of boundary conditions at e ∈ E(Sk) corresponds to a unique pair Λe,j ⋔ Λ′
e,j ⊂ Txkj,ej

Mk for some

quilted end e ∈ E(S) and j = 1, . . . , ne with kj = k.
Next, we deform the linearized boundary conditions with fixed ends to split type over each seam.

Again, this does not affect the index since it is a homotopy of Fredholm operators. We thus obtain
a splitting of the index 0 =

∑m
k=1 Ind(DEk,Fk

) into the indices of Cauchy-Riemann operators on
Ek = u∗kTMk with boundary conditions in totally real subbundles Fk ⊂ Ek|∂Sk

. From Remark 2.4
we have a mod N degree index identity for each surface,

1
2χ(Sk) dimMk = Ind(DEk,Fk

) +
∑

e∈E+(Sk)

(

1
2 dimMk − d(Λ̃0

e, Λ̃
1
e)

)

+
∑

e∈E−(Sk)

d(Λ̃0
e, Λ̃

1
e).

So, summing over all surfaces Sk we obtain as claimed

m
∑

k=1

1
2 dimMk

(

χ(Sk) − #E+(Sk)
)

= −
∑

e∈E+(S)

|x+
e | +

∑

e∈E−(S)

|x−e | mod N.

Remark 3.11. When working with Z coefficients, then changing the ordering of the patches (and
hence their boundary components) in S changes the relative invariant ΦS by a universal sign. These
signs are only affected by the ordering of patches Sk whose deficiency #E+(Sk)− b(Sk) is odd. Here
b(Sk) denotes the number of boundary components of Sk. We will not mention ordering for patches
of even deficiency, e.g. for patches with one boundary component and one outgoing end.

Remark 3.12. As in Remark 2.11, one can also allow those component surfaces labeled by compact
symplectic manifolds to have incoming and outgoing cylindrical ends. In this case, the relative
invariants (14) have additional factors of cylindrical Floer homologies HF (IdMk

) on either side.

The gluing theorem 2.7 generalize to the quilted case as follows. Unfortunately, the explicit gluing
sign is too complicated to write down even in the special case of a disjoint union of quilted surfaces.

Theorem 3.13 (Quilted Gluing Theorem). Suppose that e± = (k±i , e
±
i )i=1,...,N ∈ E±(S) are ends

with ne− = ne+ = N and such that the data Mk−i ,e
−
i

= Mk+
i ,e

+
i

and Le− = Le+ coincide. Then we

have

(18) Φ
#

e−
e+

(S)
= ǫS,#e−

e+
(S),M Tre−,e+(ΦS),

where #
e−
e+ (S) is the quilted surface obtained by gluing the ends in e− to the corresponding ends in e+.

The algebraic trace Tre−,e+ is defined by the formula (8) but using the quilted cup and cap (a union
of strips with Lagrangian boundary and seam conditions given by Le± as for quilted Floer theory, but

with two outgoing resp. incoming ends as in Figure 7) to define Φ∪,Φ∩. The sign ǫS,#e−
e+

(S),M is the

gluing sign in Theorem 2.7 for the unquilted surface S′; it depends on the orderings of the boundary
components and the dimensions of the entries of M .
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L(r−1)r

Lr

L1

...

L12

Mr

...

M2

M1

L12

L01

Lr(r+1)

L(r−1)r

...

Lt23

Lt(r−2)(r−1)

Figure 7. The quilted cup and cap for a noncyclic and a cyclic sequence of
Lagrangian correspondences

4. Independence of quilt invariants

The purpose of this section is to prove the independence of the relative invariants arising from quilted
surfaces.

Theorem 4.1. Let S0 and S1 be two quilted surfaces of same combinatorial type as in Lemma 3.4,
and with fixed widths δe at each quilted end. (We can view this as two different choices of complex
structures j

i
for i = 0, 1, and seam maps φ

i
for i = 0, 1 on the same quilted surface S with fixed

strip-like ends.) Let (Ki, Ji) for i = 0, 1 be regular choices of perturbation data on each Si with the
same regular values on each strip-like end. Then the chain maps CΦS0

and CΦS1
induced by these

choices descend to the same map ΦS0
= ΦS1

on Floer cohomology.

Proof. The key fact is that any two choices (Ki, J i, ji, ϕi) for i = 0, 1, that are of fixed form over the

strip-like ends, can be connected by a homotopy (Kλ, Jλ, jλ, ϕλ)λ∈[0,1]. The homotopies of quilt data
j
λ

and ϕ
λ

are provided by Lemma 3.4. For the Hamiltonians Ki we can use convex interpolation,
and for the almost complex structures J i we employ the fact that the space of compatible almost
complex structures is contractible. Given this homotopy, we can use the standard Floer homotopy
argument:

Consider the universal moduli spaces consisting of pairs (λ, u) of λ ∈ [0, 1] and a solution u with
respect to the data (Kλ, Jλ, jλ, ϕλ). For a generic homotopy Jλ, these are smooth manifolds. Their

0-dimensional components can be oriented and counted to define a map CΨ : ⊗e∈E−(S)CF (Le) →

⊗e∈E+(S)CF (Le). The 1-dimensional component has boundaries corresponding to the solutions
contributing to CΦS0

and CΦS1
and ends corresponding to pairs of solutions contributing to CΨ

and the boundary operators ∂± =
∑

e∈E±
∂e in the Floer complexes for the ends. (Sphere and

disk bubbling is excluded by monotonicity in 0- and 1-dimensional moduli spaces.) Counting these
with orientations proves CΦS0

− CΦS1
= ∂+ ◦ CΨ + CΨ ◦ ∂−, i.e. CΨ defines a chain homotopy

between CΦS0
and CΦS1

, and hence ΦS0
= ΦS1

on cohomology. See [12, Chapter 5.2] for the
detailed construction. The orientations are given by the orientation of the determinant line bundles
constructed in [20] plus a (first) R-factor for the [0, 1]-variable. The gluing of orientations is the same
as in [20], and the signs for CΦSi

arise from the boundary orientation of ∂[0, 1] = {0}− ∪ {1}. �

Theorem 4.2. The maps ΦS are in fact relative invariants, depending only on the combinatorial
structure of the quilted surface S. More precisely, for different choices (i = 0, 1) of strip-like ends,
complex structures j

i
, seam maps ϕ

i
, and perturbation data (Ki, J i), we have Ψ+ ◦ΦS0

◦Ψ− = ΦS1
.

Here Ψ± = ⊗e∈E±Ψe, where Ψe : HF (Le)
0 → HF (Le)

1 for e ∈ E+ resp. Ψe : HF (Le)
1 → HF (Le)

0

for e ∈ E− are the isomorphisms from [19] between the Floer cohomologies for the different widths
and perturbation data on the end e induced by (Ki, J i).
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Proof. Each Ψe is the relative invariant given by a quilted cylinder Z
e
01 resp. Z

e
10 interpolating

between the widths and perturbation data (δe, He, Je)
i given from the quilted surfaces and pertur-

bation data for i = 0, 1. By Theorem 3.13 (where the sign is positive) the composition Ψ+◦ΦS0
◦Ψ− =

ΦS′
1

is given by the relative invariant for the glued surface S′
1 =

(

⊔e∈E+Z
e
01

)

#S0#
(

⊔e∈E−Z
e
10

)

. Now

the widths and perturbations induced on the ends are the same for the quilted surfaces S1 and S′
1,

hence Theorem 4.1 proves the identity ΦS1
= ΦS′

1
. �

5. Geometric composition and quilt invariants

Consider a quilted surface S containing a patch Sℓ1 that is diffeomorphic to R × [0, 1] and attached
via seams σ01 = {(ℓ0, I0), (ℓ1,R×{0})} and σ12 = {(ℓ1,R×{1}), (ℓ2, I2)} to other surfaces Sℓ0 , Sℓ2 .
(The latter are necessarily different from Sℓ1 , but we might have ℓ0 = ℓ2.) We can allow one but not
both of these seams to be replaced by a boundary component, (ℓ1,R×{0}) ∈ B or (ℓ1,R×{1}) ∈ B.
In that case we set Mℓ0 = {pt} resp. Mℓ2 = {pt}.

Let L be Lagrangian boundary and seam conditions for S and suppose that the Lagrangian
correspondences Lσ01 ⊂ M−

ℓ0
×Mℓ1 , Lσ12 ⊂ M−

ℓ1
×Mℓ2 associated to the boundary components of

Sℓ1 are such that Lσ01 ◦Lσ12 is smooth and embedded by projection into M−
ℓ0
×Mℓ2 . Let S′ denote

the quilted surface obtained by removing the patch Sℓ1 and corresponding seams and replacing it

by a new seam σ02 := {(ℓ0, I0), (ℓ2, I2)} with seam map ϕσ02 := ϕσ12 ◦ ϕσ01 : I0
∼
→ I2. We define

Lagrangian boundary conditions L′ for S′ by Lσ02 := Lσ01 ◦Lσ12 . In this setting we have a canonical
identification of Floer chain groups attached to the ends

(19) CF (Le)
∼
→ CF (L′

e)

as in [19] for every e ∈ E(S) ∼= E(S′). Consider the relative invariants ΦS and ΦS′ defined in Section
3.

Theorem 5.1. Suppose that all symplectic manifolds in M satisfy (M1-2) with the same mono-
tonicity constant, all Lagrangians in L satisfy (L1-3), and L is monotone and relative spin. Assume
moreover that Lσ01 ◦Lσ12 is embedded (in the sense defined in the introduction). Then (19) induces
isomorphisms in Floer cohomology

Ψe : HF (Le) → HF (L′
e)

and furthermore these maps intertwine with the relative invariants:

ΦS′ ◦

(

⊗

e∈E−

Ψe

)

=

(

⊗

e∈E+

Ψe

)

◦ ΦS [nℓ1d].

Here 2nℓ1 is the dimension of Mℓ1 in the shift of degree [nℓ1d], and d = 1, 0, or − 1 according to
whether the removed strip Sℓ1 has two outgoing ends, one in- and one outgoing, or two incoming
ends.

Note that Theorem 5.1 does not assume Lσ01 ◦Lσ12 to satisfy (L1-3) or monotonicity of L′. (L2)
holds automatically for the geometric composition, and monotonicity of L′ follows directly from that
of L since any quilted map in Definition 3.6 for L′ can be lifted to one for L with the same area and
index. Similarly, all cyclic sequences L′

e are automatically monotone; as a consequence (L1) holds

for Lσ01 ◦ Lσ12 , and as explained in [19] the Floer cohomologies are well defined, even if (L3) may
not hold for Lσ01 ◦ Lσ12 .

Example 5.2. To see the necessity of the degree shift in a simple example, suppose that S = (S)
is the disk with two incoming ends, and ΦS the corresponding relative invariant described in (5).
Suppose that L0, L1 intersect in a single point x. Then the theorem above applies, S′ is empty, ΦS′

is the trivial invariant, and Ψe−
maps 〈x〉 ⊗ 〈x〉 7→ 1. On the other hand, ΦS is the duality pairing,

which has degree −n.
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On the level of chain complexes the maps Ψe are simply the identity. Therefore it suffices to show
that the maps CΦS and CΦS′ [dknk] are equal for sufficiently small width. See (15) for an explanation
of the grading shift. The bijection between pseudoholomorphic quilts follows from essentially the
same degeneration argument in [17] which was also used in [19]. However, in this case the adjoint
of the linearized operator is honestly surjective. (There is no translational symmetry, so elements of
the zero-dimensional moduli space have linearized operators of index zero, not one.) The surfaces
to the left and right of the shrinking strip are arbitrary quilted surfaces, but this is of no relevance
in the proof. It suffices to work with the uniformizing neighbourhoods R × (−ǫ, 0] →֒ Sℓ0 and
R × [0, ǫ) →֒ Sℓ2 in which the seam maps are the identity on R.

Remark 5.3. In [17] a strip degeneration argument is used to establish a canonical isomorphism

(20) HF (L0, L01, L12, L2) −→ HF (L0, L02, L2)

for embedded composition of monotone Lagrangians. The natural alternative approach to defining
an isomorphism, or even just a homomorphism is to try and interpolate the middle strip to zero
width in the relative invariant that is used in [19] to prove the independence of HF (L0, L01, L12, L2)
from the choice of width δ1 > 0. The resulting quilted surface might look as indicated on the left in
Figure 8. This approach was pioneered by Matthias Schwarz and might be realized as a “jumping
boundary condition” as investigated in [1]. However, this analytic setup is at present restricted to
a highly specialized class of Lagrangians and almost complex structures. In essence, this approach
would construct a canonical element of the Floer homology HF (L02, (L01, L12)) associated to the
three seams coming together. Our approach also induces such a canonical element, given by the
identity 1L02 ∈ HF (L02, L02) and the strip shrinking isomorphism to HF (L02, (L01, L12)). So we
replace the picture of seams coming together by one where the seams corresponding to L01, L12,
L02 run into an infinite cylindrical end, as on the right in Figure 8, where the inner circle is meant
to represent a cylindrical end. This picture defines a relative invariant

Υ : HF (L02, (L01, L12)) ⊗HF (L0, L01, L12, L2) → HF (L0, L02, L2).

Now the isomorphism (20) can then alternatively be described by Υ(T, ·), where T ∈ HF (L02, (L01, L12))
is the morphism corresponding to the identity 1L02 ∈ HF (L02, L02), see Corollary 5.4.
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M0
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M2

M0

Figure 8. Alternative approaches to a homomorphism

As a first application of Theorem 5.1 we prove the claim of Remark 5.3. For that purpose we
denote by

Ψ : HF (L0, L01, L12, L2) → HF (L0, L02, L2),

Ψ̃ : HF (L02, (L01, L12)) → HF (L02, L02)

the isomorphisms (1) from [19]. Then we have the following alternative description of Ψ (which a

priori depends on L0 and L2) in terms of Ψ̃ and the identity morphism 1L02 ∈ HF (L02, L02), defined
in [18].
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Corollary 5.4. Let

Υ : HF (L02, (L01, L12)) ⊗HF (L0, L01, L12, L2) → HF (L0, L02, L2)

denote the relative invariant associated to the quilted surface on the right in Figure 8. Then we have
for all f ∈ HF (L0, L01, L12, L2)

Ψ(f) = Υ(Ψ̃−1(1L02) ⊗ f).

Moreover, in the notation of [18], we have Υ(T ⊗f) = ΦT (L0)◦f , where ΦT : Φ(L02) → Φ(L01, L12)
is a natural transformation of functors associated to any T ∈ HF (L02, (L01, L12)).
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����������
����������
����������

M0

M1

M2

L02

L01

L12

L0

T TMa

Mb

L

L′
ab

Lab

Figure 9. Natural transformation associated to a Floer cohomology class: General
case from [18] and the present special case.

Proof. We apply Theorem 5.1 to Υ = ΦS , where the quilted surface S contains one simple strip in

M1. (The other surfaces are triangles.) This implies Υ(T⊗f) = ΦS′(Ψ̃(T )⊗Ψ(f)), where the quilted

surface S′ is obtained by replacing this strip with a seam condition in L01 ◦L12 = L02. To calculate
this for Ψ̃(T ) = 1L02 we use the gluing formula (18) to obtain Υ(Ψ̃−1(1L02)⊗f) = ΦS′′(Ψ(f)), where

S′′ is the surface that is obtained by gluing the quilted cap of Figure 7 into S′. Since S′′ is a simple
double strip (with seam condition L02 and boundary conditions L0, L2), and we do not quotient out
by translation, the relative invariant ΦS′′ is the identity, as in Example 2.5. This proves the first
claim.

The second claim follows from a deformation of the quilt S to the glued quilt that corresponds, by
(18), to the composition of the natural transformation T 7→ ΦT (L0) ∈ HF ((L0, L02), (L0, L01, L12))
(given by the quilt in Figure 9) with the pair of pants product from HF ((L0, L02), (L0, L01, L12))⊗
HF ((L0, L01, L12), L2) to HF ((L0, L02), L2) defined in [18]. Figure 10 gives a picture summary of
these arguments. �

∼
δ→0

=
Ψ̃(T )=1L02

T

L2 L02

L12
L01

L0

f

=

f

L2 L0L02

T

L12
L01

δ

L2 L0

Ψ(f)

L2 L02
L0

L02

Ψ(f)

L02Ψ̃(T )

Figure 10. Proof by pretty picture
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6. Application: Morphism between quantum homologies

Given a Lagrangian correspondence L01 ⊂M−
0 ×M1 a natural question is whether – analogous to a

symplectomorphism or certain birational equivalences as in [4] – it induces a ring morphism Φ(L01) :
HF (∆M0) → HF (∆M1) between the quantum homologies. A quilted cylinder indeed defines a
morphism, which however generally does not intertwine the product structures. Conjecturally, it
is a Floer theoretic equivalent of the slant product8 on cohomology H∗(M0) → H∗(M1) with the
Poincaré dual of the fundamental class of L01. Even in this classical case, one generally only obtains
a ring homomorphism if L01 is the graph of a continuous map. Moreover, both the classical and
Floer theoretic morphism will shift the grading unless dimM0 = dimM1. While Albers-Schwarz
are working on refined versions of this morphism, we here use the framework of quilts to clarify the
algebraic structure and behaviour under geometric composition of Lagrangian correspondences.

Remark 6.1. The quilted Floer cohomology HF (∆M ) of the diagonal by definition is nothing
else but Hamiltonian periodic Floer cohomology HF (M) = HF (H) for a generic Hamiltonian
H : S1 ×M → R. The latter is naturally isomorphic to the quantum homology of M , see [9].

Theorem 6.2. Let L01 ⊂M−
0 ×M1 be a Lagrangian correspondence between symplectic manifolds

M0,M1 satisfying (M1–2) and (L1–2), and assume that the pair (L01, L01) is monotone for Floer
theory.9 Then the quilted cylinder in Figure 11 defines a natural map

ΦL01 : HF (∆M0) → HF (∆M1).

M0

M1

L01

M0 M1

L01

⊗

Figure 11. Two views of the quilted cylinder defining ΦL01 . It consists of two half
cylinders (the domains of maps to M0 and M1 – in this order to fix orientations),
with a seam identifying the two circle boundaries (giving rise to a seam condition
in L01). Arrows indicate incoming and outgoing ends, the outside circle is always
an outgoing end, and ⊗ indicates incoming ends.

Moreover, this map factors ΦL01 = ΘL01 ◦ ΨL01 according to Figure 12 into maps

ΨL01 : HF (∆M0) → HF (L01, L01), ΘL01 : HF (L01, L01) → HF (∆M1).

Here ΨL01 is a ring morphism, whereas ΘL01 satisfies

ΘL01(x ◦ y) − ΘL01(x) ◦ ΘL01(y) = x ◦ TL01 ◦ y

8On de Rham cohomology, the product Ωk(M0 × M1) × Ωℓ(M0) → Ωk+ℓ−dim(M0)(M1) is given by integration
over one factor, (η, α) 7→

R

M0
(η ∧ α).

9The latter monotonicity requires an action-index relation for annuli in M−
0 ×M1 with boundaries on L01. All these

monotonicity assumptions can be replaced by any other set of assumptions which ensure that all Floer homologies
involved are well defined and disk bubbles on L01 cannot appear in 0- or 1-dimensional moduli spaces of holomorphic
quilts.
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for all x, y ∈ HF (L01, L01) and a fixed element TL01 ∈ HF (Lt01, L01, L
t
01, L01) that only depends on

L01. For the latter we assume monotonicity of the sequence (Lt01, L01, L
t
01, L01) and the composition10

on the right hand side as well as TL01 are defined by relative quilt invariants as indicated in Figure 15.

ΘL01

L01M1

M0

M0

L01

M1

ΨL01

⊗

Figure 12. Two views of the splitting ΦL01 = ΘL01 ◦ ΨL01 . The quilted surface
defining ΨL01 consists of a disk labeled M0 with one interior puncture (incoming
end) and one boundary puncture (outgoing end), a disk labeled M1 with one bound-
ary puncture (outgoing end), and a seam labeled L01 identifying the two boundary
components. The quilted surface defining ΘL01 is the same with M0,M1 and incom-
ing/outgoing ends interchanged.

Remark 6.3. As pointed out by the referee, the composition of pull-back ΨL01 with push-forward
ΘL01 is not the one that classically preserves multiplicative structures. However, the classical pro-
jection formula f!(x ∪ f∗(y)) = f!(x) ∪ y relating multiplicative structures under pull-back f∗ and
push-forward f! has a Floer theoretic version as follows.

We view ΨLT
01

: HF (∆M1) → HF (LT01, L
T
01)

∼= HF (L01, L01) as push-back and ΘL01 again as

push-forward, then the Floer theoretic projection formula holds:

ΘL01

(

x ◦ ΨLT
01

(y)
)

= ΘL01(x) ◦ y ∀x ∈ HF (L01, L01), y ∈ HF (∆M1).

The proof of this identity is a recommended exercise in applying the gluing and deformation laws
for holomorphic quilts. Hint: Read the proof of Theorem 6.2 for very similar arguments.

Remark 6.4. a) One can check with Remark 3.10 that the degree (modulo the minimal Maslov
number NL01) of ΦL01 agrees with the degree dL01 := 1

2 (dim(M1) − dim(M0)) of the slant
product. Indeed, the outgoing cylindrical end counts as #E+(S1) = 2. To see this, alternatively
add a seam connecting the outgoing end to itself, labeled with the diagonal of M1. Then we
have two patches mapping to M1 with one outgoing end each and total Euler characteristic 1.

b) By concatenating the morphism ΦL01 : HF (∆M0) → HF (∆M1) with the PSS-isomorphisms
H∗(M0; Z) → HF (∆M0) and HF (∆M1) → H∗(M1; Z) from [9] one can see why this should be
the slant product: The concatenation is a map H∗(M0; Z) → H∗(M1; Z) on Morse homology.
Between two critical points x0 ∈ Crit(f0) ⊂ M0 and x1 ∈ Crit(f1) ⊂ M1 the coefficient of
the map is given by counting holomorphic disks in π2(M

−
0 ×M1, L01) with a marked point in

the interior mapping to the product Wu(x0, f0)×W s(x1, f1) of unstable and stable manifolds.
Here the holomorphic curve equation is perturbed by Hamiltonian vector fields and uses almost

10Strictly speaking, the composition is defined by viewing x and y as elements in the trivially isomorphic quilted
Floer cohomologies x ∈ HF (∆M1

, (Lt
01, L01)) and y ∈ HF ((Lt

01, L01),∆M1
) – here in the notation for the pair of

generalized Lagrangian correspondences ∆M1
and (Lt

01, L01) from M1 to M1. Then x ◦ TL01
◦ y is the composi-

tion constructed in [18] in the refined Donaldson-Fukaya category Don#(M1, M1) of correspondences from M1 to

M1. In fact, it is the composition of morphisms ∆M1

x
−→ (Lt

01, L01)
TL01
−→ (Lt

01, L01)
y

−→ ∆M1
, taking values in

HF (∆M1
, ∆M1

), which again is trivially identified with HF (∆M1
).
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complex structures parametrized by the disk. One can homotope the Hamiltonian perturbations
to zero, not affecting the map on homology.

Next, recall that due to the grading ambiguity of NL01 on L01, all gradings on Floer and
Morse homology above should be taken modulo NL01 . Hence, restricted to a fixed grading
k = 0, . . . ,dimM0 the morphism ΦL01 induces a map

ΦkL01
: Hk(M0; Z) →

⊕

ℓ∈N0

Hk+dL01+ℓNL01
(M1; Z).

Here the contributions for each ℓ ∈ N0 arise from holomorphic disks as above, of Maslov index
ℓNL01 . For the leading part of this map, the contributions for ℓ = 0 are those of zero energy,
that is exactly the constant maps to L01. This is essentially the same calculation as in [3,
Remark 1.3].

With this one can check that the leading part of ΦkL01
is indeed the Morse theoretic version

of the slant product. If one could moreover achieve transversality with S1-invariant almost
complex structures, then (w.l.o.g. putting the marked point in the center of the disk) the only
isolated solutions would be constant disks. This would identify ΦL01 with a Morse theoretic
version of the slant product.

Proof of Theorem 6.2. Our assumptions guarantee that Theorem 3.9 applies to the moduli spaces
of pseudoholomorphic maps from the quilted cylinder S indicated in Figure 11 to M0 and M1, with
seam condition on L01. (In fact, doubling this quilted surface exactly amounts to an annulus mapping
to M−

0 ×M1 with both boundary conditions in L01. Monotonicity for that surface is given by the
monotonicity for Floer theory.) Hence these moduli spaces define a map ΦL01 on Floer cohomology
as in (14). Strictly speaking, the cyclic generalized correspondences associated to the two ends of
S are the empty sequences – as trivial correspondence from Mi to Mi. However, quilted Floer
cohomology for these is trivially identified with quilted HF (∆Mi

), which is also trivially identified
with the usual Floer cohomology for the pair HF (∆Mi

,∆Mi
). All of these count pseudoholomorphic

cylinders in Mi with a Hamiltonian perturbation.
The map ΦL01 : HF (∆M0) → HF (∆M1) is natural in the sense that, by Theorems 4.1 and

4.2 it is independent of the choice of complex structures and seam maps on S, almost complex
structures, and Hamiltonian perturbations. The map is hence determined purely by L01 and the
chosen combinatorial structure of the quilted cylinder.

Next, the splitting ΦL01 = ΘL01 ◦ΨL01 follows from Theorem 3.13 applied to the gluing of quilted
surfaces indicated in Figure 12. The gluing sign is +1 since there are no further incoming ends
(see Theorem 2.8 for the sign), and if we fix the order of patches for ΘL01 as induced by ΦL01 .
(For ΨL01 the order of patches is irrelevant for orientations since each patch has even deficiency –
see Remark 3.11.) Monotonicity for these quilts as well as the pair of pants quilts below follows
from the monotonicity for disks and spheres ensured by (M2) and (L2) since all Hamiltonian orbits
resp. Hamiltonian chords generating the Floer cohomologies can be contracted.11 To establish
the interaction of these maps with the product structures recall that the product on HF (∆Mi

) is
the relative invariant ΦSpop

defined (see Section 2) by the pair of pants surface (a sphere with two
incoming and one outgoing puncture). As usual, we draw this surface as a disk with two inner disks
removed – their boundaries are the incoming ends, while the outer circle is the outgoing end. The
product on HF (L01, L01) is in the setting of Section 2 given by the half pair of pants surface (a disk
with two incoming and one outgoing puncture on the boundary). However, since the disk maps to
M−

0 ×M1, we can also view it as two disks mapping to M0 and M1 respectively (where one carries the
opposite orientation), with three boundary punctures each, all three boundary components identified
and satisfying the seam condition in L01. Viewed as quilted surface, this is a pair of pants surface

11Strictly speaking, we either work with C1-small Hamiltonian perturbations whose orbits resp. chords are auto-
matically contractible, or we restrict the map to contractible orbits resp. chords. The isomorphism of Floer coho-
mologies for different Hamiltonian perturbations automatically maps contractible to contractible generator, and hence
shows that the noncontractible generators do in fact not contribute to the cohomology.
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⊗ L01⊗L01 L01

M0

M1

M1

M0

L01

L01

L01

Figure 13. Two views of the quilted pair of pants defining the product on HF (L01, L01)

M0 M0

⊗ ⊗ ⊗ ⊗

M1

M1

L01

L01

∼=

Figure 14. Gluing and homotopy of quilts proving that ΨL01 is a ring homomorphism

on which three seams connect each pair of ends, see Figure 13. If we view HF (L01, L01) as quilted
Floer cohomology for the sequence (L01, L

t
01), then the relative invariant ΦSpop

associated to this

quilted pair of pants is exactly the product. We can hence use this definition to calculate for all
f, g ∈ HF (M0)

ΨL01(f) ◦ ΨL01(g) =
(

ΦSpop
◦ (ΨL01 ⊗ ΨL01)

)

(f, g) =
(

ΨL01 ◦ ΦSpop

)

(f, g) = ΨL01(f ◦ g).

Here the first and third equality is by definition. The middle identity ΦSpop
◦ (ΨL01 ⊗ ΨL01) =

ΨL01 ◦ ΦSpop
follows from gluing the quilted surfaces in different order (using Theorem 3.13) and

homotoping (using Theorem 4.1) between the two resulting quilted pair of pants surfaces that both
have one seam connecting the outgoing end to itself and the two incoming ends on M0, see Figure 14.
The gluing signs are +1, in the first case since the incoming patches have one boundary component,
in the second case since the outgoing patch has only one incoming end, c.f. Theorem 2.8. This proves
that ΨL01 is indeed a ring morphism.

Similarly, we can write for all x, y ∈ HF (L01, L01)

ΘL01(x) ◦ ΘL01(y) − ΘL01(x ◦ y) =
(

ΦSpop
◦ (ΘL01 ⊗ ΘL01) − ΘL01 ◦ ΦSpop

)

(x, y)

=
(

ΦS3p
− ΦS2p

)

(x, y)

=
(

ΦS3comp
◦

(

Id ⊗ (ΦS1
− ΦS0

) ⊗ Id
)

(x, y)

= ΦS3comp
(x, TL01 , y) = x ◦ TL01 ◦ y.

Again, the first equality is by definition and the second identity follows from the gluing Theorem 3.13.
In this case, however, we obtain two different quilted surfaces: The first composition results in
the quilted pair of pants S3p with two seams between three patches (and the M0-patches ordered
according to order of incoming ends), whereas the second composition results in the quilted pair of
pants S2p with two seams between two patches (with the M0-patch ordered before the M1-patch), see
Figure 15. Again, the gluing signs are +1 since the incoming patches have one boundary component,
c.f. Theorem 2.8. These two quilted surfaces are connected only by a ’singular homotopy’ which lets
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M1S3p

y x

L01M0 M0L01

y x

M1

L01

L01

M0

−

S2p

−

S0

x∼=

S3comp

TL01

where TL01 =

S1

L01M0 L01

L01

L01

L01

y

M0

L01

M0

L01

L01

M1
M1

M0

M1

M1

M0

Figure 15. Manipulation of quilts proving the product identity for ΘL01 . Each of
the two quilts S3p and S2p in the first row can also be obtained by gluing one of
the two quilts S1 and S0 in the definition of TL01 into the middle end of the quilt
S3comp in the second row.

the two seams intersect at a point and then connects them differently. Within our framework we
can express this as follows: Both S3p and S2p are obtained from the same quilted surface S3comp

(consisting of one M1 disk with three boundary and one interior puncture and two M0 disks with
two boundary punctures) by gluing different quilted disks into the middle end (which has four seams
ending in it, hence each disk must have two seams connecting these ends). (The induced ordering
on S3comp has the two M0-patches according to incoming ends before the M1-patch.) To obtain
S3p we glue in the quilted disk S1 which has one M1 strip connecting different ends of the M1

patch in S3comp to produce an annulus, which is the M1 patch in S3p. To obtain S2p we use the
quilted disk S0 with one M0 strip connecting the two M0 patches in S3comp to provide a single M0

patch in S2p. (The ordering of patches on S1 and S0 is immaterial since only the middle patch in
each has odd deficiency. The gluing signs are +1 for each patch since the incoming patches have
one boundary component. Note however that the middle patch gets glued at two ends. For S0

these are two composition gluings, joining different surfaces, but for S1 the second gluing joins a
surface to itself. Signs for this gluing are discussed in [20].) The smooth part of these homotopies
(using Theorem 4.1) together with again the gluing Theorem 3.13 prove the third identity. Since
both quilted disks S1 and S0 just have an outgoing end, they define an element of quilted Floer
cohomology

TL01 := ΦS1
− ΦS0

∈ HF (Lt01, L01, L
t
01, L01).

(Here we need a separate (e.g. monotonicity) assumption to ensure the Floer homology is well
defined. Then the quilts S0, S1 are monotone since their double can be glued and homotoped to an
annulus with boundaries on L01. By a similar homotopy, or using the gluing identities, we deduce
monotonicity for S3comp.) With this definition, the fourth identity again is just by convention, and
since we define the triple composition x ◦ T ◦ y by the relative quilt invariant

ΦS3comp
: HF (L01, L01) ⊗HF (Lt01, L01, L

t
01, L01) ⊗HF (L01, L01) → HF (∆M1),
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this proves the product identity for ΘL01 . Finally, the quilted Floer cohomology class TL01 only
depends on L01 and the (given) simple combinatorial type of the quilted surfaces S1 and S0, by
Theorems 4.1 and 4.2. �

Unlike the previous theorem, which directly generalizes to any version of Floer cohomology with
Novikov rings, virtual fundamental classes, or abstract deformations, the following “quantization
commutes with composition” result requires the full strict monotonicity assumptions due to the
potential figure eight bubbling described in [17].

Theorem 6.5. Let L01 ⊂M−
0 ×M1 and L12 ⊂M−

1 ×M2 be Lagrangian correspondences satisfying
(L1–2) between symplectic manifolds M0,M1,M2 satisfying (M1–2) with a fixed monotonicity con-
stant τ ≥ 0. Assume that both pairs (L01, L01) and (L12, L12) are monotone for Floer theory and
that the geometric composition L01 ◦ L12 is embedded. Then

ΦL01 ◦ ΦL12 = ΦL01◦L12 .

Proof. While the geometric composition L01 ◦ L12 of two monotone Lagrangian correspondences
may not automatically satisfy (L2), the monotonicity for Floer theory transfers to the geometric
composition (see [19]), and then also implies (L2). Hence L01 ◦L12 also satisfies the assumptions of
Theorem 6.2 and ΦL01◦L12 is well defined.

Now, by the gluing Theorem 3.13 (with +1 sign since no further incoming ends are involved)
we have ΦL01 ◦ ΦL12 = Φ(L01,L12), where the latter is the relative quilt invariant associated to the
quilted surface on the left in Figure 16: two disks with interior puncture mapping to M0 resp.
M2, one annulus A without puncture mapping to M1, and two seams connecting the boundary of
each disk to one of the annulus boundary components, and with seam condition in L01 and L12

respectively. In the definition of Φ(L01,L12) we can pick any complex structure on (in particular)
the annulus, e.g. A = R/Z × [0, δ] ⊂ C/Z with the standard complex structure for any δ > 0. For
the other patches we pick the same complex structures and perturbations as some regular choice in
the definition of ΦL01◦L12 . We claim that this provides regular moduli spaces for Φ(L01,L12) as well,
and that the 0-dimensional spaces of solutions are in fact bijective to those for ΦL01◦L12 . For the
proof of this bold claim we refer to [17], where the same analysis (just somewhat harder due to the
noncompactness of the shrinking domain) is carried out in the case where A is replaced by a strip
R × [0, δ] betweeen other strips of fixed width. The crucial part of this proof is to exclude bubbling
effects: As δ → 0, one may obtain sphere bubbles in M0, M1, or M2 as well as disk bubbles in
(M−

0 ×M1, L01), (M−
2 ×M2, L12), or (M−

0 ×M2, L01 ◦L12), and finally a novel type of bubble, called
the “figure eight bubble”, see [17, 19] for details. For the latter we are currently lacking a removable
singularity theorem, so cannot exclude it by reasons such as a trivial homotopy class of figure eight
maps or high codimension (in fact, we expect cases where these bubbles appear generically). Our
solution is to use the full power of the monotonicity assumption together with an (indirectly proven)
energy quantization for the figure eight bubble: If it appears then the remaining main component
is a holomorphic quilt contributing to ΦL01◦L12 which has less energy than the index 0 solutions
contributing to Φ(L01,L12). However, the energy for index 0 solutions is the same for both relative
quilt invariants, so by strict monotonicity the remaining solution would have negative index – which
is excluded by regularity of the moduli spaces. This proves the equality Φ(L01,L12) = ΦL01◦L12 and
thus finishes the proof of the Theorem. �
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