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Abstract

We establish an energy identity for anti-self-dual connections on the
product C× Σ of the complex plane and a Riemann surface. The en-
ergy is a multiple of a basic constant that is determined from the values
of a corresponding Chern-Simons functional on flat connections and its
ambiguity under gauge transformations. For SU(2)-bundles this identity
supports the conjecture that the finite energy anti-self-dual instantons
correspond to holomorphic bundles over CP1 × Σ.

Such anti-self-dual instantons on SU(n)- and SO(3)-bundles arise in
particular as bubbles in adiabatic limits occurring in the context of mirror
symmetry and the Atiyah-Floer conjecture. Our identity proves a quan-
tization of the energy of these bubbles that simplifies and strengthens the
involved analysis considerably.

NOTE: The connection need not be anti-self dual. In general, if the
energy is finite, then the charge 1

8π2

∫ 〈FΞ ∧ FΞ 〉 is an integer.

1 Introduction

Let Σ be a Riemann surface and consider the trivial SU(2)-bundle over C× Σ.
A connection Ξ ∈ A(C × Σ) on this bundle is a 1-form Ξ ∈ Ω1(C × Σ; su(2))
with values in the Lie algebra su(2). Gauge transformations u ∈ G(C×Σ) of the
bundle are represented by maps u ∈ Map(C×Σ,SU(2)) and act on A(C×Σ) by
u∗Ξ = u−1Ξu+u−1du. We equip C×Σ with a product metric of the Euclidean
metric on C and a fixed metric on Σ. Then a connection Ξ ∈ A(C×Σ) is called
an ASD instanton if its curvature is anti-self-dual,

FΞ + ∗FΞ = 0,

where ∗ is the Hodge operator w.r.t. the metric on C×Σ. The curvature 2-form
FΞ = dΞ + Ξ ∧ Ξ transforms under gauge transformations u ∈ G(C × Σ) as
Fu∗Ξ = u−1FΞu, hence the anti-self-duality equation is gauge invariant. Next,
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we equip su(2) with the SU(2)-invariant inner product 〈 ξ, η 〉 = −tr(ξη). Then
the energy of a connection Ξ ∈ A(C× Σ) is the gauge invariant quantity

E(Ξ) := 1
2

∫
C×Σ

|FΞ|2.

The main purpose of this note is to establish the following energy identity.
Its surprisingly simple proof is given in section 2. For the sake of simplicity we
first focus our attention to SU(2)-bundles. Later, we will also indicate how to
generalize this result to other structure groups and nontrivial bundles over Σ.

Theorem 1.1 Let Ξ ∈ A(C × Σ) be an ASD instanton. If it has finite energy
E(Ξ) < ∞, then actually E(Ξ) ∈ 4π2N0.

This energy quantization supports a conjectural correspondence between fi-
nite energy ASD instantons on C × Σ and holomorphic bundles over CP1 × Σ.
For Σ = T2 Biquard and Jardim [1] showed that the gauge equivalence classes
of ASD instantons with quadratic curvature decay are in one-to-one correspon-
dence to a class of rank 2 stable holomorphic bundles over CP1 × T2. Here the
holomorphic structure induced by an instanton Ξ extends over {∞}×T2 to de-
fine a bundle E, whose second Chern number is given by the instanton energy,
c2(E) = 1

8π2

∫ 〈FΞ ∧ FΞ 〉, see [4, §2.3]. By our result this formula continues to
give integer (Chern ?) numbers for finite energy instantons and any surface Σ.

Remark 1.2 Theorem 1.1 extends to ASD instantons on C× P for any prin-
cipal bundle P → Σ with compact structure group G as follows:

Suppose that the Lie algebra g is equipped with a G-invariant metric that
satisfies (H) below. Then the statement of theorem 1.1 holds with 4π2 replaced
by the constant κgN

−1
G given below.

On a nontrivial bundle P the gauge transformations are represented by sec-
tions in the associated bundle GP = P×cG (using the conjugation action on G).
We can pick a G-invariant inner product on g (and thus on gP = P ×Ad g).
Then the Maurer-Cartan 3-form on each fibre of GP induces a closed 3-form
ηG := 1

12 〈 g−1dg ∧ [g−1dg ∧ g−1dg] 〉 on GP . We need the following assumption.

(H): There exists κg > 0 such that [κgηG] ∈ H3(GP ,R) is an integral class.

This holds for example with κso(3) = 4π2 for any SO(3)-bundle when we
choose the inner product −2tr(ξη) for ξ, η ∈ so(3). It can also be achieved for
any simply connected compact Lie group G,1 e.g. for the trivial SU(n)-bundles.
Finally, NG is the least common multiple of {1, 2, . . . , nG}, where nG denotes
the maximal number of connected components that the centralizer of a subgroup
in G can have. This is finite since G is compact. For SO(3) we have NSO(3) = 1.

1In that case the bundle is automatically trivial and the Lie group G is isomorphic to a
product S1×. . .×Sk of simply connected, simple, and compact Lie groups Sj with π3(Sj) ∼= Z.
So we can pick a metric on each factor Sj for which [ηSj

] ∈ H3(Sj ,R) is integral.
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One source of interest in the ASD instantons on C×Σ is the following adia-
batic limit. Let Σ ↪→ X → M be a fibre bundle with dim X = 4. Consider ASD
instantons Ξε over X with respect to metrics gM + ε2gΣ for a sequence ε → 0.
If |FΞε |fibre| + ε2|FΞε |mix| converges to a nonzero value, then local rescaling on
M (but not in the fibre) yields an ASD instanton on C × Σ in the limit. This
bubbling phenomenon is a central difficulty of the limiting process. Adiabatic
limits of this type have fascinating consequences from topology to mathematical
physics. They were first considered by Dostoglou-Salamon [3], and recently by
Chen [2] and Nishinou [5]. The energy quantization presented here simplifies
and strengthens the bubbling analysis and results in all these cases. It can also
be used for the Atiyah-Floer conjecture project [6, 9].

2 Proof of the energy identity

In the following, Sr ⊂ C denotes the circle of radius r centered at 0. We moreover
denote by Dr ⊂ C the disk of radius r, and we introduce polar coordinates
(r, φ) ∈ (0,∞) × S1 on C∗ = C \ {0}, with S1 = R/2πZ. Then on C∗ × Σ we
can write a connection Ξ ∈ A(C× Σ) in the splitting

Ξ = A(r) + R(r)dr + Φ(r)dφ

with A(r) : S1 → A(Σ) and R(r), Φ(r) : S1 → Ω0(Σ, su(2)) for all r ∈ (0,∞).
The anti-self-duality equation becomes in this splitting

{
r−1

(
∂rΦ− ∂φR + [Φ, R]

)
+ ∗FA = 0,

r−1
(
∂φA− dAΦ

)− ∗(∂rA− dAR
)

= 0.

By FΞ(r) we denote the curvature of Ξ ∈ A(C×Σ) over Sr×Σ (but as a 2-form
on C× Σ). Then the curvature of an ASD instanton is

1
2 |FΞ(r)|2 = |FA(r)|2 + r−2

∣∣∂φA(r)− dA(r)Φ(r)
∣∣2.

The energy of an ASD instanton on Dr × Σ can be expressed in terms of the
Chern-Simons functional of B(r) := A(r) + Φ(r)dφ ∈ A(S1 × Σ),

1
2

∫

Dr×Σ

|FΞ|2 = − 1
2

∫

Dr×Σ

〈FΞ ∧ FΞ 〉 = −CS(B(r)).

The Chern-Simons functional on connections B = A + Φdφ ∈ A(S1 × P ) is

CS(B) = 1
2

∫

S1×Σ

〈B ∧ (
FB − 1

6 [B ∧B]
) 〉

=
∫

S1

∫

Σ

1
2 〈 ∂ϕA ∧A 〉+ 〈FA , Φ 〉. (1)
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For future reference we note the following identity which shows that the Chern-
Simons functional is continuous with respect to the W 1, 3

2 -norm. (Note that
W 1, 3

2 ↪→ L3 on a 3-manifold.) For all B,B0 ∈ A(S1 × Σ)

CS(B)− CS(B0) =
∫

1
2 〈 (FB + FB0) ∧ (B −B0) 〉 (2)

− 1
12

∫
〈 [(B −B0) ∧ (B −B0)] ∧ (B −B0) 〉.

The Chern-Simons functional is not gauge invariant, but its ambiguity on gauge
orbits is determined by the degree of the gauge transformations (as maps to
SU(2) ∼= S3): For all B ∈ A(S1 × Σ) and u ∈ G(S1 × Σ)

CS(B)− CS(u∗B) = 4π2deg(u) ∈ 4π2 Z (3)

For a general (possibly nontrivial) bundle P → Σ one has to fix a flat reference
connection. Then connections are given by 1-forms with values in gP and the
Chern-Simons functional depends on the choice of this reference connection
only up to an additive constant. (The proof of theorem 1.1 will show that a
flat connection exists.) The right hand side of (2) is then given by

∫
u∗ηG. So

under the assumption (H) we have CS(B)− CS(u∗B) ∈ κg Z.
The second point that affects the constant in the energy identity is the pos-

sible values of the Chern-Simons functional on flat connections. The following
result holds for SU(2)- and SO(3)-bundles, and we will give the argument for a
general bundle P → Σ, indicating how to proceed for other structure groups.

Lemma 2.1 For every flat connection B ∈ Aflat(S1 × Σ) there is a gauge
transformation u ∈ G(S1 × Σ) such that CS(u∗B) = 0, and consequentially
CS(B) = 4π2deg(u) ∈ 4π2 Z.

Proof: Any flat connection B on S1 × Σ corresponds to a holonomy repre-
sentation ρ : π1(Σ) → G and an element g ∈ Sim ρ ⊂ G; the holonomy around
S1 which lies in the centralizer of im ρ. We will use parallel transport along
S1 and a homotopy gn ∼ 1l ⊂ Sim ρ (for some n ≤ nG) to bring B into the
form A + Φdφ with S1-independent A, for which the Chern–Simons functional
trivially vanishes. Then nCS(B) ∈ κgZ by (3).

More precisely, we periodically extend B to to a connection in Aflat(R×P ).
Then there is a gauge transformation u : R → G(P ) such that u(0) ≡ 1l and
u∗B ∈ Aflat(R × P ) has no dφ-component. Thus the curvature component
∂φ(u∗B) vanishes, and hence u∗B ≡ A0 ∈ Aflat(P ). The gauge transformation
is found by parallel transport, i.e. solving ∂φu = −Φu. So due to the periodicity
of Φ we obtain the twisted periodicity u(φ + 2π) = u(φ)u(2π) for the gauge
transformation. Unless u(2π) ≡ 1l this does not define a gauge transformation
on S1 × P . However, we know that u(2π) lies in the isotropy subgroup GA0 ,
since u(2π)∗A0 = u(2π)∗B(2π, ·)|Σ = u(0)∗B(0, ·)|Σ = A0. If GA0 is connected,
then we can multiply u with a path within GA0 from 1l to u(2π)−1 to obtain the
required gauge transformation w ∈ G(S1×P ). It satisfies w∗B = A0+Φ0dφ with
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∂φA0 = 0 but possibly nonzero Φ0. Now compare (1) to see that CS(w∗B) = 0,
and so CS(B) = 4π2deg(w) by (3).

For SO(3)-bundles, any isotropy subgroup is connected since any centralizer
(of the holonomy subgroup) in SO(3) is connected. Thus the proof is finished.
For a general Lie group whose centralizers have up to nG components, one finds
that u(2π)n is homotopic to the identity for some integer n ≤ nG. Then an ”n-
fold cover” B(n) of B can be put into a gauge whose Chern-Simons functional
vanishes, and thus CS(B) = n−1CS(B(n)) ∈ κgn

−1 Z ⊂ κgN
−1
G Z if (H) holds.

For SU(2) we would have nG = 2 due to the centralizer {1l,−1l}. However,
since the isotropy element u(2π) = −1l is a constant, we do not need to go to a
cover. More generally suppose that u(2π) = exp(2πξ) for some constant ξ ∈ g.
Let v(φ) := exp(−φξ), then w := uv ∈ G(S1 × Σ) and w∗B = v−1A0v − ξdφ
(and both are of class W 1,∞). Then using FA0 = 0 and dξ = 0 we obtain

CS(w∗B) =
∫

S1

∫

Σ

1
2 〈 v−1[ξ,A0]v ∧ v−1A0v 〉

=
∫

S1

∫

Σ

〈 ξ, A0 ∧A0 〉 = −
∫

S1

∫

Σ

〈 ξ, dA0 〉 = 0.
2

In the subsequent proof of the energy identity we work with a general bundle
P → Σ and only for the final conclusion use the knowledge from lemma 2.1 on
the possible values of the Chern-Simons functional on flat connections.

Proof of theorem 1.1: Let B(r) ∈ A(S1 ×Σ) be given by Ξ on Sr ×Σ, then
|FB(r)|2 = |FA(r)|2 + |∂ϕA(r)− dA(r)Φ(r)|2 ≤ 1

2r2|FΞ(r)|2 for r ≥ 1, and hence
∫ ∞

1

r−1‖FB(r)‖2L2(S1×Σ)dr ≤ E(Ξ) < ∞.

Thus we find a sequence ri → ∞ with ‖FB(ri)‖L2(S1×Σ) → 0. By Uhlenbeck’s
weak compactness [7] we then find a further subsequence, gauge transformations
ui ∈ G(S1 × P ), and a flat limit connection B∞ ∈ Aflat(S1 × P ) such that

‖u∗i B(ri)−B∞‖W 1,2(S1×Σ) → 0. (4)

More precisely, the Uhlenbeck compactness theorem (also see [8, Theorem A]
with p = 2 ≥ 1

2 dim(S1 × Σ)) provides a subsequence Bi := B(ri) that con-
verges in the weak W 1,2-topology to a flat (and hence smooth) connection
B∞ ∈ Aflat(S1 × P ). Since the Sobolev embedding W 1,2 ↪→ L4 is compact
(in dimension 3) we can moreover assume that Bi → B∞ in the L4-norm. So
by the local slice theorem (e.g. [8, Theorem 8.1]) one can – for a further subse-
quence and sequence of gauge transformations – achieve the additional relative
Coulomb gauge condition

d∗B∞(u∗i Bi −B∞) = 0.

Moreover, we have

dB∞(u∗i Bi −B∞) = u−1
i FBiui − 1

2 [(u∗i Bi −B∞) ∧ (u∗i Bi −B∞)].
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So from the regularity of the Hodge decomposition of 1-forms (e.g. [8, Theo-
rem 5.1]) one obtains the convergence (4) in the W 1,2-norm.

Now we have CS(u∗i B(ri)) → CS(B∞) due to the convergence of u∗i B(ri)
and (2). On the other hand the energy is finite, so

E(Ξ) = − lim
i→∞

1
2

∫

Dri
×Σ

〈FΞ ∧ FΞ 〉 = − lim
i→∞

CS(B(ri)).

This shows that CS(B(ri)) also converges. Now for an SU(2)-bundle we have
CS(B∞) ∈ 4π2 Z from lemma 2.1. Thus CS(B(ri)) = CS(u∗i B(ri))+4π2deg(ui)
must converge to some value in 4π2 Z. This proves the claim since that limit is
also the energy E(Ξ).

For a general bundle under the assumption (H) we know that CS(u∗i B(ri))
converges to a value in κgN

−1
G Z. Since CS(B(ri)) − CS(u∗i B(ri)) ∈ κg Z we

must have E(Ξ) = lim CS(B(ri)) ∈ κgN
−1
G Z + κg Z = κgN

−1
G Z, which proves

remark 1.2. 2
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