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Abstract

We give a unified statement and proof of a class of well known mean value
inequalities for nonnegative functions with a nonlinear bound on the Lapla-
cian. We generalize these to domains with boundary, requiring a (possibly
nonlinear) bound on the normal derivative at the boundary. These inequali-
ties give rise to an energy quantization principle for sequences of solutions of
boundary value problems that have bounded energy and whose energy den-
sities satisfy nonlinear bounds on the Laplacian and normal derivative: One
obtains local uniform bounds on the complement of finitely many points,
where some minimum quantum of energy concentrates.

1 Introduction

One purpose of this note is to explain an ’energy quantization’ principle that –
in different forms – has successfully been applied to a variety of partial differ-
ential equations, such as minimal submanifolds, harmonic maps, pseudoholomor-
phic curves, and Yang-Mills connections. The common feature of these PDE’s is
an energy functional. (The solutions often but not necessarily are critical points
thereof.) The ’energy quantization’ phenomenon which we describe in theorem 2.1
is a consequence of a mean value inequality for the energy density.

The second purpose of this note, and the content of section 3, is a presentation
and generalization of the underlying mean value inequality for the Laplace oper-
ator. Theorem 1.1 below is well known and proofs in an exhausting collection of
cases can be found in the literature, e.g. [S, U]. Our aim here is to give a unified
statement and proof. In theorem 1.3, we generalize this inequality to domains
with boundary and inhomogeneous Neumann boundary conditions.

We denote by Br(x) ⊂ R
n the open geodesic ball of radius r centred at x ∈ R

n

and with respect to the present metric. Integration as well as the (positive definite)
Laplace operator ∆ = d∗d will also be defined with respect to the metric given in
the context. The Euclidean metric on R

n is denoted by its matrix 1l. Note that
by our convention the Laplace operator in this metric is ∆ = −∑n

i=1 ∂i
2.
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Theorem 1.1 For every n ∈ N there exist constants C, µ > 0, and δ > 0 such
that the following holds for all metrics g on R

n such that ‖g − 1l‖W 1,∞ ≤ δ.
Let Br(0) ⊂ R

n be the geodesic ball of radius 0 < r ≤ 1. Suppose that the
nonnegative function e ∈ C2(Br(0), [0,∞)) satisfies for some A0, A1, a ≥ 0

∆e ≤ A0 +A1e+ a e
n+2

n and

∫

Br(0)

e ≤ µa−
n
2 .

Then

e(0) ≤ CA0r
2 + C

(

A
n
2
1 + r−n

)

∫

Br(0)

e.

Remark 1.2 By using local geodesic coordinates the above theorem also implies
a mean value inequality on closed Riemannian manifolds with uniform constants
C, µ > 0, and for all geodesic balls of radius less than a uniform constant.

In order to generalize the mean value inequality to manifolds with boundary
we would have to consider general metrics on the half space H

n. However, for the
sake of an elementary geometric proof, we restrict this exposition to the Euclidean
metric. We denote the intersection of a Euclidean ball with the half space by

Dr(x) := Br(x) ∩ H
n, H

n := {(x0, x̄)
∣

∣ x0 ∈ [0,∞), x̄ ∈ R
n−1}.

The outer unit normal derivative ∂
∂ν

|∂Hn in the Euclidean case is just − ∂
∂x0

|x0=0.

Theorem 1.3 For every n ≥ 2 there exists a constant C and for all a, b ≥ 0
there exists µ(a, b) > 0 such that the following holds: Consider the (partial) ball
Dr(y) ⊂ H

n for some r > 0 and y ∈ H
n. Suppose that e ∈ C2(Dr(y), [0,∞))

satisfies for some A0, A1, B0, B1 ≥ 0
{

∆e ≤ A0 +A1e+ ae
n+2

n ,
∂
∂ν

∣

∣

∂Hne ≤ B0 +B1e+ be
n+1

n ,
and

∫

Dr(y)

e ≤ µ(a, b).

Then

e(y) ≤ CA0r
2 + CB0r + C

(

A
n
2
1 +Bn1 + r−n

)

∫

Dr(y)

e.

2 Energy quantization

In this section we generally consider a PDE for maps u : D → T from a Riemannian
manifold D (with possibly nonempty boundary ∂D) to a target space T , e.g.
another manifold, a Banach space, or a fibre bundle over D. The energy is given
for all sufficiently regular maps u in the form

E(u) =

∫

D

e(u),

where the integrand e(u) : D → [0,∞) is a nonnegative energy density function.
Its key property is that for a solution u of the PDE, the positive definite Laplacian
∆e(u) can be bounded above in terms of e(u) itself.
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If this bound is linear in e(u), then theorem 1.1 provides a C0-control on e(u)
in terms of its mean values on geodesic balls. So if the energy E(ui) of a sequence
of solutions ui is bounded, then one obtains a uniform bound on the energy den-
sities e(ui) on any compact subdomain of D \ ∂D. In many cases this leads to a
compactness result, i.e. to the convergence of a subsequence of the solution ui.

For solutions of nonlinear PDE’s however, the bound on ∆e(u) is usually non-
linear in e(u). In that case the mean value inequality in theorem 1.1 only holds
on geodesic balls with sufficiently small energy and for nonlinearities up to order
(dimD + 2)/ dimD in e(u) (where the estimate becomes scale-invariant). Theo-
rem 1.3 generalizes this mean value inequality to domains D with boundary ∂D
and bounds on the outer normal derivative ∂e

∂ν
|∂D. This provides uniform bounds

on e(ui) up to the boundary for solutions ui of a PDE with appropriate boundary
conditions and with bounded energy.

So if a sequence of solutions ui has bounded energy E(ui) but only satisfies
nonlinear bounds on the Laplacian or the normal derivative, then one only obtains
locally uniform bounds on the complement of finitely many points: By a converse
of the mean value inequality, the energy densities e(ui) can only blow up at points
where some nonzero quantum of energy concentrates. In the following theorem we
give a blueprint for such energy quantization results.

Here D is a Riemannian manifold (possibly noncompact or with boundary),
∆ = d∗d denotes the Laplace operator, and ∂

∂ν
denotes the outer unit normal

derivative at ∂D. For the sake of simplicity we make a technical assumption on
the metric near the boundary.

Assumption: A neighbourhood of ∂D ⊂ D is locally isometric to Euclidean H
n.

For general metrics the mean value inequality at the boundary becomes more
technical, but theorem 1.3 should generalize in the same way as theorem 1.1, so
this theorem should extend to general Riemannian manifolds with boundary.

Theorem 2.1 There exists a constant ~ > 0 depending on n = dimD and given
constants a, b ≥ 0 such that the following holds: Let ei ∈ C2(D, [0,∞)) be a se-
quence of nonnegative functions such that for some constants A0, A1, B0, B1 ≥ 0

{

∆ei ≤ A0 +A1ei + ae
n+2

n

i ,
∂
∂ν

∣

∣

∂D
ei ≤ B0 +B1ei + be

n+1
n

i .

Moreover, suppose that there is a uniform bound

∫

D

ei ≤ E <∞.

Then there exist finitely many points, x1, . . . , xN ∈ D (with N ≤ E/~) and
a subsequence such that the ei are uniformly bounded on every compact subset of
D \ {x1, . . . xN}, and there is a concentration of energy ~ > 0 at each xj : For
every δ > 0 there exists Ij,δ ∈ N such that

∫

Bδ(xj)

ei ≥ ~ ∀i ≥ Ij,δ . (1)
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Proof: Suppose that for some x ∈ D there is no neighbourhood on which the
ei are uniformly bounded. Then there exists a subsequence (again denoted (ei))
and D 3 zi → x such that ei(zi) = Rni with Ri → ∞. We can then apply the

mean value inequality theorem 1.1 on the balls Bδi
(zi) of radius δi = R

− 1
2

i > 0.
For sufficiently large i ∈ N, these lie within appropriate coordinate charts of D.
In case z ∈ ∂D we use the Euclidean coordinate charts at the boundary to apply
theorem 1.3, but we also denote the balls in half space by Bδi

(zi). Now these mean
value theorems provide uniform constants C and ~ := max{µa−n

2 , µ(a, b)} > 0
such that for every i ∈ N either

∫

Bδi
(zi)

ei > ~ (2)

or
∫

Bδi
(zi)

ei ≤ ~ and hence

Rni = e(zi) ≤ CA0δ
2
i + CB0δi + C

(

A
n
2
1 + Bn1 + δ−ni

)

∫

Bδi
(zi)

ei.

In the latter case multiplication by δni = R
−n

2

i implies

R
n
2

i ≤ CA0R
−n+2

2

i + CB0R
−n+1

2

i + C~
(

A
n
2
1 R

−n
2

i +Bn1R
−n

2

i + 1
)

. (3)

As i→ ∞, the left hand side diverges to ∞, whereas the right hand side converges
to C~. Thus the alternative (2) must hold for all sufficiently large i ∈ N. In
particular, this implies the energy concentration (1) at xj = x.

Now we can go through the same argument for any other point x ∈ D at
which the present subsequence (ei) is not locally uniformly bounded. That way
we iteratively find points xj ∈ D such that the energy concentration (1) holds for
a further subsequence (ei). Suppose this iteration yields N > E/~ distinct points
x1, . . . , xN (and might not even terminate after that). Then we would have a
subsequence (ei) for which at least energy ~ > 0 concentrates near each xj . Since
the points are distinct, this contradicts the energy bound

∫

D
ei ≤ E. Hence this

iteration must stop after at most bE/~c steps, when the present subsequence (ei)
is locally uniformly bounded in the complement of the finitely many points, where
we found the energy concentration before. 2

The allowed nonlinearities in theorem 2.1 are sharp, and they are scale-invariant
in the following sense: Consider one function e : H

n → [0,∞) with
∫

e < ∞
and ∆e ≤ Ceλ, ∂

∂ν
e ≤ Ceµ for some λ, µ ∈ R. Then the rescaled functions

eρ(z) = ρ−ne(z/ρ) for ρ > 0 have the same energy
∫

eρ =
∫

e but eρ(0) blows up as
ρ→ 0. On the other hand, they satisfy the nonlinear bounds ∆eρ ≤ Cρλn−n−2eλρ
and ∂

∂ν
eρ ≤ Cρµn−n−1eµρ . Here the constants are bounded iff λ > (n + 2)/n

and µ > (n+ 1)/n, so the theorem cannot hold with nonlinearities of these higher
orders.

The analogy in the use of energy densities in compactness proofs for a variety
of PDE’s, including minimal submanifolds [A, CS] and harmonic maps of surfaces
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[SU], has already been observed and listed by Wolfson [Wo]. Below, we will dis-
cuss pseudoholomorphic curves and Yang-Mills connections in more detail, and in
the appendix we give some sample calculations for the energy densities. In local
coordinates these PDE’s are all second order nonlinear elliptic systems (or first
order reductions thereof), whose leading term is a component-wise Laplacian. In
all cases, the nonlinearities are exactly of the maximal order as in theorem 2.1.
This corresponds to the fact that the energy functionals are conformally invariant.

For pseudoholomorphic curves (with a 2-dimensional domain) the energy
is the L2-norm of the gradient, and the estimate ∆e ≤ C(e+e2) leads to Gromov’s
compactness result [G, Wo]. A detailed proof of ∆e ≤ Ce2 can be found in [MS,
Lemma 4.3.1]. The linear term in the bound on ∆e only occurs when the almost
complex structure varies over the domain of the pseudoholomorphic curve.

For pseudoholomorphic curves with Lagrangian boundary conditions,
these Gromov compactness results are also well known. They can be proven via
a specific choice of a metric for which ∂

∂ν
e = 0 (see [F] and [MS, Lemma 4.3.3]).

Then the energy density can be extended across the boundary by reflection and
the mean value inequality for R

n applies. For the naturally induced metric, the
Lagrangian boundary condition only implies ∂

∂ν
e ≤ C(e + e

3
2 ) (see lemma A.1),

which however fits nicely into our energy quantization principle.
For Yang-Mills connections on 4-manifolds the energy is the L2-norm of the

curvature. The bound ∆e ≤ C(e+e
3
2 ) was used by Uhlenbeck [U] to prove a remov-

able singularity result, which leads to Donaldson’s compactification of the moduli
space of anti-self-dual instantons [D]. For a proof of the energy quantization as in
theorem 2.1 see also [We, Thm.2.1]. As an example of the calculations involved we
prove the bounds on ∆e in lemma A.2, based on a Bochner-Weitzenböck formula
by Bourguignon-Lawson [BL].

Consider a principal G-bundle P → X over a 4-manifold with boundary. The
Yang-Mills equation with boundary conditions for extrema A ∈ Ω1(X, gP )
of the Yang-Mills functional is the system of d∗

AFA = 0 and ∗FA|∂X = 0. Here gP is
the associated bundle whose fibre is the Lie algebra of G. We show in lemma A.2
that the energy density of such Yang-Mills connections satisfies a linear bound
∂
∂ν
e ≤ B e.
The anti-self-duality equation is a first order reduction of the Yang-Mills equa-

tion for connections on 4-manifolds. The Yang-Mills boundary condition (roughly
equivalent to an inhomogeneous Neumann boundary condition) turns it into an
overdetermined system, similar to Neumann boundary conditions for holomorphic
curves. The natural system to consider are thus anti-self-dual connections

with Lagrangian boundary conditions. Locally, these are anti-self-dual con-
nections on a product U × P of a domain U ⊂ H

2 and a G-bundle P → Σ over
a closed Riemann surface. By a Lagrangian boundary condition for a connec-
tion A ∈ Ω1(U × Σ, gP ) we mean A|{z}×Σ ∈ L for every z ∈ ∂H ∩ U , where
L ⊂ Ω1(Σ, gP ) is a Lagrangian (Banach) submanifold in the symplectic space of
connections.

Energy quantization for this system is proven in [We, Thm.1.2] for the SU(2)-
bundle and a special class of Lagrangian submanifolds by an argument along the
lines of theorem 2.1. In that case, the energy density e : U → [0,∞) is given by
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the slice-wise L2-norm of the curvature, e(A) =
∫

Σ
|FA|2. The special Lagrangian

boundary condition (which has global nature along the Riemann surface Σ) pro-

vides ∂
∂ν
e ≤ C(e+ e

3
2 ), but one only has a linear bound ∆e ≤ ge with a function

g that cannot be bounded in terms of e or a constant. However, in the argument
using (3) we can replace the constant A1 by the sequence CR2

i with a constant
C and for sufficiently small ~ > 0. The according estimate |g| ≤ CR2

i can be
established (and can roughly be understood as a bound ∆e ≤ Ce2). This result
does not follow from the standard rescaling methods for Yang-Mills connections.

3 Mean value inequalities

In this section we prove the mean value inequalities that were stated in the intro-
duction and that the energy quantization principle is based on. We continue the
notation of the introduction.

The special case A0 = A1 = a = 0 of theorem 1.1 and the starting point for the
proof is Morrey’s [M] mean value inequality for subharmonic functions. A proof
of the version below can be found in e.g. [LS, Thm.2.1]. For the Euclidean metric
g = 1l we give an elementary proof in lemma 3.2 below.

Proposition 3.1 For every n ∈ N there exist constants C0 and δ > 0 such that
the following holds for all 0 < r ≤ 1 and all metrics g on R

n with ‖g − 1l‖W 1,∞ ≤ δ.
If e ∈ C2(Br(0), [0,∞)) satisfies ∆e ≤ 0, then

e(0) ≤ C0r
−n

∫

Br(0)

e.

Proof of theorem 1.1:

This proof is based on the Heinz trick, which is to consider the maximum c̄ of
the function f below. This allows one to replace the bound on the Laplacian
by a constant depending on c̄. One then obtains the result from the mean value
inequality for subharmonic functions and a number of rearrangements in different
cases.

Consider the function f(ρ) = (1 − ρ)n supBρr(0) e for ρ ∈ [0, 1]. It attains its

maximum at some ρ̄ < 1. Let c̄ = supBρ̄r(0) e = e(x̄) and ε = 1
2 (1 − ρ̄) < 1

2 , then

e(0) = f(0) ≤ f(ρ̄) = 2nεnc̄.

Moreover, we have for all x ∈ Bεr(x̄) ⊂ Br(0)

e(x) ≤ sup
B(ρ̄+ε)r(0)

e =
(

1 − ρ̄− ε)−nf(ρ̄+ ε) ≤ 2n(1 − ρ̄)−nf(ρ̄) = 2nc̄,

and hence ∆e ≤ A0 + 2nA1c̄+ 2n+2ac̄
n+2

n . Now define the function

v(x) := e(x) + 1
n

(

A0 + 2nc̄
(

A1 + 4ac̄
2
n

))

|x− x̄|2

with the Euclidean norm |x − x̄|. It is nonnegative and subharmonic on Bεr(x̄)
if the metric is sufficiently C1-close to 1l. This is since ∆1l|x − x̄|2 = −2n for the
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Euclidean metric and |x − x̄| ≤ εr ≤ 1 is bounded, so ∆|x − x̄|2 ≤ −n whenever
‖g − 1l‖W 1,∞ ≤ δ is sufficiently small. The control of the metric also ensures that
the integral

∫

Bρr(x̄)
|x− x̄|2 is bounded by the following integral over the Euclidean

ball B1l
2ρr(x̄): With the constant C1 = 2n+3VolSn−1/(n+ 2)

2

∫

B1l
2ρr(x̄)

|x− x̄|2 = 2

∫ 2ρr

0

tn+1VolSn−1 dt = C1(ρr)
n+2.

So we obtain from proposition 3.1 with C2 = max{C0,
1
n
2nC0C1} for all 0 < ρ ≤ ε

c̄ = v(x̄) ≤ C0(ρr)
−n

∫

Bρr(x̄)

v

≤ C2

(

2−nA0 + c̄
(

A1 + 4ac̄
2
n

))

(ρr)2 + C2(ρr)
−n

∫

Bρr(x̄)

e. (4)

If 2−nC2A0(εr)
2 > 1

2 c̄, then e(0) ≤ c̄ ≤ 21−nε2C2A0r
2 ≤ 2−1−nC2A0r

2 proves the
assertion. Otherwise we can drop A0 from (4) while doubling the constant C2.

Next, if C2(A1 + 4ac̄
2
n )(ρr)2 ≤ 1

2 , then (4) implies c̄ ≤ 2C2(ρr)
−n
∫

Br(0)
e. So

if C2(A1 + 4ac̄
2
n )(εr)2 ≤ 1

2 then ρ = ε proves the assertion,

e(0) ≤ 2nεnc̄ ≤ 2n+1C2r
−n
∫

Br(0)
e.

Otherwise we can choose 0 < ρ < ε such that (ρr)−2 = 2C2(A1 + 4ac̄
2
n ). Then we

obtain with C3 = (2C2)
1+ n

2

e(0) ≤ c̄ ≤ C3

(

A1 + 4ac̄
2
n

)
n
2
∫

Bρr(x̄)
e.

Again we have to distinguish two cases: Firstly, if 4ac̄
2
n ≤ A1 then this yields

e(0) ≤ C3(2A1)
n
2

∫

Bρr(x̄)
e.

Secondly, if A1 < 4ac̄
2
n then c̄ < c̄C3(8a)

n
2

∫

Bρr(x̄) e and thus with µ = 8−
n
2 C−1

3 > 0

∫

Br(0)
e > µa−

n
2 .

So we either have the above or with some constant C (that only depends on n)

e(0) ≤ CA0r
2 + C

(

A
n
2
1 + r−n

) ∫

Br(0) e.

2

Theorem 1.3 will be proven in three steps. The first step is the generalization
of proposition 3.1 to domains with boundary and subharmonic functions in the
sense of the weak Neumann equation: A distribution e on a manifold M is called
subharmonic if for all ψ ∈ C∞(M, [0,∞)) with ∂ψ

∂ν
|∂M = 0

0 ≥
∫

M

e∆ψ

(

=

∫

M

ψ∆e+

∫

∂M

ψ ∂e
∂ν

)

.

For e ∈ C2(M) the equality above holds and implies that ∆e ≤ 0 and ∂e
∂ν

|∂M ≤ 0.
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Lemma 3.2 For every n ≥ 2 there exists a constant C0 such that the following
holds for all R > 0 and y ∈ H

n: Suppose that e ∈ C2(Dr(y), [0,∞)) satisfies

{

∆e ≤ 0,
∂
∂ν

∣

∣

∂Hne ≤ 0.

Then

e(y) ≤ C0r
−n

∫

Dr(y)

e.

Proof: We will write H
n = {(x0, x̄)

∣

∣x0 ∈ [0,∞), x̄ ∈ R
n−1} and also use spherical

coordinates (x0, x̄) = (y0 + r cosφ , ȳ + r sinφ · z) =: (r, φ, z) with r ∈ [0,∞),
φ ∈ [0, π], and z ∈ Sn−2 ⊂ R

n. (For n = 2 this notation means S0 = {−1, 1},
and integration

∫

S0 . . . dvolS0 will denote summation of the values at these two
points.) Now the boundary of Dr(y) has two parts,

Zr := ∂Dr(y) ∩ ∂H
n =

{

(0 , x̄)
∣

∣ |x̄− ȳ|2 ≤ r2 − y0
2
}

,

Γr := ∂Br(y) ∩ H
n =

{

(r, φ, z)
∣

∣ φ ∈ [0, φ0(r)], z ∈ Sn−2
}

.

Here we use φ0(r) := arccos(−y0/r). For y0 > r we set φ0(r) := π, so Γr is the
entire sphere and the set Zr is empty. With this we calculate for all r > 0

d

dr

(

r−n+1

∫

Γr

e

)

=
d

dr

(

r−n+1

∫ φ0(r)

0

∫

Sn−2

e(r, φ, z) (r sinφ)n−2 dvolSn−2 r dφ

)

=

∫ φ0(r)

0

∫

Sn−2

∂re(r, φ, z) (sinφ)n−2 dvolSn−2 dφ (5)

+
∂φ0

∂r

∫

Sn−2

e(r, φ0(r), z) (sin φ0(r))
n−2 dvolSn−2 .

Note that φ0(r) is constant for y0 = 0 as well as for r ≤ y0. So firstly in case
y0 > 0 we have for all 0 < r ≤ y0

d

dr

(

r−n+1

∫

Γr

e

)

= r−n+1

∫

∂Dr(y)

∂
∂ν
e = −r−n+1

∫

Dr(y)

∆e ≥ 0. (6)

In that case we moreover have

lim
r→0

(

r−n+1

∫

Γr

e

)

= VolSn−1 e(y), (7)

which is less or equal to r−n+1
∫

Γr
e for all 0 < r ≤ y0. So integrating

∫ R
2

0
rn−1 . . . dr

proves the lemma for all R ≤ 2y0,

1
n
2−nRnVolSn−1 e(y) ≤

∫ R
2

0

∫

Γr

e dr ≤
∫

DR(y)

e.
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Next, in case y0 = 0 we have for all r > 0

d

dr

(

r−n+1

∫

Γr

e

)

= r−n+1

∫

Γr

∂
∂ν
e

= −r−n+1

∫

Dr(y)

∆e − r−n+1

∫

Zr

∂
∂ν
e ≥ 0.

Since limr→0

(

r−n+1
∫

Γr
e
)

= 1
2VolSn−1 e(y), integration over 0 < r ≤ R then

proves the lemma for y0 = 0 and all R > 0,

1
2nR

n VolSn−1 e(y) ≤
∫ R

0

∫

Γr

e dr =

∫

DR(y)

e.

Finally, in case R > 2y0 > 0 we obtain from (5) for all r > y0

d

dr

(

r−n+1

∫

Γr

e

)

≥ −y0
r
√

r2 − y2
0

∫

Sn−2

e(r, φ0(r), z) (sin φ0(r))
n−2 dvolSn−2 .

Now we can use (7), (6), and integrate the above to obtain for all y0 < r ≤ 1
2R

VolSn−1 e(y) ≤ r−n+1

∫

Γr

e

+

∫ r

y0

y0 ρ
1−n(ρ2 − y2

0)
n−3

2

∫

Sn−2

e(ρ, φ0(ρ), z) dvolSn−2 dρ.

Since (ρ, φ0(ρ), z) ∈ ∂H
n, we already know that

e(ρ, φ0(ρ), z) ≤ 2n

VolSn−1(R2 )n

∫

DR
2

(ρ,φ0(ρ),z)

e ≤ 2n+1n

VolSn−1Rn

∫

DR(y)

e.

With this (and substituting t = ρ/y0) we find that for all 0 < y0 < r ≤ 1
2R

VolSn−1 e(y) ≤ r−n+1

∫

Γr

e

+
2n+1nVolSn−2

Rn VolSn−1

∫ ry
−1
0

1

t−2
(

1 − t−2
)

n−3
2 dt

∫

DR(y)

e

≤ r−n+1

∫

Γr

e + CR−n

∫

DR(y)

e. (8)

Here we have introduced a constant C that only depends on n ≥ 2, in particular
on the value of the integral in t: For n = 2 we calculate it explicitly,

∫ ry
−1
0

1

t−2
(

1 − t−2
)− 1

2 dt =
[

arccos(t−1)
]ry

−1
0

1
= arccos

(

r
y0

)

< π
2 .
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For n ≥ 3 we have

∫ ry
−1
0

1

t−2
(

1 − t−2
)

n−3
2 dt ≤

∫ ry
−1
0

1

t−2dt = 1 − r
y0

< 1.

Now from (6) we know that (8) also holds for 0 < r ≤ y0 (with C = 0), so

integrating
∫ R

2

0
rn−1 . . . dr proves the lemma in this last case,

1
n

(

R
2

)n
VolSn−1 e(y) ≤

∫ R
2

0

∫

Γr

e dr + 1
n

(

R
2

)n
CR−n

∫

DR(y)

e ≤ C0

∫

DR(y)

e.

2

Proof of theorem 1.3:

With lemma 3.2 in hand, the second step of the proof is to assume constant positive
bounds, ∆e ≤ A and ∂e

∂ν

∣

∣

∂Hn ≤ B and find a constant C1 (only depending on n)
such that for all r > 0 and y ∈ H

n

e(y) ≤ C1r
−n

∫

Dr(y)

e + C1Ar
2 + C1Br. (9)

That is, we first prove the theorem with A1 = B1 = a = b = 0. To do this consider
the function

v(x) := e(x) + 1
2nA|x− y|2 + (B + 1

n
Ay0)x0.

It is positive and satisfies ∆v ≤ 0 and ∂v
∂ν

∣

∣

∂Hn ≤ 0, so lemma 3.2 implies that

e(y) = v(y) − (B + 1
n
Ay0)y0 ≤ v(y) ≤ C0r

−n

∫

Dr(y)

v. (10)

In case r ≤ y0 we just use v(x) = e(x) + 1
2nA|x − y|2, then the same holds, and

moreover
∫

Dr(y)

v =

∫

Dr(y)

e + 1
2nA

∫ r

0

tn+1VolSn−1dt =

∫

Dr(y)

e + VolSn−1

2n(n+2)Ar
n+2.

In case r > y0 we have (using x0 ≤ 2r on Br(y))

∫

Dr(y)

v ≤
∫

Dr(y)

e + 1
2nA

∫ r

0

tn+1VolSn−1dt + (B + 1
n
Ay0)

∫

Dr(y)

x0

≤
∫

Dr(y)

e + VolSn−1

2n(n+2)Ar
n+2 + (B + 1

n
Ar) 2

n
VolSn−1rn+1.

In any case, putting this into (10) proves (9).
Finally, to prove the theorem we consider – analogous to the proof of theo-

rem 1.1 – the function f(ρ) = (1 − ρ)n supDρr(y) e defined for ρ ∈ [0, 1]. It attains

its maximum at some ρ̄ < 1. We denote c̄ = supDρ̄r(y) e = e(x̄) and ε = 1
2 (1 − ρ̄),

then e(y) ≤ 2nεnc̄ and e(x) ≤ 2nc̄ for all x ∈ Dεr(x̄). Thus on Dεr(x̄) ⊂ Dr(y) we

10



have the estimates ∆e ≤ A0 +2nc̄(A1 +4ac̄
2
n ) and ∂e

∂ν

∣

∣

∂Hn ≤ B1 +2nc̄(B1 +2bc̄
1
n ).

Putting this into (9) yields for all 0 < ρ ≤ ε

c̄ = e(x̄) ≤ C1(ρr)
−n
∫

Dρr(x̄) e + C1

(

A0 + 2nc̄(A1 + 4ac̄
2
n )
)

(ρr)2 (11)

+ C1

(

B0 + 2nc̄(B1 + 2bc̄
1
n )
)

ρr.

To deduce the claimed mean value inequality from this, we have to go through a
number of different cases. Firstly, if C1A0(εr)

2 + C1B0εr ≥ 1
2 c̄, then since ε ≤ 1

2

e(y) ≤ c̄ ≤ C1A0r
2 + C1B0r,

which proves the theorem. Otherwise (11) continues to hold with A0 and B0

dropped (and the constant C1 doubled). Next, let 0 < ε′ < ε be the solution of
the equation A1(ε

′r)2 +B1ε
′r = 2−n−1C−1

1 or in case A1(εr)
2 +B1εr ≤ 2−n−1C−1

1

let ε = ε′. Then we can rearrange (11) to obtain for all 0 < ρ ≤ ε′

∫

Dr(y)

e ≥
∫

Dρr(x̄) e ≥ c̄(ρr)n
(

1
2C

−1
1 − 2n+2ac̄

2
n (ρr)2 − 2n+1bc̄

1
n ρr

)

. (12)

Now if a > 0 or b > 0 let η(a, b) > 0 be the solution of

2n+2aη2 + 2n+1bη = 1
4C

−1
1 .

If c̄
1
n ρr = η(a, b) for some 0 < ρ ≤ ε′, then the theorem holds with

∫

Dr(y)
e ≥ 1

4C
−1
1 η(a, b)n =: µ(a, b) > 0.

Otherwise we must have c̄
1
n ε′r < η(a, b), so (12) with ρ = ε′ gives

c̄ ≤ 4C1(ε
′r)−n

∫

Dr(y)
e. (13)

In the special case a = b = 0 we get the same directly from (12). In case ε′ = ε
this proves the theorem since e(y) ≤ 2nεnc̄. Otherwise ε′ < ε satisfies with
C2 = 2n+1C1

2C−1
2 = A1(ε

′r)2 +B1ε
′r + C−1

2

=
(

√

A1ε
′r + C

− 1
2

2

)2
+
(

B1 − 2C
− 1

2
2

√

A1

)

ε′r

=
(

1
2C

1
2
2 B1ε

′r + C
− 1

2
2

)2
+
(

A1 − 1
4C2B

2
1

)

(ε′r)2.

From this one sees that either B1 ≤ 2C
− 1

2
2

√
A1 and ε′r ≥ (

√
2− 1)C

− 1
2

2 A
− 1

2
1 from

the second line, or A1 ≤ 1
4C2B

2
1 and ε′r ≥ 2(

√
2− 1)C−1

2 B−1
1 from the third line.

Putting this into (13) we finally obtain in this last case with a constant C that
only depends on n

e(y) ≤ c̄ ≤ C
(

A
n
2
1 +Bn1

) ∫

Dr(y) e. 2

11



A Some identities for energy densities

Let (M,ω) be a compact symplectic manifold, let J be an ω-compatible almost
complex structure, and fix the induced metric ω( · , J · ) on TM . Moreover, let
L ⊂M be a Lagrangian submanifold, that is a submanifold of dimension 1

2 dimM
with ω|L ≡ 0.

For the following we use the coordinates (s, t) ∈ H
2 with t ≤ 0. Then the outer

unit normal derivative on ∂H
2 is ∂t|t=0.

Lemma A.1 Let Ω ⊂ H
2 be an open domain and consider a pseudoholomorphic

curve u : Ω →M with Lagrangian boundary conditions,

∂su+ J∂tu = 0, u(z) ∈ L ∀z ∈ ∂H
2 ∩ Ω.

Its energy density e(u) = |∂su|2 : Ω → [0,∞) satisfies

∆e ≤ a e2, ∂
∂ν

∣

∣

∂H2e ≤ b e
3
2

with constants a, b that only depend on (M,ω, J) and L.

Proof: For ∆e ≤ a e2 see the proof of [MS, Lemma 4.3.1]. We calculate the normal
derivative w.l.o.g. at (0, 0) in Darboux-Weinstein coordinates near u(0, 0) ∈ L ⊂M .
So u is replaced by u = (u1, u2) : U → R

n × R
n on a small neighbourhood U ⊂ Ω

of (0, 0). In these coordinates, the symplectic structure ω = ω0 is independent of
(s, t) ∈ U , and the Lagrangian submanifold is R

n × {0}, see [MS, Theorem 3.32].
However, the almost complex structure J : R

2n → R
2n×2n varies with the base

point. So we have ∂su+J∂tu = 0 with J = J ◦u : U → R
2n×2n, and the boundary

condition becomes u2(s, 0) = 0. We can now use ∂tu = J∂su to calculate

∂te(u) = ∂t
(

ω0(∂su, J∂su)
)

= ω0(∂s(J∂su), J∂su) + ω0(∂su, (∂tJ)∂su)) + ω0(∂su, J∂s(J∂su))

= 2ω0(∂
2
su, ∂su) + 2ω0((∂sJ)∂su, J∂su) + ω0(∂su, (∂tJ)∂su).

The first term vanishes at (0, 0) since ∂su2|t=0 = 0 and ∂2
su2|t=0 = 0. For the

second and third term note that ∂sJ = (∇J)∂su and ∂tJ = (∇J)J∂su. Hence

∂t
∣

∣

t=0
e(u) ≤ 2|∇J | · |∂su|3 + |J(∇J)J | · |∂su|3 ≤ B e(u)

3
2 ,

where the constant B only depends on J and the coordinates, so it can be chosen
uniform for the compact manifold M . 2

Let G be a compact Lie group and denote its Lie algebra by g. The local
trivialization of a G-bundle over a 4-manifold with boundary is G × U → U for
some open domain U ⊂ H

4. Locally, a connection is given by a g-valued 1-form
A ∈ Ω1(U , g). It induces the exterior derivative dA : Ωk(U , g) → Ωk+1(U , g) given
by dAη = dη + 1

2 [A ∧ η], where the pairing is by the Lie bracket [·, ·] on g. The
curvature of a connection is the 2-form FA = dA+ [A ∧ A].

Moreover, we equip g with a G-invariant metric 〈 ·, · 〉 and let U be equipped
with any Riemannian metric. The covariant derivative ∇A is given for sections
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ξ : U → g by ∇Aξ = dAξ, but it extends to differential forms by the Leibnitz rule
using the Levi-Civita connection on U . The formal dual operators of ∇A and dA
are denoted by ∇∗

A and by d∗
A : Ωk+1(U , g) → Ωk(U , g).

Lemma A.2 Consider a Yang-Mills connection A ∈ Ω1(U , g),

d∗
AFA = 0, ∗FA|∂H4 = 0.

Its energy density e(A) = |FA|2 : U → [0,∞) satisfies

∆e ≤ Ce+ c e
3
2 , ∂

∂ν

∣

∣

∂H4e ≤ B e

with constants B, c, C that only depend on the metric on U .

Proof: The Bochner-Weitzenböck formula [BL, Thm 3.10] is
(

dAd∗
A + d∗

AdA
)

FA = ∇∗
A∇AFA + FA ◦ (Ric ∧ g + 2R) + RA(FA).

The left hand side vanishes for a Yang-Mills connection due to d∗
AFA = 0 and

the Bianchi identity dAFA = 0. The quadratic term RA(FA) ∈ Ω2(U , g) can be
expressed with the help of a local orthonormal frame (e1, . . . , e4) of TU as

RA(FA)(X,Y ) = 2

4
∑

j=1

[FA(ej , X), FA(ej , Y )].

The estimate for the Laplacian now follows from

−∇∗∇
∣

∣FA
∣

∣

2
= −2

∣

∣∇AFA
∣

∣

2 − 2〈FA , ∇∗
A∇AFA 〉

≤ 2〈FA , FA ◦ (Ric ∧ g + 2R) 〉 + 2〈FA , RA(FA) 〉
≤ C

∣

∣FA
∣

∣

2
+ c
∣

∣FA
∣

∣

3
.

Here the constant C depends on the Ricci transform Ric and the scalar curvature
R of the metric on U . The constant c only depends on the metric on g.

For the normal derivative at w.l.o.g. 0 we use local geodesic coordinates on ∂H
4

combined with the flow of a unit normal vector field into H
4 to obtain coordinates

(x0, x1, x2, x3), x0 ≤ 0 on a neighbourhood U ⊂ H
4 of 0. Then the components

of the metric satisfy gij |x0=0 = δij and we have ∂
∂ν

|∂H4 = ∂0|x0=0. The boundary
condition becomes F0i = 0 for all i, and it implies ∇jF0i = 0 for all i, j 6= 0. (Here
Fij and ∇j denote the components of FA and ∇A.) With this we can calculate

∂0

∣

∣

x0=0
|FA
∣

∣

2
= ∂0

∣

∣

x0=0

∑

i,j,k,`

gijgk`〈Fik , Fj` 〉

= 2
∑

i,j,k

∂0g
ij〈Fik , Fjk 〉 + 2

∑

i,k

〈∇0Fik , Fik 〉 ≤ B|FA|2.

Here the constant B only depends on the first normal derivative of the metric. The
second term vanishes since Fik = 0 unless i, k 6= 0, but by the Bianchi identity
and the boundary condition

∇0Fik = ∇iF0k + ∇kFi0 = 0 ∀ i, k 6= 0.

2
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