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Thanks to Tim Nguyen some essential mistakes are identified and corrected.

The proof of Theorem 2.3’ in case k = 1 relied on Theorem 4.3, whose proof
had a gap, requiring the estimate in Theorem 2.3” below. This then also allows
to prove Theorem 2.3’ directly.

Theorem 2.3′ For every k ∈ N and 1 < p < ∞ there exists a constant C
such that the following holds: Suppose that u ∈ D(M) is a weak solution of the

Neumann problem (wNP) for f ∈W−k,p(M). Then u ∈W−k+2,p(M) and

‖u‖W−k+2,p ≤ C
(

‖f‖W−k,p + | 〈u , 1 〉 |
)

.

Theorem 2.3′′ For every 1 < p <∞ there exists a constant C such that

‖ψ‖W 1,p ≤ C
(

‖∆ψ‖W−1,p + | 〈ψ , 1 〉 |
)

∀ψ ∈ C∞
ν (M).

Proof: Using Lemma E.3, the injectivity of the map ψ 7→ (∆ψ, 〈ψ, 1 〉), and
the compactness of the Sobolev embedding W 1,p(M) →֒ Lp(M), it suffices to
prove

‖ψ‖W 1,p ≤ C
(

‖∆ψ‖W−1,p + ‖ψ‖Lp

)

∀ψ ∈ C∞
ν (M).

From Theorem 2.3 we have

‖ψ‖W 2,p ≤ C
(

‖∆ψ‖Lp + ‖ψ‖W 1,p

)

∀ψ ∈ C∞
ν (M).

The dual of this estimate is (as shown in the proof of Theorem 2.3’ below)

‖ψ‖Lp ≤ C
(

‖∆(wNP )ψ‖W−2,p∗ + ‖ψ‖W−1,p∗

)

∀ψ ∈ C∞
ν (M),

where ∆(wNP ) is the operator weakly defined by (wNP). One can interpolate
these, as in [S, Thm. 3.1] for a bounded domain M ⊂ R

n (with A = ∆,
V = V ′ = C∞

ν (M), and N = N ′ the constant functions) to prove the claimed
estimate. Note here that Schechters norm

|u|−1,p = lubv∈C∞

ν (M)‖v‖
−1
W 1,p∗

∣

∣〈u, v 〉
∣

∣

is equivalent to ‖u‖W−1,p since C∞
ν (M) ⊂W 1,p∗

(M) is dense.
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More in the spirit of this book, one can deduce the claimed W 1,p-estimates
from the Lp-estimates in Theorem 2.3’ for the Neumann problem and Theorem
D.2’ for the Dirichlet problem, applied to tangential resp. normal derivatives of
ψ. That is, for any vector field X ∈ Γ(TM) and φ ∈ C∞(M) we calculate using
Lemma 5.6

−

∫

M

LXψ · ∆φ

=

∫

M

ψ · LX∆φ +

∫

M

divX · ψ · ∆φ−

∫

∂M

g(X, ν) · ψ · ∆φ

=

∫

M

ψ · ∆LXφ+

∫

M

ψ
(

[LX ,∆]φ+ divX∆φ
)

−

∫

∂M

g(X, ν) · ψ · ∆φ

=

∫

M

∆ψ · LXφ+

∫

M

ψ
(

[LX ,∆]φ+ divX∆φ
)

−

∫

∂M

ψ
(

g(X, ν)∆φ+ ∂
∂ν

(LXφ)
)

.

If X ∈ Γ(TM) is tangential to ∂M and such that [X, ν] = 0, then the boundary
term vanishes for all φ ∈ C∞

ν (M), showing that
∣

∣

∫

M
LXψ · ∆φ

∣

∣ ≤ ‖∆ψ‖W−1,p‖LXφ‖W 1,p∗ + ‖ψ‖LpC′
X‖φ‖W 2,p∗

≤ CX

(

‖∆ψ‖W−1,p + ‖ψ‖Lp

)

‖φ‖W 2,p∗

for some constants C′
X , CX depending onX . Now the case k = 2 of Theorem 2.3’

provides

‖LXψ‖Lp ≤ C
(

‖∆(wNP )LXψ‖W−2,p∗ + | 〈LXψ, 1 〉 | ≤ C′
(

‖∆ψ‖W−1,p +‖ψ‖Lp

)

,

where we estimated | 〈 LXψ, 1 〉 | = |
∫

M
divX · ψ| by ‖ψ‖Lp .

In order to prove the Theorem it now remains to consider a vector fieldX = ν̃
that restricts to the unit normal ν̃|∂M = ν on the boundary. Then the boundary
term in the above partial integration is

∫

∂M
ψ

(

∆φ + ∂
∂ν

(Lν̃φ)
)

. We claim that
this term is of first order in φ for all φ ∈ C∞

δ (M), i.e. with φ|∂M = 0. Indeed,
if we pick local coordinates near ∂M with ∂0 = ν̃ and (∂j)j≥1 parallel to ∂M ,
then we can see that in highest order −∆φ = ∂2

0φ+
∑

j≥1 ∂
2
jφ = ∂2

0φ = ∂
∂ν

(Lν̃φ)
since all tangential derivatives of φ vanish. Hence we can express this boundary
term as the restriction Φ|∂M = ∆φ + ∂

∂ν
(Lν̃φ) of a function Φ ∈ C∞(M) given

by first derivatives of φ near ∂M , multiplied with a cutoff function. Given any
ε > 0 we can choose this cutoff function such that ‖Φ‖Lp∗ ≤ ε‖φ‖W 2,p∗ and
‖Φ‖W 1,p∗ ≤ Cε‖φ‖W 2,p∗ with a constant Cε depending on ε > 0. (To achieve
this we multiply a given extension Φ by a cutoff function ζ and use the estimate
‖ζΦ‖Lp∗ ≤ C‖ζ‖Lq‖Φ‖W 1,p∗ , which follows from Hölder and Sobolev estimates
with q = n for p∗ < n, any q > n for p∗ = n, and q = p∗ for p∗ < n.) With that
we obtain

∣

∣

∣

∣

∫

∂M

ψ
(

∆φ+ ∂
∂ν

(Lν̃φ)
)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

M

d∗
(

ψ · Φ · g(ν̃, ·)
)

∣

∣

∣

∣

≤ Cν̃

(

‖ψ‖Lp‖Φ‖W 1,p∗ + ‖ψ‖W 1,p‖Φ‖Lp∗

)

≤
(

ε‖ψ‖W 1,p + C′
ε‖ψ‖Lp

)

‖φ‖W 2,p∗
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and hence for all φ ∈ C∞
δ (M)

∣

∣

∣

∣

∫

M

Lν̃ψ · ∆φ

∣

∣

∣

∣

≤
(

Cν̃‖∆ψ‖W−1,p + C′
ε‖ψ‖Lp + ε‖ψ‖W 1,p

)

‖φ‖W 2,p∗ .

Now the estimate for the Dirichlet problem in case k = 2 of Theorem D.2’
directly implies

‖Lν̃ψ‖Lp ≤ C
(

Cν̃‖∆ψ‖W−1,p + C′
ε‖ψ‖Lp + ε‖ψ‖W 1,p

)

.

Finally, we pick a generating set of tangential vector fields Xj and sum over all
estimates for LXj

ψ and Lν̃ψ to obtain

‖ψ‖W 1,p ≤ C
(

‖ψ‖Lp + ‖Lν̃ψ‖Lp +
∑

j‖LXj
ψ‖Lp

)

≤ C(ε)
(

‖∆ψ‖W−1,p + ‖ψ‖Lp

)

+ ε‖ψ‖W 1,p

with some constant C(ε) depending on a free choice of ε > 0. Now picking
ε = 1

2 and rearranging the inequality proves the theorem. 2

Proof of Theorem 2.3 ′ :
In case k ≥ 2 this theorem follows directly from Theorems 2.2 and 2.3 by duality:
Every φ ∈ C∞(M) can be written as φ = ∆ψ + cφ, where cφ = (VolM)−1

∫

M
φ

and ψ ∈ C∞
ν (M) such that ‖ψ‖W k,p∗ ≤ C′‖φ − cφ‖W k−2,p∗ for some constant

C′. In case k = 1 this follows from Theorems 1.5 and 2.3”. Now let c :=
(VolM)−1 〈u, 1 〉, then we obtain

|〈 u− c , φ 〉| = |〈u− c , φ− cφ 〉| =
∣

∣〈u , ∆ψ 〉 − c
∫

M
∆ψ

∣

∣ = |〈 f , ψ 〉|

≤ ‖f‖W−k,p‖ψ‖W k,p∗ ≤ C′‖f‖W−k,p

(

‖φ‖W k−2,p∗ +
∣

∣

∫

M
φ
∣

∣

)

≤ C‖f‖W−k,p‖φ‖W k−2,p∗ .

Here the new constant C arises from
∣

∣

∫

M
φ
∣

∣ = | 〈φ, 1 〉 | ≤ ‖φ‖W k−2,p∗‖1‖W 2−k,p .
Since the above estimate holds for all φ ∈ C∞(M), it proves that u−c and hence
also u lie in

(

W k−2,p∗

(M)
)∗

= W−k+2,p(M) with

‖u‖W 2−k,p ≤ ‖u− c‖W 2−k,p + ‖c‖W 2−k,p

≤ C‖f‖W−k,p + (VolM)−1‖1‖W 2−k,p | 〈u , 1 〉 |.
2

In Theorem 4.7, the closedness of im D̃ was shown by hiding the required
estimate in a seemingly obvious functional analytic statement. However, the
sum ker∇′

q∗ ⊕ im∇q∗ ⊂ Lq∗

(M,T ∗M ⊗E) of the two closed subspaces on page
65 is closed only if we can establish an estimate ‖∇q∗u‖q∗ ≤ C‖τ +∇q∗u‖q∗ for
all τ ∈ ker∇′

q∗ . That is, we require an estimate ‖∇q∗u‖q∗ ≤ C‖∇′
q∗∇q∗u‖W−1,q ,

which will follow from Theorem 2.3”. However, this estimate allows to drop all
direct sum considerations and we are left with a much shorter proof.
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Proof of Theorem 4.7 ′ :
We begin by deducing that im D̃ is closed from Lemma E.3 (i), the compactness
of the embedding W 1,q →֒ Lq, and the estimate for all u ∈W 1,q(M,E)

‖u‖W 1,q ≤ C
(

‖D̃u‖W−1,q + ‖u‖q

)

.

If ∇ is the trivial connection on a trivial bundle E, then D̃u = ∆u for all
u ∈ C∞

ν (M,E), and hence the estimate follows from Theorem 2.3” for the W 1,q-
closure of C∞

ν (M,E), i.e. for all u ∈W 1,q(M,E). For nontrivial bundles we use
local trivializations and cutoff functions, and nontrivial connections introduce
lower order terms. All of these can be estimated by the lower order term ‖u‖q.

This finishes the proof of closedness of im D̃.
Now we proceed as in the original proof: Let u ∈ ker D̃, then lemma 4.1

asserts for all ψ ∈ W 2,q∗

(M,E)

0 = ∇′∇u(ψ) =

∫

M

〈∇u ∧ ∗∇ψ 〉 =

∫

M

〈u , ∇∗∇ψ 〉 +

∫

∂M

〈u , ∇νψ 〉 .

Thus (u, u|∂M ) ∈ (imD)⊥ with the operator D of theorem 4.6 for p = q∗, and
this implies that u ∈ H0(M,∇). On the other hand every horizontal section
obviously lies in the kernel of D̃, so ker D̃ = H0(M,∇) and this is of finite
dimension as before in theorem 4.6.

The same argument can be used to show that (im D̃)⊥ = H0(M,∇): Let
u ∈ (im D̃)⊥ ⊂ W 1,q∗

(M,E), i.e. D̃ψ(u) = 0 for all ψ ∈ W 1,q(M,E). Then for
all ψ ∈ W 2,q(M,E) by lemma 4.1

0 = ∇′∇ψ(u) =

∫

M

〈∇ψ ∧ ∗∇u 〉 =

∫

M

〈u , ∇∗∇ψ 〉 +

∫

∂M

〈u , ∇νψ 〉 .

This shows (u, u|∂M ) ∈ (imD)⊥ with p = q, and thus theorem 4.6 asserts that
u ∈ H0(M,∇). Conversely, every u ∈ H0(M,∇) satisfies

D̃ψ(u) =

∫

M

〈∇ψ ∧ ∗∇u 〉 = 0

for all ψ ∈ W 1,q(M,E). So we have established (im D̃)⊥ = H0(M,∇). Since
im D̃ is closed, the quotient norm is well defined on the cokernelW 1,q(M,E)/im D̃
and makes it a Banach space. The cokernel has the same dimension as its dual
space, which is isomorphic to (im D̃)⊥. Thus codim im D̃ = dimH0(M,∇) =
dimker D̃ proving the Fredholm property and index 0 of D̃.

To determine the image of D̃ explicitly note that im D̃ ⊂ im∇′
q since ∇ maps

W 1,q(M,E) to Lq(M,T∗M ⊗ E). On the other hand, by the definition of ∇′

one has im∇′
q ⊂ H0(M,∇)⊥ = (im D̃)⊥⊥ = im D̃. Hence indeed im D̃ = im∇′

q

as claimed. 2

Finally, we correct some more missing boundary terms in a partial integra-
tion. These were only missing in the case k ≥ 1 for α ∈W k,p(M,T ∗M).
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Proof of Theorem 5.3 (i)
Let αν ∈ C∞(M,T∗M) be an Lp-approximating sequence for α such that αν ≡ 0
in a neighbourhood of ∂M . Then one obtains for all φ ∈ T

∫

M

α(X) · ∆φ = lim
ν→∞

∫

M

dιXα
ν · dφ

= lim
ν→∞

(
∫

M

〈 LXα
ν , dφ 〉 −

∫

M

〈 ιXdαν , dφ 〉

)

= lim
ν→∞

(

−

∫

M

〈αν , LXdφ 〉 −

∫

M

〈αν , divX · dφ 〉

+

∫

M

〈 ιYαν LXg , dφ 〉 −

∫

M

〈 dαν , ιXg ∧ dφ 〉

)

= lim
ν→∞

(

−

∫

M

〈αν , d(LXφ) 〉 −

∫

M

〈αν , d∗(ιXg ∧ dφ) 〉

+

∫

M

〈 (

ιYαν LXg − divX · αν
)

, dφ
〉

)

= −

∫

M

〈α , d(LXφ) 〉 −

∫

M

〈α , d∗(ιXg ∧ dφ) 〉

+

∫

M

〈

d∗
(

ιYα
LXg − divX · α

)

, φ
〉

+

∫

∂M

∗
(

ιYα
LXg − divX · α

)

· φ

=

∫

M

(

−f1 − f2 + d∗
(

ιYα
LXg − divX · α

))

φ +

∫

∂M

(

LXg(Yα, ν) − divX · α(ν) − h
)

· φ

Here we used Cartan’s formula LXα = dιXα+ ιXdα, and the vector field Yα is
given by ιYα

g = α. In case T = C∞
δ (M) the boundary vanishes and we obtain

regularity and estimates for α(X) as before. In case T = C∞
ν (M) the above

calculation shows that α(X) is a weak solution of the inhomogenous Neumann
problem (3.4) for f ∈W k−1,p(M) as before and with the boundary condition

h− LXg(Yα, ν) + divX · α(ν) ∈W k,p
∂ (M).

So the regularity theorem 3.2 asserts that α(X) ∈ W k+1,p(M) with the estimate

‖α(X)‖W k+1,p ≤ C
(∥

∥−f1 − f2 + d∗
(

ιYα
LXg − divX · α

)∥

∥

W k−1,p

+ ‖h− LXg(Yα, ν) + divX · α(ν)‖
W

k,p

δ

)

≤ C
(

‖f1‖W k−1,p + ‖f2‖W k−1,p + ‖h‖
W

k,p

δ

+ ‖α‖W k,p

)

.

Again, in the first estimate, the constant from theorem 3.2 depends continuously
on the metric in the W k,∞-topology, but in the second inequality, the derivatives
of g and X lead to continuousW k+1,∞-dependence of the constant on the metric
and the vector field.
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