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Thanks to Tim Nguyen some essential mistakes are identified and corrected.

The proof of Theorem 2.3’ in case k = 1 relied on Theorem 4.3, whose proof
had a gap, requiring the estimate in Theorem 2.3” below. This then also allows
to prove Theorem 2.3’ directly.

Theorem 2.3" For every k € N and 1 < p < oo there exists a constant C
such that the following holds: Suppose that u € D(M) is a weak solution of the
Neumann problem (wNP) for f € W=FP(M). Then u € W—F+2P(M) and

[ullw—r+20 < C(|fllw—r0 + [ (u, 1) 1).

Theorem 2.3” For every 1 < p < oo there exists a constant C' such that

[ollwe < CIAY[lw-10 + {0, 1)) Vi € C(M).

Proof: Using Lemma E.3, the injectivity of the map ¢ — (A, (1,1)), and
the compactness of the Sobolev embedding W?(M) — LP(M), it suffices to
prove

[Yllwre < CUIAYlw-10 + [$llLe) Voo € C(M).

From Theorem 2.3 we have

[Yllwze < CUIAY[ILe + [Wllwrr) Vo € CF(M).

The dual of this estimate is (as shown in the proof of Theorem 2.3’ below)

[0llze < C(IAwNPYY w20 + [Wllw-107) Vi € C7(M),

where A, np) is the operator weakly defined by (wNP). One can interpolate
these, as in [S, Thm. 3.1] for a bounded domain M C R™ (with A = A,
V =V'=C*(M), and N = N’ the constant functions) to prove the claimed
estimate. Note here that Schechters norm

<u,v>|

is equivalent to ||ul|y—1.» since C*(M) C W'P" (M) is dense.

|u[ -1, = lubyecs (ar) ||U||;V11,p»«



More in the spirit of this book, one can deduce the claimed W P-estimates
from the LP-estimates in Theorem 2.3’ for the Neumann problem and Theorem
D.2’ for the Dirichlet problem, applied to tangential resp. normal derivatives of
. That is, for any vector field X € I'(T M) and ¢ € C*>°(M) we calculate using
Lemma 5.6

- [ exv-a0
:/M¢-£XA¢+/MdivX-w-Aqﬁ—/aMg(X,l/)'¢'A¢

:/ z/J-AEXqH-/ w([EX,A]qH—diVXAqS)—/ g(X,v) - A
M M

oM

— [ avcxot [ wliex Mo+ dvxag) - [ w(e(Xn)ad+ F(Lxd).
M M oM

If X € I(T'M) is tangential to M and such that [X,v] = 0, then the boundary

term vanishes for all ¢ € C°(M), showing that

| far £x - Ad| < [[AYllw-10 | Lx Bllwror + [0l 2o Cx |0l w20
< Cx (1A% [lw-10 + 1| o) [0l w2pe

for some constants C’, Cx depending on X. Now the case k = 2 of Theorem 2.3’
provides

ILx%le < CI1AwNP LxPllw 20 +1{Lx¥, 1) | < C ([ AY[lw-10 + ¥ L0),

where we estimated | (Lx,1)| =1 [,,divX - 9| by [|¢]|».

In order to prove the Theorem it now remains to consider a vector field X = v
that restricts to the unit normal 7|gy; = v on the boundary. Then the boundary
term in the above partial integration is faM w(AqS + %(E,;(b)). We claim that
this term is of first order in ¢ for all ¢ € C5°(M), i.e. with ¢|sns = 0. Indeed,
if we pick local coordinates near OM with dy = U and (9;),;>1 parallel to OM,
then we can see that in highest order —A¢ = 93¢+ D i1 Do =09 = %(E,;d))
since all tangential derivatives of ¢ vanish. Hence we can express this boundary
term as the restriction ®|opr = A¢ + %(ﬁgqﬁ) of a function ® € C*(M) given
by first derivatives of ¢ near OM, multiplied with a cutoff function. Given any
e > 0 we can choose this cutoff function such that |[|®] .+ < €| @|ly2.0- and
1]yy10x < Cell@llyp2ps with a constant C. depending on £ > 0. (To achieve
this we multiply a given extension ® by a cutoff function ¢ and use the estimate
1K@ 1o < CI¢NLal|® |10+, which follows from Holder and Sobolev estimates
with ¢ = n for p* < n, any ¢ > n for p* = n, and g = p* for p* < n.) With that
we obtain

/aM1/)(A¢+ a%(ﬁfxb))‘ = ‘/Md*(qp LD g(i,-)

< Co (Il ol @llwros + [ llwrel|®]l o)
< (ellllwrr + C2lIPl L) 18]l w=.-




and hence for all ¢ € Cg°(M)

[ 2o+ 80| < (Coll bl -+ CUllr -+l |6

Now the estimate for the Dirichlet problem in case & = 2 of Theorem D.2’
directly implies

L5l e < C(Coll A¢llw-10 + CLP Lo + elltllwn).

Finally, we pick a generating set of tangential vector fields X; and sum over all
estimates for Lx ;1 and L3 to obtain

[Ullwre < C(I10llze + 1L6% ]| + 3511 Lx, ]| 2r)
< CE)(1A¢lw-re +[1Yllr) + el lwrn

with some constant C(g) depending on a free choice of ¢ > 0. Now picking

€= % and rearranging the inequality proves the theorem. a

Proof of Theorem 2.3’ :

In case k > 2 this theorem follows directly from Theorems 2.2 and 2.3 by duality:
Every ¢ € C*°(M) can be written as ¢ = At + ¢4, where ¢y = (VoILM)™! [ ¢
and ¢ € C°(M) such that ||¢]|yrer < C'||¢p — cgllyyr—2.+ for some constant
C’. In case k = 1 this follows from Theorems 1.5 and 2.3”. Now let ¢ :=
(Vol M)~! (u, 1), then we obtain

(=i}l = Wu=e,o—co)l = [(w, B0} —c [y B] = [(F, 0]
< I lw-solldllwess < C1flw-sn(I6llws-oe +] fu )
< Olfllw-rsll@llwn—2p-
Here the new constant C' arises from | fM (;5‘ =1{$, 1) ] < || dllywrr—z20° | 1|[yy2r-

Since the above estimate holds for all ¢ € C>°(M ), it proves that u—c and hence
also u lie in (WH=27"(M))" = W—F+2P()M) with

lullwa-rr < llu—cllwa-rr + llellwz-rr

< Cllfllw-rw + (VoL M) H[1[lywz-rn| (ue, 1) 1. 0

In Theorem 4.7, the closedness of im D was shown by hiding the required
estimate in a seemingly obvious functional analytic statement. However, the
sum ker Vi. ©im Vg C LT (M,T*M @ E) of the two closed subspaces on page
65 is closed only if we can establish an estimate |Vg«ul|g« < C||7 4+ Vgrul| g+ for
all 7 € ker Vi.. That is, we require an estimate || Vg-ullg- < C||V. Vgrully-1.4,
which will follow from Theorem 2.3”. However, this estimate allows to drop all
direct sum considerations and we are left with a much shorter proof.




Proof of Theorem 4.7’ :
We begin by deducing that im D is closed from Lemma E.3 (i), the compactness
of the embedding W9 — L9 and the estimate for all u € W14(M, E)

lullwra < C(IDullw-1s + [ully)-

If V is the trivial connection on a trivial bundle E, then Du = Auw for all
u € C°(M, E), and hence the estimate follows from Theorem 2.3” for the W14-
closure of C3°(M, E), i.e. for all w € W14(M, E). For nontrivial bundles we use
local trivializations and cutoff functions, and nontrivial connections introduce
lower order terms. All of these can be estimated by the lower order term ||ullq.
This finishes the proof of closedness of im D.

Now we proceed as in the original proof: Let u € ker D, then lemma 4.1
asserts for all 1 € W24 (M, F)

— V'Vu(y) = /M<WA*W> - /M<u,V*Vz/J>+/8M<u,VV¢>.

Thus (u,u|an) € (im D)+ with the operator D of theorem 4.6 for p = ¢*, and
this implies that v € H°(M, V). On the other hand every horizontal section
obviously lies in the kernel of D, so ker D = H°(M, V) and this is of finite
dimension as before in theorem 4.6.
The same argument can be used to show that (im D) = HO(M,V): Let
€ (im D)t ¢ Wh' (M, E), i.e. Dip(u) = 0 for all ¢p € WH4(M, E). Then for
all » € W24(M, E) by lemma 4.1

0 = V'Vih(u) = /M<V¢/\*Vu) _ /M<u,V*V¢>+/8M<u,VV¢>.

This shows (u,u|anr) € (im D)+ with p = ¢, and thus theorem 4.6 asserts that
u € HO(M, V). Conversely, every u € HY(M, V) satisfies

Dyp(u) = /M<V1/)/\*Vu> =0

for all ¢y € WH9(M, E). So we have established (im D) = H(M, V). Since
im D is closed, the quotient norm is well defined on the cokernel W1 (M, E)/im D
and makes it a Banach space. The cokernel has the same dimension as its dual
space, which is isomorphic to (im D). Thus codimim D = dim H(M,V) =
dim ker D proving the Fredholm property and index 0 of D.

To determine the image of D explicitly note that im D Cim V’ since V maps
Wh4(M, E) to LY(M,T*M ® E). On the other hand, by the deﬁnltlon of V'
one has im V/, € H(M, V) = (im D)+ =im D. Hence indeed im D = im %
as claimed. o

Finally, we correct some more missing boundary terms in a partial integra-
tion. These were only missing in the case k > 1 for a € WP (M, T*M).



Proof of Theorem 5.3 (i)

Let o € C*°(M, T*M) be an LP-approximating sequence for a such that o = 0
in a neighbourhood of M. Then one obtains for all ¢ € 7

/ a(X)-A¢ = lim dexa” - de
M M

V—00

= lim. <—/M<a”,Lxd¢>—/M<a”,divX~d¢>
—|—/M<Lya,,ﬁxg,d¢>—/M<dOéu,LXQ/\d¢>)
~ (—/M<a”,d(ﬁx¢)>—/M<0‘Ua a*(1xg A dg))
+/ { (1o Lxg — divX -a”), d¢>)
—— [ todex) - [ (o dlxgndo)

/ d* Lyaﬁxg — divX - a) ¢> —|—/ *(Lyaﬁxg — divX-a) 0
oM

:/ (=fi—fo+d" (vuLxg — divX -a)) ¢ —|—/ (Lxg(Ya,v) — divX -a(v) —h) - ¢
M oM

Here we used Cartan’s formula £Lxa = dexa + txda, and the vector field Yy, is
given by vy, g = a. In case 7 = C§°(M) the boundary vanishes and we obtain
regularity and estimates for «(X) as before. In case 7 = C°(M) the above
calculation shows that a(X) is a weak solution of the inhomogenous Neumann
problem (3.4) for f € W*~1L.P(M) as before and with the boundary condition

h—Lxg(Yo,v)+divX -a(v) € Wg’p(M).
So the regularity theorem 3.2 asserts that a(X) € W**+1P(M) with the estimate
(X ) [prsre < C(H—fl — fo+d* (LyaEXg — divX - a)HW,C,LP
7 = £x9(Ya,v) +divX - ) yes)
< C(IAllwer-rw + [ fllwe-re + [1Bllyrs + ladlwrs).

Again, in the first estimate, the constant from theorem 3.2 depends continuously
on the metric in the W**°-topology, but in the second inequality, the derivatives
of g and X lead to continuous W**+1:>_dependence of the constant on the metric
and the vector field.
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