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Abstract

We consider finite energy surfaces
i: (S,5) = (Rx M,J)

in the symplectization of a contact manifold M. These are used by H. Hofer,
K. Wysocki and E. Zehnder in order to prove results about periodic orbits
of the Reeb vector field. In this work, we investigate closely two details of
this theory.

The first is the Conley-Zehnder index for nondegenerate arcs in the sym-
plectic linear group Sp(n). We prove in detail some topological properties
of Sp(n). For these, we only found sketchy or partially wrong proofs in the
literature. Using these properties, we prove that the Conley-Zehnder index
is uniquely defined by some natural set of axioms. In [13], a way was men-
tioned to define this index via the spectral flow of some asymptotic operator.
In the main part of this work, we explicitly carry out this construction and
prove that it meets the axioms defining the Conley-Zehnder index. We then
compare this spectral flow description to an other construction of the index
in [15], where some winding numbers are used for this purpose. In the generic
case, we can trace back both above constructions to counting intersections
with some Maslov cycle (yet another definition of the Conley-Zehnder index,
introduced in [18]), and we give some idea about what actually happens for
the different constructions at the intersection points.

The second detail of the theory of finite energy surfaces in symplectiza-
tions that we worked at, is the construction of a trivialization

d: SxB(0)) > Rx M
of a tubular neighbourhood of the finite energy surface i(S) C Rx M, where
4 is assumed to be an embedding. We generalize the concerning result in
[12] to immersions % and carry out in detail some small parts of the proof
that were left vague in the current preprint.



Acknowledgements

I would like to thank my supervisors, Dr. Markus Kriener and Prof. Eduard
Zehnder for the interesting topic and their willingness to answer all my ques-
tions.

I am also grateful to a number of people without whom writing this
diploma thesis would have been much harder and less joyful: Meike Akveld
made her way through all my dreadful notation when proofreading the
manuscript, and I had a lot of fruitful discussions with her; Fred Hamprecht
was a great help for WTEX and life in general; Torsten Linnemann gave me
his earlier results of a literature research on the spectral flow definition of
the Conley-Zehnder index; Prof. Kris Wysocki explained to me several parts
of his preprint and gave all kind of useful advice.

Finally, I would like to thank Prof. Helmut Hofer and Prof. Oswald
Riemenschneider for their interest in my going on.



Contents

1 Finite energy surfaces in symplectizations

2 The Conley-Zehnder index

2.1 Imtroduction. . ... ... ... .. ...
2.1.1 The symplectic linear group . . . . . . . .. ... ...
2.1.2 The axiomatic definition . . . . . . . .. ... ... ..

2.2 The spectral flow description . . . . .. ... ... ... ...
2.2.1 Kato’s perturbation theory . . . ... ... ... ...
2.2.2  Perturbation theory for the asymptotic operator
2.2.3 The spectrum bundle . . . . ... ... ... ...,
224 Proofof pcz = prspec - - - - - - - oL

2.3 The winding interval description for (1) . . ... ... ...

3 Special coordinates near generalized finite energy surfaces

Bibliography

13
13
14
29
33
37
42
48
53
64

75

95



Chapter 1

Finite energy surfaces in
symplectizations

In this chapter we give a short introduction to the dynamics on contact
manifolds and we describe how so-called finite energy surfaces in the sym-
plectization of a contact manifold are related to the contact dynamics on
the manifold.

We consider a closed, oriented 3-manifold M. A 1-form X on M is called
a contact form if A A dX is a volume form. This volume form induces an
orientation on M, and the contact form is called positive if this orienta-
tion coincides with the given one of M, or negative if this is the reversed
orientation. In the following we will only consider positive contact forms.

By a theorem of Martinet ([16] Thm.5.1), the existence of a positive
contact structure is guaranteed for closed oriented 3-manifolds.

Since A can not be identically zero in any point of the manifold, there
is a 2-dimensional vectorbundle, the contact structure £ := ker X, associated
with the contact form. Again because of the nondegeneracy condition on
A A dA, the skew symmetric form d\ has to be nondegenerate on each fibre
&m = ker A\, and hence defines a nondegenerate 2-form on the vector bundle
& — M. In addition, kerd\ C T M is 1-dimensional and hence defines a line
bundle [ that is transversal to £&. A preferred section of this line bundle is
the Reeb vector field X, defined by

ixdA=0 and AMX) =1. (1.1)
Hence the contact form A on M defines a natural splitting
M = (I, X) & (§dX)

of the tangent bundle TM into a line bundle [ —+ M with the preferred sec-
tion X and a plane bundle ¢ -+ M with the preferred nondegenerate 2-form



di.

The Reeb vector field has no singular points, so the natural objects to
study are the periodic orbits generated by the flow of this vector field. The
existence of such periodic orbits in the contact manifold is connected with
the existence of so-called finite energy surfaces in the symplectization of the
manifold, which we will define next.

A symplectic vector bundle (E,w) over a manifold M is a real vector
bundle £ — M, which is provided with a smooth nondegenerate section w
of E*AE*. This symplectic form w provides a nondegenerate skew-symmetric
bilinear form w,, on each fibre E,,, varying smoothly with m € M. Note
that due to the nondegeneracy condition on w, the vector bundle F has to
be of even dimension, and it can be given some almost complex structure:

An almost complex structure on a vector bundle E — M is a vector
bundle isomorphism J : E — E satisfying J? = —1. Moreover, it is said to
be compatible with a symplectic form w on E if

gs(a,b) = w(a, Jub)

for a,b € E,, defines a positive definite inner product on each fibre E,,. For
fixed (E,w), the space J(E,w) of such compatible almost complex struc-
tures is nonempty and contractible ([17] Proposition 2.61).

Applying these definitions to the above situation, we note that (£,d\)
is a symplectic vector bundle with a distinguished class J(§,d\) of almost
complex structures J : £ — £, compatible with d) in the sense that

gs(a,b) = d\y(a, J,b)

for a,b € &, defines a positive definite inner product on each fibre &,,.
Choos:ing a fixed J € J(&,d)\), we can now define an almost complex struc-
ture J on the four manifold R x M (i.e. on its tangent bundle) by

J(a,m) (a,k) = (=M (k) , X (m) + Jpm(k)),

for (a, k) € Tigm) (R x M) = T,R x T, M where (k) = k — A(k)X is the
pointwise projection of T'M onto £ along X. This J is called the special
almost complex structure on R x M associated with J. According to propo-
sition 2.61 in [17], this almost complex structure suffices to make T'(R x M)
into a symplectic vector bundle, i.e. there exists a symplectic form 2 on
T(R x M) that is compatible with J in the above sense. We then call the
symplectic vector bundle (T'(R x M), 2) the symplectization of the contact
manifold (M, ).

Furthermore, associated with J there is a natural Riemannian metric on
R x M, defined by

(o, k), (B, 1))y = - B+ Am(K) - Am(h) + g1 (mk, wh) (1.2)



for all (o, k), (B, h) € T(qm)(R x M), inducing the norm

1
(., B)]s := (e, ), (. k) -

Note that (-,-); is invariant under J: for all (o, k), (8,h) € Tiam)(R x M)

we have

<j(aam)(a’ k)a j(a’m)(ﬁ, h)>J
, aX(m )+Jm7rk),(— m(h), BX(m) + Jpwh))

= (=Am(k) - (=Am(h)) + Am(@X (m)) - An(BX (m)) + g5 (Jmmk, Jm7h)
= An(k)  An(h) + - B+ d\( Tk, Jhh)

= a B+ Am(k) - Am(h) + dX(h, T k)

= a- B+ An(k) - An(h) + gs(mh, k)

= <(Ol, k)’ (/85 h))J

Next, let (S, j) be a compact Riemannian surface with an almost complex
structure j. Then by [17] Thm.4.16, j is integrable (and hence a complex
structure), i.e. there is an atlas of S into C such that j is represented in
local coordinates by multiplication with 7. We will call such coordinates
holomorphic.

Furthermore, let I' C S be a finite, nonempty set of so-called punctures,
then we call S := S\ I a punctured Riemannian surface.

We are now in a position to define finite energy surfaces at least in the
special case of a special almost complex structure given on R x M.

Definition 1.1 A special finite energy surface is a nonconstant smooth
map defined on a punctured Riemannian surface S,

i=(a,u) : $ =R xM,
that is pseudoholomorphic, i.e. a solution of
VzeS: J(ii(2)) o Tyi = Tyii 0 j(2), (1.3)

and has finite energy E(4) < oo. Here J is a given special almost complex
structure on R X M and the energy E(a) is defined to be

E(a) :sup{/sﬂ*d)\d, | ¢ € E},

peX={peCR,[0,1])]¢ >0}
a 1-form Ay on R x M is given by

)\tﬁ(a’ m) (O" k) = ¢(a) ) )‘m(k)

where for all



Now we consider a special finite energy surface @ : (5,7) = (R x M,.J)
for a given special almost complex structure J on R x M.
Near every puncture z; € I' we find holomorphic coordinates on an open
disk B,.(0) C C,
h:B,(0) = D; C S,

such that h(0) = z;. We then make a holomorphic transformation to de-
scribe the neighbourhood of the puncture in cylindrical holomorphic coor-
dinates .

o: (sg,00) xR/Z — Dj\{z}CS

(s,8) > h(e2n(sti) (1.4)

This maps onto the open punctured disk D; := D;\{z;} around z; such that
lims_y 00 0(8,t) = 2; for all t € R/Z = S'. Furthermore, o is holomorphic in
the sense that
Too Jy=j(o)oTo, (1.5)

where Jj is the almost complex structure on (sg,00) x St i.e. Jy = ((1] _01)
with respect to the basis (2, 2) of T((s,00) x S?) .

Hence in these coordinates, writing again @ for @ o o, the differential
equation (1.3) is equivalent to

J (@) s = i, (1.6)
or more explicitly :
—XMus) = ay,
as = )\(ut)a (17)
J(u)mus = wug,

where we write u, for Tu %.

In fact, by restricting @ to the cylinder (sg,00) x S! with the complex
structure Jy, we again obtain a special finite energy surface (see e.g. [9] §6).
For this part of the original finite energy surface we can now formulate the
main theorem concerning the connection between finite energy surfaces and
periodic orbits of the Reeb vector field, that was proven in [8] and extended
in [10].

Theorem 1.2 ([10] Thm.1.2 )
Let @ = (a,u) : (sg,00) x S' — R x M be a special finite energy surface.
Then the limit

T := lim u(s, )" A

S§—0Q Sl
exists and the following holds.

1

(i) If T = 0, then the corresponding curve oo~ on D can be extended

smoothly to D, where o is defined as in (1.4).



(i) If T # 0, then there exists a |T'|-periodic orbit z of the Reeb vector field
such that @ converges to this asymptotic orbit in the following sense:

lim u(sg,-) = z(T")

§—r0Q

in C*®(S1) for some sequence s — 0o, and for all t € S*

lim al(s,t)
s—00 8

=1T.

(iii) If T # 0 and the asymptotic orbit x is nondegenerate, then wu(s,-)
converges to a parametrization of x, i.e. we have

lim wu(s,-) = z(T")

§—00

with convergence in C®(S').

In case (i), the puncture is called removable and, by a theorem of Gromov
[5], it can be removed in such a way that the extended curve is still pseu-
doholomorphic. Hence we can in the following assume that all removable
punctures have been removed.

In case (ii), the puncture is called positive or negative according to wether
T>0o0rT <0.

In case (iii), the puncture is moreover called nondegenerate. Here the
periodic orbit z is called nondegenerate, if the linearization of the flow of
the Reeb vector field along it has only one eigenvalue 1.

To be more precise, let ¢, be the flow of the Reeb vector field X satisfying
L (m) = X(¢¢(m)). The periodic orbit is then given by z(t) = ¢(o)
with ¢r(z9) = o = z(0). Since X is time-independent we conclude from
¢s © Pt = Pstt that

dge X = X(¢r)-

Furthermore, using the defining properties (1.1) of the Reeb vector field, we
obtain for allm € M and Y € T,,, M
5 Qumy (dB1(Y))) = LxA(Be(m)) ddrY = (d(ixX) +ixdA) dgrY =0,

hence if Y € &, = ker Ay, then doY € &4,y for all ¢ € R. Thus we have
seen that the splitting

TooM = RX (z0) & &y

is invariant under d¢r, and d¢r is the identity on the first component,
RX (z9). Therefore, the requirement of z being nondegenerate is equivalent
to

dor(wo) = €xo — Exo



having no eigenvalue equal to 1.
Moreover, we deduce using again (1.1), for allm € M and Y, Z € T,, M

& (g, my (e (YV),dde(2))) = LxdA(¢r(m))(dge(Y),dr(Z))
= (d(ixdA) +ixddX) (d¢(Y),d¢(Z)) = 0,

hence we have ¢;d\ = dA(¢:), and thus

dd’t(l‘O) : (fzo,d)\('TO)) - (fzﬁt(zo)’d)‘(@(m))

for t € [0,T] is an arc of symplectic maps, i.e. maps preserving the sym-
plectic structure. If we have given some symplectic trivialization of £*¢ (as
constructed e.g. in [12] §1 for the case of an asymptotic orbit of a finite
energy surface),

T(t) : (Eagryr AN(z(t) = (R?, Jo),

then this yields an arc

®: 00,1 — Sp(1)
t = U(Tt) o deri(zo) o (T(0))~t

in the symplectic group Sp(1). This arc starts at 1 since d¢o(zo) = 1, , and
ends in Sp*(1), the set of symplectic matrices having no eigenvalue equal to
1, since o(®(1)) = o(2(0) o dbr(zo) o (¥(0))~") = o(der(z0)).

The sets Sp(1) and Sp*(1) will be discussed in chapter 2, where we then
introduce the Conley-Zehnder index that is attached to nondegenerate or-
bits via these arcs of symplectic matrices.

For further development of the theory of pseudoholomorphic curves in
[13] and [12], one needs a more general form of the almost complex structure
on the symplectization R x M. It will not be R-invariant anymore, but in-
terpolate between two special almost complex structures that are associated
to different contact forms on M.

Let a contact form A on M and two smooth functions g,h : M — (0, c0)
with h < g be given. We then find a smooth function f: R x M — (0, 00)
satisfying for some 0 < a1 < ap < o0

fla,u) = h(u) for all a < —ay, fla,u) = g(u) for alla > ag,

%(a,u) >0 forall(a,u) eRx M

and

of

B—(a,u) >0 >0 forall(a,u) € (—a1,a1) X M.
a

10



The family of contact forms A, = f(a,-)\ interpolates between hA and g\,
and the closed 2-form

Q:=d(fA) = ZdaArr+ f-dr

defines a symplectic form on (—aq,a1) x M.
We observe that the contact structure associated to A, is idependent of
a and that because of

dAal{ = df(a'a )|§ N )“‘f + f(a” ) dA|§ = f(a'v ) d’\|§

the set J (&, Ay) is also independent of a. Only the Reeb vector fields X,
and projections 7, along them to ¢ vary with a.

Moreover, we can choose an arc R > a +— J, € J(& ) = J(&, ) of
compatible almost complex structures on (&, \,) satisfying

Jo=J 4, foralla< —ay and J, =J, foralla> ayg.

A generalized almost complez structure on R x M is now defined to be
an almost complex structure J on R x M that is compatible with £ and
equals the given special almost complex structures on (—o00,—a1) X M and
(a1,00) x M. That is, we have J € J(R x M, Q) satisfying
J(a,m)(a, k) = (=Aa(m)(k) , aXo(m) + Jo(m)mek)
for all a € R\ [~ay,a1], m € M and (a,k) € Tgm)(R x M).
Note that the generalized almost complex structure is R-invariant for
a>ag:
J(a,m)(a, k) = (—Aag (k) s @Xag(m) + Jag (M)Taek ),
and analogously for a < —ayg.
Finally we can define the following.

Definition 1.3 A generalized finite energy surface is a nonconstant
smooth map defined on a punctured Riemannian surface S,

i=(a,u) : § > RxM,
that is a solution of

VzeS: J(@(2)) o Tyt = Ty o j(2),

and has finite energy E(ﬂ) < o0. Here J is a given generalized almost
complex structure on R x M and the modified energy E(a) is defined to be

E(q) :sup{/sﬂ*d)\¢ | p € XAJ},

where

S={peC®R,[0,1]) | ¢ >0 and ¢|[_a; 0] = 5}-

11



As in the special case, we only consider a neighbourhood of one puncture
of the finite energy surface, on which we introduce the cylindrical coordinates
(1.4). The restriction of @ to this neighbourhood is again a generalized finite
energy surface. It can in fact even be viewed as a special finite energy surface
in a sufficiently small neighbourhood of the puncture: the following theorem
has been proved in [13] for the case of the contact manifold M being the
three sphere, but it does also hold in the general case.

Theorem 1.4 ([13] Thm.4.6)
Let @ = (a,u) : (s9,00) x S' — Rx M be a generalized finite energy surface.
Then the limait

T := lim u(s,-)* A

§—00 S1

exists and the following holds.

(i) If T = 0, then the corresponding curve o o~' on D can be eztended
smoothly to D, where o is defined as in (1.4).

(i) If T <0 or T > 0, then

a(s,t) =¥ —o0 or oo

respectively, for all t € S*.

In case (i), the puncture is — as in the special case — removable, and
we do not consider this case as a genuine puncture.

In case (ii), if we choose s sufficiently large, for the negative (T' < 0) or
positive (T' > 0) case we have a(s,t) < —ag or a(s,t) > ag respectively, on
all of the cylinder (sg,00) x S'. Thus the considered finite energy surface
lies completely within an area of R x M, where J is identical to the special
almost complex structure associated to A_g; = hA or Ay, = gA respectively.

Therefore, near a puncture, the generalized finite energy surface % can be
viewed as a special finite energy surface with respect to (M, h)) or (M, g)\)
for a negative or positive puncture respectively. Thus all results on spe-
cial finite energy surfaces near the punctures generalize to generalized finite
energy surfaces.

In chapter 3 we will make one step towards a Fredholm theory for pseu-
doholomorphic curves (see [12]), by constructing special coordinates in the
tubular neighbourhood of a generalized finite energy surface. Due to above
considerations we can for this purpose always assume that near the punc-
tures, the above identification with the case of a special finite energy surface
has already been made, thus writing A instead of hA or gA.

12



Chapter 2

The Conley-Zehnder index

The Conley-Zehnder index is of some importance in the investigation of finite
energy surfaces and their asymptotic orbits. It assigns an integer to each
arc of symplectic matrices that fulfills a certain nondegeneracy condition.
Such an arc is obtained, for instance, by linearizing the flow of a given
Hamiltonian vector field along a nondegenerate periodic orbit (see e.g. [9]
or chapter 1).

In this chapter we will only be concerned with the definition of the
Conley-Zehnder index for a given symplectic arc. It can be defined ax-
iomatically as presented in 2.1.2, but for applications one needs an explicit
construction. There are several such descriptions. In 2.2 we will present in
full detail the construction using the spectral flow of an asymptotic opera-
tor. In 2.3 we introduce a more geometric approach to the Conley-Zehnder
index in dimension 2, and we will describe how this geometric construction
relates to the spectral flow description.

2.1 Introduction

We equip R?" with the canonical symplectic form w which is defined by
w(z,y) = (x, Jy) for all z,y € R?", where (-,-) denotes the scalar product

and
0 -1
7= (3 70)
is the canonical almost complex structure ! on R??. The objects of consider-
ation will be arcs in the set of real symplectic matrices. The latter is defined
as the set of linear maps on R?” that preserve the symplectic structure,
Sp(n) = {®€ R*™ | Vg, yec R¥™: w(®z,dy) = w(z,y)}
= {®cR™ | 3T J0 = J}.

'In the other chapters, J is denoted by Jo, since it has to be distinguished from a
number of other almost complex structures

13



We will show in the next section that this is actually a group, and before
we define the Conley-Zehnder index in 2.1.2, we need to obtain some infor-
mation about the topology of this group that is also called the symplectic
linear group.

2.1.1 The symplectic linear group

First note that obviously J© = —J = J~!. Next, in the operator norm we
have ||J|| = 1 since for z € R?"

1Tzl = (Jz, Jz) = (z, T Jz) = ||| (2.1)

Furthermore, the eigenvalues of J are +i. Indeed, (2.1) implies that the
eigenvalues must have absolute value 1. For an eigenvector z € C?" \ {0}
with eigenvalue A\ we have

Mz, z) = (Jr,z) = (z,—Jz) = =Xz, ),

where (-,-) is the Hermitian scalar product on C?" . Hence the eigenvalues
also have to be purely imaginary. By lemma 1.14 in [17], the determinant
of a symplectic matrix is 1. Moreover, note that the inverse of ® € Sp(n) is
explicitly represented by

ot =—Joly (2.2)

since

Tjp=J — -—-JdTjo=1.

Using this we deduce that for symplectic ® also ®7 is symplectic:

1 = —Jgoly
= (@)1 = —JoJ
= J = ®JoT.

Furthermore, products and inverses of symplectic matrices are themselves
symplectic as can be seen directly from the definition. It is also useful to
know that symplectic matrices have a unique polar decomposition.

Proposition 2.1 For all A € Sp(n) there exists a unique symmetric, posi-
tive definite P € Sp(n) and a unique U € Sp(n)NO(2n), such that A = PU.
Furthermore, this decomposition is continuous in A.

Proof: Obviously for A symplectic, AAT is also symplectic and in addition
symmetric and positive definite. The latter holds since AT is nondegenerate

and thus for all z € R?" \ {0} we have

(z, AATz) = |ATz|> > 0.

14



So because of its symmetry, AAT can be diagonalized orthonormally,
AAT = ST diag(A1,..., hon) S

with S € SO(2n) and positive eigenvalues Ay,..., X2, € RT due to AAT
being positive definite. Now define

P = (AAT)2 = ST diag(v/ M1, -, v/ Aon) S

which obviously is symmetric and positive definite. Furthermore, lemma
2.19 in [17] says that any real power of a positive definite, symmetric and
symplectic matrix is itself symplectic. So we also have P € Sp(n).

Next, note that U := P~ A is symplectic since inverses and products of
symplectic matrices are again symplectic. Finally, U is also orthogonal:

UTU = AT(PH)TP 1A= AT(P71)2A = AT(AAT) 1A =1

Thus U and P have the required properties and obviously fulfill 1~4~: PU.
To show the uniqueness of this decomposition let A = PU = PU be two
such decompositions and obtain

P'p=pPtAUT =UUT
= PP '=(P'P)"=wU")" =0 = (P 'P)"' =P'P
= P?=p2

But P and P are both symmetric and positive definite, so we can deduce
that P = P: Symmetric matrices can be diagonalized orthonormally, so
there exists an orthonormal basis of eigenvectors of P. Now P? has the same
eigenvectors as P, only with the eigenvalues squared. As the same holds for
P it follows from P? = P? that the eigenspaces and squared eigenvalues of
P and P are the same. But since they are in addition both positive definite,
the eigenvalues are positive and thus identical, that is P = P. Now we also
get UUT = P='P = 1, hence U = U so the decomposition is unique.

For the continuity first consider P = ST diag(v/A1,...,vX2,) S. First of
all, AAT is of course continuous in A. Next, the eigenvalues \; of AAT are
continuous since they are the solutions of det(AAT — A1) = 0. In addition,
we obtain a continuous orthonormal basis of eigenvectors by solving for
i =1,...,2n the equation (AAT — \;1)z = 0 for x. Knowing finally that the
eigenvectors constitute S we deduce that P is continuous. Now using (2.2)
we find that P~' = —JP7J is continuous and thus also U = P! A. O

So a given symplectic arc ® € C([0,1], Sp(n)) is decomposed into con-
tinuous arcs P(t) and U(t) of symplectic, symmetric, positive definite and
symplectic, orthogonal matrices respectively. Now the P-part can be con-
tracted to the identity.

15



Lemma 2.2 The set of symplectic, symmetric and positive definite matrices
is contractible.

Proof: Let P: S — R?"%2" be a continuous loop of symmetric, symplectic
and positive definite matrices. Because of its symmetry it can be written as
in the proof of proposition 2.1,

P(t) = S(t)"diag(M1(t), - - -, A2n(2))S(2)

with continuous arcs of orthonormal matrices S and positive eigenvalues \;,
1 =1,...,2n. From this representation we can construct a homotopy,

B(s,t) := S(t)Tdiag( A1 (£) %, ..., Aan (£)1°)S(2),

between B(0,t) = P(t) and B(1,t) = 1. Obviously, B is continuous in s
and t, it is symmetric and positive definite everywhere and by lemma 2.19
in [17] it is also symplectic. O

So every loop @ in Sp(n) is homotopic to the loop
(@3T) 2 @ : ST — Sp(n) N O(2n) = U(n).

For the last isomorphism see [17], lemma 2.17. It states that

©: Sp(n)Nn0O(2n) — U(n) (2.3)
(); _};) = X +4Y

is a bijection and that in particular Sp(n) N O(2n) consists of matrices of
the above form. This shows that Sp(n) can be retracted to U(n) which is
well known to be connected, hence Sp(n) is connected as well. Using this
retraction we can also determine the fundamental group of Sp(n).

Proposition 2.3
p: Sp(n) — S
® s det @((cI@T)—% ®)
induces an isomorphism of the fundamental groups
71(Sp(n)) = m (St = Z.

Proof: 'We have seen above that any loop in Sp(n) is homotopic to a loop
in U(n), that is

Sp(n) — U(n)
o @(((I)(I)T)’%é)

16



induces an isomorphism 7 (Sp(n)) = 71 (U(n)). Then by proposition 2.21
in [17] we also know that 71(U(n)) is isomorphic to m1(S) = Z via the
determinant map. O

In the following all loops will be parametrized by St = R/Z. Further-
more, we identify Sp(1) C Sp(n) via (R2,J;) = span(er,e,q1) C (R?,J)
where (e;)i=1,..2n is the canonical basis of R?". Here the almost complex
structure J; on R? is identified with

( 2 _é ) where I = diag(1,0,...,0) € R™*"™.
Remark 2.4 71(Sp(n)) is generated by
I(t)=e"1 o1

with 1 € R2=Dx2(n=1) =~ gpan(ey, ..., en,ento,-- -, €m)-

Proof: First note that

1
R A Zyakjk

k=0 "
1 =1

_ 2% (_1\k 2%+1_\k

- Z(%)!“ =D +Z(2k+1)10‘ (=17
k=0 k=0

= cos(a)l + sin(a)J. (2.4)

From this representation we immediately see that e’ is symplectic for any
real «, so I' actually is a loop in Sp(n).
Since I'(t)T = e=2™/1 @ 1 = I'(¢)~! we obtain

TOLHT) 2T =T() = ( v x )
with

X(t) = diag(cos(2nt),1,...,1),
Y(t) = diag(sin(27t),0,...,0).

So applying the map p of proposition 2.3 to T" yields
p(T(t)) = det(X (t) + 1Y (t)) = cos(27t) + isin(2nt) = >

which is the standard generator of 71(S'). Now p induces an isomorphism
of fundamental groups, hence I' generates w1 (Sp(n)). |

An explicit isomorphism 71 (Sp(n)) — Z, i.e. a homotopy invariant index
for loops in Sp(n), is given by the Maslov index.
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Theorem 2.5 ([17] Thm. 2.27)

There exists a unique functor m, called the Maslov index, which assigns
an integer m(®) to every symplectic loop ® : R/Z — Sp(n) and satisfies the
following azioms:

(i) Two loops in Sp(n) are homotopic if and only if they have the same
Maslov index.

(i1) For any two loops ®,¥ : R/Z — Sp(n)

m(®T) = m(®) + m(7).

(113) If n =k +1 identify Sp(k) ® Sp(l) in the obvious way with a subgroup
of Sp(n). Then for any ® : R/Z — Sp(k), ¥ : R/Z — Sp(l)

m(® @ V) = m(P) + m(T).
(iv) The loop ® : R/Z — U(1) C Sp(n),t — €™ has Maslov index 1.

The Maslov index of a symplectic loop @ is given explicitly by the wind-
ing number around 0 of p(®(¢)) . This is equivalent to normalizing the
isomorphism of proposition 2.3 by m(I') = 1 where I' is the generator of
71(Sp(n)) given by remark 2.4.

Remark 2.6 Let ®,(t) = e*™ € 3(1) for any w € Z, that is ® = wr,
then
m(®,) = w.

Proof: This is deduced easily from the defining properties of the Maslov
index. Indeed, for w = 0,

m() @ () +m(l) = m1)=0

and for w € Z* — noting that J; 2 ias R?=C —

m(e2m W) @, m(e?mt1) @,

e27rwt.] 1 )

and hence for w € Z~ we also have m( = w since

0= m(]l) (2) m(emrthl) + m(e%r(—w)tJl) — m(e%rthl) _w.
O

One wishes to define an index not only for loops but also for arcs not
ending at the identity. Since Sp(n) is connected and we want the index to be
invariant under homotopies (not necessarily with fixed endpoints), we need
to restrict the set of arcs considered; otherwise all arcs would be homotopic
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to the constant arc and hence have the same index. This restriction is done
by introducing the set of nondegenerate symplectic matrices which do not
have 1 in their spectrum,

Sp*(n) = {® € Sp(n)|det(® — 1) # 0}.
Proposition 2.7 Sp*(n) has two connected components,
Spt(n) = {® e Sp(n)|det(® — 1) > 0},
Sp~(n) = {® € Sp(n)|det(® — 1) < 0}
and we have

wt = -1 € Spt(n),

W diag(2,—1,...,-1,4,—-1,...,—1) € Sp (n).

For the proof we need the following generalization of lemma 2.18 from [17].
Lemma 2.8 Let ¥ € Sp(n). Then
Aeo(l) <= Xleog(D)

and the algebraic multiplicities of X and A\~ agree. If +1 is an eigenvalue
of U then it occurs with even multiplicity. Moreover, let

By = | ker(@ — AD)F c C*"
keN

be the generalized complex eigenspace for A € o(¥), then for \u # 1 the
eigenspaces Ey and E, are w-orthogonal, that is

Vye Ex,z€ E, : w(y,z) =0.
Proof: TFor the first statement note that U7 and U~! are similar by (2.2):
vl = gul g1,

hence the characteristic polynomials of ¥ and ¥~ ! are identical. On the
other hand we have

(T-XNrz=0 <o (A1 HRW - Nrz=(-A1+T D=0,

thus ker(¥ — A\)¥ = ker(T~! — A"1)* for any ¥ € N and A € C*, hence
E) and E,-1 are of the same dimension. So the product of all eigenvalues
except for +1 — repeated according to their multiplicity — equals 1 and
the total multiplicity of these eigenvalues is even. Since the determinant,
that is the product of all eigenvalues, of a symplectic matrix is 1, it follows
that if —1 is an eigenvalue, then it occurs with even multiplicity. Hence the
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total multiplicity of eigenvalues not equal to 1 is even and since the space is
of even dimension, obviously 1 has to occur with even multiplicity as well.

The second statement is lemma 1.3 in [3]. We repeat the proof here for
convenience. Let Ef = ker(¥ — A\)¥, then since E2" = E, it suffices to prove
that w(E’)f,EL) = 0 for all £,/ > 0, which will be done by induction with
respect to m = k +1. For m = 0 we have k = = 0 and E} = Ej) = {0},
so the statement is trivial. Now assume w(E¥, EL) =0 for all k£, < m and
consider any y € E’)f, z € EL with k+1 = m+1. Weset y! := (I—\)y € E’;_l
and 2! == (U — p)z € EL_I, where E; ' := {0}, and obtain because of ¥
being symplectic

w(Aya MZ) = w(\Py - y17 Uz — zl)
w(ya Z) - w(\IJy,zl) —w(yl,\:[lz) + w(ylazl)
= w(ya Z) _w()‘yazl) _w(ylauz) _w(ylazl)

The last three terms vanish by the induction hypothesis and hence

(A —1) w(y,z) =0
wich proves that w(E’)f,EL) =0 for \p # 1. O

Proof of proposition 2.7: SpT(n) and Sp~(n) are disjoint components of
Sp*(n) since ® — det(® — 1) is continuous. One also easily checks that
W+ € Sp*(n), so it remains to be shown that any matrix in Sp*(n) can
within this space be connected to either W or W~. Following [3] we first
prove that any A € Sp*(n) can be connected in Sp*(n) to a matrix with 2n
distinct eigenvalues.

Let A be a degenerate eigenvalue of A. Since A is symplectic (hence
det(A) = 1) and nondegenerate, we have A\ ¢ {0,1}. Furthermore, X is
an eigenvalue of A with the same algebraic multiplicity as A because of A
being a real matrix, and from lemma 2.8 we know that A~! and 2 also
are eigenvalues of A with again the same algebraic multiplicity as A\. We
will show that A can be connected in Sp*(n) to a matrix A such that the
dimensions of E), Ey, E)-1 and EX—I decrease by at least one, there are
some new eigenvalues of multiplicity 1 and the rest of the spectrum of A
remains unchanged. The claim then follows by repeating this construction
several times for every eigenspace until there are no degeneracies left.

There are several cases to consider corresponding to whether some of
A, A_l,XA are the same. Generally, we have C*" = E @ F with

E = Ex+ E;+ Ex-1 + Ex1, F= P E.

pe€a(A)

pENIA—LRTE

We start to construct a continuous path A : [0,1] — Sp*(n) by defining
A(s) := B(s)A for some B : [0,1] — C?**?" with B|r = 1. For E, we will

20



in each of the subsequent cases construct an appropriate basis (zi)z’e{l,..., N}
N = dim E and set Bz; = -;z; for some continuous, complex functions +;
meeting 7;(0) = 1, so that A(0) = A and BA is continuous with respect to
s.

Note that BA leaves E and F invariant, so for the nondegeneracy and
the change of the spectrum we only have to consider BA|g. Moreover, by
the preceding lemma, E and F' are w-orthogonal, so forany y € Fandz € E
we have w(BAy, BAz) = 0 = w(y, 2). Since BA|p = A|r is symplectic, we
obviously also have w(BAy, BAz) = w(y, z) fory,z € F, so for BA € Sp*(n)
it remains to ensure that

(i) Vi€ {1,...,N}: Bz = Bz,
so B is a real matrix (for z € F the above holds trivially since for
z€E,CFalsoze E;CF).

(i) Vi,je{l,...,N}: w(z,z;)) =0 or ;=1
since then w(Bz;, Bzj) = w(z;, 2j), so B|g and hence BA is symplectic,

(i) 1¢ o(BA|R).

Consequently, in the following cases we have to construct a basis (z;) of
E and choose the functions 7; such that (i) to (iii) are fulfilled for all s € [0, 1]
and when comparing A to B(1)A, some degeneracy of the eigenvalue A has
to be removed in such a way that some new nondegenerate eigenvalues occur.

MHxecCc\(RuUSYH
We choose any e € C?” such that Ae = Me, then because of the preced-
ing lemma and the nondegeneracy of w we find an f € E,-1 such that
w(e, f) = 1. These two vectors can be extended to bases {e,€1,...,én} and
{f, fi,... ,fm} of E) and E,-1 respectively and for the first base we can
require moreover that

VEe{l,...,m}: (A— N)éx € span(e,€1,...,€k_1)- (2.5)

Setting ey, = éx+w(f,ex)e, fr = fr—wl(e, fr)f we obtain bases {e, eq,...,en}
and {f, fi,...,fm} of Ex and E,-1 such that (2.5) still holds for the e
and for all £ € {1,...,m} we have w(e, fx) = 0 and w(f,ex) = 0. More-
over, since A is real, the above construction yields bases {€, e, ..., ey} and
{f,f1,..., fm} of Ex and Es-1 that in addition meet w(e, fr) = 0 and
w(f,ex) =0 forall k € {1,...,m}. Asbasis of E = Ex® E; ® E—1 @ E;
we now use {e,e, f, f,ex, ek, fx, fx | E = 1,...,m} and define B to be the
identity on all basis vectors except for

Be = e, BE = 7%eE,
Bf = y'f, Bf = 7'f



for some continuous + : [0,1] — C* with (0) = 1 and y(s)A ¢ o(A)URU S*
for all s € (0,1]. This obviously meets (i), and (ii) is easily checked when
keeping in mind the w-orthogonality from the previous lemma. Finally, E)
is left invariant by B(s)A for all s € [0,1] and with respect to the basis
{e,e1,...,en} we have

y(8)A  * *
0 A
B(S)A|EA = .
-
0 0 X

From the characteristic polynomial of this matrix it is clear that B(s)A|g

still has the eigenvalue A (and hence also ), /\_I,Xfl) with multiplicity m
and in addition it has the nondegenerate eigenvalues y(s)A, y(s) A, (y(s)A) 71,

7(3))\_1; they are distinct since y(s)A\ ¢ R U S!. Since these multiplicities
add up to the dimension of E, there are no other eigenvalues. Hence (iii)
holds by the choice of y and the spectrum of B(1)A is of the required form.

(II) AER \ {_13 0, 1}
First note that for 4 € R and g € E,,, that is (4 — pu)¥g = 0 for some k € N
we also have R(g), 3(g) € E, because of A being real.

We choose any real eigenvector e for the eigenvalue A of A. As in the first
case we find f € Ey1 such that w(e, f) = 1, then we have f := R(f) € Ey1
and w(e, f) = 1 since w is a real linear map. There also have to be real bases
of E, and E,-1 containing e and f respectively. Starting from these and
using the same construction as in (I) we obtain real bases {e,e1,...,en}
and {f, f1,.-., fm} of E) and E\-1, such that (2.5) holds for the e, and
for all k € {1,...,m} we have w(e, fx) = 0 and w(f,ez) = 0. As basis of
E = E'A@E;l we use {e, f,ex, fr | K = 1,...,m} and define B to be the
identity on {eg, fx | Kk =1,...,m} and on the rest of the basis

Be=ve, Bf=~"'f

for continuous 7 : [0,1] — R* with v(0) = 1 and y(s)A ¢ o(A) U {-1,1}
for all s € (0,1]. This meets (i) since all basis vectors are real and (ii) is
easily checked as well. Exactly as in (I) we deduce that B(s)A|g still has
the eigenvalues A and A~ ! with multiplicity m and the nondegenerate eigen-
values v(s)\, (7(s)\) ™!, which are distinct since y(s)A ¢ {—1,1}. So by the
choice of v we know that (iii) holds and the spectrum of B(1)A is of the
required form.

(II1) A = —1
As in (IT) we can choose a real eigenvector e and find some real f € E_;
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such that w(e, f) = 1. Since w is skewsymmetric, e and f have to be lin-
early independent and we can extend them to a real basis {e, f,g1,..-,9m}
of E_y. After changing the basis by e = gr — w(e,gx)f + w(f,gr)e to
{e, f,e1,...,en} we have w(e,ex) = 0 = w(f,ex) for k € {1,...,m} and

moreover (A + 1)e; € span(e,eq,...,ey). Indeed, A leaves E_; invariant,
so we have Aep = —ey, + € + af with € € span(e, e, ...,e,) and we obtain
w(e,ex) = w(Ae, Aex) =w(—e, —e) +w(—e,é) + w(—e,af)

= w(ee) —«a

which implies @ = 0. So there is a basis of span(ey,...,e5), again denoted
by (ex), such that

Vke{l,...,m}: (A+1)e; € span(e,e1,...,ex_1)

and the above w-orthonormalities still hold. We define B to be the identity
on {ej,...,en} and for the rest of the above basis of E = E_; we set

Be=ve, Bf=7"'f

for 7 : [0, 1] — R* continuous, with y(0) =1 and —v(s) ¢ o(4)U{—1,1} for
all s € (0,1]. As before, this construction meets (i) and (ii). Furthermore,

with respect to the basis {e,e1,..., ey, f} we have
—y(s) *
0 —1
B(s)Alp =
—1 *
0 0 —y(s)!

Hence B(s)A|g still has the eigenvalue —1 with multiplicity m and, in addi-
tion, it has the two distinct nondegenerate eigenvalues —v(s) and —vy(s)™L.
So (iii) holds since —y(s) # 1 and finally the spectrum of B(1)A is of the

required form.

av) xe s\ {-1,1}

When we choose some eigenvector e for the eigenvalue A of A, we obtain
€ € By = Ej-1, 50 w(e,€) can either vanish or not — which are cases that
have to be treated differently.

a)w(e,€) = c #0:

In this case we can find a basis {e, €1, ..., €y} of E) that meets (2.5) and set
er = € + w(€,&)c e to obtain a basis {e, e1,...,en} such that (2.5) still
holds for the e and for all k£ € {1,...,m} we have w(e,ex) = 0. Since A is
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real, this also gives us a basis {€,e1,...,en} of Ex with w(e,e;) = 0 for all
ke{l,...,m}. We use {e,€, ey, e | k=1,...,m} as basis of E = E) ® Ey
and define B to be the identity on all basis vectors except for

Be = e, Be =7e

for continuous v : [0,1] — S* with ¥(0) = 1 and y(s)\ ¢ o(A4) U {-1,1}
for all s € (0,1]. Obviously, (i) is met and for (ii) it suffices to note that
¥ = v7L. As in (I) one can see that B(s)A|g still has the eigenvalues \
and A with multiplicity m and it has two new nondegenerate eigenvalues
v(8)A,v(s)A, which are distinct by the choice of . This was also made such

that (iii) holds and the spectrum of B(1)A is of the required form.

b) w(e,€) = 0: 3 .
In this case we find f € Ey such that w(e, f) = 1.

2

om

w(f, ) = ~w(f, ) = ~w(f. f)
it follows that a := w(f, f) € iR, so we have f := f — Loe € Fy with
w(f, f) =a+ %6— %a =0 and w(e, f) =1

Next we can find a basis {e,f,€1,...,6m} of E\ that we then change to
{eafaela"'ae’m} by

er = & +w(f,éx)e —w(e é)f

such that for all k& € {1,...,m} we have w(f,ex) = 0 and w(e,ex) = 0.
Moreover, for Aep = Aey + € + af with é € span(e, ey, ..., e,) we calculate

w(e, er) = w(Ae, Aer) = w(Xe, Aeg) + w()e, €) + w(e, af)

= w(e er) + A
which implies & = 0. Hence we have (A — A)eg € span(e,eq,...,ey) for all
k € {1,...,m}, and thus there is a basis of span(ey,...,en), again denoted

by (ex), such that
VEe{1,...,m}: (A— Neg € span(e,e1,...,ex_1).

This change of basis does not affect the w-orthonormalities constructed
above. Furthermore, since A and w are real maps, {f,€,e1,...,€,} is a
basis of Ey such that w(e, &) = 0 and w(f, &) = 0 for all k € {1,...,m}.
Using {e,e, f, f,ex, e | k = 1,...,m} as basis of E = E) © Ex we define B
to be the identity on {eg,e; |k =1,...,m} and set

Be = e, Be = 7e,
Bf = ~v'fy Bf =7'f
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for some continuous + : [0, 1] — C* with 4(0) = 1 and y(s)A ¢ o(A)URUS?
for all s € (0,1]. One can check that this meets (i) and (ii). Finally,
B(s)A leaves E, invariant for all s € [0,1] and with respect to the basis

{e,e1,...,em, f} it is represented by the following matrix
Y(s)A  x *
0 A
B(s)Alg,
: A *
0 R (| @’IA

Obviously, B(s)A|g still has the eigenvalue A with multiplicity m and the

two new eigenvalues y(s)A and ’y(s)_l/\ = v(s)\  are nondegenerate and
distinct by the choice of . Moreover, (iii) holds and the spectrum of B(1)A
is of the required form.

So we have shown that a given matrix in Sp*(n) can be connected to
a matrix with nondegenerate eigenvalues. The second step of this proof is
to show that a matrix like this, again denoted by A, can be connected to a
matrix that has the same eigenvalues as either W or W . This is done by
moving all or all but two eigenvalues A to —1 for which purpose we again
have to consider several cases:

1) AeC\ (RUSY)

In this case, for A there is a group of four distinct eigenvalues ,\,X,,\*l,X‘l
with corresponding eigenvectors e, €, f, f that are unique up to complex mul-
tiples. By lemma 2.8 this basis of £ := E\® E; ® Ey-1 @ EX—I meets some
w-orthogonality relations, so we can easily define a path B : [0,1] — C?*2n
that meets (i) and (ii) and hence is a path of symplectic matrices: On all
eigenspaces except for £ we define B to be the identity and on E we set

Be = e, Be = 7e,

Bf = ~v'f, Bf = 7'F

where v : [0,1] — C*\ {\"!} is a continuous path from y(0) = 1 to
(1) = —A~L. The path B(s)A obviously lies within Sp(n) and its spectrum
remains unchanged except for the group 7(s)\,v(s)A, (y(s)k)*l,m_l
that does not meet 1 and for s = 1 is moved to —1. So this is the re-

quired path in Sp*(n).

2) xe S\ {-1,1}
Here we have A™! = X and thus only have to consider the pair A\, \~! of
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distinct eigenvalues with corresponding eigenvectors e and e that are w-
orthogonal to all other eigenspaces. A path B : [0,1] — Sp(n) can be
defined by

Be = ~e, Be=~v"'e

and the identity on all other eigenspaces of A. In this case we have to choose
the continuous path y from y(0) = 1 to y(1) = —A~! to lie within ST\ {\ 1},
so that y~! = 7 ensures (i). This again gives us a path B(s)A4 in Sp*(n)
along which the eigenvalues (s)\, (y(s)A\) ! are moved to —1 and the rest
of the spectrum remains unaffected.

3)AeR™\{-1}

For the pair A\, \™! of distinct real eigenvalues we find corresponding real
eigenvectors e and f that are, by lemma 2.8, w-orthogonal to all other eigen-
vectors. We then define a path B : [0,1] — Sp(n) by

Be=+ve, Bf=~7"'f

and on all other eigenspaces of A we let B be the identity. Since A < 0 we
can find a continuous path « from 7(0) = 1 to y(1) = —A~! within RT. This
path has to be real in order that (i) holds and since it does not meet A\ 71,
it defines a path B(s)A in Sp*(n). Again, the eigenvalues y(s)\, (y(s)A) !
are moved to —1 and the rest of the spectrum is constant.

4.) A e RT\ {1}

As in the last case we have a pair A\, A\~ of distinct real eigenvalues with
corresponding real eigenvectors and we define the path B as before except
for 7, which in this case can not be chosen to connect the eigenvalues to —1
within R\ {1}. Instead, we exchange A and A~! such that A > 1 and then
find a continous path «y : [0,1] — R* \ {A7!} from 7(0) = 1 to (1) = 2A~L.
For this choice, (i) and (ii) are met, hence B(s)A is a path in Sp(n). Its
nonconstant eigenvalues v(s)\ and (7(s)A)~! do not meet 1, hence the path
even lies in Sp*(n) and moves the pair {\,\7!} to {2, 3}.

For any two such pairs of positive real eigenvalues, this construction
connects A to a matrix A € Sp*(n) that has real eigenvectors ej,ep with
eigenvalue 2 and fi, fo with eigenvalue %, such that between these vec-
tors only w(e;, f;) does not vanish. We can rescale these vectors such that
w(e;, fi) = 1. Moreover, A leaves invariant the splitting C2* = E@® F, where
E = span(ey, ey, f1, f2) and F is the span of all other eigenvectors, and by
construction we have w(E,F) = 0. We now set e := e; + ies € E9 and
f=f—-ifs € E%, then

w(e,e) = w(e,f) =w(@, f) =w(f,f) =0,

so we have a basis {e,€, f, f} of E for which only w(e, f) and w(e, f) do
not vanish. Because of this we can define a path B : [0,1] — Sp(n) by the
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identity on F' and

Be = e, BE = 7e,
Bf = y7'f, Bf = 7'f

for some continuous 1 : [0,1] = C*\ {1} with 7(0) = 1 and (1) = —3.
Along the path BA there are only four nonconstant eigenvalues, 2vy(s),
$(s)71, 29(s) and %7(5)71, and they do not meet 1. Hence A is connected
within Sp*(n) to B(1)A such that these four eigenvalues are moved to —1.

This construction can be repeated until no or only one pair of eigenvalues
{2,1} is left.

If there is no pair of positive real eigenvalues left, then by the above two
steps we have connected the given A € Sp*(n) to a matrix that has 2n linear
independent eigenvectors with the eigenvalue —1, that is to —1 = W™.

Otherwise, A is connected to a matrix A with the same eigenvalues and
multiplicities as W, that is A = —1& (g g) € Sp*(n) with respect to some

splitting C** = G@® E. Since all eigenvalues and A itself are real, we can find
a real basis of normalized eigenvectors {e,g1,...,9n—1,f,Gn;s---,92n—2} of
A with respect to which A = diag(2,—1,...,—1, %, —1,...,—1). In general,
this basis is not orthogonal, as the elementary example

(g 1 ) € Sp*(1)

2

shows, but we can change A within Sp* (n) so that its eigenspaces become
orthogonal. In our special case, for the orthogonality it suffices to achieve
E 1= JEs, which will be done in two steps. In the first step we change
A such that E% 1 FEs. For the construction of the corresponding path
B : [0,1] — Sp*(n) we use the splitting R = G @ Re @ Rf(s) with
G = span(g1,...,92n—2) and f(s) = f — s(e, f)e where (-,-) is the Eu-
clidean product on R?": we define B(s) by B(s)|¢ = —1, B(s)e = 2e and
B(s)f(s) = 2f(s). By lemma 2.8 we have w(G,e) = w(G,f) = 0 and
thus also w(G, f(s)) = 0, hence B(s) € Sp*(n) since it preserves w and
1 ¢ o(B(s)) = {-1,2,5}. So along B the matrix B(0) = A is changed
within Sp*(n) such that Ey L E; holds. The latter is due to (e, f(1)) =0.

We now can choose e € Fy and f € E% such that |le|| = ||f|| = 1,
e L f and w(f,e) = a > 0, then because of w(G,e) = (G,Je) = 0 and
w(G, f) = (G,Jf) =0 we have the orthogonal splitting

R =G @t RJIf & RJe.
Since w(z, z) = (z,Jz) = 0 this splitting yields
e=ge—alJf, f=gr+ale (2.6)
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with ge, g5 € G. If one of g, gy vanishes, then so does the other and o = 1.
This can be easily seen from (2.6) when remembering that J? = —1. In this
case, above orthogonal splitting becomes R** = E_; @~ E, @ E 1, S0 the
eigenspaces are orthogonal, and moreover E 1= JE;. ’

If we assume g., gy # 0 then because of e L f we have

(Ger97) = (e+adf, f —aJe) =0

and hence g, L gy, only Je = f does not necessarily hold. But again we can
change A within Sp*(n) to arrive at JEy = E L. For this purpose we extend
ge,gr to a basis {ge, gy, h1,-..,hon—sa} of G such that w(gys,hy) = 0 for all
k €{1,...,2n —4}. This is possible since

w(gr, ge) = w(f —ade,e+alf) =w(f,e) — dw(Je, Jf) = a —o?

and a # 1 which can be seen from (2.6) because of e and f being normal-

ized and g., gy # 0. So we have w(gy, ge) = ¢ # 0 and thus we can change a

given basis {ge,gf,hl, - vhon_4} of G by hy == hy, — (gf,hk)c ge to meet
We now use the splitting

R*" = H @ span(e, f(s),9(s), g)
with H = span(hq,...,hop_4) and

w(ge,gf)e
w(e, f)

for the construction of a path B : [0,1] — Sp*(n) that connects A to a
matrix with the required property: B(s) can be defined by —1 on gy, g(s)
and hy, k = 1,...,2n — 4 and B(s)e = 2e, B(s)f(s) = 3f(s). In order
that B(s) € Sp(n) we have to check that all basis vectors are either w-
orthogonal or the product of their eigenvalues is 1, since then w is preserved
on pairs of basis vectors and hence on all of R?". By construction we have

w(hg, f(s)) = w(hg,e) = 0, so w(B(s)hg, B(s):) = w(hg,+). We also have

w(B(s)gr, B(s)) = w(gy,-) since w(gs,e) = w(gys, f(s)) = 0. Furthermore,
w(g(s), e) = w(g(s), f(s)) =0, so w(B(S)g(S),B(S)') = w(g(s),"). Finally
we have w(B(s)e,B(s)f(s)) = 2- 3 w(e, f(s)), hence alltogether B(s) is
symplectic. It is also nondegenerate since its spectrum is {—1,2, %} So
B(0) = A is changed within Sp*(n) along the path B such that E% becomes
JE,, indeed,

f(s)=f—sg7, g(s)=ge+s

By = Rf(1) =R(f — g) = RJe = JE,.

Moreover, by lemma 2.8 we have G L JEs; = E% and G L JE
hence

1 = —Fy,
2

=G@LE2@iEé
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as in the case when g, = gy = 0.
In both cases we also have JG C G since JG 1L Ey & E%, SO we

can find an orthonormal basis {g1,...,9n-1,J91,--.,Jgn—1} of G. Finally,
{e,91,--,Gn_1,Je,Jg1,---,Jgn_1} is an orthonormal basis of R?" with re-
spect to which A = diag(2,—1,...,—1, %,—1,...,—1), hence with respect
to the standard basis of R?>" we have

A=8Ds"
with
D = diag(2,—-1,...,—-1,3,-1,...,-1),
S = (e,g15--->9n-1,Je,Jg1,---, Jgn_1) € O(2n).
Moreover, one can check that STJS = J:
w(e, gx) = wle, Jgr) = w(Je, gi) = w(Je, Jgi) =0

holds by lemma 2.8 and because of the orthonormality of the basis we have

w(gk,95) = (9%, Jg5) =0, w(Jgr,Jg;) = (Jgr,—gj) =0

and
w(gk, Jgk) = (k> —9k) = —0jk, w(e, Je) = (e,—e) = —1.

Finally, since w is skewsymmetric, we have w(e,e) = w(Je,Je) = 0 and all
other matrix elements are calculated by exchanging arguments in the above.

So we have S € Sp(n) N O(2n) = U(n) with the homeomorphism (2.3).
Since U(n) is connected, we can now find a path 7" : [0,1] — Sp(n) N O(2n)
from T'(0) = S to T'(1) = 1. This only means a change of the symplectic
basis, so TDT" is a path in Sp*(n) connecting A to W~. Indeed, we have
1¢ o(D) = o(TDT™!) = o(TDTT) since T € O(2n), and TDTT € Sp(n)
since

(rpr")' j(rpr”) = o JTDTT = TDJDT' = TDT"

where we used that T' € Sp(n) and DJD = J which is easily verified. = O

2.1.2 The axiomatic definition

Following [11] we define the Conley-Zehnder index.

Definition 2.9

Let 3(n) := {® € C([0,1], Sp(n)) | (0) =0, (1) € Sp*(2n)}.

The Conley-Zehnder index is defined to be the unique family of maps
u" 2 3(n) = Z,n € N which are homotopy invariant (with respect to homo-
topy in X(n)) and have the following properties:
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(i) For any ® € ¥(n),¥ € X(m) identify ® ® ¥ with an arc in L(n+m),
then
p(@ ® ) = p"(®) + (D).

(ii) For any continuous loop g in Sp(n) with g(0) = g(1) = 1 and @ € ¥(n)
u"(g®) = 2m(g) + u"™(®).
(i7i) For all ® € ¥(n)
pn(@7h) = —p(@).
(iv) Define ®y € B(1) by ®o(t) =™/ then
pH (@) = 1.

We will also write pcz or p instead of u™ when it is clear which space we
refer to.

Of course one has to show that this is well-defined. The existence follows
from the explicit construction in 2.2, so here we will only prove the unique-
ness.

By proposition 2.7 any arc ® € ¥(n) can be homotoped in X(n) to end at
W or W~. So since ucz is to be homotopy invariant, we only have to show
that ucz(®) is uniquely determined for any ® which satisfies ®(1) = W+.
In the following we will denote by ® o ¥ the path that first goes along ®
to ®(1) = ¥(0) and then proceeds along ¥ to ¥(1). As usual, for a loop
® and w € Z we will denote by w® the path that runs w times through
® (in reversed direction if w < 0). If nothing else is said, any arc will be
parametrized by t € [0, 1]. Furthermore, we will denote homotopy by ’~’ for
loops in Sp(n) and by ’~’ for ¥(n). Note that for homotopy with respect
to X(n) it suffices to have homotopy in Sp(n) with fixed endpoints.

First consider the case ®(1) = W = —1, then ®o¥ with ¥(t) = e™(1-1)7
is well-defined and a loop in Sp(n). Indeed, ® was assumed to be symplectic
and by (2.4) we have ¥(0) = —1 = &(1), ¥(1) = 1 = &(0) and also
U(t) € Sp(n). So because of 71 (Sp(n)) being generated by I' as defined in
remark 2.4, the above loop has to be homotopic to wl' = e2™t/1 ¢ 1 for
some w € Z. Thus

® X PdoToe
ri wl—\ o eﬂ't.]
n
_ (eQﬂthl o eﬂ'tJl ) ® ( 1o @eﬂt‘](k) )
k=2
n
X p2mwt]y mt]y ® @ ™t (k) (27)

k=2
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where we used that J = @) _; Ji) with Juy := Jlspan(e, e,,5)» NENCE, taking

(2.4) into account, €™/ = @7_, e™/® . Of course, J(k is simply J; for a

different identification 3(1) C ¥(n). An explicit homotopy showing the last
step for the first term is e.g.

e271'11)(2—~‘>’)t']1 e st ; tE [Oa (2 - s)_l]
\Il(t, 8) = { ew(2t—1)J1 ; tE [( - 5)_1a 1]

for s € [0,1]. Using the homotopy invariance of pcz and (i) to (iv) of
definition 2.9 we obtain

n
,un((}) — ,un <627rth1 e7rtJ1 e @ eth(k))
k=2

n
(@) ut (emrthl e’iTtJl) + Z n (e”“(k))

k=2
() 2m(e27rwt.]1) +ul (e““l) + i“l (emle)
k=2
= Zm(e%“’t‘h) +n = 2w+n,

where the last equality follows from remark 2.6. So pcz(®) is determined
uniquely.
Similarily, this can be shown in the case (1) = W~. Define the following
loop in Sp(n):
n
Dodiag2—t,(2—1) ) @ Pe N
k=2

One easily checks that diag(2 —t,(2 —t)~!) € Sp(1). As above we deduce
that this loop is homotopic to wI' for some w € Z. Thus

& X wlodiag((l+1t),1+t) ) e@Pe™®

_ (e%wth o diag(1+t, (1 +¢)™) ) @ ( 1o e )
k=2

PES

n
XM diag(1+t,(14+1) 1) @ @e””(k) (2.8)
k=2

Here we use for the last step

[ et diag(1 + st, (1+st)7) 5 t€[0,(2—5)7Y
Bt s) = { diag(2t, (2t) 1) ; te[(2-s) 1]
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Then again by the defining properties of ucz we obtain

M’n(@) — L (27thJ1 dlag(l +t 1+t @@e'”t‘](k)>
) U ( 2mwtdt diag(14-¢, (1 4+ )~ ) +Z/“‘ ( “J(k)>

(#) 2rwtJy 1 3 -1 ~ mtJy
2m(e )-l-u (dlag(1+t,(1+t) ))+kZ:2,Lt (e )

= 2w+,u1<diag(1+t,(1+t)_1)) +n—1
= 2w+n-1L

The last equality can be deduced from the yet not used property (iii). In-
deed, we claim that u' (diag(l +1t¢,(1+ t)_l)) = 0 since

U= diag(1+¢,(14+1) ) Lot

and hence pcz(¥~!) = pez(¥) = —pucz(¥~!) = 0. The homotopy is
explicitly given by

Q(t,s) = e 2% diag(1 + ¢, (1 + 1) H)ez*”.

Obviously, Q is continuous, symplectic everywhere and meets Q(-,0) = ¥
and Q(0,-) = 1. Therefore it remains to check that Q(-,1) = ¥~! and
Q(1,s) € Sp*(1) for all s € [0,1]. Using (2.4) we calculate

Q(t, s)
[ cos(—%s) —sin(—7s) 1+t 0 cos(§s) —sin(%s)
~\Usin(=Zs)  cos(—%s) 0 (a+t! sin(Zs)  cos(%s)

_ ( (1+1t)cos?(Zs) + (1 +t)"tsin®(3s) (—1—t+ (1+¢)~')cos(%s) s1n(§s) )
S\ (1=t + (1 +t)7 ) cos(Zs)sin(Zs) (1+1t)sin®(Zs)+ (1+1t)" cos®(Zs) )

Putting in s = 1 we see that 2 actually ends at ¥(¢) !. Finally, from
the first equality we see that Q(1,s) is an orthonormal transformation of
diag(2, 3), so it has the eigenvalues 2,  and thus is nondegenerate.

This finally proves that if ucz exists, then it is uniquely determined by
the properties in definition 2.9.
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2.2 The spectral flow description

The Conley-Zehnder index can be constructed explicitly from the spectral
flow of some asymptotic operator attached to the symplectic arc that will
be introduced in this section. This operator arises from a singularity of the
pseudoholomorphic curve that also gave rise to an asymptotic orbit and the
symplectic arc considered (see e.g. [9] or chapter 3). However, it can also
be defined for a general symplectic arc not respresented that way. For this
construction some more regularity of the arc is required, so we restrict the
discussion to the following set of symplectic arcs.

Definition 2.10 Let || - || be the operator norm on R?"*?" qnd
L>®([0,1], R#x2n) - = {®:[0,1] — R**2" | ||®|o, < 0o},
whee([0, 1], R#27) = {@:[0,1] — R¥™*" | [|@]]1,06 < 00},

with
|Pllc = nf{C eR|||®(t)|| < C for almost all t € [0,1]}, (2.9)
[@ll1,00 = [[®llcc + [|®]]co- (2.10)

Then define the set of reqular nondegenerate symplectic arcs
5% (n) := B(n) N WH([0, 1], R0,

However, any continuous symplectic arc can be homotoped to an arc of
this regularity. This is because Sp(n) C R?"*?" is a smooth submanifold,
hence C!([0,1], Sp(n)) is dense in C°([0,1], Sp(n)) with respect to the C°-
topology (see [7] Thm.3.3). Moreover, the open condition ®(1) € Sp*(n)
admits C%-small changes of the arc.

In order to define the asymptotic operator we need the subsequent cor-
respondence of symplectic arcs with arcs of symmetric matrices. For this
purpose let Sym(2n) be the set of symmetric R?**2"-matrices and define

S(n) := L*([0, 1], Sym(2n)).

If not otherwise stated we will equip S(n) with the L*®-metric (2.9) and
$1°(n) with the W1 >®-metric (2.10).

Lemma 2.11 We have a continuous map

Whe([0,1], Sp(n)) — (S(n), ]l - lloo)
d — Sp:=-JOd L

Proof: Let & € W'°°([0,1], Sp(n)), then &, & e L*®([0,1], R***?"). Since
® is symplectic we can also deduce that ®~1 € L*°([0, 1], R?**2?"). Indeed,
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@1 = —J®TJ by (2.2), so it is the product of three L®-arcs of matrices
(J is a constant). Now we infer that also Se € L*([0, 1], R?"*?") since it

is the product of L*-arcs and it is also symmetric for all ¢t € [0, 1], thus
S¢ € S(n). Indeed,

T Je =J
=  37Je+3"JP =0
= () 'ty =-Jd
= Sp=-Jod 1 =(d7) 17T = (S5)T.
For the continuity, first remember that ®~! = —J®”J holds if ® € Sp(n).
Moreover, ||®7|| = ||®|| since the adjoint of a bounded operator has the same

norm as the operator (see e.g. [19] VII Thm.5 ). We also know that ||J|| =1
and putting all this together we deduce that for all ®, ¥ € Sp(n)

1@~ = | =g T < ||| - @7 - |1 = [|®]|
and
@7t =07 = || =TT T+ I T < || = J||- (@ — )T - |T|| = ||® — ¥

Using the above we get — denoting by ’sup’ the essential supremum, i.e. the
minimal constant that is an upper bound almost everywhere —

IS8 — Svlo

= sup | = JRH)D () + JE()T(¢)]|
t€[0,1]

< ts}f)pu( | = @) + T -2 )N+ [[T@] - | — 2 1) + T 1@)])
E b

< @ = V|| @0 + II\i'II?oII@ - \IJIIO? _

< ||(I) - \I’”l,oo(”q)Hoo + ||¢||oo + || — @+ \Il”oo)

< [®@]1,00/12 — ¥ll1,00 + 12 — P oo

For given ® € W1°([0,1], Sp(n)) and |® — ¥||; oo — 0, the last expression
and hence also ||Ss — Sw||c Obviously tend to zero. O

Remark 2.12

(i) We even have a bijection

{2 €C([0,1], Sp(n)) | 2(0) =1} — C([0,1], Sym(2n))
d - Sq;.
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(ii) Any S € S(n) is a bounded map on L?(S, R*"):
For all h € L?(S*,R?")

SB[z < [IS]leo IRl 2
with [|S||e < 00.

Proof: Since S € L*®([0, 1], R?"*2") we obviously have ||S]|cc < co. Using
this we can deduce (ii): For any h € L?(S!,R?")

ISl = (/ 1) ||2dt)
< ([ 1t man dt)%

= |ISlloollpll2-

For (i) note that the preimage of S € S(n) is the set of solutions of

() = JS(t)d(t)
{<I>(0) _ 1 : (2.11)

This is an ordinary first order differential equation with Lipschitz continuous
right hand side, which has, by the Picard-Lindeléf theorem (see e.g. [6]
117.1), a unique solution in C! ([0, 1], R2"*2" for the given initial value. From
the differential equation we obtain

L@)TIe(t) = (JSH)21)TID() + &) I(JS(t)D(1))
= o) TS@t)d(t) — d(t)TS(t)®(t)
= 0.
Moreover, since ®(0) = 1 we know that ®(0)TJ®(0) = J, hence ®(¢t) is

symplectic for all ¢ € [0,1]. Thus the solution of (2.11) defines the inverse
of the considered map. O

So instead of constructing an index for symplectic arcs we can just as
well consider arcs of symmetric matrices.

Definition 2.13 For S € S(n) or ® € WH([0,1], Sp(n)) with S := Se we
define the asymptotic operator

Lg:=—-J$—S: WDh(SL,R™) — L?(S1,R?™). (2.12)

This is well-defined since S is even bounded by remark 2.12(ii). Note
that Lgx for z € W12(S1, R?") does not need to have the same value in 0
and 1 since it is only defined in L?(S',R?"). So there is no problem with S
being not periodic.

Now, following [13], the Conley-Zehnder index can be constructed using
the spectrum of the asymptotic operator.
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Theorem 2.14 There exists a unique bi-infinite sequence (A\g)gez of con-
tinuous maps A, : S(n) — R characterized by the following requirements.

(i) Me(S) < Ap+1(S) for all k € Z and any S € S(n).
(ii) For each S € S(n) the spectrum of Lg is represented by

o(Ls) = {(5) | k € Z}.

(i1i) For each S € S(n) the multiplicity of any eigenvalue T € o(Lg) is

k€ Z | A(S) =7}

(iv) The sequence is normalized at 0 € S(n) by

Acns1(0) = ... = An(0) = 0.

Furthermore, the maps A\ have the following properties.

a) Let A € §(n) and let it satisfy A(t) > e > 0 for all t € [0,1]. Then
for all S € S(n) and k € Z we have

b) The maps

Wh(0,1], Sp(n)) — R
® — Ak(Sq:.),

also denoted by A, are continuous for all k € Z.

From the maps in b) we can read off the Conley-Zehnder index: For any
® € WH([0,1],Sp(n)) define

Pspec(P) := max{k € Z | \t(®) < 0},
then for all ® € X1°°(n) we have

pez(®) = NSpeC(q))-

At the moment we can only remark that b) follows easily when assuming
the existence of the continuous maps Ag : (S(n),|| - |lec) = R. Simply note
that ® — S is continuous by lemma 2.11.

The maps Ar can also be seen as continuous sections in the spectrum
bundle

B:= |J o(Ls) = S(n).
SeS(n)
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The theorem then states that the spectrum bundle can be represented by
a sequence of continuous real functions on §(n) and that the sheets of the
bundle can be globally numbered in ascending order and with some nor-
malization. Only to the branching points of this discrete bundle are several
numbers assigned according to the multiplicity of this eigenvalue.

The proof of theorem 2.14 requires detailed investigation of the spectrum
of the asymptotic operator. This will be performed in 2.2.2 using parts of
Kato’s perturbation theory which will be presented in the next section. We
finally prove the spectrum bundle part of theorem 2.14 in section 2.2.3 and
show in 2.2.4 that the Conley-Zehnder index can indeed be read off from
the sections A of the spectral bundle.

2.2.1 Kato’s perturbation theory

In this section we present the part of Kato’s perturbation theory [14] that
will later be applied to the asymptotic operator.

We are only interested in operators with compact resolvent and these
are characterized as follows.

Theorem 2.15 ([14] III Thm. 6.29.)

Let T be a closed operator on a Banach space X such that the resolvent
R(C) exists and is compact for some { € C. Then the spectrum of T' consists
entirely of isolated eigenvalues with finite multiplicities, and R(C) is compact
for every ( in the resolvent set.

Such an operator T is called an operator with compact resolvent and a
spectrum as the above is called a discrete spectrum.

We also need some concepts of holomorphic families of operators. If an
object is defined on a real interval only, we will from now on also call it
holomorphic if it is analytic, i.e. it can be locally represented by its Taylor
expansion. In this case the object can be extended to a complex neighbour-
hood of the real interval on which it is holomorphic.

Definition 2.16

(i) Let T(x) be a family of bounded operators on a Hilbert space H defined
on some domain U € C. It is called holomorphic if it is complex

differentiable in the norm on its domain, that is for any zg € U there
is a Ty € L(H) such that for all sufficiently small z € C

T(z0 + 2) = T(20) + 211 + O(2?).
(ii) A holomorphic family of type (A) on a Hilbert space H is a family
T(z) of closed operators on H defined for x in a domain U C C such
that
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a) The domain of T'(z) is independent of z, that is D(T(z)) = D,
b) T(x)¢ is holomorphic on U for every ¢ € D.

(i7i) A selfadjoint holomorphic family of type (A) is a holomorphic
family of type (A) such that T(z) is selfadjoint for all real z € U.

(iv) A family T(x) of operators or vectors in a Hilbert space that is defined
on some real interval is called piecewise holomorphic if there is only
a finite number of points in the interval at which T is not holomorphic.
Furthermore, we require that at these points T is still continuous and
that its derivatives from the left and right hand side exist though they
need not be the same.

In terms of the above we can formulate the theorem that will constitute
the central part in the proof of theorem 2.14.

Theorem 2.17 ([14] VII Thm. 3.9.)

Let T'(z) be a selfadjoint holomorphic family of type (A) on a Hilbert space
H defined for x in a neighbourhood of an interval Iy C R. Furthermore, let
T(z) have compact resolvent for x € Iy. There are then two sequences of
holomorphic maps, v, : Iy = R and ¥, : Iy — H such that for any x € I
the sequence (vp(x))nen represents all the repeated eigenvalues of T(x) and
(¥n(x))nen forms a complete orthonormal family of the corresponding eigen-
vectors.

Now consider a family T'(z) = To + P(z) of operators defined in a neigh-
bourhood of 0, that meets the assumptions of the previous theorem and that
has a bounded holomorphic perturbation P(z) with P(0) = 0. So we have
P(z) = =Ty + O(z?) for sufficiently small z with 71 a bounded operator.
We then obtain by the above theorem holomorphic functions of eigenvalues
and eigenvectors. This justifies the following ansatz for the investigation of
the quantitative behaviour of the spectrum under perturbation:

n(z) = mno+xn + O(z?) for the eigenvalue and
d(x) = ¢o+zd1 + O(x?) for the eigenvector.

Inserting this into the eigenvalue equation
(To+aT1+0(z%)) (g0 +ad1 +O(a%)) = (mo+zm +0(2%)) (¢ + 21 +O(%))

yields up to first order in z

Togo = mnodbo, (2.13)
Top1 +Tido = nod1 + meo. (2.14)
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From (2.13) we infer that 7y is an eigenvalue of Ty — which is obvious
anyway. Now let Iy be the projection onto the eigenspace for the eigenvalue
1o of Ty, then

H()TO = 7]01_[0. (215)

Indeed, we know from theorem 2.17 that there exists a complete family of
eigenvectors of Tj and (2.15) obviously holds when applied to any of these
eigenvectors. So applying I to (2.14) we get

MoT1¢o = 1o (2.16)

and hence, due to ¢y being normalized and the fact that projections are
selfadjoint,

m = (¢o, HoT1¢0)m = (¢0, Tio)H, (2.17)

where (-,-) g is the scalar product on the Hilbert space H. Note that n; =
g—Z(O) and ¢y = ¢(0). We also write 17 = ‘}i—];(()).

From this expression for the first order perturbation of the eigenvalues
we get the following theorem.

Theorem 2.18 Let L(z) =T+ A(x) be a family of operators as in theorem
2.17 with A bounded holomorphic on D = D(L(x)). Then with the notation
of that theorem the following holds for alln € N and xq < z1 € I:

e au) = (alo0) G lo0) ) 219

dz "

and the growth rate of the eigenvalues is uniformly bounded,

dA
@(w) “|z1 — T

|vn(z1) — vp(zo)| < sup
T€[zo,21]
dA

dz |:L‘1 - $0| (219)

sup

where || - || denotes the operator norm on H and

Proof: We will consider L(z) to be a perturbation of L(zp), that is we
write L(zg + ) = Ty + P(z) with Ty = T + A(zp) and the perturbation
P(z) = A(zo + z) — A(zg). Then (2.18) is simply the result (2.17) of the
calculation above for the eigenvalue 7 = v, and integration of (2.18) gives
(2.19). Indeed, keeping in mind that v, (z) is normalized for all z € Iy,

[ (@), Gervnt@)) s

0

dA
dzx

dA

——(2)

< 0.
dzx

== sup
sup z€ly

|vn(z1) = vn(zo)| =
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< [ |G @) a
< / ) a
2o |l dT
dA
<  sup ||—(@)| |z — =0
z€[z0,21] dz
dA | |
> (|5 I1 — Zo
dzx sup
where we wrote |- || for the norm as well as the operator norm on H. Finally,
144 || sup < 00 holds since A is bounded holomorphic and thus has bounded
and continuous derivatives. O

Of course, the holomorphic functions v, from theorem 2.17 representing
the eigenvalues are not necessarily in any order as demanded in theorem
2.14(i). Their graphs may even cross at so-called crossing points. So we
introduce functions k, that result from the v, by putting them in ascending
order at each point. The graphs of the x,, then follow branches of the v, and
at crossing points may jump over to another branch of such a holomorphic
function. We will sharpen this concept by a subsequent definition. But
first we have to think about the numbering of (k,). If, for example, the
spectrum has an upper bound but is unbounded below, then it is impossible
to number the ascending (k) by N, but we can still number it by —N.
Assume — as it is the case for the asymptotic operator — that the Hilbert
space is of infinite dimension. Then because of its discreteness (by theorem
2.15) the spectrum of each L(z) consists of a countable infinite number of
isolated eigenvalues that are unbounded at at least one side. Furthermore,
the type of unboundedness of o(L(z)) is the same for all z in a finite interval
if — as for the asymptotic operator — the perturbation is bounded. This
follows from the uniform bound (2.19) on the growth rate of the eigenvalues.
So assuming the Hilbert space to be infinite dimensional and the family of
operators to have bounded perturbation as in theorem 2.18 we have the
following cases:

e [f the spectrum is unbounded from above and below we can number
(kn) by I :=Z.

e If the spectrum is bounded from above but without lower bound we
can number (k,) by I := —N.

e If the spectrum is bounded from below but without upper bound we
can number (k,) by I :=N.

Definition 2.19 In the situation of theorem 2.18 define (kn)ner, I as indi-
cated above, to be the family of piecewise holomorphic functions k, : Iy — R
that satisfies the following conditions:
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(i) kn(z) < Kpt1(z) for alln € I and x € I,

(i3) for any x € Iy there is a bijection w : I — N such that k() = Vr(n) ()
for allmn € 1.

In the case of I = Z, of course, (ki)rez is only defined up to a shift in
the numbering. In applications one can fix this shift by normalization at
some xg € Ij.

To make sure that these functions are indeed piecewise holomorphic,
we pick any k := kn,n € N and an xzy € Iy where x jumps to another
holomorphic branch. We will show that there is no other crossing point
along k in some neighbourhood of zy. Then it follows that in any compact
interval of z there are only finitely many crossing points along x in which it
may cease to be holomorphic.

Note that by theorem 2.15 all eigenvalues of T'(z¢) are isolated and of
finite multiplicity. Hence we know that there is a neighbourhood of k(z¢) in
which there is no other eigenvalue of T'(z(). Consequently there is a finite
set X C N with v,(zg) = k(zg) for n € X and |v,(zg) — k(z0)| > € >0
for all n € N\ X. First consider the holomorphic functions that do not
cross k in xg. These stay away from & in some neighbourhood of xj: They
are separated from k by at least ¢ in 2y and their growth rate is uniformly
bounded by (2.19). Hence there is an open interval around zy on which
|vn — K(zo)| > %6 for all n € N\ X. But k is obviously continuous, so on
some other open interval around z we have |r(z) — £(zo)| < 3¢. Hence on
the intersection of both intervals there is no crossing between x and any v,
n € N\ X. So in this neighbourhood x can only jump to a v, with n € X.
But any two of these holomorphic functions are either identical or do not
cross again in some neighbourhood of xy. As X is finite we infer that there
is a neighbourhood of z in which none of the functions going through r(zg)
at x = z( crosses any other of them again. Thus x cannot jump a second
time in some neighbourhood of z;.

Now because of the x, being piecewise holomorphic, we can transfer
theorem 2.18 to this other representation of the spectrum of L(z).

Remark 2.20 In the situation of theorem 2.18 the bound for the growth
rate is also valid for the k,: For alln € N and zg < z1 € I

dA dA
kn(21) — Kn(z0)| < sup ||[—(2)||-|z1 —z0| < H— x1 — | (2.20)
) ~afeol < s @) o =zol < || oo
and we also have q u
K, B d4
E(ﬂco) = ((75, e ($0)¢>H (2.21)

where ¢ is the eigenvector r(,)(zo) from theorem 2.17 corresponding to
Vr(n) (o) = kn(xo). At crossing points xo € Iy where kn jumps from one
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holomorphic branch to another, (2.21) has to be interpreted as the left or
right hand side derivative. In that case for ¢ we have to put in () (z0)
corresponding to Vy(n)(T) = kn(x) for z <z or T > X0, Tespectively.

Remark 2.21 Consider a family of operators that meets all assumptions
of theorem 2.17 except for that it is only piecewise holomorphic of type
(A). Then we still get continuous but only piecewise holomorphic functions
v, : Iy — R that represent the spectrum of the family of operators and we
can define (kp)ner eractly as in definition 2.19. Remark 2.20 also can be
generalized to this case: The bound for the growth rate still holds, one only
needs to define || - ||sup to be the essential supremum — neglecting undefined
values at a finite number of points. For the first derivative of the eigen-
value, one has to restrict the formula to derivatives from one side at the
nonholomorphic points.

Proof: Theorem 2.17 can be applied to each of the intervals where the
family is holomorphic, giving holomorphic functions for the eigenvalues that
can be glued together continuously. For the definition of (k,)ner one only
has to repeat the argument after definition 2.19 for each of these intervals.

a
2.2.2 Perturbation theory for the asymptotic operator
Let S € S(n) be given and consider the asymptotic operator
Lg:=—-J% —8: WU(S,R™M) - L2(S',R™M).
We will treat Lg as perturbation of the following selfadjoint operator.
Proposition 2.22 T := —J$ with domain D(T) = Wh2(SL,R™) is a

selfadjoint operator on the Hilbert space L?(S', R?").

Proof: Following [2] we first remark that T is closed. To see this let
(Tn)nen C D(T) with z,, — = and Tz, — y converging in L?(S',R?").
This obviously implies &,, — Jy. Now calculate & as a distribution: For all
test functions ¢ in the Schwarz space we get with (-,-) the usual pairing
(@,¢) = —(z,¢) = lim —(zn,$) = lim (&, ¢) = (Jy, ¢).
n—0o0 n—oo

Thus ¢ = Jy € L2(S',R?") and it follows that x € W12(SY, R?") = D(T)
and Tx = —Jz = y which was to be shown. Furthermore, T is densely de-
fined since W12(S1,R?") C L?(S',R?") is dense. And it is also symmetric.
Indeed, for z,y € D(T) we get by partial integration (note 9S* = ()

@Iy = [ (a0, ~700))
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_ /Sljx(t)-@)(t)dt
_ /S ~Ja(t)-yt) At = (To,y)p.

Now a densely defined, symmetric operator T' is extended by its adjoint
(see e.g. [4] XII 1.), T* D T, that is D(T) C D(T*) and T*|p) = T. So
it remains to show that D(T*) C D(T). In order to see this we will first
establish

im(T) = ker(T)*. (2.22)

As J is nondegenerate, the kernel of —J % is the set of constant functions
on S'. So for ¢ € ker(T)* we necessarlily have (¢,1)2 = Js1 ¢ =0 and thus
we can define

t
z(t) := J/O ¢(r)dr € C(S',R*™) c L*(S!,R™).

Obviously z = J¢ € L%(SY,R?"), thus z € W12(SY,R?") = D(T) and
Tz=—J% =, hence ¢ € im(T). So we have shown ker(T)* C im(T).

On the other hand, remember from functional calculus (e.g. [4] XII 1.)
that ker(7*) = im(T)", thus

im(T) C im(T) = im(T)*+ = ker(T*)* C ker(T)*

where the last inclusion is by 7 D T'. This proves (2.22).

Now choose any u € D(T*), then (T*u,v) = (u,Tv) = 0 holds for
all v € ker(T), hence T*u € ker(T)‘. Because of (2.22) this implies that
T*u = Tw for some w € D(T) and hence for all v € D(T)

(u,Tv) = (T*u,v) = (Tw,v) = (w, Tv).

Using again (2.22) we deduce from this

u—w € im(T)* = ker(T)*+ = ker(T).

Finally, the fact that T is closed comes into play: it implies that ker(T) is
closed and hence u € w + ker(T') C D(T). O

As we are going to use the Sobolev embedding theorem several times we
state here the part of it that we will need.

Theorem 2.23 (Sobolev embedding)
w2((0,1),R*") C C([0,1], R*") (2.23)

and also
w2(SH,R*™) C ¢(S*,R*™™) (2.24)

are compact embeddings.
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Proof: (2.23) is the standard form of the theorem and is proven e.g. in
[1]. For (2.24) choose any f € W12(S1 R?"), break up S' at some point
A € S! and note that S'\ {A} is diffeomorphic to (0,1). Therefore we get
flsngay € WH2((0,1),R?") and deduce by (2.23) that f is continuous on
S\ {A} after redefenition on a zero set. Now break up S' at some other
point B € S\ {A} and consider the redefined f. By the same argument as
above we get that f is continuous on S\ {B} where alteration may only be
necessary in A. So altogether f is continuous on S after redefinition on a
zero set. But in W12(S!,R?") we only consider maps up to changes on zero
sets anyway.

To see the compactness of the embedding note that W12(S!, R?") and
C(S', R?") are homeomorphic to subsets of W12([0, 1], R?") and C([0, 1], R?"?)
respectively, then the claim follows from the standard form of the theorem.

O

Lg is a bounded perturbation of 7' since —S : L?(S*, R?") — L?(S!,R?")
is bounded by remark 2.12(ii). But in order to apply the theory of the previ-
ous section we need a family of operators. So choose a path P : [0,1] — S(n)
from P(0) =0 to P(1) = S in S(n) that is piecewise holomorphic (with re-
spect to the L*°-metric) and then define

L(z) = —J% — P(z): W2(8!,R?") — L2(S!,R?"). (2.25)

d
dt
One such path is for example P(z) = zS.

In the following we will have to use two different norms on the space of
piecewise holomorphic paths in §(n). So in order to avoid confusion with
the norms on ©%%(n) and S(n) defined in (2.9) and (2.10) we introduce
some further notation. For a holomorphic path P : [0,1] — §(n) we define

IPllco == sup |[P(2)]loos
z€[0,1]
IPler == [IPllco + || 42| o -

When P is only piecewise holomorphic the first norm is still well-defined,
and for the second norm we consider at the nonholomorphic points the one
side derivatives only. When we apply Kato’s perturbation theory, || -||oo will
take the part of the operator norm || - || on H and we will replace ||L||sup
in theorem 2.18 by || L ||co or || - [|c:-

Remark 2.24 Any piecewise holomorphic path P : [0,1] — S(n) and also
its first derivative is bounded uniformly as operator on L*(S',R?"): For all
z €[0,1] and h € L%(S',R?*") we have

1P(z) hli2 < [|Pllcol[R] 2 (2.26)
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and — only considering derivatives from one side at the nonholomorphic
points —

with ||P||co < 00 and || <E|co < || P]ler < oo.

dpP

dP
a(x)

o (2.27)

<
L2

co

Proof: Remark 2.12(ii) says that each P(z) and £ (z) is bounded by its
L®-norm as a map on L?(S',R?"). Furthermore, P is piecewise holomorphic
in the L*®-metric on S(n), so ||P(z)||« is continuous in z € [0, 1] and hence
| P||co is finite. And we also know that 4£ is a piecewise continuous arc in
S(n) and has finite one side limits at the noncontinuous points, so ||9£ (z)||s
is bounded as well, hence ||9Z||co < [|P||co + ||'(di—1;||co = ||P|l¢1 < oo. 0

Now we have to check that L(x) is in fact of the type that we considered
in the previous section.

Proposition 2.25 L(z) is a piecewise holomorphic family of type (A) for
z € [0,1].

Proof: D(x) = W12(S1,R?") meets (iia) of definition 2.16 and it is easy
to see that L is also piecewise holomorphic in the sense of (iib) and (iv).
Let h € WY2(S',R?™), then obviously —Jh € L2(S',R?") and this is a
constant when considering L(z)h with respect to z. The remaining term
—P(x)h is piecewise holomorphic in z since P is bounded (see remark 2.24)
and piecewise holomorphic. It remains to be shown that L(x) is closed for
all z € U. This will follow from the next lemma since each P(z) is bounded
(by remark 2.12(ii)) and —J4 is closed as seen in proposition 2.22. O

Lemma 2.26 Let T be a closed operator on a Hilbert space H. If A is a
bounded operator defined on D(T), then T + A with D(T + A) = D(T) is
also closed.

Proof: Let (zp)nen C D(T) with 2, — z and (T + A)z, — y converging
in H. Then Az, — Ax since A is bounded and hence Tz, — y — Ax.
From this we deduce by the closedness of T that z € D(T) = D(T + A) and
Tz =y — Az, thus (T + A)z = y which was to be shown. |

The selfadjointness of the L(z) follows from a similar theorem of Kato.
Theorem 2.27 ([14] V Thm. 4.3.)
Let T be a selfadjoint operator on a Hilbert space. If A is a symmetric and

bounded operator defined on D(T) then T + A with D(T + A) = D(T) is
selfadjoint.

Proposition 2.28 L(x) is a selfadjoint operator with compact resolvent for
all z € [0,1].
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Proof:  We write L(z) = T+ A with T = —J &, D(T) = W12(S!,R?") and
A = —P(z). Then T is selfadjoint by proposition 2.22 and A is bounded
on D(T) as seen in remark 2.12(ii), and it is also symmetric on D(T") since
P(z) is a path of real symmetric matrices for real z. Now we can apply the
previous theorem and deduce that L(xz) = T + A is selfadjoint. This also
tells us that the resolvent (L(z) — i)~! exists and is an L?-bounded map
L?(S',R?") — W12(S1 R?"). This is because selfadjoint operators have a
real spectrum and thus ¢ is in the resolvent set. From the special form of
L(z) we can even deduce that (L(z) —i)~! is bounded with respect to the
Wh2-norm on WhH2(S1,R?"). To show this, we choose any h € L?(S!,R?")
and set g = (L(x) — i)~ 'h, then using —J§ = h + (P(z) + i)g we obtain

I(Z(z) = )" Allwre
191122 + llgllz2
1Bllz> + [[(P(z) +d)gll > + llglz2

[Bllz2 + [P (@)llcollgllz2 + 29l 2
(1+1P@)looll(Lz) — )7 + 201 (L(z) =) ) [1hlla-

ININ A

Here ||(L(z) —4)7!|| is the finite L%-operator norm. Now apply the Sobolev
embedding theorem 2.23 to see that (L(z)—4)~! : L2(S,R?") — L?(S1,R?")
is even compact. As we have seen in proposition 2.25, L(x) is also closed, so
according to theorem 2.15 we know that L(z) is an operator with compact
resolvent for every z € [0, 1]. O

Now we are in the position to apply Kato’s theorems 2.15 and 2.17 to
get a detailed description of the spectrum of the L(z).

Corollary 2.29 The spectrum of L(z) is discrete for all z € [0,1], that is
o(L(x)) consists of isolated eigenvalues with finite multiplicities. Moreover,
all eigenvalues are real and, if ®(x) is continuous, their multiplicities are
less than or equal to 2n.

Proof: 'We can apply theorem 2.15 because of proposition 2.28 and as L(x)
is selfadjoint, its spectrum is real. For continuous P(z) =: S we fix any
x € [0,1], so that the equation for an eigenvector h € W12(S! R?") corre-
sponding to a fixed eigenvalue X of L(z) is equivalent to

h(t) = J (S(t) + A) h(t).

This is an ordinary differential equation of first order and obviously the
right hand side is Lipschitz continuous in ¢ € [0,1] and h. Hence by the
Picard-Lindelof theorem ([6] 117.1) there is a unique solution for any initial
value h(0) € R?™. For the eigenspace, there is the additional condition
h(0) = h(1), so it has to be of dimension less than or equal to 2n. O
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Corollary 2.30 There exists a bi-infinite sequence (ki)rez of continuous,
piecewise holomorphic functions ky : [0,1] — R satisfying the following:

(i) kk(z) < Kgg1(z) for all k € Z and any = € [0,1].
(ii) For each x € [0,1] the spectrum of L(z) is given by

o(L(z)) = {ke(x) | k € Z}.

(iii) For each x € [0,1] the multiplicity of any eigenvalue T € o(L(z)) is

Hk €Z | kp(z) =7}

Proof: Because of the propositions 2.25 and 2.28 we can apply theorem
2.17 to get piecewise holomorphic functions v, representing the spectrum of
L(z) (see also remark 2.21). Then we define (kp)nez according to definition
2.19. The sequence is numbered by Z since P is a bounded perturbation and
because of the spectrum of L(0) being unbounded from above and below,
which will be seen in the next lemma. O

Lemma 2.31 The spectrum of L(0) = —J & on W1H2(S1,R?") C L2(S?, R?")
is 0(L(0)) = 27Z and each of these eigenvalues has multiplicity 2n.

Proof: By corollary 2.29 the spectrum consists of isolated eigenvalues. The
eigenvector equation for h € WH2(S1, R?") is

—Jh(t) = ()

implying
h(t) = e h(0).

For this solution to be in WhH2(S1,R?") c C(S',R?") (by theorem 2.23)
there is the additional condition h(1) = h(0), that is

e* h(0) = cos(A)h(0) + sin(X)JR(0) = h(0)

where (2.4) has been used. Since J has no real eigenvalues, the above can
only hold for sin(\) = 0, that is A € 7Z. For A = (2k + 1) we would get
—h(0) = h(0), hence h(0) = 0 and thus A = 0 — which is no eigenvector.
But for each A € 27Z we even have e’ = 1. Thus the space of solutions,
that is the eigenspace, is 2n-dimensional just as the space of possible initial
values h(0) € R?". 0

We can also apply theorem 2.18 to families of asymptotic operators. This
gives us a bound on the growth rate of the eigenvalues along such families
which will be useful in the construction of sections of the spectrum bundle.
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Corollary 2.32 Let B : [0,1] — S(n) be any piecewise holomorphic path
and L(z) = —J$ — B(z) : WH(S1,R?) — L%*(S',R?") the correspond-
ing family of asymptotic operators. Then considering the ordered sequence
(ki )kez representing o(L(+)) as defined in 2.19, we have for all k € Z and
zo < z1 €[0,1]

dB
a(x)

dB
_ < ||[Z=
w0 — | < H dzx

|kk(zo) — Kk(z1)| < sup

|zo — z1]-
T€[z0,21] 0

9] C

And we also have

e, dB
T = (9~ tes)

which at nonholomorphic points has to be interpreted as the left or right
hand side derivative. For ¢ we have to put in Yr(n)(xo) from theorem 2.17
corresponding to Vy(n)(7) = kn(x) for x < xo or T > T Tespectively.

Proof: L(z) is a selfadjoint, piecewise holomorphic family with compact
resolvent as in proposition 2.25 and 2.28 — we did not use B(0) = 0 to
prove this. Moreover, B is a bounded perturbation as seen in remark 2.24.
So we can apply remark 2.21 to T' = —J% and A(z) = —B(z). |

2.2.3 The spectrum bundle

In this section we will prove theorem 2.14, only leaving property a) and the
connection with the Conley-Zehnder index for the next section. So we have
to construct continuous maps A : (S(n),|| - |lo) = R in ascending order
with k& € 7Z, that represent the spectra of the asymptotic operators Lg and
are normalized by

Acnt1(0) = ... = A(0) = 0. (2.28)

This will be done in a way so that it becomes clear that the maps are
uniquely determined by the above requirements.

Let an arbitrary S € §(n) be given and choose any piecewise holomorphic
path P : [0,1] — S(n) from 0 to S. Since the arc is continuous, we know that
the A\g(P(z)) have to be continuous in z. They also have to be in ascending
order and represent the spectrum of Lp(,y = L(z) (compare (2.12) to (2.25)
with the arc P). Thus (A (P(z)))kez has to be identical to the sequence
(kg (z))kez of corollary 2.30 up to a shift in the numbering that is the same
for all z. The latter is because of the continuity of both sequences and the
fact that due to finite degeneracy they do not consist of only one value. The
numbering of (Ag)kez is fixed by the normalization (2.28). We also shift the
numbering of (ki)kez such that

Kent+1(0) = ... = Kp(0) = 0. (2.29)
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This shift is uniquely determined since there are exactly 2n zeros in (kg )kez
representing the eigenvalue 0 of L(0) that has multiplicity 2n by lemma
2.31. So from each path P we get a uniquely determined normalized se-
quence (kg)rez representing o(Lp(y) and fulfilling (2.29). Now by above
considerations, the maps Ay are necessarily defined as follows.

Definition 2.33 For given S € S(n) choose any piecewise holomorphic
path P :[0,1] — S(n) starting at 0 and ending at S. Let (kg)kez be the
normalized sequence of functions representing o(Lp(.y). Then for all k € Z

Ak(8) = rg(1).

The main task will be to show that this definition does not depend upon
the choice of the path P. But taking this for granted first note that by
construction these maps are ordered, normalized by (2.28) and represent
the spectra of the asymptotic operators Lg including multiplicities.

Moreover, with the above definition, one can easily compute differences
Ak(S+A) — X (S) for some S, S+ A € §(n). Consider a piecewise holomor-
phic path from 0 to S defined on [0, 1]. When reparametrizing it holomorphi-
cally, the functions representing the spectrum of the corresponding operator
family are simply reparametrized the same way. We reparametrize the above
path to [0, 3] and on [§,1] continue it from S to S+ A. This gives a nor-
malized sequence (%y)gez such that Ay(S) = Rg(3) and Ag(S + A) = & (1).
So in order to investigate the difference between A\;(S) and A\ (S + A) we
only need to consider any path from S to S + A, again reparametrized to
[0,1]. There also is an ordered sequence (kg )kcz for this path and the differ-
ence in question is equal to &y (1) — R (3) = k;(1) — k;(0) for j = j(k) € Z
such that the eigenfunctions corresponding to x;(0) and & (%) are the same.
Summarizing we have the following.

Remark 2.34 Let P : [0,1] — S(n) be any piecewiese holomorphic path
from S to S + A and (kg)rez the ordered sequence representing o(Lp(.)).
Normalize this sequence such that the same eigenfunctions correspond to
both A\i(S) and kg (0), then for all k € Z

Ak(S + A) = Ae(S) = ki(1) — £ (0).

Now using this remark we can also deduce that the A\; are continuous
with respect to the L®°-metric on §(n): Choose any Sy € S(n) then

Ue :={5€8(n) | IS - Soll <e} ={So+ A A € 5(n),[|Allo <&}

is a neighbourhood of Sy for alle > 0. For S = Sp+A € U, let (ki) kez be the
normalized sequence of eigenvalue functions along the path P(z) = Sy + zA
as in remark 2.34. This and corollary 2.32 imply that for all kK € Z

= [[Allee <.

k() = A (So)| = s (1) — i (0)] < H% co
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So we even have uniform continuity of (Ag)ken, that is for any Sy € S(n)
and ¢ > 0 there is a neighbourhood U, of Sy such that |\, (S) — A\x(So)| < €
for all S € U, and k € Z.

In order to see that the Ay are actually well-defined by definition 2.33,
first note that the fundamental group of S(n) is trivial. In fact, any loop
P : S' — S(n) can easily be contracted to the constant loop at 0 € S(n)
by the homotopy sP, s € [0,1]. So any two paths in S(n) connecting 0 to
S can be homotoped into one another with fixed endpoints. Of course, this
can also be done continuously with respect to the C'-metric on the space
of piecewise holomorphic paths in §(n). We also know that Ax(S) can only
assume the discrete values given by o(Lg). So to make sure that it does not
depend on the choice of the path P it remains to prove the following.

Theorem 2.35 Let S € S(n) and Py : [0,1] — S(n) be any path as used
in definition 2.33 for A\p(S). Then for all k € Z, M\p(S) is continuous with
respect to C'-small variations of Py preserving the analyticity and end points
of the path.

Proof: Choose any € > 0 and denote the normalized sequence of eigenvalue
functions corresponding to Py by (k)kez. Then we have to show that there
is a 6 > 0 such that for all piecewise holomorphic paths P : [0,1] — S(n)
that meet

P0)=0, P(1)=S and [[P— P <9 (2.30)

we have k(1) — (1) < € for all k € Z where (k) gez is the normalized
sequence attached to P.

For any P as above and fixed y € [0,1] consider the following path in
S(n) which is obviously holomorphic:

B(z) = Po(y) + z(P(y) — Po(y)), =« €][0,1]. (2.31)

Denote the ordered sequence of functions representing the spectrum of Lp )
by (Rk)kez, then corollary 2.32 yields for all k € Z

R (0) = Rr(D)] < [1P(y) = Po(y)llco- (2.32)

This gives an upper bound for the difference between the eigenvalues & (1)
of Lp(,) and the ones & (0) of Lp (. But it is not obvious that for a given
J € Z this bound is also valid between ; and mg. In order to show this, one
has to make sure that by tracing the eigenvalues along the above path B,
actually Hg(y) goes to £;(y) and not to another branch of (k).

We know that both (s} (y))rez and (% (0))rez represent o(Lp,(y)), so
because of their ascending order, the sequences have to be equal up to a
shift in the numbering. The same holds for (ki(y)) and (%x(1)) and hence
for every y € [0,1] there is a shift s(y) € Z such that for all k € Z (2.32)
becomes

|kkts(y) — wa ()| < |P(y) — Po(y)]]oo- (2.33)
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Moreover, we know from the normalization (2.29) that x;(0) = (0) and
hence s(0) = 0, so in order to prove the claim we have to make sure that for
some sufficiently small ¢ this shift can not change along y € [0, 1].

As a first step towards this we deduce from the discreteness of the spec-
trum that for every j € Z and y € [0,1] there is a gap around /ﬂ?(y) in
o(Lp,(y)), i-e. there is a maximal y(y) > 0 such that

a(Po(y)) N (k) — (), 63 (W) + () ) = {K(»)}- (2.34)

Now let 0 < § < 17(y) and P be a path with (2.30). Then o(Lp(y)) must
have a gap corresponding to the gap for Lp () because of the bound (2.33)
on the distance of eigenvalues. That is, there are no eigenvalues of Lp(,) in

(63 (y) —y(y) +6,63(y) =6 ) U (K(y) + 8, K3(y) +v(y) —6) . (2.35)

If we knew now that |k;(y) — mg (y)| < v(y) — 4, then it would follow from
this gap that even |x;(y) — /ﬁ?(y)| < 4. This is the main effect that we will
use to make sure that x; stays close to mg all along [0,1]. The rest of the
proof would be easy if the gap width v was bounded away from zero. But
from the continuity of the m% we can only deduce that v is continuous on
[0,1] except for the crossing points. At these points, y(y) is positive but
from both sides tends to zero since several branches of eigenvalue functions
meet in mg(y).

Next note that A := ||Py|lc1 + 1 < oo by remark 2.24. Choose § < 1,
then for P as in (2.30) we have ||P||c1 < A and corollary 2.32 implies that
for any z,y € [0,1] and k € Z

|k (2) — i (y)] < Alz —y| (2.36)

as well as
|kp(z) — rp(y)] < Alz —yl. (2.37)

Now we choose a fixed j € Z for the rest of the proof. Since all mg are piece-
wise holomorphic and have a uniform bound (2.37) on the growth rate, there
only are a finite number of crossing points along mg, at which some other ﬁg
actually crosses this graph, i.e. is not identical to it on a neighbourhood of
the point. On compact intervals [a,b] C [0, 1] not containing any crossing
point we can use the finite gap width I' := miny¢[45 7(y) > 0 to make sure
that the shift s stays constant.

There might be several functions x that on [a,b] are identical to ﬁ?
and differ from it on the other side of some crossing point or not. Because
of the order of (&2) these functions have to be consecutively numbered by
{j—1,...,j4+m} =: N for some [, m € Ny. By (2.34) all other x?, k ¢ N are
on [a, b] separated from KZ? by at least I'. Choose some 0 < § < min{1, iI‘},
let P be a path with (2.30), ¢ € N, and set s := s(a). For any y € [a,b]
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assume |k;ys(y) — £¥(y)| < 8. Combining this with (2.36) and (2.37) we
deduceforallxe(y—%,y+%)

|Kits (@) — K3 (2)]
< Rirs(®) = Rivs(W)] + [Rits(y) — 55 ()] + K] (y) — &7 ()]
< 24|z —y|+6 < 36 < T'—a.

The gap (2.35) of o(Lp(y)) implies that even
|its(z) — K (z)| < 6 (238)

forze(y—4,y+4%)N[ab).

From (2.33) we obtain |k;4s(a) — &{(a)] < 6, therefore we know that
a€l:={z€la,b] ‘ |kits(z) — K2 (z)] < 6}, so I is not empty. By the above,
I is open with respect to [a, b], and it is also closed because of the continuity
of Ki+s and k. Hence we have I = [a, b], that is the inequality (2.38) extends
to the whole interval [a,b]. On the other hand, for any z € [a,b], i € N and
k € Z\ N we have

Ikits(2) — K2(@)] > [K0(2) = 62(2)] = |Kits(z) — K2(a)| > T = 6 > 34,

hence in (2.38) we can not change the shift s — for any other shift, some of
the k;4s, i € N would have to be closer than d to some k2, k ¢ N. Thus we
have shown that s(z) = s(a) for all = € [a,b], that is the shift s is constant
along closed intervals not containing a crossing point of /ﬁ?.

To complete the proof it remains to find an interval around every crossing
point of mg on which the shift s is also constant. So we have to consider
a crossing point y where several graphs of (k) meet fi?. These will be &)
for k € N :={j—1,...,7 + m} with some [,m € Ny since the sequence
is ordered. From the gap of width 7(y) in the spectrum of L Po(y) and the
maximal growth rate (2.37) we can deduce some restrictions on the spectrum

of Lp,() for z €[y — % , Y+ % ] : For the graphs that meet in mg(y) we

have
Vk € N : wi(z) € (K](y) — §7(), 5 (%) + 57(y) ) (2.39)
and for all other graphs of (k)
Vk €Z\ N : kp(z) € R\ (£5(y) — §7(v), w5(») + §7(v) ) . (2.40)
()

Now let a = 5%, choose some 0 < § < min{l, %fy(y)} and assume P to
fulfill (2.30). Moreover, we set s := s(y — a) such that from (2.33) we have
|kk+s(y—a) —K2(y—a)| < 6 for all k € Z. Therefore, using (2.39), we obtain
foralli e N

Kivs(y —a) € (K)(y) — §7(v) — 8, K(y) + 57(y) +6)



From this, the maximal growth rate (2.36) and a4 < g7v(y) we deduce for
alli € N and z € [y — a,y + a]

Kits(T) ( mg(y) — 27(y) — 6 — 244, mg(y) + 37(y) + 6+ 2a4)
1
2

c
C (&) —3v(w), 2y + 37(v) ) - (2.41)

Now consider any z € [y — a,y + a]: in view of (2.40) and (2.41) we have for
alli€ Nand k€ Z\ N

|5i4s(2) = mp(@)] > 167 (y) — 6k (2)] = [mirs(2) — K5 ()] > §r(y) — 57(y) > 6.

Hence
Vk € Z: |Kpyg@)(T) — kY (z)] < 6 (2.42)

can only hold if for any kK € Z\ N we have k + s(z) — s ¢ N, that is if
and only if s(z) = s. Since s(z) is defined by (2.42) we have shown that on
[y — a,y + a] the shift s is constant.

We have seen that for sufficiently small § > 0 the shift s is constant on
some small closed intervals around crossing points of ﬁ? (with the crossing
point in the interior) and on closed intervals not containing crossing points.
Since there are only finitely many crossing points for a fixed n?, the interval
[0,1] is covered by finitely many intervals on which for sufficiently small
& > 0 the shift s is constant. Therefore there is a § > 0 such that on all of
these intervals s is constant and hence on all of [0,1] we have s = s(0) = 0.
Now if we also choose § < ¢, then (2.33) yields for y =1 and all k € Z

k(1) = rp(1)] < 1P(1) = Po(D)lloo < 1P = Pol <&,

which was to be shown. O

2.2.4 Proof of pcz = pspec

In the previous section we established the unique existence of globally num-
bered sections A of the spectrum bundle that have the properties (i) to
(iv) of theorem 2.14. Now we will prove the remaining property a) of these
sections and we will finish the proof of theorem 2.14 by checking that the
index constructed from the spectral bundle sections,

fspec(®) = max{k € Z | \y(®) <0} for all & € =H®(n), (2.43)

meets the conditions of the axiomatic definition 2.9 of the Conley-Zehnder
index.

When using the explicit definition of the A; and the subsequent remark
2.34, the proof of theorem 2.14 a) reduces to the following lemma.
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Lemma 2.36 Let A € §(n) and let it satisfy A(t) > ¢ > 0 for all t €
[0,1). For any S € S(n) let (kk)kez be the ordered sequence representing the
spectrum of Lgiyan. Then we have for all k € Z

Kk (1) < Kk (0).

Proof: S+xA obviously is a piecewise holomorphic path in §(n), so we can
apply corollary 2.32 and obtain for any k£ € Z and some unknown normalized
family ¢, € L%(S!,R?") of eigenfunctions of Lgza

(1) — k(0) = /01 (%, —W@)Lz dz

- / / —(falt), AW fo(t)) dtde
0 0

< —/01/015\%@)? dt dz

1
< e [ ldalrds
0
= —e<0.
|

In order to show the homotopy invariance of j1spec Wwe need to understand
the situation in which eigenvalue functions of Lg for some symplectic arc ®
cross 0. Here and in the following we denote by Lg the asymptotic operator
Lg, corresponding to the symplectic arc ®.

Proposition 2.37 For any ® € W1H>°([0, 1], Sp(n)) with ®(0) = 1 we have
ker(Lg) = {0}, i.e. 0 ¢ o(La) holds if and only if ®(1) € Sp*(n), that is
® € nH®(n).

Proof: Substituting h = &g we have the equivalence
Loh =0 <= —Jh(t) = —J®(t)®(t) " h(t)
= —Jo(t)g(t) — JO()g(t) = —J@(t)g(t)
<~ ¢g(t)=0

where the last equivalence follows from the nondegeneracy of the symplectic
®(t). Therefore the set of solutions of Lah = 0 is
{®hg | ho € R*™} c WH([0, 1], R?") ¢ W2([0, 1], R*").

In order that ®hy € W1H2(S!,R?") we also need hg = ®(0)hg = ®(1)h
(due to the Sobolev embedding 2.23). Hence remembering that ®(0) =
we obtain

0
1
ker(Lg) = {®hg | ho € R?" such that ®(1)ho = ho}.
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Also note that ®hy # 0 for hg # 0 since ®(0) = 1, so the kernel of Lg is
trivial if and only if ®(1) has no eigenvalue 1, that is if ® is nondegenerate.
O

Now consider a homotopy ¥ : [0,1] — ©1°°(n). Because of the above
lemma and the nondegeneracy of all ¥(s) we have 0 ¢ o(Ly()) for all
s € [0,1]. Moreover, we know that for all £ € Z the function Ay representing
a part of this spectrum is continuous with respect to the W1*®-metric on
»1®(n). But ¥ is a homotopy on that metric space, hence for any k € Z,
Ax(P(s)) is also continuous in s and thus cannot cross 0. Therefore we
deduce that A\;(¥(1)) < 0 holds if and only if A\,(¥(0)) < 0 and hence

pipee(¥(1)) = minfk € Z | A(T(1)) < 0}
— minfk € Z| M(T(0)) <O} = prapec(T(0)).

This proves that e is invariant with repect to homotopies in 1% (n).

Before proceding with checking the conditions for the Conley-Zehnder
index let us introduce an equivalent definition for pig,.. in terms of the
spectral flow through 0.

Proposition 2.38 For ®,¥ € W1H°([0,1], Sp(n)) with ®(0),¥(0) = 1 let
P be any piecewise holomorphic path in S(n) from P(0) = Se to P(1) = Sy
and let (Vn)nen be the sequence of functions representing o(Lp(.)) as given
by theorem 2.17. Then

tspec(¥) — fhspec(®) = t{rn € N|1,,(0) >0 > vp(1)}
— H{neN|v,(1) >0>v,(0)}.

This number can also be obtained from the flow of (vy,) through zero: For
every n € N, we count each point in [0,1] at which v, goes from [0,00) to
(—00,0) as +1, and each point in [0,1] at which v, goes from (—o0,0) to
[0,00) is counted as —1. In particular, for a path P as above with P(0) =0
(i.e. ® = 1) one obtains

Pspec(¥) =—n + H{n e N|p,(0) > 0> v,(1)}
— H{neN|v,(1) > 0> v,(0)}.

Proof: For the definition of pgpe.(¥), some piecewise holomorphic path
P :[0,1] — S(n) from 0 to Sy is needed. We choose a path going from 0
to P(1) = ® and then along P reparametrized to [5,1]. Let (Ry)kez be the
ordered, normalized sequence representing L ) and normalize the ordered

sequence (k)gez attached to P such that %x(3) = kk(0) for all k € Z. Then
We can express fspec in terms of (ky):

trspec(P) — Mspec(®) = fi{k € Z | ki(1) <0< re(0)}
— HEkeZ|rp(0) <0<rp(l)}. (2.44)
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In order to see this, first assume prgpec(¥) > figpec(®), then we know that

F"'k(l)a ’%k(%) <0 for k < Nspec((ﬁ)a
fr(l) <0< ’%k(%) for ke {,Uspec(q)) +1,... 7Nspec(\l’)}a
F&k(l)a F&k(%) >0 for k> Uspec(\p)-

Hence obviously

spec(¥) — prspec(®) =k € Z | (1) <0 < ’%k(%)}

and the other set in (2.44) is empty. If pspec(¥) < fropec(P) we get in
complete analogy

,uspec((I)) - ,Uspec(\p) = Ii{k €L ‘ ’%k(%) <0< '%k(l)}

and
{keZ|rp(1) <0< R(3)} = 0.

Moreover, P | [L1] only is a reparametrization of P, so from the normalization
of (ki) we deduce k(1) = &x(1) for all k € Z, which proves (2.44).

Furthermore, only a finite number out of (ki) can cross zero at all on
[0,1]. This is because of the uniform bound on the growth rate of x; from
corollary 2.32 and the fact that in any bounded interval there are only finitely
many points of 0(Lg) = {kx(0) | k € Z} (see lemma 2.31). In addition, every
ki is composed of a finite number of holomorphic branches that equal zero
either identically or at only a finite number of points. So the finitely many
ki meeting 0 at all can cross it only finitely often. Hence when counting the
flow of (ki) through zero as described above, the sum is well-defined and
from (2.44) it is clear that we get frspec(¥) — pspec(®) this way.

Now just as for (i), the flow of (v,) through zero is also well-defined
and it obviously adds up to

H{n e N1, (0) >0>v,(1)} —#H{n e N|v,(1) >0 >1,(0)}.

But (ki) results from (v,) by glueing together the holomorphic branches
differently and this does not change the flow through zero. This finally
finishes the proof of the assertions with respect to figpec(¥) — phspec(®). For

the last statement of the proposition it suffices to prove figpec(1) = —n. To
see this, simply recall from (2.28) that for S = 0 we have the normalization
A—nt1(0) = ... = Ap(0) = 0 and hence A_,, = —27 because of our knowledge
of o(Lg) from lemma 2.31. O

Using these alternative definitions of ji4,e. and the homot