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Abstract. We review the theory of Cerf describing the decomposition of cobordisms into elemen-
tary cobordisms, and the Cerf moves between different decompositions. We put special emphasis
on connectedness and define Cerf decompositions as decompositions of morphisms in the category
of connected manifolds and connected cobordisms. In addition, we discuss the cyclic Cerf theory
of Morse functions to S

1.
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1. Introduction

Let X± be compact oriented n-manifolds. Recall that a cobordism from X− to X+ is a compact,
oriented n+1-manifold Y with boundary such that X+ resp. X− is the component of the boundary
∂Y = X− ∪X+ on which the given orientation agrees resp. disagrees with the orientation induced
by the orientation on Y .

Definition 1.1. The connected cobordism category Cobn+1 is the category whose

(a) objects are compact, connected, oriented n-dimensional smooth manifolds;
(b) morphisms are connected n + 1-dimensional cobordisms modulo the equivalence relation

given by diffeomorphisms fixing the boundary;
(c) composition is given by gluing (see Remark 1.2 below).

Remark 1.2. (a) The identity morphism for a manifold X in Cobn+1 is the (equivalence class
of the) trivial cobordism X × [0, 1].

(b) Given two cobordisms Y01 fromX0 to X1 and Y12 fromX1 to X2, we may glue them together
to a cobordism Y01 ∪X1

Y12 from X0 to X2.
For an explicit construction choose collar neighborhoods κ01 : X1 × (−ǫ, 0] → Y01 and

κ12 : X1 × [0, ǫ) → Y12 and define Y01 ∪X1
Y12 := Y01 ⊔ Y12 ⊔X1 × (−ǫ, ǫ)/ ∼ where ∼ is the

obvious equivalence. Any two choices of collar neighbourhoods are isotopic, hence gluing is
well-defined up to diffeomorphisms fixing the boundary; see e.g. [Mi, Thm.1.4].

By a connected cobordism we will mean a connected cobordism between connected manifolds as
above, that is, a representative of a morphism in the category Cobn+1.

Throughout the paper we will assume n ≥ 2 since the connected 1 + 1-dimensional connected
cobordism category Cob1+1 has exceptional form: Its only object is S1, however there are nontrivial
connected 2-dimensional cobordisms that arise from composition of more elementary cobordisms
between disconnected 1-manifolds. This obstructs the decomposition into elementary connected
cobordisms that will be the result of our Cerf decomposition in higher dimensions.

Section 2 considers R-valued Morse functions whose critical points can be separated by level
sets and shows in Lemmas 2.5, 2.6 that such “Morse data” (see Definition 2.1) are equivalent
to Cerf decompositions (see Definition 2.3). Section 3 then studies homotopies of Morse data to
prove in Theorem 3.4 that Cerf decompositions are unique up to the Cerf given by Definition 3.2.
Finally, Section 4 extends Cerf theory to the case of S1-valued Morse functions f : Y → S1.
We show in Lemma 4.4 that cyclic Cerf decompositions exist for any homotopy class [f ] such that
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f∗ : π1(Y ) → π1(S
1) is surjective. Theorem 4.7 then proves uniqueness of cyclic Cerf decompositions

up to the same Cerf moves as in the R-valued case.

2. Cerf decompositions of cobordisms

In this section we describe the decomposition of cobordisms and morphisms in the cobordism
category into elementary pieces. In the following, let X−,X+ be compact, connected, oriented
manifolds of dimension n ≥ 2, and let Y be a compact, connected, oriented cobordism from X− to
X+.

Definition 2.1. A Morse datum for Y consists of a pair (f, b) of a Morse function f : Y → R and
an ordered tuple b = (b0 < b1 < . . . < bm) ⊂ R

m+1 such that

(i) X− = f−1(b0) and X+ = f−1(bm) are the sets of minima resp. maxima of f ;
(ii) each level set f−1(b) for b ∈ R is connected;
(iii) f has distinct values at the (isolated) critical points, i.e. it induces a bijection Critf →

f(Critf) between critical points and critical values;
(iv) b0, . . . , bm ∈ R \ f(Critf) are regular values of f such that each interval (bi−1, bi) contains

at most one critical value of f .

Definition 2.2. Y is an elementary cobordism if it admits a Morse datum (f, b = (min f,max f)),
that is f is a Morse function with at most one critical point. Y is a cylindrical cobordism if it
admits a Morse datum (f, b = (min f,max f)), where f is a Morse function with no critical point.

Definition 2.3. (a) A Cerf decomposition of a cobordism Y as above is a decomposition

Y = Y1 ∪X1
Y2 ∪X2

. . . ∪Xm−1
Ym

into a sequence (Yi ⊂ Y )i=1,...m of elementary cobordisms embedded in Y that are disjoint
from each other and ∂Y except for Y1 ∩ ∂Y = X−, Ym ∩ ∂Y = X+, and the intersections
Xi := Yi ∩ Yi+1, which are also connected submanifolds in Y of codimension 1. As a
consequence we have ∂Yi = Xi−1 ⊔Xi for i = 1, . . . ,m with X0 = X− and Xm = X+.

(b) A Cerf decomposition of a morphism [Y ] in the connected cobordism category Cobn+1 is a
sequence ([Yi])i=1,...m of elementary morphisms that compose to

[Y ] = [Y1] ◦ [Y2] ◦ . . . ◦ [Ym].

Remark 2.4. (a) Any Morse datum (f, b) for a cobordism Y as above induces a Cerf decompo-
sition Y = Y1∪X1

. . .∪Xm−1
Ym into the sequence (Yi := f−1([bi−1, bi]))i=1,...m of elementary

cobordisms between the connected level sets Xi = f−1(bi).
(b) Any Cerf decomposition Y = Y1 ∪X1

. . . ∪Xm−1
Ym of a representative of a morphism [Y ] in

Cobn+1 induces a Cerf decomposition [Y ] = [Y1] ◦ [Y2] ◦ . . . ◦ [Ym] in the cobordism category.
(c) On the other hand, any Cerf decomposition Y = Y1∪X1

. . .∪Xm−1
Ym arises from a Morse da-

tum. Indeed, by definition each elementary cobordism Yi supports a Morse datum with just
two levels (b0, b1), hence its trivial Cerf decomposition is induced by a Morse datum. Now
we can iterate Lemma 2.6 below with Y− = Y1∪ . . .∪Yk and Y+ = Yk+1 for k = 1, . . . ,m = 1
to construct a Morse datum on Y that induces exactly the given Cerf decomposition.

(d) Finally, any Cerf decomposition [Y ] = [Y1] ◦ [Y2] ◦ . . . ◦ [Ym] in Cobn+1 arises from a Cerf
decomposition of a representative. Indeed, pick representatives Y1, Y2, . . . , Ym and collar
neighbourhoods of the common boundaries X1, . . . ,Xm−1, then the glued cobordism Y ′ :=
Y1 ∪X1

Y2 ∪X2
. . . ∪Xm−1

Ym is a representative of [Y ]. Y ′ has a Cerf decomposition given
by Y1, . . . , Ym →֒ Y ′, and this induces exactly the given Cerf decomposition of [Y ].

Lemma 2.5. Given a connected cobordism as above, a Morse function satisfying (i)-(iii) in Def-
inition 2.1 always exists. Given such a Morse function f , b0 := min f , and bm := max f , for
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m ≥ #Critf , there evidently always exists a choice of b1 < . . . < bm−1 satisfying condition (iv),
hence making (f, b) a Morse datum.

As a consequence, any such cobordism has a Cerf decomposition, and any morphism in Cobn+1

has a Cerf decomposition.

Proof. By [Mi, Theorem 8.1], there exists a Morse function f : Y → R such that f is self-indexing
in the sense that the critical points of index i have critical value i, for each i = 0, . . . , n + 1, and
furthermore there are no critical points of index 0 or n + 1, and such that X± is the set of global
minima resp. maxima of f . After a small perturbation, we may assume that the critical values of
f are distinct, by [Mi, Chapter 4], but still with the property that if y, y′ are critical points with
index of y less than that of y′, then f(y) < f(y)′. We claim the fibers of f are connected. Indeed,
each level set is obtained by attaching handles to lower level sets (see Remark 2.7); the level sets
become disconnected by either attaching a handle of index 0, which does not exist by assumption,
or by a handle of index n with disconnecting attaching cycle. Once a level set is disconnected, it
can be become connected again only by attaching a handle of index one, with the points of the
attaching cycle in different components. But since the Morse function is self-indexing and n ≥ 2,
the n-handles are attached after the 1-handles, so the existence of a disconnecting n-handle would
imply that X+ is disconnected, a contradiction. Given such a Morse function f , b0 := min f , and
bm := max f , for m ≥ #Critf , there evidently always exists a choice of b1 < . . . < bm−1 satisfying
condition (iv), hence making (f, b) a connected Morse datum. �

Lemma 2.6. Suppose that Y = Y − ∪X Y + is a decomposition into two connected cobordisms
embedded in Y such that Y ± ∩ ∂Y = X± and X = Y − ∩ Y + is a connected submanifold in
Y of codimension 1. Let Morse data (f±, b±) on Y ± be given, inducing Cerf decompositions
Y ± = Y ±

1 ∪
X±

1

. . . ∪X
m±−1

Y ±
m±. Then there exists a Morse datum on Y which induces the Cerf

decomposition given by the two parts Y = Y −
1 ∪

X−

1

. . . ∪X
m−−1

Y −
m− ∪X Y +

1 ∪
X+

1

. . . ∪X
m+−1

Y +
m+ .

Proof. This follows from [Mi, Theorem 1.4, Lemma 3.7], which uses [Mu, Lemma 6.1]. Here we
give a somewhat alternative proof. First recall that both f− and f+ are constant on X, hence after
shifting f− by a constant (and simultaneously shifting b− such that the Cerf decomposition is not
affected) we can assume that f−|X = f+|X =: c. By Whitney’s extension theorem, both functions
also extend smoothly to all of Y . Unfortunately, they cannot simply be interpolated smoothly
without creating new critical points. Instead, we use the flow of ∇f−/|∇f−|2 to construct an
embedding X × [−ǫ, ǫ] →֒ Y to a neighbourhood of X such that after pullback f−(x, t) = c + t.
By choosing ǫ > 0 small, we can moreover ensure that the embedding only intersects the first
elementary cobordism X × [0, ǫ] →֒ Y +

1 inside Y +. Next, after pulling back f+ to a function
on X × [−ǫ, ǫ] as well, we use the flow of ∇f+/|∇f+|2 to construct the germ of an embedding
ψ : X × [0, δ) →֒ X × [−ǫ, ǫ] such that ψ(x, 0) = (x, 0) and ψ∗f+(x, t) = c+ t. We claim that ψ can
be extended to a diffeomorphism ψ : X× [0, ǫ) → X× [0, ǫ) that equals to the identity near X×{ǫ}.
Assuming this extension, it can be transfered and trivially extended to a diffeomorphism of Y which
is supported in Y +

1 \ X, and hence keeps the given Cerf decomposition fixed. We then obtain a

Morse datum by defining a smooth function f̃ : Y → R via f̃ |Y − = f− on Y − and f̃ |Y + = ψ∗f+,

and using the union of levels b̃ = b− ∪ b+. This induces the Cerf decomposition as claimed into
elementary cobordisms Y −

i and ψ−1(Y +
i ) = Y +

i .
In order to construct the required diffeomorphism ψ : X×[0, ǫ) → X×[0, ǫ) denote the coordinates

by (x, t) ∈ X × [0, ǫ) and fix a split metric dt2 + gX . Then the gradient splits ∇f+ = ∇Xf
+ +

(∂tf
+)∂t, where by assumption ∇Xf

+|t=0 = 0 and ∂tf |t=0 > 0. Pick a cutoff function λ : [0, ǫ) →
[0, 1] equal to 1 near 0 and also supported near 0 and consider the vector field

V := λ ∇f+

|∇f+|2
+ (1− λ)∂t = λ∇Xf

+

|∇f+|2
+

(

λ ∂tf
+

|∇f+|2
+ 1− λ

)

∂t
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on X × [0, ǫ). By picking the support of λ small, we can make the X-component of V arbitrarily
small and also ensure that the ∂t-component is positive throughout. Now define ψ : X × [0, δ) →֒
X× [0, ǫ] as the flow of V starting at ψ(x, 0) = (x, 0). We will analyze the components of ψ(x, s) =
(

φ(x, s), τ(x, s)
)

∈ X × [0, ǫ) separately. The second component solves τ(x, 0) = 0, ∂sτ(x, s) =
〈V (ψ(x, s)), ∂t〉, hence increases monotonely and for some small s0 the value infx∈X τ(x, s0) will
be outside the support of λ. Hence the second component for s ≥ s0 has the form τ(x, s) =
τ(x, s0) + s − s0. When shrinking the support of λ to 0, we get s0 → 0 and τ(x, s0) → 0, i.e. τ
converges to the map (x, s) 7→ s in C0. The first component starts out as identity φ(x, 0) = x and

solves ∂sφ(x, s) = λ(τ(x, s)) ∇Xf
+

|∇f+|2 (τ(x, s), φ(x, s)). Here the right hand side converges uniformly

to 0 as we shrink the support of λ to 0, hence the resulting family of maps (φ(·, s) : X → X)s∈[0,s0]
converges in C1 to the identity. So for sufficiently small support of λ, the first component will be a
smooth family of diffeomorphisms with φ(x, s) = φ(x, s0) for all s ≥ s0. We can moreover ensure
that s0 ≤

1
3ǫ and supx∈X τ(x, s0) < ǫ before beginning to adjust ψ on X × (s0, ǫ], where it is given

by ψ(s, t) = (τ(x, s0)+s−s0, φ(x, s0)). Since the second component already is a diffeomorphism in
x, we can replace the first component on X× [s0, ǫ] by any smooth family over x ∈ X of monotonely
increasing functions equal to τ(x, s0) + s − s0 near s = s0 and equal to s for s ≥ 2

3ǫ. Now the

adjusted diffeomorphism ψ on X × (23ǫ, ǫ] has the form (s, t) 7→ (s, φ(x, s0)), and we can replace
the second component by an isotopy of diffeomorphisms ending at the identity near X × {ǫ}. This
finishes the construction of the required diffeomorphism ψ : X × [0, ǫ) → X × [0, ǫ) and hence of
the Lemma. �

Remark 2.7. The pieces Yi of a Cerf decomposition have simple topological descriptions as follows
If the elementary cobordism Yi contains no critical point then it is in fact a cylindrical cobordism.
In that case Yi is diffeomorphic to the cylinder Xi × [bi−1, bi], and Xi−1 is diffeomorphic to Xi. If
Yi contains a single critical point, then it has index k ∈ {1, . . . , n}. In that case Yi is obtained
from Xi−1 × [bi−1, bi] by attaching a handle Bk × Bn−k+1 along an attaching cycle Sk−1 →֒ Xi−1.
The attaching cycle can be obtained as the intersection of the unstable manifold (for some choice
of a metric on Yi) of the unique critical point with Xi−1, see Figure ??. More precisely, to obtain
Yi one glues the handle on via an attaching map Sk−1 × Bn−k+1 →֒ Xi−1 × {bi}, whose image is
a neighbourhood of the attaching cycle. Conversely, Yi can be obtained from Xi by attaching a
handle of opposite index to an attaching cycle in Xi.

Note that our definition of a Cerf decomposition differs from the standard handle decomposition
in that we allow the elementary cobordisms Yi to be cylindrical cobordisms and we do not keep
track of the attaching cycles. This also simplifies the moves between different decompositions: Since
we do not fix a metric or require the Smale condition of stable and unstable manifolds intersecting
transversally, we need not consider the handle slide move discussed in [?, p. 40]. See Remark 3.3.

Recall that in the cobordism category, morphisms are equivalence classes of cobordisms modulo
diffeomorphisms that act trivially on the boundary. In order for Cerf decompositions to make sense
in this category, we need to ensure that equivalent cobordisms have equivalent decompositions – as
made precise in the following Definition and Remark.

Definition 2.8. (a) A diffeomorphism equivalence between two Cerf decompositions (Yi)i=1,...m

and (Y ′
i )i=1,...m of the same length m is a diffeomorphism ψ : Y → Y that is fixed on the

boundary ψ|X±
= IdX±

, such that Y ′
i = ψ(Yi).

(b) A diffeomorphism equivalence between two Cerf decompositions ([Yi])i=1,...m and ([Y ′
i ])i=1,...m

of the same length m is a collection of diffeomorphisms (ψi : Yi → Y ′
i )i=1,...,m satisfy-

ing the end conditions ψ1|X−
= IdX−

, ψm|X+
= IdX+

and the compatibility conditions
ψi|Xi

= ψi+1|Xi
for i = 0, . . . ,m − 1. Here Xi is the common boundary of Yi and Yi+1

(which necessarily exists since these are composable morphisms in the cobordism category).
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Remark 2.9. Given two representatives Y and Y ′ of the same morphism in Cobn+1 and a diffeo-
morphism ψ : Y → Y ′, any Morse datum (f, b) for Y induces a Morse datum (ψ∗f, b) for Y ′ by
pullback. The Cerf decompositions of [Y ] induced by (f, b) and (ψ∗f, b) are then diffeomorphism
equivalent via the collection (ψ|Yi)i=1,...,m of diffeomorphisms.

3. Uniqueness of Cerf decompositions

In a first step towards Cerf theory, we show that homotopies of Morse data yield diffeomorphism
equivalent Cerf decompositions. In fact, we have the following result for more general homotopies
of pairs (f, b) of functions on Y and tuples of regular level sets.

Lemma 3.1. Suppose that (fs)s∈[0,1] is a smooth family of smooth functions fs ∈ C∞(Y,R) and

(bs)s∈[0,1] is a smooth family of ordered tuples bs = (bs0 < bs1 < . . . < bsm) ⊂ R
m+1 such that for

every s ∈ [0, 1]

(i) X− = f−1
s (bs0) and X+ = f−1

s (bsm) are the sets of global minima resp. maxima of fs;
(iv’) bs0, . . . , b

s
m ∈ R \ fs(Critfs) are regular values of fs.

Then the decompositions (Y 0
i := f−1

0 ([b0i−1, b
0
i ]))i=1,...m and (Y 1

i := f−1
1 ([b1i−1, b

1
i ]))i=1,...m are diffeo-

morphism equivalent in the sense that there exists a diffeomorphism ψ : Y → Y which intertwines
the cobordisms ψ(Y 0

i ) = Y 1
i as well as the level sets ψ(X0

i ) = X1
i , where X

k
i := f−1

k (bki ) for k = 0, 1
and i = 0, . . . ,m. We moreover have the following special cases.

(a) If (f0, b
0) and (f1, b

1) are Morse data, then the two Cerf decompositions (Y 0
i )i=1,...m and

(Y 1
i )i=1,...m are diffeomorphism equivalent in the sense of Definition 2.8.

(b) In fact, ψ = ψ1 is part of a smooth isotopy (ψs : Y → Y )s∈[0,1] of diffeomorphisms with

ψ0 = IdY , providing diffeomorphism equivalences between (Y 0
i ) and (Y s

i ) for each s ∈ [0, 1].
If moreover (fs, bs) are Morse data for all s ∈ [0, 1], then there is a choice of (ψs) and an
ambient isotopy (φs : R → R)s∈[0,1] such that φs(b

0
i ) = bsi and fs = φs ◦ f0 ◦ ψ

−1
s .

Proof. First note that, since bsi is never a critical value of fs, each level set Xs
i := f−1

s (bsi ) is smooth
and each piece Y s

i := f−1
s ([bsi−1, b

s
i ]) is a smooth cobordism with boundary Xs

i−1
− ∪ Xs

i (since it
consists of an open subset and its two smooth boundary components). Moreover, the union of level
sets

X̃i :=
{

(s, y) ∈ [0, 1] × Y
∣

∣ fs(y) = bsi
}

=
⋃

s∈[0,1]

{s} × f−1
s (bsi ),

is a smooth submanifold of [0, 1] × Y since (s, y) 7→ fs(y) − bsi is transverse to 0. Note that the

extremal levels are the boundary components X̃0 = [0, 1] ×X− and X̃m = [0, 1] ×X+. Moreover,

X̃i → [0, 1] is a fiber bundle for each i (since it is a submersion and the level sets are compact),
whose fibers are the level sets Xs

i .
Similarly, each piece

⋃

s∈[0,1]{s} × f−1
s ([bsi−1, b

s
i ]) should form a fiber bundle over [0, 1] with

boundary X̃−
i−1 ∪ X̃i, so that parallel transport along a connection provides the required bundle

diffeomorphisms. However, instead of going into the notion of fiber bundles with boundary, we will
explicitly construct a vector field on [0, 1] × Y → [0, 1] that restricts to connection vector fields on

each X̃i. For that purpose we fix a metric on Y . Then each vector field

Vi(s, y) :=
(

∂s , (∂sb
s
i − ∂sfs(y))|∇fs(y)|

−2∇fs(y)
)

is defined on the complement in [0, 1] × Y of the union of critical sets of the functions fs. In

particular, Vi is defined in a neighborhood of each level set X̃i and by construction is tangent to
each X̃i. Note that in particular V0|X̃0

= ∂s since ∂sfs|X−
= ∂sb

s
0, and similarly Vm|X̃m

= ∂s.

Now we interpolate between the Vi to define one vector field Ṽ on [0, 1] × Y as follows: Since the

unions of level sets X̃i are disjoint for different i, we can pick a tuple of smooth cutoff functions
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hi : [0, 1]×Y → [0, 1] that equal 1 on a neighbourhood of X̃i where Vi is defined, and such that the
hi for different i have disjoint support. Then

Ṽ (s, y) :=

(

∂s

∣

∣

∣

∣

m
∑

i=0

hi(s, y)
∂sb

s
i − ∂sfs(y)

|∇fs(y)|2
∇fs(y)

)

defines a connection vector field on [0, 1] × Y (i.e. a lift of ∂s). Its flow takes the form Ψs(0, y) =
(s, ψs(y)), inducing the parallel transport isotopy (ψs : Y → Y )s∈[0,1] with ψ0 = idY . By construc-

tion, Ṽ is parallel to each X̃i, i.e. it restricts to connections Ṽ |X̃i
= Vi|X̃i

on each X̃i. Thus the flow

of Ṽ preserves X̃i and the parallel transport ψs restricts to diffeomorphisms ψs|X0
i
: X0

i → Xs
i

between the fibers. As a consequence, the flow of Ṽ also preserves each intermediate piece
⋃

s∈[0,1]{s} × f−1
s ([bsi−1, b

s
i ]) and thus induces diffeomorphisms φsi := ψs|Y 0

i
: Y 0

i → Y s
i between

the fibers Y s
i = f−1

s ([bsi−1, b
s
i ]). By construction, these match on the intersections Y 0

i−1 ∩ Y
0
i = X0

i

and restrict to the identity on the boundary components Xs
0 = X− and Xs

m = X+ (since Ṽ = ∂s
on X̃0 and X̃m). This proves the main statement as well as (a).

To prove (b) suppose that (fs, bs) are Morse data for all s ∈ [0, 1]. First, since the critical
values of fs and the regular values in bs are distinct for all s ∈ [0, 1], we can post-compose with
an ambient isotopy to arrange that the critical values and the chosen regular values are constant.
More precisely, there is a smooth family (φs : R → R)s∈[0,1] of diffeomorphisms of R such that

φ0 = Id, bs = φs(b0), and fs(Critfs) = φs(f0(Critf0)) = (φs ◦ f0)
(

Crit(φs ◦ f0)). Then (fs, bs) and

(gs := φ−1
s ◦ fs, b0) induce the same Cerf decompositions of Y .

If we can now refine our choice of connection Ṽ = (∂s, Vs) on [0, 1]×Y such that ∂sgs+dgs(Vs) ≡ 0,
then the induced isotopy ψs solves ∂s(gs◦ψs) = 0, and hence f0 = gs◦ψs = φ−1

s ◦fs◦ψs as claimed. In
the complement of critical points, our above construction Vs(y) := ∂sgs(y))|∇gs(y)|

−2∇gs(y) gives

the desired vector field Ṽ . Near every Morse critical point (s0, y0) with critical value gs0(y0) = c
we can find coordinates θs : Bǫ → Y for a neighbourhood of y0, defined on an open ball Bǫ ⊂
R
n, and varying smoothly with s near s0 such that gs ◦ θs : (x1, . . . , xn) 7→ c +

∑

±x2j . (Here

we are using the facts that all gs are Morse and the critical value c is independent of s.) Now
Vs(y) := d

dt

∣

∣

t=0
θs+t(θ

−1
s (y)) defines a vector field in a neighbourhood of (s0, y0), and for all x =

(x1, . . . , xn) ∈ Bǫ we have ∂sgs(θs(x)) + dgs
(

d
dt

∣

∣

t=0
θs+t(x)

)

= d
dt

∣

∣

t=0
gs+t(θs+t(x)) = 0, as required.

Finally, we can construct Ṽ globally by patching the local vector fields above with a partition of
unity, which finishes the proof. �

We know by Lemma 2.5 that every connected cobordism has a Cerf decomposition. The subse-
quent Cerf Theorem 3.4 implies that Cerf decompositions are unique up to the Cerf moves, which
will be defined in the following.

Definition 3.2. Let Y be a cobordism as before. A Cerf move from one Cerf decomposition
Y = Y1∪X1

∪ . . .∪Xm−1
Ym to another Y = Y ′

1∪X′
1
∪ . . .∪X′

m′−1
Y ′
m′ is one of the following operations.

(a) A critical point cancellation is the move

from Y = . . . Yj ∪Xj
Yj+1 . . . to Y = . . .

(

Yj ∪ Yj+1

)

. . . ,

where for some j ∈ {1, . . . ,m − 1} the two consecutive elementary cobordisms Yj, Yj+1

compose to a cylindrical cobordism Yj ∪Yj+1 ⊂ Y . More precisely, in this situation, critical
point cancellation is the move from (Yi)i=1,...,m to (Y ′

i )i=1,...,m′ with m′ = m−1, Y ′
i = Yi for

i < j, Y ′
j = Yj ∪ Yj+1, and Y

′
i = Yi+1 for i > j. A critical point creation is the same move

with the roles of (Yi)i=1,...,m and (Y ′
i )i=1,...,m′ interchanged.

(b) A critical point switch is the move

from Y = . . . Yj ∪Xj
Yj+1 . . . to Y = . . . Y ′

j ∪X′
j
Y ′
j+1 . . . ,
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where for some j ∈ {1, . . . ,m−1} the union Yj∪Yj+1 ⊂ Y equals to the union Y ′
j ∪Y

′
j+1 ⊂ Y ,

and the two Cerf decompositions Yj∪Xj
Yj+1 = Y ′

j ∪X′
j
Y ′
j+1 of the same cobordism are given

by Morse data (f, b) and (f ′, b′) with unique critical points yj(+1) ∈ Yj(+1) and y
′
j(+1) ∈ Y ′

j(+1)

in each part, whose attaching cycles (for some choice of a metric) switch in the following
sense: The attaching cycles of yj and yj+1 in Xj and those of y′j and y

′
j+1 in X

′
j are disjoint,

while in Xj−1 = X ′
j−1 the attaching cycle of yj is homotopic to that of y′j+1, and the

attaching cycle of yj+1 is homotopic to that of y′j; and analogously for the intersections

of stable manifolds with Xj+1 = X ′
j+1. More precisely, in this situation, critical point

switch is the move from (Yi)i=1,...,m to (Y ′
i )i=1,...,m′ with m′ = m, Y ′

i = Yi for i < j,
Y ′
j ∪ Y

′
j+1 = Yj ∪ Yj+1 as above, and Y ′

i = Yi for i > j + 1.

(c) A cylinder cancellation is the move

from Y = . . . Yj ∪Xj
Yj+1 . . . to Y = . . .

(

Yj ∪ Yj+1

)

. . . ,

where for some j ∈ {1, . . . ,m − 1} one of the two consecutive elementary cobordisms Yj ,
Yj+1 is cylindrical. Then the union Yj ∪ Yj+1 ⊂ Y is an elementary cobordism as well.
More precisely, in this situation, critical point cancellation is the move from (Yi)i=1,...,m

to (Y ′
i )i=1,...,m′ with m′ = m − 1, Y ′

i = Yi for i < j, Y ′
j = Yj ∪ Yj+1, and Y ′

i = Yi+1 for

i > j. A cylinder creation is the same move with the roles of (Yi)i=1,...,m and (Y ′
i )i=1,...,m′

interchanged.
(d) A diffeomorphism equivalence is the move

from Y = Y1 ∪X1
. . . ∪Xm−1

Ym to Y = ψ(Y1) ∪ψ(X1) . . . ∪ψ(Xm−1) ψ(Ym),

where ψ : Y → Y is a diffeomorphism satisfying ψ|X±
= IdX±

. More precisely, in this
situation, diffeomorphism equivalence is the move from (Yi)i=1,...,m to (Y ′

i = ψ(Yi))i=1,...,m

between two diffeomorphism equivalent Cerf decompositions as in Definition 2.8.

Let [Y ] be a morphism in Cobn+1 and [Y ] = [Y1]◦ . . . ◦ [Ym] a Cerf decomposition induced by a Cerf
decomposition Y = Y1 ∪ . . .∪Ym. A Cerf move on [Y ] = [Y1] ◦ . . . ◦ [Ym] is an operation induced by
a Cerf move on Y = Y1 ∪ . . . ∪ Ym.

Remark 3.3. Note that in our discussion of critical point switches above, we did use the notion of
stable and unstable manifolds and attaching cycles for the two critical points involved. The reader
who is familiar with handle decompositions may wonder how it is that we avoid handle slides
as one of our Cerf moves, and the answer is that paying attention to handle slides is exchanged
for paying attention to critical point switches. Handle slides are not meaningful as moves on
Cerf decompositions; they are just isotopies of the gluing maps. Similarly, critical point switches
are not meaningful as moves on handle decompositions. To relate these viewpoints, note that a
convenient description of a critical point switch in which a higher critical point yj+1 drops below a
lower critical point yj is as a homotopy of the Morse function supported in a neighborhood of the
unstable manifold of yj+1. Thus, if we modify the gradient-like vector field so as to slide the handle
for yj+1 over the handle for yj, we will get a different critical point switch. In other words, two
critical points can switch heights in many different ways, and these different ways can be related
by handle slides. Furthermore, when discussing handle slides it is important to remember that the
handle that is sliding needs to be above the handle that is being slid over, and thus that sequences
of handle slides can require nontrivial sequences of critical point switches. The basic example of
this phenomenon occurs in a loop of Morse functions on R

2 obtained by perturbing the “monkey
saddle”, and is described carefully in [HW, p.202] as well as in [GK, Thm.4.10]. This loop involves
two critical points of index 1, three critical point switches and three handle slides.

Theorem 3.4 (Cerf theory). Let Y be a cobordism as before, and let Y = Y1 ∪X1
∪ . . . ∪Xm−1

Ym
be a Cerf decomposition. Then any other Cerf decomposition Y = Y ′

1 ∪X′
1
∪ . . . ∪X′

m′−1
Y ′
m′ of Y
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can be obtained from (Yi)i=1,...,m by a finite sequence of Cerf moves. As a consequence, any Cerf
decomposition of a morphism [Y ] in Cobn+1 is unique up to Cerf moves.

The proof builds on the following result from singularity theory for smooth families of functions
on Y . For the purpose of smoothness and defining germs, these families will be viewed as maps
(fs)s∈[0,1] : [0, 1]× Y → R. In the following, the germ of a smooth family (fs)s∈[0,1] : [0, 1]× Y → R

at (sc, yc) is called equivalent to the local model (gt)t∈(−1,1) : (−1, 1)×R
n+1 → R (that is, its germ at

(0, 0)) if there exists a germ of a strictly increasing smooth function t : [0, 1] → (−1, 1) at t(sc) = 0
and a germ of a smooth family of local diffeomorphism (τs)s∈[0,1] : [0, 1]× Y → R

n+1 at τsc(yc) = 0

(i.e. τs : Y → R
n+1 is a germ of a diffeomorphism for each s near sc), and a germ of a smooth

function c : [0, 1] → R at c(sc) = fsc(yc)− g0(0) such that in a neighbourhood of (sc, yc) ∈ [0, 1]×Y

fs(y) = gt(s)(τs(y)) + c(s) ∀(s, y).

(See [Ma, p.151] for an equivalent definition.)
In the following, we will consider smooth functions f : Y → R satisfying the boundary min-

imum/maximum condition (i) of Definition 2.1. Given two such functions f0, f1 we denote by
H(f0, f1) ⊂ C∞([0, 1]× Y,R) the space of smooth homotopies F = (fs : Y → [−1, 1])s∈[0,1] between
f0 and f1, such that fs satisfies (i) for each s ∈ [0, 1]. We equip H(f0, f1) with the C∞-topology.

Theorem 3.5. Let f0, f1 ∈ C∞(Y,R) satisfy condition (i) of Definition 2.1. Then there exists an
open dense subset Hreg(f0, f1) ⊂ H(f0, f1) of regular homotopies such that for any (fs)s∈[0,1] ∈
Hreg(f0, f1) and any critical point yc ∈ Crit(fsc) at any sc ∈ [0, 1], the germ of (fs) at (sc, yc) is
equivalent to one of the following local models:

(a) a Morse singularity gt(z1, . . . , zn+1) = ±z21 ± . . .± z2n+1;

(b) a cusp singularity gt(z1, . . . , zn+1) = z31 ± tz1 ± z22 ± . . .± z2n+1.

A proof of Theorem 3.5 can be found in e.g. [Ma, p.167]. Note that these local models for a
regular homotopy imply that the critical point set forms a smooth 1–manifold

Crit(fs) := {(s, y) | y ∈ Crit(fs)} ⊂ [0, 1] ×Y.

It is moreover useful to think in terms of the function F : [0, 1] × Y → [0, 1] × R defined by
F (s, y) = (s, fs(y)). For the regular homotopies of Theorem 3.5, the restriction of F to Crit(fs) is
an immersion with cusps. Its image F (Crit(fs)) ⊂ [0, 1] × R is called the Cerf graphic.

The following result was noted as a corollary in [C] without regard to connectedness of fibres.

Theorem 3.6. Let f0, f1 ∈ C∞(Y,R) be two Morse functions satisfying (i)-(iii) in Definition 2.1.
Then there exists a homotopy (fs)s∈[0,1] in Hreg(f0, f1) such that there are only finitely many special
values 0 < c1 < . . . < cℓ < 1 for which fs fails to be a Morse function satisfying (i)-(iii) in
Definition 2.1. Moreover, for each of the special values s = cj , exactly one of the following holds:

(a) fcj is a Morse function on Y and satisfies (i) and (ii). The values at the critical points of
fcj are pairwise distinct except for one pair of critical points with the same value. These

two critical points extend to smooth paths y±j : (cj − ǫ, cj + ǫ) → Y of critical points y±j (s) ∈

Crit(fs) such that fs(y
+
j (s)) > fs(y

−
j (s)) for s < cj and fs(y

+
j (s)) < fs(y

−
j (s)) for s > cj .

(b) fcj is a Morse function on the complement of a single point yj ∈ Y \ ∂Y and satisfies (i)–
(iii). At (cj , yj) the family (fs) is equivalent to a cusp singularity, and the values at the
nondegenerate critical points of fcj are distinct from the degenerate critical value fcj(yj).

Proof. To simplify the constructions we consider linearly rescaled Morse functions gi(y) = aifi(y)+
bi for i = 0, 1 so that gi(Y ) ⊂ [−1, 1] and g−1

i (±1) = X±. These have the same level sets and
merely rescaled critical values, so they still satisfy (i)–(iii) with b0 = −1, bm = 1. If (gs)s∈[0,1] is
a homotopy between these with all the claimed properties, then these properties are preserved by
subtracting the linear family of constants sb0 + (1 − s)b1 and by multiplication with the family
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of positive constants sa−1
0 + (1 − s)a−1

1 . The result is a homotopy between f0 and f1 (given by

fs(y) =
(

sa−1
0 + (1− s)a−1

1

)(

gs(y)− sb0 − (1− s)b1
)

) that satisfies all claimed properties.
Thus we have reduced the proof to the case max f0 = max f1 = 1, min f0 = min f1 = −1.

In particular, we can now simply use a linear homotopy sf0 + (1 − s)f1 to satisfy (i) for every
s ∈ [0, 1]. Next, Theorem 3.6 provides a small perturbation of fs that still satisfies (i) and whose
critical points are given by smooth families of Morse singularities (a) with isolated cusps (b). By
compactness, the number of cusps is finite.

To arrange that the level sets are connected throughout, we can use the same arguments as in
[GK, Thm.1.4]. First, note that property (i) excludes critical points of indices 0 or n+1. Moreover,
the level sets below and above a critical point of index k are related by surgery along an Sk−1 in
the level set below. So the only way in which one of the level sets is disconnected while the other
one is connected, occurs when the level set below a critical point of index n is connected and the
Sn is a disconnecting hypersurface. Since the top level set X+ is connected throughout, and the
surgeries associated to further index n critical points cannot reconnect level sets, we can exclude
disconnected level sets by ensuring that the index n critical values are larger than all critical values
of index k < n. Let us call a Morse function on Y with this property and satisfying (i) an ordered
Morse function. We just explained why this guarantees the connectedness property (ii) for the level
sets. For that purpose it suffices to show how to lower an arc of critical values of index k < n
below an arc of critical values of index n. The general principle is that if, with respect to some
metric, on some time interval [s0, s1], the descending manifolds for a component A of Crit(fs) are
disjoint from the ascending manifolds for another component B, then F (A) can be moved below
F (B). However, while f0, f1 by assumption have connected level sets, they may not be ordered.
So it remains to homotope each fi within the class of Morse functions satisfying (i) and (ii) to an
ordered Morse function.

Finally, to satisfy (iii) and (a), (b) we will use small deformations to ensure that cusps of
F (Crit(fs)) appear at different times s and to make the self-intersections of F |Crit(fs)

transverse,

avoiding the cusps, with only double points, and at distinct times s from each other and the cusps.
This can obviously be done as long as we can (a) move any cusp forward or backward in time and
(b) add a small perturbation function to the values of any short arc of non-cusp critical values.

Up to reparametrization (n.b. this reparametrization is special in that the reparametrization of s
can not depend on position in Y , whereas the reparametrization in Y may depend on s) in domain
and range, there is a chart on [0, 1] × Y near each cusp on which F looks like (s, z1, . . . , zn) 7→
(s, z31 + sz1 ± z22 ± . . . ± z2n+1). We move this cusp forward or backward in time by modifying this
function inside such a chart so as to interpolate from this form near the boundary of the chart to
(s, z31 + (s + ǫ)z1 ± z22 ± . . . ± z2n+1) in a ball at the center of the chart, without introducing any
new singularities. This should involve two bump functions, one a function of s and one a function
of (z1, . . . , zn), i.e. the interpolating function will have the form (s, z31 + (s + ǫβ(s)β(z21 + . . . +
z2n+1))z1 ± z22 ± . . . ± z2n+1), for some appropriate bump function β. The trick, of course, is to
control the derivatives of β so as not to introduce extra critical points.

Up to the same kind of reparametrization as above, in a neighborhood of a short arc of non-cusp
critical points F looks like (s, z1, . . . , zn+1) 7→ (s,±z21 ± . . . ± z2n+1), for s ∈ [−ǫ, ǫ]. In this chart,

Crit(fs) = [−ǫ, ǫ]× {(0, . . . , 0)} and F (Crit(fs)) = [ǫ, ǫ]× {0}. Given a perturbation function p(s),
we want to modify fs so that Crit(fs) is unchanged but F (Crit(fs)) = {(s, δβ(s)p(s))}, where δ > 0
is a small constant and β(s) is a bump function on [−ǫ, ǫ]. Simply adding δβ(s)β(z21 + . . .+ z2n+1)
should do this without adding new critical points, as long as δ and/or the derivatives of β are kept
small.

�
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Lemma 3.7. In Theorem 3.6 above, we can assume (i.e. homotope the homotopy (fs)s∈[0,1] so
as to arrange) that the events (a) and (b) are supported in arbitrarily small balls in the following
sense:

(a) In case (a) above, we can arrange that the two paths y± are constant and that, given any
descending disk D for y+ on f−1

cj−ǫ
([fcj−ǫ(y

−), fcj−ǫ(y
+)]) and any open neighborhood U of

D, fs is independent of s outside D, for s ∈ [cj − ǫ, cj + ǫ].
(b) In case (b) above, in any ball around yj, we can arrange for coordinates (z1, . . . , zn+1) around

yj and some ǫ > 0 such that, for s ∈ [cj − ǫ, cj + ǫ], fs is independent of s outside an ǫ–ball
neighborhood of cj in these local coordinates and, inside this ball, fs = gs(z1)±z

2
2±. . .±z

2
n+1,

where gs : [−ǫ, ǫ] → [−ǫ, ǫ] is a smooth function equal to x3± sx for x ∈ [−ǫ/3, ǫ/3], equal to
x for x ∈ [−ǫ,−2ǫ/3] ∪ [2ǫ/3, ǫ] and with positive derivative on [−2ǫ/3,−ǫ/3] ∪ [ǫ/3, 2ǫ/3].

Corollary 3.8. (a) Suppose that the regular homotopy (fs)s∈[0,1] ∈ Hreg(f0, f1) from Theo-
rem 3.5 has no cusp singularity at sc ∈ [0, 1]. Then for some δ > 0 there exist smooth paths
y1, . . . , yN : (sc−δ, sc+δ)∩ [0, 1] → Y such that Crit(fs) = {y1(s), . . . , yN (s)} is the disjoint
union of these points.

(b) Suppose that the regular homotopy (fs)s∈[0,1] ∈ Hreg(f0, f1) from Theorem 3.5 has a single

cusp singularity at sc ∈ [0, 1], namely at (sc, yc) with local model z31 − tz1 +
∑

±z2j . Then

for some δ > 0 there exist smooth paths y1, . . . , yN : (sc − δ, sc + δ) ∩ [0, 1] → Y and
y−0 , y

+
0 : (sc, sc+δ)∩ [0, 1] → Y with lims→sc y

±
0 (s) = yc such that the critical sets Crit(fs) =

{y−0 (s), y
+
0 (s), y1(s), . . . , yN (s)} for s > sc, Crit(fs) = {yc, y1(s), . . . , yN (s)} for s = sc, and

Crit(fs) = {y1(s), . . . , yN (s)} for s < sc are the disjoint union of these points.
(c) If in (b) the single cusp singularity has local model z31 + tz1 +

∑

±z2j , then there exist

y1, . . . , yN as above and y−0 , y
+
0 : (sc − δ, sc] ∩ [0, 1] → Y that analogously parametrize the

critical sets for s < sc, s = sc, and s > sc.

Proof. In the local model of a Morse singularity, the critical point is given by the constant path
yi(t) = 0 ∈ R

n+1 for each t ∈ (−1, 1), which is equivalent to the germ of a smooth path in Y .
In the local model of a cusp singularity z31 − tz1 +

∑

±z2j the critical sets for fixed t ∈ (−1, 1)

are two nondegenerate critical points y±0 (t) = (±
√

t/3, 0, . . . , 0) ∈ R
n+1 for t > 0, a degenerate

critical point limt→0 y
±
0 (t) = 0 ∈ R

n+1 for t = 0, and none for t < 0. These are equivalent to two
germs of smooth paths in Y defined for s > sc, with coinciding limits for s → sc, and disjoint for
s > sc. Similarly, in the local model of a cusp singularity z31 + tz1 +

∑

±z2j the critical points are

(±
√

−t/3, 0, . . . , 0) for t ≤ 0.
In this way we define paths y0, y1, . . . , yN : (sc−δ, sc+δ)∩[0, 1] → Y for some common δ > 0, one

for each critical point y0(0), y1(0), . . . , yN (0) of fsc. We moreover find disjoint open neighbourhoods
of (sc, yι(0)) ∈ [0, 1] × Y for each ι = 0, . . . , N in which the only critical points are those given by
the path yι. It remains to find a possibly smaller δ > 0 such that the paths y0, . . . , yN are the only
critical points of fs with |s − sc| < δ. If there was no such δ, then we would find a sequence of
critical points xν ∈ Critfsν \ {y0(s

ν), . . . , yN (s
ν)} for sν → sc as ν → ∞. By compactness of Y we

can find a convergent subsequence xνj → x∞ ∈ Y . By continuity of ∇f , the limit x∞ is a critical
point of fsc , and hence coincides with some yι(0). For sufficiently large j, the points xνj now lie
in the neighbourhood of yι(0) where the only critical points are given by yι, in contradiction to
xνj 6= yι(s

νj ). This finishes the proof. �

Proof of Theorem 3.4. By Remark 2.4 we can find Morse data (f, b) and (f ′, b′) for Y which induce
the given Cerf decompositions, that is Yi = f−1[bi−1, bi], Xi = f−1(bi), and Y ′

i = f ′−1[b′i−1, b
′
i],

X ′
i = f ′−1(b′i). Next, we choose a homotopy (fs)s∈[0,1] of functions between f0 = f and f1 = f ′ as

in Theorem 3.6. Then we pick times s0, . . . , s2ℓ+1 with

0 = s0 < c1 < s1 < s2 < c2 < . . . < s2j < cj < s2j+1 < . . . < s2ℓcℓ < s2ℓ+1 = 1
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such that s2j, s2j+1 is close to cj in a sense to be specified below. For each intermediate time
sj, j = 1, . . . , ℓ − 1 we can pick a tuple bj of regular levels as in Remark 2.5, making (fsj , bj) a
Morse datum, and hence inducing a Cerf decomposition of Y . This provides a finite sequence of
Morse data relating (f, b) for j = 0 to (f ′, b′) for j = ℓ. It now suffices to prove that the two Cerf
decompositions of Y induced by any two consecutive Morse data in this sequence are related by a
sequence of Cerf moves. That is, it suffices to prove the Theorem under the assumption that there
exists a homotopy (fs)s∈[0,1] of functions between f0 = f and f1 = f ′ as in Theorem 3.6 with at
most one special time.

If the homotopy (fs) has no special time, then it is in fact a homotopy within the class of
Morse functions with distinct values at the critical points, and we know from Corollary 3.8 that
the critical points and hence critical values are tuples of disjoint points resp. distinct real values
that vary smoothly with s ∈ [0, 1]. We may hence extend the tuple b = (bi(0))i=0,...,m of regular
values separating the critical points of f0 to a tuple of smooth functions (bi : [0, 1] → R)i=0,...,m such
that min fs = b0(s) < b1(s) < . . . < bm(s) = max fs are regular values of fs for each s ∈ [0, 1]. In
particular, the families (fs) and (b(s)) satisfy the assumptions of Lemma 3.1, and hence the two Cerf
decompositions induced by (f0 = f, b(0) = b) and (f1 = f ′, b(1)) are diffeomorphism equivalent,
i.e. related by Cerf move (d). Finally, let b′′ = b(1) ∪ b′ be the strictly ordered tuple obtained from
the union of the two tuples of regular values. Then (f ′, b′′) is yet another Morse datum for Y , and
now the Cerf decompositions induced by (f ′, b′) as well as (f ′, b(1)) can be obtained from the Cerf
decomposition induced by (f ′, b′′) by a sequence of cylinder cancellations, i.e. Cerf moves (c). More
precisely, for each i = 1, . . . m′ we have b′i−1 = b′′j , b

′
i = b′′j+k for some integers j, k, and

f ′−1[b′i−1, b
′
i] = f ′−1[b′′j , b

′′
j+1] ∪f ′−1(b′′j+1

) . . . ∪f ′−1(b′′
j+k−1

) f
′−1[b′′j+k−1, b

′′
j+k],

where at most one morphism on the right hand side is not cylindrical. The analogous relation
holds with b′ replaced by b(1). Summarizing, we obtain the (f ′, b′) Cerf decomposition of Y from
the (f, b) Cerf decomposition by a diffeomorphism equivalence, followed by a sequence of cylinder
creations and a sequence of cylinder cancellations.

It remains to consider a homotopy (fs) with one special time 0 < c = c1 < 1 and either one of
the cases in Theorem 3.6 – a critical point crossing as in (a) or a cusp singularity as in (b). In both
cases, let us first drop entries from the tuple b to define b(0) such that each interval [bi−1(0), bi(0)]
contains exactly one critical point of f0 = f . On the level of Cerf decompositions, this is reflected
in a sequence of cylinder cancellations. Now extending b(0) as above to a smooth family s 7→ b(s) of
ordered tuples b(s) = (min fs = b0(s) < b1(s) < . . . < bm(s) = max fs) of regular values separating
the critical points of fs is possible for s ∈ [0, c).

In case (a) of critical point crossing, for s→ c one of the critical levels bk(s) ∈
(

fs(y
−(s)), fs(y

+(s))
)

is forced to converge to a critical value bk(c) = fs(y
+(c)) = fs(y

−(c)). All other levels bi(s), i 6= k
can be extended smoothly as regular levels to s ≥ c. For the one level meeting the critical value, we
may choose bk(s) =

1
2 (fs(y

+(c)) + fs(y
−(c))) for |s− c| small. Then for s > c this again becomes a

regular level at least for a short time. That way we construct b(s) for small s− c > 0 that are again
ordered tuples of regular values, with exactly one critical value in each interval [bi−1(s), bi(s)]. As
such they can be extended smoothly to (c, 1].

Next, dropping the level bk(s), the families (fs) and b
∨(s) := (b1(s), . . . , bk−1(s), bk+1(s), . . . , bm(s))

are no Morse data anymore, but still satisfy the assumptions of Lemma 3.1 and hence induce a dif-
feomorphism ψ : Y → Y which preserves the level sets ψ(X0

i ) = X1
i for i = 0, . . . , k−1, k+1, . . . ,m,

where Xs
i := f−1

s (bi(s)). Let us denote Y
0
i := f−1

0 [bi−1(0), bi(0)] and Y
1
i := f−1

1 [bi−1(1), bi(1)], then
ψ restricts to diffeomorphisms Y 0

i → Y 1
i for i = 1, . . . , k − 1, k + 2, . . . ,m and a diffeomorphism

Y 0
k ∪X0

k
Y 0
k+1 = f−1

0 [bk−1(0), bk+1(0)]
∼

−→ f−1
1 [bk−1(1), bk+1(1)] = Y 1

k ∪X1
k
Y 1
k+1
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preserving the boundaries ψ(X0
i ) = X1

i for i = k ± 1. Note here that ψ−1(Y 1
k ) and ψ

−1(Y 1
k+1) are

both simple cobordisms since they support the Morse function ψ∗f1. Hence we obtain a new Cerf
decomposition

(1) Y = Y 0
1 ∪X0

1
. . . ∪X0

k−1
ψ−1(Y 1

k ) ∪ψ−1(X1
k
) ψ

−1(Y 1
k+1) ∪X1

k+1
. . . ∪X0

m−1
Y 0
m.

This differs from the decomposition Y = Y 0
1 ∪X0

1
. . . ∪X0

m−1
Y 0
m induced by (f0, b(0)) by a critical

point switch on Y 0
k ∪X0

k
Y 0
k+1. Indeed, on this cobordism the decompositions are given by the Morse

data (f0, (bk−1(0), bk(0), bk+1(0))) and (ψ∗f1, (bk−1(1), bk(1), bk+1(1))). Each of these has a unique
critical point yk ∈ Y 0

k , yk+1 ∈ Y 0
k+1, y

′
k ∈ ψ−1(Y 1

k ), y
′
k+1 ∈ ψ−1(Y 1

k+1) in each elementary piece. The
critical set of fs contains smooth paths from yk to ψ(y′k+1), and from yk+1 to ψ(y′k). Now fix a
metric g on Y . We may assume, possibly after shrinking the time interval around c, that the stable
and unstable manifolds of the two families of critical points are disjoint, since they are disjoint
at time c. In particular, the attaching cycles are disjoint in the middle surfaces X0

k as well as in
X1
k and hence the attaching cycles of y′k and y′k+1 with respect to ψ∗g are disjoint in ψ−1(X1

k).
The families of stable and unstable manifolds induce smooth families of attaching cycles in Xs

k−1

and Xs
k+1, which can be pulled back by ψs : X0

k±1 → Xs
k±1 to provide homotopies between e.g.

the attaching cycle of yk with respect to g and the attaching cycle of y′k+1 with respect to ψ∗g.

For sufficiently small time interval around c, the metrics g, ψ∗g are C1-close and so an isotopy of
metrics induces an isotopy of attaching cycles without introducing intersection points.

Next, the Cerf decomposition (1) differs from the decomposition Y = Y 1
1 ∪X1

1
. . . ∪X1

m−1
Y 1
m in-

duced by (f1, b(1)) by the diffeomorphism equivalence for the diffeomorphism ψ : Y → Y . Finally,
the Cerf decompositions induced by the Morse data (f1, b(1)), (f1, b(1) ∪ b

′), and (f1 = f ′, b′) are –
as above – obtained from each other by sequences of cylinder cancellations and cylinder creations.
Summarizing, in this case we obtain the (f ′, b′) Cerf decomposition of Y from the (f, b) Cerf de-
composition by cylinder cancellations, a critical point switch (b), a diffeomorphism equivalence,
cylinder creations, and cylinder cancellations.

In case (b) of a cusp singularity, suppose for now that the local model is z31 − tz1 +
∑

±z2j . As

before, we find a family s 7→ b(s) of ordered tuples b(s) = (min fs = b0(s) < b1(s) < . . . < bm(s) =
max fs) of regular values separating the critical points of fs for s ∈ [0, c). Now as s → c, there is
one regular value bk(s) ∈

(

fs(y
−
0 (s)), fs(y

+
0 (s))

)

that is forced to converge to the degenerate critical
value bk(c) = fs(yc). All other levels bi(s), i 6= k can be extended smoothly as regular levels to
s ≥ c. Here y±0 : [0, c) → Y are the smooth paths of critical points converging to the degenerate
point lims→c y

±
0 (s) = yc, as given by Corollary 3.8. Using the local model we also see that these

two critical values for s < c are

fs(y
±
0 (s)) = gt(s)(±

√

t(s)/3, 0, . . . , 0) = ∓2
3t(s)

√

t(s)/3 + c(s)

for some smooth, strictly increasing t : [0, 1] → (−1, 1) with t(c) = 0 and a smooth function
c : [0, 1] → R. We may hence choose the intermediate level as bk(s) = c(s), depending smoothly on
s for |s− c| small. For s > c this again becomes a regular level at least for a short time. That way
we construct b(s) for small s− c > 0 that are again ordered tuples of regular values. As such they
can be extended smoothly to (c, 1]. For i 6= k, k+1 there again is exactly one critical value in each
interval [bi−1(s), bi(s)]. However, there is no critical value in the intervals [bk−1(s), bk+1(s)]. So with
the tuple b∨(s) := (b1(s), . . . , bk−1(s), bk+1(s), . . . , bm(s)) we have further Morse data (fs, b

∨(s)) for
s ≥ c.

Now consider the decomposition (f−1[bi−1(0), bi(0)])i=1,...,k−1,k+1,...,m of Y induced by (f0 =
f, b∨(0)). Despite this not being a Morse datum, we will see that it is a Cerf decomposition
since Y 0

k := f−1[bk−1(0), bk+1(0)] is a cylindrical cobordism. For this purpose note that the
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families (fs) and (b∨(s)) satisfy the assumptions of Lemma 3.1 and hence induce a diffeomor-
phism ψ : Y → Y which preserves the level sets. In particular, it restricts to a diffeomorphism
Y 0
k = f−1

0 [b∨k−1(0), b
∨

k (0)] → f−1
1 [b∨k−1(1), b

∨

k(1)] =: Y 1
k preserving the boundaries ψ(f−1

0 (b∨i (0)) =

f−1
1 (b∨i (1)) for i = k−1, k. Recall that (f1, (b

∨

k−1(1), b
∨

k(1))) is a Morse datum for Y 1
k , hence the pull-

back (ψ∗f1, (b
∨

k−1(1), b
∨

k(1))) is a Morse datum on Y 0
k , showing that it indeed is cylindrical. Hence

the two Cerf decompositions (f−1[bi−1(0), bi(0)])i=1,...,m and (f−1[bi−1(0), bi(0)])i=1,...,k−1,k+1,...,m

are related by critical point cancellation, i.e. Cerf move (a). Lemma 3.1 moreover implies that
the Cerf decompositions (f−1[bi−1(0), bi(0)])i=1,...,k−1,k+1,...,m = (f−1

0 [b∨i−1(0), b
∨

i (0)])i=1,...,m−1 and

(f−1
1 [b∨i−1(1), b

∨

i (1)])i=1,...,m−1 are diffeomorphism equivalent. Finally, the Cerf decompositions in-

duced by the Morse data (f1, b
∨(1)), (f1, b

∨(1) ∪ b′), and (f1 = f ′, b′) are obtained from each other
by sequences of cylinder cancellations and cylinder creations. Summarizing, in this case we obtain
the (f ′, b′) Cerf decomposition of Y from the (f, b) Cerf decomposition by cylinder cancellations,
a critical point cancellation (a), a diffeomorphism equivalence, cylinder creations, and cylinder
cancellations.

In case (b) of a cusp singularity with local model z31 + tz1 +
∑

±z2j we reverse the process in

s ∈ [0, 1] and start by dropping unnecessary levels from b′ to define b′(1), then continue the regular
levels to b′(s) for s > c, smoothly continue them through s = c, extend as regular levels to s < c,
and drop one level to define b∨(s) such that (fs, b

∨(s)) is a Morse datum for s ≤ c. Then we obtain
the (f ′, b′) Cerf decomposition of Y from the (f, b) Cerf decomposition by cylinder creations and
cylinder cancellations from (f = f0, b) to (f0, b

∨(0)), a diffeomorphism equivalence from (f0, b
∨(0))

to (f1, b
∨(1)), a critical point creation (a) from (f1, b

∨(1)) to (f1, b
′(1)), and cylinder creations from

(f1, b
′(1)) to (f ′ = f1, b

′). �

4. Cyclic Cerf decompositions

In this section we discuss the Cerf theory arising from S1-valued Morse functions on closed
manifolds. In the following, Y is a closed, connected, oriented manifold of dimension n+ 1.

Definition 4.1. A cyclic Morse datum for Y consists of a pair (f, b) of a smooth function f : Y →
S1 ∼= R/Z and a tuple of levels b = (b1, . . . , bm) ⊂ (S1)m such that

(i) The function f : Y → S1 is Morse in the sense that its critical points are nondegenerate.
(ii) The levels b form a cyclically ordered tuple in the following double sense: There exist

representatives (bi)i=1,...,m ⊂ R
m such that b1 < . . . < bm < b1 + 1. Moreover, we identify

the tuple b = (b1, . . . , bm) with (bk+1, . . . , bm, b1, . . . , bk) for any k ∈ {1, . . . ,m− 1}, and for
a fixed tuple we will use the notation bi for i ∈ N modulo m, that is bi+m = bi.

(iii) Each level set f−1(b) for b ∈ S1 is connected.
(iv) f has distinct values at the (isolated) critical points, i.e. it induces a bijection Critf →

f(Critf) between critical points and critical values.
(v) b1, . . . , bm ∈ S1 \ f(Critf) are regular values of f such that each interval (bi−1, bi) ⊂ S1 for

i ∈ N modulo m contains at most one critical value of f .

Definition 4.2. A cyclic Cerf decomposition of a closed manifold Y as above is a decomposition
Y = Y1∪Y2∪ . . .∪Ym into a cyclic sequence (Yi ⊂ Y )i∈Nmodm of elementary cobordisms embedded
in Y that are disjoint from each other except for the intersections Xi := Yi ∩ Yi+1 for i ∈ N

modulo m, which are also connected submanifolds in Y of codimension 1. As a consequence we
have ∂Yi = Xi−1 ⊔Xi. We also denote this decomposition by

Y = Y1 ∪X1
Y2 ∪X2

. . . ∪Xm−1
Ym ∪Xm . . . .

Remark 4.3. As in Remark 2.4, any cyclic Morse datum (f, b) for Y induces a cyclic Cerf decompo-
sition Y = Y1 ∪X1

. . . ∪Xm−1
Ym ∪Xm . . . into a sequence (Yi := f−1([bi−1, bi]))i=1,...m of elementary
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cobordisms between connected level sets Xi = f−1(bi). On the other hand, any cyclic Cerf decom-
position arises from a cyclic Morse datum. To prove the latter, one first views Y as cobordism from
Xm to Xm and constructs a real valued Morse datum using Lemma 2.6. In a last step, one shifts
and rescales to achieve f(Y ) = [b1 = 0, bm = 1] and then uses the constructions of Lemma 2.6 to
glue f into a smooth S1-valued Morse function.

The space of homotopy classes of maps from Y to S1 is in bijection with H1(Y,Z), since S1 is
an Eilenberg-Maclane space K(Z, 1). Given a Morse datum (f, b) we will refer to [f ] ∈ [Y, S1] as
its homotopy class.

Lemma 4.4. Given any homotopy class ρ ∈ [Y, S1] such that the induced map ρ∗ : π1(Y ) → π1(S
1)

is surjective, there exists a cyclic Morse datum (f, b) on Y with [f ] = ρ.

Proof. The only issue in generalizing Lemma 2.5 to this cyclic case is to arrange for connected level
sets, and it is easy to see that π1–surjectivity is a necessary condition. This proof is just a slight
refinement of the Thom-Pontrjagin construction and appears in detail in [GK, Thm.1.3]; here we
present a sketch. First we represent ρ by a map with at least one connected regular level set and
then appeal to Lemma 2.5 to construct the map on the complementary connected cobordism. To
see that there exists a map with one connected regular level set, choose an arbitary generic smooth
map g : Y → S1 representing ρ with regular level set F = g−1(1) ⊂ Y . By π1–surjectivity, we can
connect the components of F in Y with disjoint arcs that project to homotopically trivial loops in
S1. We then show how to homotope g in a neighborhood of each arc so as to modify g−1(1) via
connect sums (tubing) along the arcs. We also observe that this homotopy does not introduce new
components of g−1(1) at intermediate times during the homotopy; this is important for the proof
of uniqueness up to Cerf moves in Theorem 4.7. �

Remark 4.5. Under Poincaré duality [Y, S1] ∼= H1(X,Z) ∼= H2(X,Z) the homotopy class [f ] of a
cyclic Morse datum corresponds to the homology class [f−1(bi)], which is independent of the choice
of regular level bi. If [f ] is π1-surjective, then the complement Y \ f−1(bi) of any regular level set
is connected.

Conversely, if Y = Y1∪X1
. . .∪Xm−1

Ym∪Xm . . . is a cyclic Cerf decomposition, then the homology
class [Xj ] is independent of j and via Poincaré duality determines the homotopy class of any cyclic
Morse datum inducing this Cerf decomposition. More generally, any embedded (not necessarily
connected) surface X →֒ Y determines a cohomology class [X] and hence a homotopy class ρX ∈
[Y, S1]. In this setting, connectedness of Y \X is equivalent to ρX being π1-surjective.

Lemma 4.4 shows that π1-surjectivity of ρ ∈ [Y, S1] is in fact equivalent to the existence of a
connected, embedded surface X →֒ Y with ρ = ρX .

Definition 4.6. Let Y be a closed manifold as before. A Cerf move from one Cerf decomposition
Y = Y1 ∪X1

∪ . . . ∪Xm−1
Ym ∪Xm . . . to another Y = Y ′

1 ∪X′
1
∪ . . . ∪X′

m′−1

Y ′
m′ ∪X′

m′
. . . is one of the

following operations.

(a) A critical point cancellation or creation analogous to Definition 3.2.
(b) A critical point switch analogous to Definition 3.2.
(c) A cylinder cancellation analogous to Definition 3.2.
(d) A diffeomorphism equivalence is the move

from Y = Y1 ∪X1
. . . ∪Xm−1

Ym ∪Xm . . .

to Y = ψ(Y1) ∪ψ(X1) . . . ∪ψ(Xm−1) ψ(Ym) ∪ψ(Xm) . . . ,

where ψ : Y → Y is a diffeomorphism. More precisely, in this situation, diffeomorphism
equivalence is the move from (Yi)i=1,...,m to (Y ′

i = ψ(Yi))i=1,...,m.

Theorem 4.7 (cyclic Cerf theory). Let Y be a closed manifold as before, and let Y = Y1 ∪X1

∪ . . . ∪Xm−1
Ym ∪Xm . . . be a cyclic Cerf decomposition. Then any other cyclic Cerf decomposition
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Y = Y ′
1 ∪X′

1
∪ . . . ∪X′

m′−1
Y ′
m′ ∪X′

m′
. . . of Y with [X1] = [X ′

1] can be obtained from (Yi)i=1,...,m by a

finite sequence of Cerf moves.

Proof. Let f, f ′ : Y → S1 be Morse functions associated with the given Cerf decompositions.
Then the existence of a sequence of Cerf moves between them is the content of [GK, Thm.1.4]
and, again, we just sketch the proof here. Choose a generic homotopy fs from f0 = f to
f1 = f ′ and assume that, for each s, either 1 or −1 is a regular value of fs. Note that the
argument from the proof of Lemma 4.4 can be improved so that on overlapping time intervals
[s0 = 0, s2], [s1, s3], [s2, s4], . . . [sk−2, sk = 1] we alternately arrange for f−1

s (1) and f−1
s (−1) to be

connected and stationary in Y . This is based on the observation that the homotopy in Lemma 4.4
can be chosen to not add extraneous components at intermediate times. Then a zig-zag argument
discussed in the proof of [GK, Thm.1.4] shows how to go back and forth between f−1

s (1) and
f−1
s (−1), arranging that successive cobordisms between these level sets are connected with con-
nected level sets. Theorem 3.4 then gives the rest of the proof. We can of course always arrange
that there are at least three cobordisms in each decomposition, to avoid complications associated
with nontrivial monodromy. �
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