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Abstract. We associate to every monotone Lagrangian correspondence a functor between
Donaldson-Fukaya categories. The composition of such functors agrees with the functor
associated to the geometric composition of the correspondences, if the latter is embedded.
That is “categorification commutes with composition” for Lagrangian correspondences.
This construction fits into a symplectic 2-category with a categorification 2-functor, in
which all correspondences are composable, and embedded geometric composition is iso-
morphic to the actual composition. As a consequence, any functor from a bordism category
to the symplectic category gives rise to a category valued topological field theory.

Contents

1. Introduction 1
2. Symplectic category with Lagrangian correspondences 3
3. Donaldson-Fukaya category of Lagrangians 6
4. Donaldson-Fukaya category of generalized Lagrangians 10
5. Composable functors associated to Lagrangian correspondences 15
6. Composition functor for categories of correspondences 22
7. Natural transformations associated to Floer cohomology classes 26
8. 2-category of monotone symplectic manifolds 30
References 33

1. Introduction

Correspondences arise naturally as generalizations of maps in a number of different set-
tings: A correspondence between two sets is a subset of the Cartesian product of the sets –
just like the graph of a map. In symplectic geometry, the natural class is that of Lagrangian
correspondences, that is, Lagrangian submanifolds in the product of two symplectic man-
ifolds (with the symplectic form on the first factor reversed). Lagrangian correspondences
appear in Hörmander’s generalizations of pseudodifferential operators [7], and were inves-
tigated from the categorical point of view by Weinstein [24]. In gauge theory Lagrangian
correspondences arise as moduli spaces of bundles associated to cobordisms [25].

One would hope that various constructions associated to symplectic manifolds, which
are compatible with symplectomorphisms, can also be made functorial for Lagrangian cor-
respondences. The constructions considered by Hörmander and Weinstein correspond to
various notions of quantization, by which a symplectic manifold is replaced by a linear
space; one then tries to attach to a Lagrangian correspondence a linear map. More re-
cently, categorical invariants associated to a symplectic manifold have been introduced by
Donaldson and Fukaya, see for example [5] and [15]. To the symplectic manifold is associ-
ated a category whose objects are certain Lagrangian submanifolds, and whose morphisms
are certain chain complexes or Floer cohomology groups. The composition in this category
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gives a way to understand various product structures in Floer theory, and plays a role in
the homological mirror symmetry conjecture of Kontsevich [8].

In this paper we associate to every (compact monotone or geometrically bounded exact)
symplectic manifold (M,ω) a category Don#(M), which is a slight enlargement of the
usual Donaldson-Fukaya category. Its objects are certain sequences of (compact, oriented,
relatively spin, monotone or exact) Lagrangian correspondences and its morphisms are
quilted Floer cohomology classes, as introduced in [20]. Given two symplectic manifolds
M0 and M1 of the same monotonicity type and an admissible Lagrangian correspondence
L01 ⊂M−

0 ×M1 we construct a functor

Φ(L01) : Don#(M0) → Don#(M1).

On objects it is given by concatenation, e.g. Φ(L01)(L0) = (L0, L01) for a Lagrangian
submanifold L0 ⊂ M0. On morphisms the functor is given by a relative Floer theoretic
invariant constructed from moduli spaces of pseudoholomorphic quilts introduced in [19].

Given a triple M0, M1, M2 of symplectic manifolds and admissible Lagrangian correspon-
dences L01 ⊂ M−

0 ×M1 and L12 ⊂ M−
1 ×M2, the algebraic composition Φ(L01) ◦ Φ(L12) :

Don#(M0) → Don#(M2) is always defined. On the other hand, one may consider the
geometric composition introduced by Weinstein [24]

L01 ◦ L12 := π02(L01 ×M1 L12) ⊂M−
0 ×M2,

given by the image under the projection π02 : M−
0 ×M1 ×M−

1 ×M2 →M−
0 ×M2 of

(1) L12 ×M1 L01 := (L01 × L12) ∩ (M−
0 × ∆1 ×M2).

If we assume transversality of the intersection then the restriction of π02 to L01 ×M1 L12

is automatically an immersion, see [6, 20]. Using the strip-shrinking analysis from [18] we
prove that if L01×M1L12 is a transverse intersection and embeds by π02 into M−

0 ×M2 then

(2) Φ(L01) ◦ Φ(L12) ∼= Φ(L01 ◦ L12).

This is the ”categorification commutes with composition” result alluded to in the abstract.
If M1 is not spin, there is also a shift of relative spin structures on the right-hand side.

There is a stronger version of this result, expressed in the language of 2-categories as
follows. (See e.g. Section 8 for an introduction to this language.) We construct a Weinstein-

Floer 2-category Floer# whose objects are symplectic manifolds, 1-morphisms are sequences
of Lagrangian correspondences, and 2-morphisms are Floer cohomology classes. (Again, we
impose monotonicity and certain further admissibility assumptions on all objects and 1-
morphisms.) The composition of 1-morphisms in this category is concatenation, which we
denote by #. The construction of the functor Φ(L01) above extends to a categorification
2-functor to the 2-category of categories

(3) Floer# −→ Cat .

On objects and elementary 1-morphisms (i.e. sequences consisting of a single correspon-
dence) it is given by associating to every symplectic manifold M its Donaldson-Fukaya
category Don#(M), and to every Lagrangian correspondence L01 the associated functor
Φ(L01). The further 1-morphisms are concatenations of elementary Lagrangian correspon-
dences, mapped to the composition of functors. The 2-morphisms are quilted Floer ho-
mology classes, to which we associate natural transformations. A refinement of (2) says
that the concatenation L01#L12 is 2-isomorphic to the geometric composition L01 ◦ L12 as
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1-morphisms in Floer#. The formula (2) then follows by combining this result with the
2-functor axiom for 1-morphisms in (3).

Alternatively, one could identify the 1-morphisms L01#L12 and L01 ◦ L12 if the latter
is a transverse, embedded composition. This provides an elementary construction of a
symplectic category Symp# explained in Section 2. It consists of symplectic manifolds
and equivalence classes of sequences of Lagrangian correspondences, whose composition is
always defined and coincides with geometric composition in transverse, embedded cases.

The categorical point of view fits in well with one of the applications of our results,
which is the construction of topological field theories associated to various gauge theories.
A corollary of our categorification functor (3) is that any functor from a bordism category
to the (monotone subcategory of the) symplectic category Symp# gives rise to a category
valued TFT. For example, in [22] we investigate the topological quantum field theory with
corners (roughly speaking; not all the axioms are satisfied) in 2 + 1 + 1 dimensions arising
from moduli spaces of flat bundles with compact structure group on punctured surfaces and
three-dimensional cobordisms containing tangles. In particular, this gives rise to SU(N)
Floer theoretic invariants for 3-manifolds that should be thought of as Lagrangian Floer
versions of gauge-theoretic invariants investigated by Donaldson and Floer, in the case
without knots, and Kronheimer-Mrowka [9] and Collin-Steer [3], in the case with knots. The
construction of such theories was suggested by Fukaya in [4] and was one of the motivations
for the development of Fukaya categories.

Many of our results have chain-level versions, that is, extensions to Fukaya categories.
These will be published in [12], which is joint work with S. Mau. To each monotone La-
grangian correspondence with minimal Maslov number at least three we define an A∞ func-
tor Ψ(L01) : Fuk#(M0) → Fuk#(M1) between extended versions of the Fukaya categories.
Moreover, we are working on extending this construction to an A∞ functor

Fuk#(M0,M1) −→ Fun(Fuk#(M0),Fuk#(M1)),

where the Fukaya category on the left hand side should be a chain-level version of the
morphism space of Floer# between M0 and M1, i.e. its objects are Lagrangian correspon-
dences and sequences thereof, starting at M0 and ending at M1. On homology level, for the
Donaldson-Fukaya categories, this functor is given as part of the 2-categorification functor
(3). On chain level, it would finalize the proof of homological mirror symmetry for the four-
torus by Abouzaid and Smith [1]. It should be seen as the symplectic analogue of the quasi-
equivalence of dg-categories [17] in algebraic geometry Db

∞(X×X) ≃ Fun(Db
∞(X),Db

∞(X))
for (somewhat enhanced) derived categories of coherent sheaves on a projective variety X.
Abouzaid and Smith utilize the conjectural symplectic functor to prove that a given sub-
category A (for which a fully faithful functor to a derived category of coherent sheaves is

known) generates the Fukaya category Fuk#(T 4), by resolving the diagonal ∆ ⊂ (T 4)−×T 4

in terms of products of Lagrangians in A.

We thank Paul Seidel and Ivan Smith for encouragement and helpful discussions.

2. Symplectic category with Lagrangian correspondences

We begin by summarizing some results and elementary notions from [20]. Restricted to
linear Lagrangian correspondences between symplectic vector spaces, the geometric com-
position of Lagrangian correspondences defined in (1) is a well defined composition and
defines a linear symplectic category [6]. In general, however, even when the intersection
(1) is transverse, the geometric composition only yields an immersed Lagrangian. While it
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may be natural to allow immersed Lagrangian correspondences (and attempt a definition
of Floer cohomology for these), a construction of a symplectic category based on geometric
composition would require the inclusion of perturbation data. A simple resolution of the
composition problem is given by passing to sequences of Lagrangian correspondences and
defining a purely algebraic composition. Here and throughout we will write M for a sym-
plectic manifold (M,ω) consisting of a manifold with symplectic 2-form; and we denote by
M− := (M,−ω) the same manifold equipped with the symplectic form −ω.

Definition 2.1. Let M,M ′ be symplectic manifolds. A generalized Lagrangian correspon-
dence L from M to M ′ consists of

(a) a sequence N0, . . . , Nr of any length r+1 ≥ 2 of symplectic manifolds with N0 = M
and Nr = M ′ ,

(b) a sequence L01, . . . , L(r−1)r of Lagrangian correspondences with L(j−1)j ⊂ N−
j−1×Nj

for j = 1, . . . , r.

Definition 2.2. Let L from M to M ′ and L′ from M ′ to M ′′ be two generalized Lagrangian
correspondences. Then we define composition

(L,L′) :=
(
L01, . . . , L(r−1)r, L

′
01, . . . , L

′
(r′−1)r′

)

as a generalized Lagrangian correspondence from M to M ′′.

We will however want to include geometric composition into our category – if it is well de-
fined. For the purpose of obtaining well defined Floer cohomology we will restrict ourselves
to the following class of compositions, for which the resulting Lagrangian correspondence
is in fact a smooth submanifold.

Definition 2.3. We say that the composition L01 ◦ L12 is embedded if the intersection
(L01 × L12) ⋔ (M−

0 × ∆1 × M2) is transverse and the projection π02 : L12 ×M1 L01 →
L01 ◦ L12 ⊂M−

0 ×M2 is injective (and hence automatically an embedding).

Using these notions we can now define a symplectic category Symp# which includes all
Lagrangian correspondences. An extension of this approach, using Floer cohomology spaces
to define a 2-category, is given in Section 8.

Definition 2.4. The symplectic category Symp# is defined as follows:

(a) The objects of Symp# are smooth symplectic manifolds M = (M,ω).
(b) The morphisms Hom(M,M ′) of Symp# are generalized Lagrangian correspondences

from M to M ′ modulo the equivalence relation ∼ generated by
(
. . . , L(j−1)j , Lj(j+1), . . .

)
∼

(
. . . , L(j−1)j ◦ Lj(j+1), . . .

)

for all sequences and j such that L(j−1)j ◦ Lj(j+1) is embedded.

(c) The composition of morphisms [L] ∈ Hom(M,M ′) and [L′] ∈ Hom(M ′,M ′′) is
defined by

[L] ◦ [L′] := [(L,L′)] ∈ Hom(M,M ′′).

Note that a sequence of Lagrangian correspondences in Hom(M,M ′) can run through
any sequence (Ni)i=1,...,r−1 of intermediate symplectic manifolds of any length r − 1 ∈ N0.
Nevertheless, the composition of two such sequences is always well defined. In (c) the
new sequence of intermediate symplectic manifolds for L ◦ L′ is (N1, . . . , Nr−1, Nr = M ′ =
N ′

0, N
′
1, . . . , N

′
r′−1). This definition descends to the quotient by the equivalence relation ∼

since any equivalences within L and L′ combine to an equivalence within L ◦ L′.
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Remark 2.5.

(a) The composition in Symp# is evidently associative: [L] ◦ [L′] ◦ [L′′] = [(L,L′, L′′)].
(b) The identity in Hom(M,M) is the equivalence class [∆M ] of the diagonal ∆M ⊂

M− × M . It composes as identity since e.g. L(r−1)r ◦ ∆Mr = L(r−1)r is always
smooth and embedded.

(c) In order to make Symp# a small category, one should fix a set of smooth manifolds,
for example those embedded in Euclidean space. Any smooth manifold can be so
embedded by Whitney’s theorem. For a fixed manifold, the possible symplectic
forms again form a set, hence we have a set of objects. Given two symplectic
manifolds, the finite sequences of objects (Ni)i=1,...,r−1 again form a set, and for
each fixed sequence the generalized Lagrangian correspondences between them can
be exhibited as subsets satisfying submanifold, isotropy, and coisotropy conditions.
Finally, we take the quotient by a relation to obtain a set of morphisms.

Lemma 2.6. (a) If La, Lb ⊂ M− ×M ′ are distinct Lagrangian submanifolds, then the
corresponding morphisms [La], [Lb] ∈ Hom(M,M ′) are distinct.

(b) The composition of smooth Lagrangian correspondences L ⊂ M− ×M ′ and L′ ⊂
M ′− ×M ′′ coincides with the geometric composition, [L] ◦ [L′] = [L ◦L′] if L ◦L′ is
embedded.

Proof. To see that La 6= Lb ⊂M− ×M ′ define distinct morphisms note that the projection
to the (possibly singular) Lagrangian π([L]) := L01 ◦ . . .◦L(r−1)r ⊂M−×M ′ is well defined

for all [L] ∈ Hom(M,M ′). The rest follows directly from the definitions. �

Remark 2.7. Lagrangian correspondences appeared in the study of Fourier integral operators
by Hörmander and others. Any immersed homogeneous1 Lagrangian correspondence L01 →
T ∗Q−

0 × T ∗Q1 gives rise to a class of operators FIOρ(L01) depending on a real parameter
ρ > 1/2, mapping smooth functions on Q0 to distributions on Q1. These operators satisfy
the composability property similar to (2). Namely, [7, Theorem 4.2.2] shows that if a pair
L01 → T ∗Q−

0 × T ∗Q1, L12 → T ∗Q−
1 × T ∗Q2 satisfies

(4)
L01 × L12 intersects T ∗Q−

0 × ∆T ∗Q1 × T ∗Q2 transversally and
the projection from the intersection to T ∗Q−

0 × T ∗Q2 is proper,

then the corresponding operators are composable and

(5) FIOρ(L01) ◦ FIOρ(L12) ⊂ FIOρ(L01 ◦ L12).

Hence, similar to our construction of Symp#, one could define a category Hörm#, whose

• objects are compact smooth manifolds,
• morphisms are sequences of pairs (L01, P01) of immersed homogeneous Lagrangian

correspondences (between cotangent bundles) together with operators P01 ∈ FIOρ(L01),
modulo the equivalence relation that is generated by (. . . , (L01, P01), (L12, P12), . . .) ∼
(. . . , (L01 ◦ L12, P01 ◦ P12), . . .) for L01, L12 satisfying (4).

A morphism in this category might be called a generalized Fourier integral operator.

1An immersed Lagrangian correspondence L01 is called homogeneous if its image lies in the complement
of the zero sections, L01 → (T ∗Q−

0 \ 0Q0) × (T ∗Q1 \ 0Q1), and if it is conic, i.e. invariant under positive
scalar multiplication in the fibres.
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3. Donaldson-Fukaya category of Lagrangians

Throughout this paper we will use the notation and constructions for (quilted) Floer
homology and relative invariants introduced in [20, 19]. In particular, we will be using
the following standing assumptions on symplectic manifolds, Lagrangian submanifolds, and
gradings; see [20] for details.

(M1): (M,ω) is monotone, that is [ω] = τc1(TM) for some τ ≥ 0.
(M2): If τ > 0 then M is compact. If τ = 0 then M is (necessarily) noncompact but

satisfies “bounded geometry” assumptions as in [15].

(L1): L ⊂ M is monotone, that is the symplectic area and Maslov index are related by
2A(u) = τI(u) for all u ∈ π2(M,L), where the τ ≥ 0 is (necessarily) that from (M1).

(L2): L is compact and oriented.

(L3): L has minimal Maslov number NL ≥ 3.

(G1): M is equipped with a Maslov covering LagN (M) for N even, and the induced 2-fold
Maslov covering Lag2(M) is the one given by oriented Lagrangian subspaces.

(G2): L ⊂ M is equipped with a grading σNL : L → LagN (M), and the induced 2-grading

L→ Lag2(M) is the one given by the orientation of L.

In the following we review the construction of the Donaldson-Fukaya category Don(M) for
a symplectic manifold (M,ω) satisfying (M1-2). The “closed” analog of this category, whose
morphisms are symplectomorphisms, was introduced by Donaldson in a seminar talk [13,
12.6]. Subsequently Fukaya introduced an A∞ category involving Lagrangian submanifolds.
Here we describe the category arising from the Fukaya category by taking homology.

We fix a Maslov cover LagN (M) → M as in (G1), which will be used to grade Floer
cohomology groups, and a background class b ∈ H2(M,Z2), which will be used to fix orien-
tations of moduli spaces and thus define Floer cohomology groups with Z coefficients. In
our examples, b will be either 0 or the second Stiefel-Whitney class w2(M) of M .

Definition 3.1. We say that a Lagrangian submanifold L ⊂ M is admissible if it satisfies
(L1-3), (G2), and the image of π1(L) in π1(M) is torsion.

The assumption on π1(L) guarantees that any collection of admissible Lagrangian sub-
manifolds is monotone with respect to any surface in the sense of [20]. Alternatively, one
could work with Bohr-Sommerfeld monotone Lagrangians as described in [20]. The as-
sumption (L3) implies that the Floer cohomology of any sequence is well-defined, and can
be relaxed to NL ≥ 2 by working with matrix factorizations as explained in [23].

Definition 3.2. A brane structure on an admissible L consists of an orientation, a grading,
and a relative spin structure with background class b, see [20, 21] for details. An admissible
Lagrangian equipped with a brane structure will be called a Lagrangian brane.

Remark 3.3. (a) We have not included in the definition of Lagrangian branes the data
of a flat vector bundle, in order to save space. The extension of the constructions
below to this case should be straight forward and is left to the reader.

(b) If one wants only Z2-gradings on the morphism spaces of the Donaldson-Fukaya
category, then the assumptions (G1-2) may be ignored.

(c) If one wants only Z2 coefficients, then the background class and relative spin struc-
tures may be ignored.
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Definition 3.4. The Donaldson-Fukaya category Don(M) := Don(M,LagN (M), ω, b) is
defined as follows:

(a) The objects of Don(M) are Lagrangian branes in M .
(b) The morphism spaces of Don(M) are the ZN -graded Floer cohomology groups with

Z coefficients Hom(L,L′) := HF (L,L′) constructed using a choice of perturbation
datum consisting of a pair (J,H) of a time-dependent almost complex structure J
and a Hamiltonian H, as in e.g. [20].

(c) The composition law in the category Don(M) is defined by

Hom(L,L′) × Hom(L′, L′′) −→ Hom(L,L′′)

(f, g) 7−→ f ◦ g := ΦP (f ⊗ g),

where ΦP is the relative Floer theoretic invariant associated to the “half-pair of
pants” surface P , that is, the disk with three markings on the boundary (two in-
coming ends, one outgoing end) as in Figure 1.

L′′ L

L′
L

Figure 1. Composition and identity in the Donaldson-Fukaya category

Remark 3.5. (a) Associativity of the composition follows from the standard gluing the-
orem (see e.g.[19, Theorem 2.7]) applied to the surfaces in Figure 2: The two ways of
composing correspond to two ways of gluing the pair of pants. The resulting surfaces
are the same (up to a deformation of the complex structure), hence the resulting
compositions are the same.

L1

L2 L0

L3

L0

L1L2

L3

L0

L1L3

L2

= =

Figure 2. Associativity of composition

(b) The identity 1L ∈ Hom(L,L) is the relative Floer theoretic invariant 1L := ΦS ∈
HF (L,L) associated to a disk S with a single marking (an outgoing end), see Fig-
ure 1. The identity axiom 1L0 ◦ f = f = f ◦ 1L1 follows from the same gluing
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argument applied to the surfaces on the left and right in Figure 3. Here – in con-
trast to the strips counted towards the Floer differential, where the equations are
R-invariant – the equation on the strip need not be R-invariant and solutions are
counted without quotienting by R. However, as in the strip example [19, Example
2.5] one can choose R-invariant perturbation data to make the equation R-invariant.
Then the only isolated solutions contributing to the count are constant, and hence
the relative invariant is the identity.

L1 L0L1 L0

L0
= =

L1 L0

L1

f

ff

Figure 3. Identity axiom

Remark 3.6. The category Don(M) is independent of the choices of perturbation data in-
volved in the definition of Floer homology and the relative invariants, up to isomorphism
of categories: The relative invariants for the infinite strip with perturbation data interpo-
lating between two different choices gives an isomorphism of the morphism spaces, see e.g.
[20]. The gluing theorem implies compatibility of these morphisms with compositions and
identities.

3.1. Functor associated to symplectomorphisms. Next, we recall that any graded
symplectomorphism (see [15] or [20] for the grading) ψ : M0 → M1 induces a functor
between Donaldson-Fukaya categories.

Definition 3.7. Let Φ(ψ) : Don(M0) → Don(M1) be the functor defined

(a) on the level of objects by L 7→ ψ(L),
(b) on the level of morphisms by the map HF (L0, L1) → HF (ψ(L0), ψ(L1)) induced by

the obvious map of chain complexes

CF (L0, L1) → CF (ψ(L0), ψ(L1)), 〈x〉 7→ 〈ψ(x)〉

for all x ∈ I(L0, L1). (Here we use the HamiltoniansH ∈ Ham(L0, L1) andH◦ψ−1 ∈
Ham(ψ(L0), ψ(L1)).)

Note that Φ(ψ) satisfies the functor axioms

Φ(ψ)(f ◦ g) = Φ(ψ)(f) ◦ Φ(ψ)(g), Φ(ψ)(1L) = 1ψ(L).

Furthermore if ψ01 : M0 →M1 and ψ12 : M1 →M2 are symplectomorphisms then

Φ(ψ12 ◦ ψ01) = Φ(ψ01) ◦ Φ(ψ12).

In terms of Lagrangian correspondences this functor is L 7→ L ◦ graphψ on objects. This
suggests that one should extend the functor to more general Lagrangian correspondences
L01 ⊂ M−

0 ×M1 by L 7→ L ◦ L01 on objects. However, these compositions are generically
only immersed, so one would have to allow for singular Lagrangians as objects in Don(M1).
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Moreover, it is not clear how to extend the functor on the level of morphisms, that is Floer
cohomology groups. In the following sections we propose some alternative definitions of
functors associated to general Lagrangian correspondences.

3.2. First functor associated to Lagrangian correspondences. We now define a first
functor associated to a Lagrangian correspondence. Fix an integer N > 0 and let AbN be
the category of ZN -graded abelian groups. Let Don(M)∨ be the category whose objects are
functors from Don(M) to AbN , and whose morphisms are natural transformations.

Let (M0, ω0) and (M1, ω1) be symplectic manifolds satisfying (M1-2), equipped with N -
fold Maslov coverings LagN (Mj) as in (G1) and background classes bj ∈ H2(Mj ,Z2), and let
L01 ⊂M−

0 ×M1 be an admissible Lagrangian correspondence in the sense of Definition 3.1,
equipped with a grading as in (G2) and a relative spin structure with background class
−π∗0b0 + π∗1b1.

Definition 3.8. The contravariant functor ΦL01 : Don(M0) → Don(M1)
∨ associated to L01

is defined as follows:

(a) On the level of objects, for every Lagrangian L0 ⊂M0 we define a functor ΦL01(L0) :
Don(M1) → AbN by

L1 7→ HF (L0, L01, L1) = HF (L0 × L1, L01)

on objects L1 ⊂M1, and on morphisms

HF (L1, L
′
1) → Hom(HF (L0, L01, L1),HF (L0, L01, L

′
1))

f 7→
{
g 7→ ΦS1

(g ⊗ f)
}

is defined by the relative invariant for the quilted surface S1 shown in Figure 4,

ΦS1
: HF (L0, L01, L1) ⊗HF (L1, L

′
1) → HF (L0, L01, L

′
1).

(b) The functor on the level of morphisms associates to every f ∈ HF (L0, L
′
0) a natural

transformation

ΦL01(f) : ΦL01(L
′
0) → ΦL01(L0),

which maps objects L1 ⊂M1 to the AbN -morphism

ΦL01(f)(L1) :
HF (L′

0, L01, L1) → HF (L0, L01, L1)

g 7→ ΦS0
(f ⊗ g)

defined by the relative invariant for the quilted surface S0 shown in Figure 4,

ΦS0
: HF (L0, L

′
0) ⊗HF (L′

0, L01, L1) → HF (L0, L01, L1).

The composition axiom for the functors ΦL01(L0) and the commutation axiom for the
natural transformations follow from the quilted gluing theorem [19, Theorem 3.13]2 applied
to Figures 5 and 6.

Clearly the functor ΦL01 is unsatisfactory, since given two Lagrangian correspondences
L01 ⊂ M−

0 ×M1, L12 ⊂ M−
1 ×M2 it is not clear how to define the composition of the

associated functors ΦL01 : Don(M0) → Don(M1)
∨ and ΦL12 : Don(M1) → Don(M2)

∨. As a
solution (perhaps not the only one) we will define in Section 4 a category sitting in between
Don(M) and Don(M)∨. This will allow for the definition of composable functors for general
Lagrangian correspondences in Section 5.

2A complete account of the gluing analysis for quilted surfaces can be found in [11].
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Figure 4. Lagrangian functor for morphisms
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ΦL01(L0)(f ◦ g) = (ΦL01(L0)f) ◦ (ΦL01(L0)g)

Figure 5. Composition axiom for Lagrangian functors
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L0 L′
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L01

f0

L′
1

f1

L′
0

f0

= L01

L0

L1

ΦL01(f0)(L
′
1) ◦ ΦL01(L′

0)(f1) = ΦL01(L0)(f1) ◦ ΦL01(f0)(L1)

Figure 6. Commutation axiom for Lagrangian functors

4. Donaldson-Fukaya category of generalized Lagrangians

In this section we extend the Donaldson-Fukaya category Don(M) to a category Don#(M)
which has generalized Lagrangian submanifolds as objects. Hence Don#(M) sits in between
Don(M) and Don(M)∨. One might draw an analogy here with the way square-integrable
functions sit between smooth functions and distributions. Don#(M) admits a functor to
Don(M)∨, whose image is roughly speaking the subcategory of Don(M)∨ generated by ob-
jects of geometric origin. This extension of the Donaldson-Fukaya category is particularly
natural in our application to 2+1-dimensional topological field theory: One expects to asso-
ciate a Lagrangian submanifold to any three-manifold with boundary, but our constructions
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in fact yield generalized Lagrangian submanifolds that arise naturally from a decomposition
into elementary cobordisms (or compression bodies).

Let (M,ω) be a symplectic manifold satisfying (M1-2) with monotonicity constant τ ≥ 0.
We fix a Maslov cover LagN (M) →M as in (G1) and a background class b ∈ H2(M,Z2).

Definition 4.1. (a) A generalized Lagrangian submanifold of M is a generalized La-
grangian correspondence L from {pt} to M , in the sense of Definition 2.1. That is,
L = (L(−r)(−r+1), . . . , L(−1)0) is a sequence of Lagrangian correspondences L(i−1)i ⊂

N−
i−1 × Ni for a sequence N−r, . . . , N0 of any length r ≥ 0 of symplectic manifolds

with N−r = {pt} a point and N0 = M .
(b) We call a generalized Lagrangian L admissible if each Ni satisfies (M1-2) with the

monotonicity constant τ ≥ 0, each L(i−1)i satisfies (L1-3), and the image of each

π1(L(i−1)i) in π1(N
−
i−1 ×Ni) is torsion.

Again, one could replace the torsion assumption on fundamental groups by Bohr-Sommerfeld
monotonicity as described in [20]. Note that an (admissible) Lagrangian submanifold L ⊂M
is an (admissible) generalized Lagrangian with r = 0. We picture a generalized Lagrangian
L as a sequence

{pt} N−r . . . N−1 N0 = M-

L(−r)(−r+1)
-

L(−r+1)(−r+2)
-

L(−2)(−1)
-

L(−1)0

.

Given two generalized Lagrangians L,L′ of M we can transpose one and concatenate them
to a sequence of Lagrangian correspondences from {pt} to {pt},

{pt} . . . N0 = M = N ′
0

. . . {pt}-

L(−r)(−r+1)
-

L(−1)0
-

(L′

(−1)0
)t

-

(L′

(−r′)(−r′+1)
)t

.

The Floer cohomology of this sequence (as defined in [20]) is the natural generalization of
the Floer cohomology for pairs of Lagrangian submanifolds. Hence we define

(6) HF (L,L′) := HF (L(−r)(−r+1), . . . , L(−1)0, (L
′
(−1)0)

t, . . . , (L′
(−r′)(−r′+1))

t).

Note here that every such sequence arising from a pair of admissible generalized Lagrangians
is automatically monotone by a Lemma of [20].

Definition 4.2. The generalized Donaldson-Fukaya category

Don#(M) := Don#(M,LagN (M), ω, b)

is defined as follows:

(a) Objects of Don#(M) are admissible generalized Lagrangians of M , equipped with
orientations, a grading, and a relative spin structure (see [20]).

(b) Morphism spaces of Don#(M) are the ZN -graded Floer cohomology groups (see (6))

Hom(L,L′) := HF (L,L′)[d], d =
1

2

(∑

k

dim(Nk) +
∑

k′

dim(N ′
k′)

)
,

given by choices of a perturbation datum and widths as described in [20] and degree
shift d. For Z-coefficients the Floer cohomology groups are modified by the inclusion
of additional determinant lines as below in (7).

(c) Composition of morphisms in Don#(M),

Hom(L,L′) × Hom(L′, L′′) −→ Hom(L,L′′)

(f, g) 7−→ f ◦ g := ΦP (f ⊗ g)
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is defined by the relative invariant ΦP associated to the quilted half-pair of pants
surface P in Figure 7, with the following orderings: The relative invariant is inde-
pendent of the ordering of the patches with one outgoing end by a Remark in [19].
The remaining patches with two incoming ends are ordered from the top down, that
is, starting with those furthest from the boundary.
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M . . .
L(−r)(−r+1)

. . .L
′′
(−2)(−1)

L′
(−2)(−1)

L′
(−1)0

L′

(−r
′)

(−r
′+1)

N
′
−1

N′′
−1

N
′′

−r
′′+1

N′

−r
′+1

L(−1)0

N−1

N−r+1

L′′

(−r
′′)(−r

′′+1)

L′′
(−1)0

L(−2)(−1)

L′′ L

L′

=:

Figure 7. Quilted pair of pants

Remark 4.3. (a) Identities 1L ∈ Hom(L,L) are furnished by relative invariants 1L :=
ΦS ∈ Hom(L,L) associated to the quilted disk S in Figure 8, with patches ordered
from the bottom up, that is, starting with those closest to the boundary.

(b) The identity and associativity axioms are satisfied with Z2 coefficients by the quilted
gluing theorem [19, Theorem 3.13] applied to the quilted versions of Figures 2, 3.

(c) Both the identity and composition are degree 0 by a Remark of [19].
(d) Don#(M) is a small category. The objects form a set by the same arguments as in

Remark 2.5 (c); the morphisms are evidently constructed as set.

L

L(−2)(−1)

L(−r)(−r+1)

. . .

L(−1)0

M

N−1

N−r+1

=:

Figure 8. Quilted identity

Remark 4.4. To obtain the axioms with Z coefficients requires a modification of the Floer
cohomology groups, incorporating the determinant lines in a more canonical way. This
will be treated in detail in [21], so we only give a sketch here: For each intersection point
x ∈ I(L,L′) we say that an orientation for x consists of the following data: A partially
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quilted surface3 S with a single end, complex vector bundles E over S, and totally real
subbundles F over the boundaries and seams, such that near infinity on the strip-like ends
E and F are given by (Txi

Mi) and TxL, TxL
′ ; a real Cauchy-Riemann operator DE,F ;

an orientation on the determinant line det(DE,F ). We say that two orientations for x are
isomorphic if the two problems have isomorphic bundles E, and the surfaces, boundary
and seam conditions are deformation equivalent after a possible re-ordering of boundary
components etc., and the orientations are related by the isomorphism of determinant lines
arising from re-ordering. Let O(x) denote the space of isomorphism classes of orientations
for x. Define

(7) C̃F (L,L′) =
⊕

x∈I(L,L′)

O(x) ⊗Z2 Z.

The Floer coboundary operator extends canonically to an operator of degree 1 on C̃F (L,L′),

and let H̃F (L,L′) denote its cohomology. This is similar to the definition given in e.g.

Seidel [15, (12f)], except that we allow more general surfaces. The group H̃F (L,L′) is of
infinite rank over Z, but it has finite rank over a suitable graded-commutative Novikov ring
generated by determinant lines.

The relative invariants extend to operators Φ̃S operating on the tensor product of (ex-
tended) Floer cohomologies. In particular, the quilted pair of pants defines an operator

Φ̃P : H̃F (L,L′) ⊗ H̃F (L′, L′′) → H̃F (L,L′′).

If we fix orientations for each generator 〈x〉, as in the definition of HF , then the gluing sign
for the first gluing (to the second incoming end) in the proof of associativity, Figure 2, is +1.
For the second gluing (to the first incoming end) when applied to 〈x1〉⊗〈x2〉⊗〈x3〉 the sign

is (−1)|x3|
1
2

P

i dim(N
(1)
i ). Here N

(j)
i denotes the sequence of symplectic manifolds underlying

the generalized Lagrangian correspondence Lj. In addition, the two gluings induce different
orderings of patches in the glued quilted surface, which are related by the additional sign

(−1)

(
1
2

P

i dim(N
(1)
i )

)(
1
2

P

i dim(N
(2)
i )

)
. Combined together, these factors cancel the sign arising

from the re-ordering of determinants in the definitions of Φ̃P (Φ̃P (〈x1〉 ⊗ 〈x2〉) ⊗ 〈x3〉) and

Φ̃P (〈x1〉 ⊗ Φ̃P (〈x2〉 ⊗ 〈x3〉)).
The identity axiom involves gluing a quilted cup with a quilted pair of pants; the orderings

of the patches for the quilted cup and quilted pants above are chosen so that the gluing sign
for gluing the quilted cup with quilted pants to obtain a quilted strip is +1 for gluing into

the second argument, and (−1)|x|
1
2

P

i dim(Ni) for gluing into the first argument. Again, the
additional sign is absorbed into the isomorphism of determinant lines induced by gluing.

Convention 4.5. To simplify pictures of quilts we will use the following conventions indi-
cated in Figure 9 : A generalized Lagrangian submanifold L of M can be used as “boundary
condition” for a surface mapping to M in the sense that the boundary arc that is labeled
by the sequence L = (L(−r)(−r+1), . . . , L(−1)0) of Lagrangian correspondences from {pt} to
M is replaced by a sequence of strips mapping to N−1, . . . , N−r+1, with seam conditions in
L(−1)0, . . . , L(−r+2)(−r+1) and a final boundary condition in L(−r)(−r+1). Similarly, a gener-
alized Lagrangian correspondence L between M− and M+ can be used as “seam condition”
between surfaces mapping to M± in the sense that the seam that is labeled by the sequence

3See [21] for the definition of partial quilts. For example, the standard cup orientation for x = (x1, . . . , xN)
will use unquilted cups Si associated to each Txi

Mi, and identified via seams on the strip-like ends.
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L = (L01, . . . , L(r−1)r) of Lagrangian correspondences from M− to M+ is replaced by a
sequence of strips mapping to M1, . . . ,Mr−1 with seam conditions in L01, . . . , L(r−1)r.
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:=
L

L(−r+1)(−r+2)

N−r+1

L(−r)(−r+1)

N−r+2

M

L(−1)0

L(−2)(−1)
N−1

M

...
...

:=

Mr−1

M−

L01

M1

M−

...
...L

M+

M+
L(r−1)r

L12

Figure 9. Conventions on using generalized Lagrangians and Lagrangian
correspondences as boundary and seam conditions

Remark 4.6. As for Don(M), the category Don#(M) is independent of the choices of per-
turbation data and widths up to isomorphism of categories, see Remark 3.6 and the proofs
of independence of quilted Floer cohomology and relative quilt invariants in [20, 19].

Proposition 4.7. The map L 7→ L∨, for a generalized Lagrangian L of M given by

L∨(L0) := Hom(L,L0) = HF (L−r(−r+1), . . . , L(−1)0, L0)[d]

for all Lagrangian submanifolds L0 ⊂ M and with degree shift d = 1
2

∑
k dim(Nk), extends

to a contravariant functor Don#(M) → Don(M)∨.

Proof. The functor L∨ : Don(M) → AbN can be defined on morphisms by

L∨ :
Hom(L1, L

′
1) → Hom(Hom(L,L1),Hom(L,L′

1))

f 7→
{
g 7→ g ◦ f = ΦP (g ⊗ f)

}

using the composition on Don#(M). To morphisms f ∈ Hom(L,L′) of Don#(M) we can
then associate the natural transformation f∨ : L′∨ → L∨, which maps every object L1 ⊂M
of Don(M) to the following AbN -morphism f∨(L1):

Hom(L′, L1) → Hom(L,L1), g 7→ f ◦ g = ΦP (f ⊗ g),

again given by composition on Don#(M). The axioms follow from the quilted gluing the-
orem [19, Theorem 3.13] applied to jazzed-up versions of Figures 5 and 6 (which show the
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example L = (L0, L01), L
′ = (L′

0, L01)). In this case the orientations are independent of the
ordering of patches since all have one boundary component and one outgoing end. �

5. Composable functors associated to Lagrangian correspondences

Let M0 and M1 be two symplectic manifolds satisfying (M1-2) with the same monotonic-
ity constant τ ≥ 0. We fix Maslov covers LagN (Mi) →Mi as in (G1) and background classes
bi ∈ H2(Mi,Z2). Given an admissible Lagrangian correspondence L01 ⊂ M−

0 ×M1 in the

sense of Section 6, we can now define a functor Φ(L01) : Don#(M0) → Don#(M1). More
precisely, we assume that L01 satisfies (L1-3), and the image of π1(L01) in π1(M

−
0 ×M1) is

torsion.

Definition 5.1. The functor Φ(L01) : Don#(M0) → Don#(M1) is defined as follows:

(a) On the level of objects, Φ(L01) is concatenation of the Lagrangian correspondence
to the sequence of Lagrangian correspondences: For a generalized Lagrangian L =
(L−r(−r+1), . . . , L(−1)0) of M0 with corresponding sequence of symplectic manifolds
({pt}, N−r+1, . . . , N−1,M0) we put

Φ(L01)(L) := (L,L01) := (L(−r)(−r+1), . . . , L(−1)0, L01)

with the corresponding symplectic manifolds ({pt}, N−r+1, . . . , N−1,M0,M1);
(b) On the level of morphisms, for any pair L,L′ of generalized Lagrangians in M0,

Φ(L01) := ΦS : Hom(L,L′) → Hom(Φ(L01)(L),Φ(L01)(L
′))

is the relative invariant associated to the quilted surface S with two punctures and
one interior circle, as in Figure 10.
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−
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+

1
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−

1

N
′ −

1

N
′ −

r
′
+

1

L
M0

M1

L′

L01
=

Figure 10. The Lagrangian correspondence functor Φ(L01) on morphisms

Remark 5.2. In the case that M1 is a point, the map for morphisms is the dual of the pair
of pants product.

For composable morphisms f ∈ Hom(L,L′), g ∈ Hom(L′, L′′) one shows ΦL01(f ◦ g) =
ΦL01(f) ◦ΦL01(g) by applying the quilted gluing theorem [19, Theorem 3.13] to the gluings
shown in Figure 11 (simplifying the picture by Convention 4.5), which yield homotopic
quilted surfaces. The gluing signs for both gluings are positive. Similarly, the second gluing
shows that Φ(L01)(1L) = 1Φ(L01)(L), since we have ordered the patches of the quilted cup
from the outside in.
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M1M0

L

L01

L′′

M0

M1

L01

L′

L

L′′

=L′

f

g

g

f

M0

L

M1
L01

M1
L01

= M0

L

Figure 11. The functor axioms for ΦL01

Remark 5.3. The surfaces of the first gluing in Figure 11 can equivalently be represented
as degenerations of one quilted disk. The corresponding one-parameter family in Figure 12
is the one-dimensional multiplihedron of Stasheff, see [16], [10, p. 113], to which we will
return in [12].

Figure 12. Degeneration view of the first functor axiom

With this new definition, any two functors associated to smooth, compact, admissible
Lagrangian correspondences, Φ(L01) : Don#(M0) → Don#(M1) and Φ(L12) : Don#(M1) →
Don#(M2), are clearly composable. More generally, consider a sequence

L0r = (L01, . . . , L(r−1)r)

of Lagrangian correspondences L(j−1)j ⊂ M−
j−1 ×Mj. (That is, L0r is a generalized La-

grangian correspondence from M0 to Mr in the sense of Definition 2.1.) Assume that L0r

is admissible in the sense of Section 6 below. We can then define a functor by composition

(8) Φ(L0r) := Φ(L01) ◦ . . . ◦ Φ(L(r−1)r) : Don#(M0) → Don#(Mr).
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M2

= =

L′
M0

L
L′

M0
L

L02

M2

M1L01

L12

M2

L12

L′ M0 L

M1

L01

Figure 13. The composition Φ(L01) ◦ . . . ◦Φ(L(r−1)r) is given by a relative
invariant for the sequence L0r = (L01, . . . , L(r−1)r). (Here r = 2.)

Remark 5.4. On the level of morphisms, the functor Φ(L0r) is given by the relative invariant
associated to the quilted surface S in Figure 13,

Φ(L0r) = ΦS : Hom(L,L′) → Hom(Φ(L0r)(L),Φ(L0r)(L
′))

for all generalized Lagrangian submanifolds L,L′ ∈ Obj(Don#(M0)), with patches with
two outgoing ends ordered from bottom up. This follows from the quilted gluing theorem
applied to the gluing shown in Figure 13.

5.1. Functors associated to composed Lagrangian correspondences and graphs.
The next two strip-shrinking results are summarized from [18, 20, 19]. The first theorem
describes the isomorphism of Floer cohomology under geometric composition, while the
second describes the behavior of the relative invariants.

Theorem 5.5. Let L = (L01, . . . , Lr(r+1)) be a cyclic sequence of Lagrangian correspon-
dences between symplectic manifolds M0, . . . ,Mr+1 = M0. Suppose that

(a) the symplectic manifolds all satisfy (M1-2) with the same monotonicity constant τ ,
(b) the Lagrangian correspondences all satisfy (L1-3),
(c) the sequence L is monotone, relatively spin, and graded;
(d) for some 1 ≤ j ≤ r the composition L(j−1)j ◦ Lj(j+1) is embedded in the sense of

Definition 2.3,

Then with respect to the induced relative spin structure, orientation, and grading on the
modified sequence L′ = (L01, . . . , L(j−1)j ◦ Lj(j+1), . . . , Lr(r+1)) there exists a canonical iso-
morphism of graded groups

HF (L) = HF (. . . L(j−1)j , Lj(j+1) . . .)
∼
→ HF (. . . L(j−1)j ◦ Lj(j+1) . . .) = HF (L′),

induced by the canonical identification of intersection points.

Theorem 5.6. Consider a quilted surface S containing a patch Sℓ1 that is diffeomorphic
to R × [0, 1] and attached via seams σ01 = {(ℓ0, I0), (ℓ1,R × {0})} and σ12 = {(ℓ1,R ×
{1}), (ℓ2, I2)} to boundary components I0, I2 of other surfaces Sℓ0, Sℓ2 . Let M be symplectic
manifolds (satisfying (M1-2), (G1) with the same τ ≥ 0 and N ∈ N) labeling the patches of
S, and L be Lagrangian boundary and seam conditions for S such that all Lagrangians in
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L satisfy (L1-3), (G2), and L is monotone and relative spin in the sense of [19]. Suppose
that the Lagrangian correspondences Lσ01 ⊂M−

ℓ0
×Mℓ1, Lσ12 ⊂M−

ℓ1
×Mℓ2 associated to the

boundary components of Sℓ1 are such that Lσ01 ◦ Lσ12 is embedded.
Let S′ denote the quilted surface obtained by removing the patch Sℓ1 and corresponding

seams and replacing it by a new seam σ02 := {(ℓ0, I0), (ℓ2, I2)}. We define Lagrangian
boundary conditions L′ for S′ by Lσ02 := Lσ01 ◦ Lσ12 . Then the isomorphisms in Floer
cohomology Ψe : HF (Le) → HF (L′

e) for each end e ∈ E(S) ∼= E(S′) intertwine with the
relative invariants:

ΦS′ ◦

( ⊗

e∈E−

Ψe

)
=

(⊗

e∈E+

Ψe

)
◦ ΦS [nℓ1d].

Here 2nℓ1 is the dimension of Mℓ1 , and d = 1, 0, or − 1 according to whether the removed
strip Sℓ1 has two outgoing ends, one in- and one outgoing, or two incoming ends.

As first application of these results we will show that the composed functor Φ(L01) ◦
Φ(L12) : Don#(M0) → Don#(M2) is isomorphic to the functor Φ(L01◦L12) of the geometric
composition L01 ◦ L12 ⊂ M−

0 ×M2, if the latter is embedded. More precisely and more
generally, we have the following result.

Theorem 5.7. Let L0r = (L01, . . . , L(r−1)r) and L′
0r′ = (L′

01, . . . , L
′
(r′−1)r′) be two admis-

sible generalized Lagrangian correspondence from M0 to Mr = Mr′. Suppose that they are
equivalent in the sense of Section 2 through a series of embedded compositions of consecutive
Lagrangian correspondences and such that each intermediate generalized Lagrangian corre-
spondence is admissible. Then for any two admissible generalized Lagrangian submanifolds
L,L′ ∈ Obj(Don#(M0)) there is an isomorphism

Ψ : Hom(Φ(L0r)(L),Φ(L0r)(L
′)) → Hom(Φ(L′

0r′)(L),Φ(L′
0r′)(L

′))

which intertwines the functors on the morphism level,

Ψ ◦ Φ(L0r) = Φ(L′
0r′) : Hom(L,L′) → Hom(Φ(L′

0r′)(L),Φ(L′
0r′)(L

′)).

Proof. By assumption there exists a sequence of admissible generalized Lagrangian corre-
spondences Lj connecting L0 = L0r to LN = L′

0r′ . In each step two consecutive Lagrangian

correspondences L−, L+ in the sequence Lj = (. . . , L−, L+, . . .) are replaced by their em-
bedded composition L− ◦ L+ in Lj±1 = (. . . , L− ◦ L+, . . .). To each Lj we associate seam
conditions for the quilted surface Sj on the right of Figure 13. Replacing the consecutive
correspondences by their composition corresponds to shrinking a strip in this surface. So

Theorem 5.6 provides an isomorphism Ψ
e
j
+

associated to the outgoing end ej+ of each surface

Sj such that Ψ
e
j
+
◦ΦSj = ΦSj±1 . Figure 14 shows an example of this degeneration. The iso-

morphism Ψ is given by concatenation of the isomorphisms Ψ
e
j
+

(and their inverses in case

the composition is between Lj and Lj−1). It intertwines ΦS0 = Φ(L0r) and ΦSN = Φ(L′
0r′)

as claimed. �

Next, let ψ : M0 → M1 be a symplectomorphism and graphψ ⊂ M−
0 ×M1 its graph.

The functor Φ(ψ) defined in Section 3.1 extends to a functor

Φ(ψ) : Don#(M0) → Don#(M1)

defined on the level of objects by

L = (L−r(−r+1), . . . , L−10) 7→ (L−r(−r+1), . . . , (1N−1 × ψ)(L−10)) =: ψ(L).
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∼
δ→0

L′ M0 L L′

M0

L

L01 ◦ L12

M2

M1

δ

L01

L12

M2

Figure 14. Isomorphism between the functors Φ(L01) ◦ Φ(L12) and Φ(L01 ◦ L12)

On the level of morphisms, the functor Φ(ψ) : Hom(L,L′) → Hom(Φ(ψ)(L),Φ(ψ)(L′))
is defined by 〈(x−r, . . . , x−1, x0, x

′
−1, . . . , x

′
−r′)〉 7→ 〈(x−r, . . . , x−1, ψ(x0), x

′
−1, . . . , x

′
−r′〉 on

the generators I(L,L′) of the chain complex. As another application of Theorem 5.6 we
will show that this functor is in fact isomorphic to the functor Φ(graphψ) : Don#(M0) →
Don#(M1) that we defined for the Lagrangian correspondence graphψ.

Proposition 5.8. Φ(ψ) and Φ(graphψ) are canonically isomorphic as functors from Don#(M0)
to Don#(M1). More precisely, there exists a canonical natural transformation α : Φ(ψ) →
Φ(graphψ), that is α(L) ∈ Hom(Φ(ψ)(L),Φ(graphψ)(L)) for every L ∈ Obj(Don#(M0))
such that α(L) ◦Φ(graphψ)(f) = Φ(ψ)(f) ◦ α(L′) for all f ∈ Hom(L,L′), and all α(L) are
isomorphisms in Don#(M1).

Proof. Consider a generalized Lagrangian submanifold L = (L(−r)(−r+1), . . . , L(−1)0) ∈

Obj(Don#(M0)). By Theorem 5.5 we have canonical isomorphisms from

Hom(Φ(ψ)L,Φ(graphψ)L) = Hom(ψ(L), (L, graphψ))

= Hom(. . . (1 × ψ)(L(−1)0), (graphψ)t, (L(−1)0)
t . . .)

to all three of

Hom(. . . (1 × ψ)(L(−1)0), (L(−1)0 ◦ (graphψ))t . . .) = Hom(ψ(L), ψ(L)),

Hom(. . . L(−1)0, graphψ, (graphψ)t, (L(−1)0)
t . . .) = Hom((L, graphψ)(L, graphψ)),

Hom(. . . (1 × ψ)(L(−1)0) ◦ graph(ψ−1), (L(−1)0)
t . . .) = Hom(L,L),

see Figure 15.4 The isomorphisms are by (ψ(x), x) 7→ ψ(x), (x, ψ(x0), x), or x, respectively,
on the level of perturbed intersection points x = (x−r, . . . , x0) ∈ I(L,L). The first two iso-
morphisms also intertwine the identity morphisms 1ψ(L)

∼= 1(L,graphψ) by Theorem 5.5 and
the degeneration of the quilted identity indicated in Figure 15; this is the identity axiom for
the functor Φ(graphψ). The identity axiom for Φ(ψ) implies that the above isomorphisms
(their composition which coincides with Φ(ψ) : Hom(L,L) → Hom(ψ(L), ψ(L))) also in-
tertwine 1L with 1ψ(L). We define α(L) ∈ Hom(Φ(ψ)L,Φ(graph(ψ))L) to be the element
corresponding to the identities 1Φ(ψ)(L)

∼= 1Φ(graphψ)(L)
∼= 1L under these isomorphisms.

4Strictly speaking, one has to apply the shift functor ΨM0 of Definition 5.10 to adjust the relative spin
structure on L. However, HF (ΨM0(L),ΨM0(L)) is canonically isomorphic to HF (L,L).
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δ = δ1 = δ3 → 0

δ

∈ ∈ ∈

HF (ψ(L), ψ(L)) ∼= HF (L,L)HF (ψ(L), (L, graphψ)) ∼= HF ((L, graphψ), (L, graphψ)) ∼=

1(L,graphψ) 1L1ψ(L)

δ1 → 0 δ3 → 0 δ2 → 0

δ1 δ2 δ3δ2δ1

∈

α(L)

ψ(L) ψ(L) L LL ψ ψ(L) L ψ ψ L

Figure 15. Natural isomorphisms of Floer cohomology groups and defini-
tion of the natural transformation α : The light and dark shaded surfaces
are mapped to M0 and M1 respectively and we abbreviate graphψ by ψ and
Φ(ψ)(L) by ψ(L).

Each α(L) is an isomorphism since α(L) ◦ f = I1(f) for all f ∈ HF (Φ(graphψ)L,L′′)
and f ◦α(L) = I2(f) for all f ∈ HF (L′′,Φ(ψ)L), with the isomorphisms from Theorem 5.5

I1 : HF ((L, graphψ), L′′) → HF (ψ(L), L′′),

I2 : HF (L′′, ψ(L)) → HF (L′′, (L, graphψ)).

These identities can be seen from the gluing theorem in [19] and Theorem 5.5, applied to
the gluings and degenerations indicated in Figure 16. The quilted surfaces can be deformed
to a strip resp. a quilted strip (which corresponds to a strip in M−

0 ×M1). These relative
invariants both are the identity since the solutions are counted without quotienting by
R, see the strip example [19, Example 2.5]. For f ∈ Hom(L,L′) this already shows the

ψ(L)L′′

ψ

L

f α(L) f

L′′

ψ

L

= f

L′′L′′

fα(L)

ψ

L ψ(L)

ψ(L)

= f

f

∼∼
I2I1

Figure 16. α(L) is an isomorphism in Don#(M1)

first equality in Φ(ψ)(f) ◦ α(L′) = I(f) = α(L) ◦ Φ(graphψ)(f) with the isomorphism I :
HF (L,L′) → HF (ψ(L), (L′, graphψ)). More precisely, on the chain level for x ∈ I(L,L′)

Φ(ψ)(x) ◦ α(L′) = (ψ(x), x) = α(L) ◦ Φ(graphψ)(x).
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The second identity is proven by repeatedly using Theorem 5.6 and the quilted gluing
theorem [19, Theorem 3.13], see Figure 17. �

x

ψ

L

ψ(L)L′ L′ ψ(L)

ψ

L

=

α(L) α(L)

∼
I

x x

L′ L

= x

Figure 17. Isomorphism of functors for a symplectomorphism and its
graph, using shrinking strips

Remark 5.9. There is an analytically easier proof of the previous Proposition 5.8 since it
deals only with the special case when one of the Lagrangian correspondences is the graph of
a symplectomorphism: Instead of shrinking a strip as in Theorems 5.5 and Theorem 5.6 one
can apply the symplectomorphism to the whole strip; for a suitable choice of perturbation
data it then attaches smoothly to the other surface in the quilt, and the seam can be
removed.

The functor Φ(IdM0) associated to the identity map on M0 clearly is the identity functor
on Don#(M0). So Proposition 5.8 gives a (rather indirect) isomorphism between the functor
for the diagonal and the identity functor. To be more precise, taking into account the relative
spin structure of the diagonal, we need to introduce the following shift functor.

Definition 5.10. We define a shift functor

ΨM0 : Don#(M0,LagN (M0), ω0, b0) → Don#(M0,LagN (M0), ω0, b0 −w2(M0)).

(a) On the level of objects, ΨM0 maps every generalized Lagrangian L ∈ Don#(M0) to
itself but shifts the relative spin structure to one with background class b0−w2(M0),
as explained in [21].

(b) On the level of morphisms, ΨM0 : Hom(L,L′) → Hom(ΨM0(L),ΨM0(L
′)) is the

canonical isomorphism for shifted spin structures from [21].

Remark 5.11. Let ∆ ⊂ M−
0 × M0 denote the diagonal. Throughout, we will equip ∆

with the orientation and relative spin structure that are induced by the projection to the
second factor (see [21]). Then ∆ is an admissible Lagrangian correspondence from M0

to M1, where M1 = M0 with the same symplectic structure ω1 = ω0 and Maslov cover
LagN (M1) = LagN (M0), but with a shifted background class b1 = b0 − w2(M0). In other
words, ∆ is an object in the category Don#

(
M0,M1) that is introduced in Section 6 below.

In the following, we will drop the Maslov cover and symplectic form from the notation.

Corollary 5.12. The functor Φ(∆) : Don#(M0, b0) → Don#(M0, b0 − w2(M0)) associated
to the diagonal is canonically isomorphic to the shift functor ΨM0.
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6. Composition functor for categories of correspondences

The set of generalized Lagrangian correspondences forms a category in its own right,
which we define in close analogy to the generalized Donaldson category in Section 4. We
will then be able to define a composition functor for these categories.

Let Ma and Mb be symplectic manifolds satisfying (M1-2) with the same monotonicity
constant τ ≥ 0. We fix an integer N > 0, N -fold Maslov covers LagN (M(·)) → M(·) as in

(G1), and background classes b(·) ∈ H2(M(·),Z2). Recall from Definition 2.1 that a gener-
alized Lagrangian correspondence from Ma to Mb is a sequence L = (L01, L12, . . . , L(r−1)r)

of Lagrangian correspondences L(i−1)i ⊂ N−
i−1 ×Ni for a sequence N0, . . . , Nr of any length

r ≥ 0 of symplectic manifolds with N0 = Ma and Nr = Mb. We picture L as sequence

Ma = N0 N1 . . . Nr = Mb
-

L01
-

L12
-

L(r−1)r

.

As in Definition 4.1 we call a generalized Lagrangian correspondence L from Ma to Mb

admissible if each Ni satisfies (M1-2) with the monotonicity constant τ ≥ 0, each L(i−1)i

satisfies (L1-3), and the image of each π1(L(i−1)i) in π1(N
−
i−1 ×Ni) is torsion.

Definition 6.1. The Donaldson-Fukaya category of correspondences

Don#(Ma,Mb) := Don#(Ma,Mb,LagN (Ma),LagN (Mb), ωa, ωb, ba, bb)

is defined as follows:

(a) The objects of Don#(Ma,Mb) are admissible generalized Lagrangian correspon-
dences from Ma to Mb, equipped with orientations, gradings, and relative spin
structures.5

(b) The morphism spaces of Don#(Ma,Mb) are the ZN -graded Floer cohomology groups
(defined in [20])

Hom(L,L′) := HF (L,L′)[d],

where the second group is shifted by d = 1
2(

∑
k dim(Nk) +

∑
k′ dim(N ′

k′)). For Z-
coefficients one has to introduce determinant lines as in Remark 4.4. See Figure 18
for views of the quilted holomorphic cylinders which are counted (modulo R-shift)
as Floer trajectories.

(c) The composition of morphisms in Don#(Ma,Mb),

Hom(L,L′) × Hom(L′, L′′) −→ Hom(L,L′′)

(f, g) 7−→ f ◦ g := ΦP (f ⊗ g)

is defined by the relative invariant ΦP associated to the quilted pair of pants surface
P (this time the pair of pants is an honest one, not just the front) in Figure 19,
where the patches without outgoing ends are ordered from Ma to Mb.

Convention 6.2. In Figure 18 and the following pictures, the outer circles will always be
outgoing ends. The inner circles are usually incoming ends, indicated by a ⊗ or marked with

5In the previous notation, a grading on L is a collection of N-fold Maslov covers LagN(Nj) → Nj for
j = 0, . . . , r and gradings of the Lagrangian correspondences L(j−1)j . Here the gradings on N0 = Ma

and Nr = Mb are the fixed ones. A relative spin structure on L is a collection of background classes bj ∈
H2(Nj ,Z2) for j = 0, . . . , r and relative spin structures on L(j−1)j with background classes −π∗

j−1bj−1+π∗
j bj .

Here b0 = ba and br = bb are the fixed background classes in Ma and Mb. See [20] for more details.
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L

Mb
Ma

Mb

Ma

LL′ ⊗

Mb

Ma

== L′
12

L′
10

L′
(r′−1)r′

L(r−1)r

L01

...

...
L12

⊗

Figure 18. Floer trajectories for pairs of generalized Lagrangian correspondences

Mb

Ma

L′
L′′

⊗

L

L⊗L′′ L′

Ma

Mb

=

Figure 19. Quilted pair of pants: Composition of morphisms for La-
grangian correspondences

the incoming morphism. Ends at the top resp. bottom of pictures will always be outgoing
resp. incoming, unless otherwise indicated by arrows.

Remark 6.3. (a) The identity 1L ∈ Hom(L,L) for a generalized Lagrangian correspon-
dence L is given by the relative invariant 1L := ΦS associated to the quilted cap in
Figure 20, where the patches without outgoing ends are ordered from Mb to Ma.

(b) The associativity and identity axiom for Don#(Ma,Mb) follow from the quilted
gluing theorem [19, Theorem 3.13] applied to the gluings (indicated by dashed lines)
in Figure 21. Note that – in contrast to Figure 18 – the solutions on the quilted
annulus (i.e. cylinder) are counted without quotienting by R, hence as in the strip
example [19, Example 2.5] this relative invariant is the identity.

(c) Don#(Ma,Mb) is a small category by the same arguments as in Remark 2.5 (c).

Remark 6.4. Consider the case where the symplectic manifolds Ma = Mb = M agree
(including Maslov cover and background class). Then for any admissible generalized La-
grangian correspondence L ∈ Obj(Don#(M,M)) the composition of morphisms in (c) de-
fines a ring structure on Hom(L,L), and (d) provides an identity element. Another appli-
cation of the strip shrinking theorems shows that this ring structure is isomorphic under
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L=

Ma

L

Mb

Mb

Ma

Figure 20. Quilted cap: Identity for Lagrangian correspondences

fgh

Ma

Mb

L′′′ L′′ L′ L fgh

Ma

Mb

L′′′ L′′ L′ L

Ma

Mb

L′ L L′

Ma

MbMb

Ma

L′ L L= =f ff

f ◦ (g ◦ h) = (f ◦ g) ◦ h

=

1L ◦ f = f f = f ◦ 1L′

Figure 21. Axioms for Donaldson-Fukaya category of correspondences

embedded compositions of correspondences: Let L and L′ be two admissible generalized La-
grangian correspondences from M to itself. Suppose that they are equivalent in the sense
of Section 2 through a series of embedded compositions of consecutive Lagrangian cor-
respondences, and such that each intermediate generalized Lagrangian correspondence is
admissible. Then there is a canonical ring isomorphism

(
Hom(L,L), ◦

)
≃

(
Hom(L′, L′), ◦

)

which intertwines the identity elements 1L and 1L′ .
Indeed, by assumption there exists a sequence of admissible generalized Lagrangian cor-

respondences Lj connecting L0 = L to LN = L′ as in the proof of Theorem 5.7. In each step
two consecutive Lagrangian correspondences in the sequence Lj = (. . . , L−, L+, . . .) are re-
placed by their embedded, monotone composition in Lj±1 = (. . . , L−◦L+, . . .). Theorem 5.5
provides isomorphisms Ψj : HF (Lj , Lj) → HF (Lj±1, Lj±1) by shrinking the strip between
L− and L+. Theorem 5.6 applies to the corresponding strips in the pair of pants surface
and the quilted cap surface of Definition 6.1 (c) and (d) and shows that the isomorphisms
Ψj intertwine the ring structures and identity morphisms. The full ring isomorphism is
given by a composition of these isomorphisms or their inverses.

Next, consider a triple of symplectic manifolds Ma,Mb,Mc satisfying (M1-2) with the
same monotonicity constant τ , equipped with Maslov covers LagN (M(·)) → M(·) (with

the same N) and background classes b(·) ∈ H2(M(·),Z2). We denote by Don#(Ma,Mb) ×
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Don#(Mb,Mc) the product category. That is, objects are pairs (Lab, Lbc) of objects of
Don#(Ma,Mb) and Don#(Mb,Mc). Morphisms are pairs (f, g) with f ∈ Hom(Lab, L

′
ab), g ∈

Hom(Lbc, L
′
bc). Composition is given by

(f, g) ◦ (f ′, g′) := (−1)|f
′||g|(f ◦ f ′, g ◦ g′)

for f ∈ Hom(Lab, L
′
ab), f

′ ∈ Hom(L′
ab, L

′′
ab), g ∈ Hom(Lbc, L

′
bc), g

′ ∈ Hom(L′
bc, L

′′
bc).

Definition 6.5. The composition functor

(9) # : Don#(Ma,Mb) × Don#(Mb,Mc) → Don#(Ma,Mc)

is defined as follows.

(a) On the level of objects # is defined by concatenation:

Obj(Don#(Ma,Mb)) × Obj(Don#(Mb,Mc)) → Obj(Don#(Ma,Mc))

(Lab, Lbc) 7→ Lab#Lbc,

where

(Lab01, . . . , L
ab
(r−1)r)#(Lbc01, . . . , L

bc
(r′−1)r′) := (Lab01, . . . , L

ab
(r−1)r, L

bc
01, . . . , L

bc
(r′−1)r′).

(b) On the level of morphisms, # is defined for Lab, L
′
ab ∈ Obj(Don#(Ma,Mb)) and

Lbc, L
′
bc ∈ Obj(Don#(Mb,Mc)) by

Hom(Lab, L
′
ab) × Hom(Lbc, L

′
bc) → Hom(Lab#Lbc, L

′
ab#L

′
bc)

(f, g) 7→ f#g := ΦP (f ⊗ g),

where ΦP is the relative invariant associated to the quilted pair of pants P , where now
every seam connects one of the incoming cylindrical ends to the outgoing cylindrical
end, as in Figure 22.

Mb

L′
abLbcL′

bc
Lab

=

⊗

⊗

Mb

Mc

Ma

L′
bc Lbc

L′
ab Lab

Mc Ma

Figure 22. Composition functor on Donaldson categories of correspondences

The composition axiom for the functor # follows from the quilted gluing theorem [19,
Theorem 3.13] applied to the two degenerations of the five-holed sphere shown in Figure
23: For all f ∈ Hom(Lab, L

′
ab), f

′ ∈ Hom(L′
ab, L

′′
ab), g ∈ Hom(Lbc, L

′
bc), g

′ ∈ Hom(L′
bc, L

′′
bc)

we obtain

#
(
(f, g) ◦ (f ′, g′)

)
= (−1)|f

′||g|(f ◦ f ′)#(g ◦ g′) = (f#g) ◦ (f ′#g′).

The identity axiom for the concatenation functor, 1Lab
#1Lbc

= 1Lab#Lbc
, follows similarly

from the quilted gluing theorem applied to the degenerations shown in Figure 24.
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Figure 23. Composition axiom for the concatenation functor

Mc

Lab

Lbc

Ma

Mb Lab#Lbc

Mc

Ma

=

1Lab
#1Lbc

= 1Lab#Lbc

Figure 24. Identity axiom for the concatenation functor

Remark 6.6. The construction of functors associated to Lagrangian correspondences in
Section 5 has an obvious extension (8) for generalized Lagrangian correspondences. For
Lab ∈ Don#(Ma,Mb) the functor Φ(Lab) : Don#(Ma) → Don#(Mb) acts on objects
L ∈ Obj(Don#(Ma)) by concatenation Φ(Lab) = L#Lab, and on morphisms Φ(Lab) :
HF (L,L′) → HF (L#Lab, L

′#Lab) is defined by composition Φ(L01)◦ . . .◦Φ(L(r−1)r) of the
functors associated to the elementary Lagrangian correspondences (L01, . . . , L(r−1)r) = Lab.
Alternatively, the map Φ(Lab) on morphisms can be defined directly by the relative invari-
ant in Figure 13, see Remark 5.4. Using the first definition, we have a tautological equality
of functors

(10) Φ(Lab) ◦ Φ(Lbc) = Φ(Lab#Lbc)

for any two objects Lab ∈ Don#(Ma,Mb) and Lbc ∈ Don#(Mb,Mc).

7. Natural transformations associated to Floer cohomology classes

Let Ma and Mb be as in the previous section and let Lab, L
′
ab be objects in Don#(Ma,Mb).

Definition 7.1. Given a morphism T ∈ Hom(Lab, L
′
ab) we define a natural transformation

ΦT : Φ(Lab) → Φ(L′
ab)

as follows: To any object L in Don#(Ma) we assign the morphism

ΦT (L) ∈ Hom(Φ(Lab)(L),Φ(L′
ab)(L))
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given by the relative invariant associated to the surface in Figure 25, which is independent
of the ordering of the patches. (Note that the end where T is inserted is cylindrical in the
sense that the strip-like ends glue together to a cylindrical end.)

����������
����������
����������
����������

����������
����������
����������
����������M0

M1

M2

L02

L01

L12

L0

T TMa

Mb

L

L′
ab

Lab

Figure 25. Natural transformation associated to a Floer cohomology class:
General case and an example, where L consists of a single Lagrangian L0,
Lab consists of a single Lagrangian L02, and L′

ab consists of a pair (L01, L12).

To see that ΦT is a natural transformation of functors Φ(Lab) → Φ(L′
ab) we must show

that for any two objects L,L′ in Don#(Ma) and any morphism f ∈ Hom(L,L′) we have

(11) Φ(Lab)(f) ◦ ΦT (L′) = (−1)|T ||f |ΦT (L) ◦ Φ(L′
ab)(f).

This identity follows from the quilted gluing theorem [19, Theorem 3.13] applied to the
gluing shown in Figure 26.

Ma

Mb

L′

L

L′
ab

Lab

T

=

Ma

Mb

L′

L

L′
ab

Lab

T

Figure 26. Natural transformation axiom

Proposition 7.2. The maps Lab 7→ Φ(Lab) and T 7→ ΦT define a functor

Don#(Ma,Mb) → Fun(Don#(Ma),Don#(Mb)).



28 KATRIN WEHRHEIM AND CHRIS T. WOODWARD

Proof. We apply the quilted gluing theorem [19, Theorem 3.13] to the quilted surfaces
in Figure 27 to deduce the composition axiom ΦT (L) ◦ ΦT ′(L) = ΦT◦T ′(L) for all T ∈
Hom(Lab, L

′
ab), T

′ ∈ Hom(L′
ab, L

′′
ab), and L ∈ Obj(Don#(Ma)). The identity axiom Φ1Lab

(L) =

1Φ(Lab)(L) for T = 1Lab
∈ Hom(Lab, Lab) and L ∈ Obj(Don#(Ma)) follows from the quilted

gluing theorem applied to the quilted surface in Figure 28. �

T

T ′

Ma

Mb

L

L′′
ab

L′
ab

Lab

=
Ma

Mb

L

L′′
ab

Lab
L′
ab

T

T ′

Figure 27. Composition axiom for natural transformations

= 1Φ(Lab)(L)Lab Mb

Ma
L

Figure 28. Identity axiom for natural transformations

Remark 7.3. In this remark we discuss the special case of the diagonal ∆ ⊂ M− × M ,
which gives rise to the so-called open-closed maps in 2D TQFT. By [14] there is a ring
isomorphism between the Floer cohomology of the diagonal HF (∆,∆) and the quantum
cohomology HF (Id). Our construction gives for any element α ∈ HF (∆,∆) ≃ HF (Id) an
automorphism of the identity functor Φ(∆) (more precisely, of the shift functor Φ(∆) ≃ ΨM

in case w2(M) 6= 0). In particular, we obtain elements Φα(L) ∈ HF ((L,∆), (L,∆)) ≃
HF (L,L) for each admissible Lagrangian submanifold L ⊂M . (Here HF ((L,∆), (L,∆)) ≃
HF (L,L) is a ring isomorphism by Remark 6.4 .) Proposition 7.2 gives Φα◦β(L) = Φα(L) ◦
Φβ(L). That is, the closed-open map HF (Id) → HF (L,L) is a ring homomorphism. The
closed-open maps in Floer theory are discussed in more detail in Albers [2, Theorem 3.1].

For any pair of Lagrangians L0, L1 ⊂M , combining the ring homomorphism HF (Id) →
HF (Lk, Lk) with the compositionHF (L0, L0)×HF (L0, L1) → HF (L0, L1) resp.HF (L0, L1)×
HF (L1, L1) → HF (L0, L1) gives a module structure on HF (L0, L1) over HF (Id). The
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Figure 29. Isomorphism of composition and concatenation

module structure is independent of k = 0, 1, by the natural transformation axiom (11)
with Lab = L′

ab = ∆. It is equal to the module structure induced by the isomorphism
HF (L0 × L1,∆) → HF (L0, L1) of [21].

Note that ifHF (Id) → HF (L,L) is a surjection andHF (Id) is semisimple thenHF (L,L)
is again semisimple, and in particular nilpotent free.

Next, we show that embedded composition of Lagrangian correspondences gives rise to
isomorphic objects in the Donaldson-Fukaya category. For simplicity we restrict to the case
of elementary Lagrangian correspondences, i.e. sequences of length 1. The statement and
argument for the general case is analogous.

Theorem 7.4. Let L01 ∈ Obj(Don#(M0,M1)) and L12 ∈ Obj(Don#(M1,M2)) be admissi-
ble Lagrangian correspondences. Suppose that L01×M1 L12 →M−

0 ×M2 is cut out transver-
sally and embeds to a smooth, admissible Lagrangian correspondence L02 := L01 ◦ L12 ∈
Obj(Don#(M0,M2)). Then ∆M0#L02, L02#∆M2, and L01#L12 are all isomorphic in
Don#(M0,M2).

Remark 7.5. If in Theorem 7.4 we moreover assume w2(M0) = 0 or w2(M2) = 0, then we
in fact have an isomorphism between L01#L12 and L01 ◦ L12, by Proposition 7.6 below.

Proof. By Theorem 5.5, Hom(L01#L12,∆M0#L02) resp. Hom(∆M0#L02, L01#L12) is iso-
morphic to Hom(∆M0#L02,∆M0#L02); let φ resp. ψ denote the inverse image of the
identity 1∆M0

#L02 . To establish the isomorphism L01#L12 ≃ ∆M0#L02 we show that
ψ ◦ φ = 1∆M0

#L02 and φ ◦ ψ = 1L01#L12 for the composition by the pair of pants products.
These are special cases of Theorem 5.6 applied to the degenerations shown in Figure 29.
The isomorphism L01#L12 ≃ L02#∆M2 is proven in the same way. �

Proposition 7.6. Suppose that M0 satisfies w2(M0) = 0. Then the diagonal ∆M0 ∈
Don#(M0,M0) is an identity of the composition # up to isomorphism. That is, for every
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Figure 30. Isomorphism of ∆M0#L and L

generalized Lagrangian L ∈ Obj(Don#(M0,M1)) the objects ∆M0#L and L are isomor-

phic in Don#(M0,M1), and for every generalized Lagrangian L ∈ Obj(Don#(M1,M0)) the
objects L#∆M0 and L are isomorphic in Don#(M1,M0).

Proof. By Theorem 5.5, both Hom(∆M0#L,L) and Hom(L,∆M0#L) are isomorphic to
Hom(L,L); let φ resp. ψ denote the inverse image of the identity 1L. Then the identities
φ◦ψ = 1L and φ◦ψ = 1∆M0

#L follow from Theorem 5.6 applied to the degenerations shown

in Figure 30. (Alternatively, as mentioned in Section 5.8, one could glue the strips instead
of shrinking them.) This proves ∆M0#L ≃ L. The isomorphism L#∆M0 ≃ L is proven in
the same way. �

Corollary 7.7. Under the assumptions of Theorem 7.4 the functors ΨM0 ◦ Φ(L01 ◦ L12),
Φ(L01 ◦L12) ◦ΨM2 , and Φ(L01) ◦Φ(L12) are all isomorphic in the category of functors from
Don#(M0) to Don#(M2).

Proof. From Theorem 7.4 and (10) we obtain isomorphisms between Φ(∆M0#L02) = Φ(∆M0)◦
Φ(L02), Φ(L02#∆M2) = Φ(L02)◦Φ(∆M2), and Φ(L01#L12) = Φ(L01)◦Φ(L12). By Proposi-
tion 5.12 the functors Φ(∆Mk

) are isomorphic to the shift functors ΨMk
. Since isomorphisms

commute with composition of functors, this proves the corollary. �

8. 2-category of monotone symplectic manifolds

We can rephrase and summarize the constructions of the previous sections, using the
language of 2-categories.

Definition 8.1. A 2-category C consists of the following data:

(a) A class of objects Obj(C).
(b) For each pair of objects X,Y ∈ Obj(C), a small category Hom(X,Y ).
(c) For each triple of objects X,Y,Z ∈ Obj(C), a composition functor

◦ : Hom(X,Y ) × Hom(Y,Z) → Hom(X,Z).
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(d) For every X ∈ Obj(C) an identity functor 1X ∈ Hom(X,X).

These data should satisfy the following axioms:

(Identity): For all X,Y ∈ Obj(C) and f ∈ Hom(X,Y )

1X ◦ f = f, f ◦ 1Y = f.

(Associativity): For all composable morphisms f, g, h

f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Objects resp. morphisms in Hom(X,Y ) are called 1-morphisms resp. 2-morphisms. We
say that C has weak identities if equality in the identity axiom is replaced by 2-isomorphism.

The basic example of a 2-category is Cat, whose objects are small categories, 1-morphisms
are functors, and 2-morphisms are natural transformations.

Definition 8.2. A 2-functor F : C1 → C2 between 2-categories C1 and C2 consists of

(a) a map F : Obj(C1) → Obj(C2),
(b) for each pair X,Y ∈ Obj(C1), a functor

F(X,Y ) : Hom(X,Y ) → Hom(F(X),F(Y )),

respecting composition and identities.

In the following we restrict ourselves to symplectic manifolds that are spin, i.e. w2(M) = 0.
Their advantage is that the shift functor ΨM : Don#(M, b) → Don#(M, b) of Definition 5.10
is trivial and the diagonal ∆M ⊂M− ×M is an object of the category of correspondences
Don#(M,M) from (M, b) to itself. We moreover drop the Maslov cover from the data, thus
working with ungraded Floer cohomology groups.

Definition 8.3. Fix a constant τ ≥ 0. Let the Weinstein-Floer 2-category Floer#
τ be the

category given as follows:

(a) Objects are symplectic manifolds (M,ω) that satisfy (M1-2) with monotonicity
constant τ and w2(M) = 0, and that are equipped with a background class b ∈
H2(M,Z2).

(b) The morphism categories of Floer# are the Donaldson categories of Lagrangian
correspondences, Hom(M0,M1) := Don#(M0,M1); without grading.

(c) Composition is defined by the functor (9),

# : Don#(M0,M1) × Don#(M1,M2) → Don#(M0,M2).

(d) The diagonal defines a weak identity ∆M ∈ Don#(M,M).

Remark 8.4. One could define Floer#τ by restricting to nonempty symplectic manifolds.
However, for future applications, we wish to include the empty set ∅ as object. The only
elementary Lagrangian correspondence from ∅ to M is L = ∅, but in the sequence of a
generalized Lagrangian correspondences, we must now allow any number of ∅ as symplectic
manifolds as well as Lagrangian correspondences. However, the Floer cohomology of any

generalized Lagrangian correspondence containing ∅ is the trivial group HF (. . .
∅

−→ . . .) =
{0}.

The associativity axiom on Floer#
τ is immediate on the level of objects: For any triple

L01 ∈ Obj(Don#(M0,M1)), L12 ∈ Obj(Don#(M1,M2)), L23 ∈ Obj(Don#(M2,M3)) we
have (L01#L12)#L23 = L01#(L12#L23). On the level of morphisms we apply the quilted



32 KATRIN WEHRHEIM AND CHRIS T. WOODWARD

h L23

L12

L01

L′
23

fL′
01

gL′
12

h L23

L12

L01

M0

M3

L′
23

M2

M1

fL′
01

gL′
12 =

M0

M1

M2

M3

Figure 31. Associativity of the concatenation functor

gluing theorem [19, Theorem 3.13] to the gluings indicated by dashed lines in Figure 31
to prove that (f#g)#h = f#(g#h) for all f ∈ Hom(L01, L

′
01), g ∈ Hom(L12, L

′
12), h ∈

Hom(L23, L
′
23). The weak identity axiom follows from Proposition 7.6. Hence Floer# is a

2-category with weak identities.

Remark 8.5. Floer#τ is independent up to 2-isomorphism of 2-categories of the choices of
perturbation data and strip widths, as in Remarks 3.6, 4.6, and the proofs of independence
of quilted Floer cohomology and relative quilt invariants in [20, 19].

Theorem 7.4 implies that the definition of composition in the Weinstein-Floer 2-category
Floer#

τ agrees with the geometric definition, in the case that geometric composition is
smooth, embedded, and monotone.

Theorem 8.6. The map M0 7→ Don#(M0) and the functors

Don#(M0,M1) → Fun(Don#(M0),Don#(M1))

as in Proposition 7.2 define a categorification 2-functor Floer#τ → Cat for every τ ≥ 0.

Proof. Compatibility with the composition follows from the identity (10). The weak identi-
ties ∆M ∈ Hom(M,M) are mapped to weak identities Φ(∆) ≃ 1Don#(M) by Corollary 5.12.

Here the shift functor ΨM is the identity since w2(M) = 0. �

Remark 8.7. (a) For any genuinely monotone symplectic manifold (i.e. with τ > 0) we
can achieve τ = 1 by rescaling. It thus suffices to consider the exact Weinstein-

Floer 2-category Floer#0 and the monotone Weinstein-Floer 2-category Floer#
1 . Note

however that we cannot incorporate Lagrangian correspondences between monotone
symplectic manifolds with different monotonicity constants. This is due to bubbling
effects which in our present setup are true obstructions to the equivalence of algebraic
composition L01#L12 and embedded geometric composition L01 ◦ L12. We expect
that the A∞-setup, incorporating all bubbling effects, has better behavior.

(b) One can define an analogous graded Weinstein-Floer 2-category Floer#
N,τ for any

τ ≥ 0 and integer N , whose objects are monotone symplectic manifolds with the
additional structure of a Maslov cover LagN (M) →M . Its 1-morphisms are graded
generalized Lagrangian correspondences, and its 2-morphism spaces are the graded
Floer cohomology groups.
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Remark 8.8. (a) One can define a strong identity 1M ∈ Hom(M,M) by allowing the
empty sequence 1M := ∅ as a generalized Lagrangian correspondence. The various
constructions in this Section extend to the case of empty sequences by allowing
cylindrical ends.

(b) In the case w2(M) 6= 0, the diagonal is not an automorphism but a morphism
∆M ∈ Hom((M, b), (M, b − w2(M))), see Remark 5.11. Hence

L#∆M ∈ Hom((M1, b1), (M, b − w2(M))), L ∈ Hom((M1, b1), (M, b))

lie in different morphism spaces that are not related by a simple shift in the back-
ground class. However, the categorification functor in Theorem 8.6 generalizes di-
rectly to this setup as follows. The functor maps the special Floer#

τ 1-morphisms
∆M ∈ Don#((M, b), (M, b−w2(M)) to Cat 1-morphisms that are isomorphic to the
shift functors ΨM ∈ Fun(Don#(M, b),Don#(M, b− w2(M))).

(c) One can make the diagonal a strong identity by modding out by the equivalence
relation discussed Section 2. Let Brane#

τ denote the 2-category whose objects and 1-

morphisms are those of Floer#
τ , modulo the equivalence relation L01#L12 ∼ L01◦L12

for embedded compositions as in Section 2, and whose 2-morphisms are defined as
follows. Given a pair [L01], [L

′
01] of 1-morphisms from M0 to M1, define the space of

2-morphisms Hom([L01], [L
′
01]) by Hom([L01], [L

′
01]) = HF (L01, L

′
01) for some choice

of representatives L01, L
′
01. Define composition by concatenation #, as in (9). The

equivalence classes of the diagonal [∆M ] define true identities in case w2(M) = 0.
Our main result, Theorem 5.5, implies that Brane#

τ is independent of the choice of
representatives up to 2-isomorphism of 2-categories. Theorem 7.4 implies that the
categorification 2-functor of Theorem 8.6 induces a 2-functor Brane#

τ → Cat to the
2-category of categories Cat.
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