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Abstract: We study nonlocal Lagrangian boundary conditions for anti-self-dual in-
stantons on 4-manifolds with a space-time splitting of the boundary. We establish the
basic regularity and compactness properties (assuming Lp-bounds on the curvature for
p > 2) as well as the Fredholm theory in a compact model case. The motivation for
studying this boundary value problem lies in the construction of an instanton Floer ho-
mology for 3-manifolds with boundary. The present paper is part of a program proposed
by Salamon for the proof of the Atiyah-Floer conjecture for homology-3-spheres. The
proofs required some minor corrections due to corrections in the analysis for Banach
space valued holomorphic curves [W2].

1. Introduction

Let X be a manifold with boundary, let G be a compact Lie group, and consider a prin-
cipal G-bundle P → X . The natural boundary condition for the Yang-Mills equation
d∗AFA = 0 on P is ∗FA|∂X = 0. (These are the Euler-Lagrange equations for the
energy functional

∫
|FA|2.) For this boundary value problem there are regularity and

compactness results, see for example [U1,U2,W1]. Every solution is gauge equivalent
to a smooth solution, and Uhlenbeck compactness holds: Every sequence of solutions
with Lp-bounded curvature (where p > 1

2dimX) contains a subsequence that is C∞-
convergent up to a sequence of gauge transformations.

On an oriented 4-manifold, the anti-self-dual instantons, i.e. connections satisfying
FA + ∗FA = 0, are special first order solutions of the Yang-Mills equation. An impor-
tant application of Uhlenbeck’s theorem is the compactification of the moduli space of
anti-self-dual instantons over a manifold without boundary, leading to the Donaldson
invariants of smooth 4-manifolds [D1] and to the instanton Floer homology groups of
3-manifolds [Fl].

On a 4-manifold with boundary the boundary condition ∗FA|∂X = 0 for anti-self-
dual instantons implies that the curvature vanishes altogether at the boundary. This is an
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overdetermined boundary value problem comparable to Dirichlet boundary conditions
for holomorphic maps. As in the latter case it is natural to consider weaker Lagrangian
boundary conditions. The Cauchy-Riemann equation becomes elliptic when augmented
with Lagrangian or more generally totally real boundary conditions. We consider a
version of such Lagrangian boundary conditions for anti-self-dual instantons on a 4-
manifold with a space-time splitting of the boundary, and prove that they suffice to ob-
tain the analogue of the above mentioned regularity and compactness results for Yang-
Mills connections.

More precisely, we consider oriented 4-manifolds X such that each connected com-
ponent of the boundary ∂X is diffeomorphic to S × Σ, where S is a 1-manifold and
Σ is a closed Riemann surface. We shall study a boundary value problem associated
to a gauge invariant Lagrangian submanifold L of the space of connections on Σ: The
restriction of the anti-self-dual instanton to each time-slice of the boundary is required
to belong to L. This boundary condition arises naturally from examining the Chern-
Simons functional on a 3-manifold Y with boundaryΣ. Namely, the Lagrangian bound-
ary condition renders the Chern-Simons 1-form on the space of connections closed, see
[S]. The resulting gradient flow equation leads to the boundary value problem studied in
this paper (for the caseX = R×Y ). Besides the regularity and compactness properties
on noncompact manifolds we also establish the Fredholm theory for the compact model
case X = S1 × Y .

One motivation for studying the present boundary value problem lies in the Atiyah-
Floer conjecture for Heegaard splittings of a homology-3-sphere: A Heegaard splitting
Y = Y0 ∪Σ Y1 of a homology 3-sphere Y into two handlebodies Y0 and Y1 with
common boundary Σ gives rise to two Floer homologies (i.e. generalized Morse ho-
mologies) as follows: Firstly, the moduli space MΣ of gauge equivalence classes of
flat connections on the trivial SU(2)-bundle over Σ is a symplectic manifold (with
singularities) and the moduli spaces LYi of flat connections over Σ that extend to a
flat connection over Yi are (singular) Lagrangian submanifolds of MΣ as explained in
[W2]. The symplectic Floer homology HFsymp

∗ (MΣ , LY0 , LY1) is now generated by
the intersection points of the Lagrangian submanifolds, and the generalized connecting
orbits (that define the boundary operator) are pseudoholomorphic strips with boundary
values in the two Lagrangian submanifolds. (In view of the singularities of MΣ , an ap-
propriate generalization of the concept of pseudoholomorphic strips will be required to
give a strict definition of this Floer homology.) It was conjectured by Atiyah [A2] and
Floer that this should be isomorphic to the instanton Floer homology HFinst

∗ (Y ). For
the latter, the critical points are the flat SU(2)-connections over Y . These are the actual
critical points of the Chern-Simons functional, and the connecting orbits are given by
its generalized flow lines, i.e. anti-self-dual instantons on R× Y .

The program by Salamon [S] for the proof of this conjecture is to define the instanton
Floer homology HFinst

∗ (Y,L) for 3-manifolds with boundary ∂Y = Σ using boundary
conditions associated to a Lagrangian submanifold L ⊂ MΣ . Then the conjectured
isomorphism might be established in two steps via the intermediate Floer homology
HFinst
∗ ([0, 1]×Σ,LY0 × LY1), as described in the outlook below.
Boundary value problems for (Hermitian) Yang-Mills connections were also used

by Donaldson [D2], who considered connections induced by Hermitian holomorphic
bundles with a Dirichlet boundary condition on the metric.

Fukaya [Fu] was the first to suggest the use of Lagrangian boundary conditions
for anti-self-dual instantons in order to define a Floer homology for 3-manifolds with
boundary. He studies a slightly different equation, involving a degeneration of the met-
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ric in the anti-self-duality equation, and uses SO(3)-bundles that are nontrivial over the
boundary Σ, so the moduli space MΣ becomes smooth. However, when working on
handlebodies as 3-manifolds, or when considering the Lagrangian submanifold LY as
in the Atiyah-Floer conjecture, then one necessarily deals with the trivial bundle (or a
non-connected Lie group).

The present paper sets up the basic analysis for a construction of HFinst
∗ (Y, L) as

outlined in [S], using trivial SU(2)-bundles. We will only consider trivial G-bundles
for general compact Lie groups G. However, our main theorems A, B, and C below
generalize directly to nontrivial bundles – just the notation becomes more cumbersome.
The main theorems are described below; they are proven in sections 2 and 3. The ap-
pendix reviews the regularity theory for the Neumann and Dirichlet problem in the weak
formulation that will be needed throughout this paper. Here we moreover introduce a
technical tool for extracting regularity results for single components of a 1-form from
weak equations that are related to a combination of Neumann and Dirichlet problems.

1.1. Notation and main results. Throughout this paper, we consider the trivial G-bundle
over a 4-manifold X . Here G is a compact Lie group with Lie algebra g. We denote
the Lie bracket on g by [·, ·], and we equip g with a G-invariant inner product 〈 ·, · 〉.
A connection on the trivial bundle G × X is a g-valued 1-form A ∈ Ω1(X; g). We
denote the space of smooth connections by A(X) := Ω1(X; g). Associated to a con-
nection A ∈ A(X) one has the exterior derivative dA on g-valued differential forms
given by

dAη = dη + [A ∧ η] ∀η ∈ Ωk(X; g).

Here the Lie bracket indicates how the values of the differential forms are paired. Now
dA◦dA does not necessarily vanish, but it is a zeroeth order operator, dAdAη = [FA∧η]
given by the curvature

FA = dA+ 1
2 [A ∧A] ∈ Ω2(X; g).

So dA ◦ dA = 0 if and only if the connection is flat, that is its curvature vanishes.
The gauge group G(X) := C∞(X,G) represents the smooth bundle isomorphisms.

So a gauge transformation u ∈ G(X) acts on A ∈ A(X) by pullback,

u∗A = u−1Au+ u−1du.

On a compact base manifold M and for k ∈ N0 and 1 ≤ p ≤ ∞ we denote the Sobolev
spaces of connections and gauge transformations by

Ak,p(M) := W k,p(M,T∗M ⊗ g),

Gk,p(M) := W k,p(M,G).

For kp > dimM the latter is well-defined via an embedding G ⊂ R`, and it forms a
group Gk,p(M) that acts smoothly onAk−1,p(M), see e.g. [W1, Appendix B]. For non-
compact base manifolds X we denote by Ak,ploc (X) and Gk,ploc (X) the spaces of sections
and maps for which the regularity holds on all compact subsets of X .

Next, we describe the class of 4-manifolds that we will be considering. Here and
throughout all Riemann surfaces are closed oriented 2-dimensional manifolds. More-
over, unless otherwise mentioned, all manifolds are allowed to have a smooth boundary.
Then the interior of a submanifold X ′ ⊂ X is to be understood with respect to the rel-
ative topology, i.e. intX ′ := X \ cl(X \X ′) might intersect ∂X .
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Definition 1.1. A 4-manifold with a boundary space-time splitting is a pair (X, τ)
with the following properties:

(i) X is an oriented 4-manifold (with boundary) which can be exhausted by a nested
sequence

X =
⋃
k∈N

Xk,

where all Xk are compact submanifolds and deformation retracts of X such that
Xk ⊂ intXk+1 for all k ∈ N.

(ii) τ = (τ1, . . . , τn) is an n-tuple of embeddings τi : Si × Σi → X with disjoint
images, where Σi is a Riemann surface and Si is either an open interval in R or is
equal to S1 = R/Z.

(iii) The boundary ∂X is the union

∂X =
n⋃
i=1

τi(Si ×Σi).

Definition 1.2. Let (X, τ) be a 4-manifold with a boundary space-time splitting. A Rie-
mannian metric g on X is called compatible with τ if for each i = 1, . . . n there exists
a neighbourhood Ui ⊂ Si× [0,∞) of Si×{0} and an extension of τi to an embedding
τ̄i : Ui ×Σi → X such that

τ̄∗i g = ds2 + dt2 + gs,t.

Here gs,t is a smooth family of metrics on Σi and we denote by s the coordinate on Si
and by t the coordinate on [0,∞).

We call a triple (X, τ, g) with these properties a Riemannian 4-manifold with a
boundary space-time splitting.

Remark 1.3. In definition 1.2 the extended embeddings τ̄i are uniquely determined by
the metric as follows. The restriction τ̄i|t=0 = τi to the boundary is prescribed, and the
paths t 7→ τ̄i(s, t, z) are normal geodesics.

Example 1.4. Let X := R×Y , where Y is a compact oriented 3-manifold with bound-
ary ∂Y = Σ, and let τ : R × Σ → X be the obvious inclusion. Given any two
metrics g− and g+ on Y there exists a metric g on X such that g = ds2 + g− for
s ≤ −1, g = ds2 + g+ for s ≥ 1, and (X, τ, g) satisfies the conditions of defini-
tion 1.2. However, the metric g cannot necessarily be chosen in the form ds2 + gs (one
has to homotope the embeddings and the metrics).

Now let (X, τ, g) be a Riemannian 4-manifold with a boundary space-time splitting
and consider a trivial G-bundle over X for a compact Lie group G.

Let p > 2, then for each i = 1, . . . , n the Banach space of connections A0,p(Σi)
carries the symplectic form ω(α, β) =

∫
Σi
〈α ∧ β 〉. Note that the Hodge ∗ operator

for any metric on Σi is an ω-compatible complex structure on A0,p(Σi), since ω(·, ∗·)
defines a positive definite inner product – the L2-metric. We call a Banach submanifold
L ⊂ A0,p(Σi) Lagrangian if for all A ∈ L its tangent space is isotropic, ω|TAL ≡ 0,
and coisotropic in the following sense: If α ∈ A0,p(Σi) satisfies ω(α,TAL) = {0},
then α ∈ TAL.
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We fix an n-tuple L = (L1, . . . ,Ln) of Lagrangian submanifolds Li ⊂ A0,p(Σi)
that are contained in the space of flat connections and that are gauge invariant,

Li ⊂ A0,p
flat(Σi) and u∗Li = Li ∀u ∈ G1,p(Σi). (1)

Here A0,p
flat(Σi) is the space of weakly flat Lp-connections on Σi as introduced in

[W2, Section 3]. For our purposes it is enough to know that this space coincides with
G1,p(Σi)∗Aflat(Σi), the set of connections that is W 1,p-gauge equivalent to a smooth
flat connection, A ∈ A(Σi) with FA = 0. Moreover, we recall from [W2, Lemma 4.2]
the fact that the above assumptions on theLi imply that they are totally real with respect
to the Hodge ∗ operator for any metric onΣi, i.e. for allA ∈ Li one has the topological
sum

A0,p(Σi) = TALi ⊕ ∗TALi.

We consider the following boundary value problem for connections A ∈ A1,p
loc(X){

∗FA + FA = 0,
τ∗i A|{s}×Σi ∈ Li ∀s ∈ Si, i = 1, . . . , n. (2)

Observe that the above boundary condition is meaningful since for every neighbour-
hood U ×Σ ⊂ S × [0,∞)×Σ of a boundary slice {s} × {0} × Σ one has the con-
tinuous embedding W 1,p(U × Σ) ⊂ W 1,p(U , Lp(Σ)) ↪→ C0(U , Lp(Σ)). The first
nontrivial observation is that every connection in Li is gauge equivalent to a smooth
connection on Σi and hence Li∩A(Σ) is dense in Li, as shown in [W2, Theorem 3.1].
Moreover, the Li are modelled on Lp-spaces, and everyW 1,p

loc -connection onX satisfy-
ing the boundary condition in (2) can be locally approximated by smooth connections
satisfying the same boundary condition, see [W2, Corollaries 4.4, 4.5].

Note that the present boundary value problem is a first order equation with first order
boundary conditions (flatness in each time-slice). Moreover, the boundary conditions
contain some crucial nonlocal Lagrangian information. We moreover emphasize that
while Li is a smooth Banach submanifold ofA0,p(Σi), the quotient Li/G1,p(Σi) is not
required to be a smooth submanifold of the moduli space MΣi := A0,p

flat(Σi)/G1,p(Σi),
which itself might be singular.

An example for these Lagrangians is Li = LY , the space of flat connections on
Σi that extend to flat connections on a handlebody Y with ∂Y = Σi. The nonlocal
Lagrangian information in this case is the extensibility condition, which is equivalent
to the vanishing of the holonomies along those paths inΣi that are contractible in Y . See
[W2, Lemma 4.6] for a detailed discussion of this example. To overcome the difficulties
arising from the singularities in the quotient, we work with the (smooth) quotient by the
based gauge group.

The following two theorems are the regularity and compactness results for solutions
of (2) generalizing the regularity theorem and the Uhlenbeck compactness for Yang-
Mills connections on 4-manifolds without boundary. They will be proven in section 2.

Theorem A (Regularity)
Let p > 2. Then every solution A ∈ A1,p

loc(X) of the boundary value problem (2)
is gauge equivalent to a smooth solution, that is there exists a gauge transformation
u ∈ G2,p

loc (X) such that u∗A ∈ A(X) is smooth.
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Theorem B (Compactness)
Let p > 2 and let gν be a sequence of metrics compatible with τ that uniformly con-
verges with all derivatives on every compact subset to a smooth metric. Suppose that
Aν ∈ A1,p

loc(X) is a sequence of solutions of (2) with respect to the metrics gν such
that for every compact subset K ⊂ X there is a uniform bound on the curvature
‖FAν‖Lp(K).

Then there exists a subsequence (again denoted Aν) and a sequence of gauge trans-
formations uν ∈ G2,p

loc (X) such that uν ∗Aν converges uniformly with all derivatives on
every compact subset to a smooth connection A ∈ A(X).

The difficulty of these results lies in the global nature of the boundary condition. This
makes it impossible to directly generalize the proof of the regularity and compactness
theorems for Yang-Mills connections, where one chooses suitable local gauges, obtains
the higher regularity and estimates from an elliptic boundary value problem, and then
patches the gauges together. With the present global boundary condition one cannot
obtain local regularity results.

Thus we generalize a more global approach by Salamon to manifolds with boundary:
Firstly, Uhlenbeck’s weak compactness theorem yields a weakly convergent subse-
quence. Its limit serves as reference connection with respect to which one can achieve
a global relative Coulomb gauge for a further subsequence. Then it remains to establish
elliptic estimates and regularity results for the given boundary value problem together
with the relative Coulomb gauge equations. The crucial point in this step is the regular-
ity for the Σ-component of the connections in a neighbourhood U × Σ of a boundary
component. Here one deals with a Cauchy-Riemann equation on U with values in the
Banach space A0,p(Σ) and with Lagrangian boundary conditions. The regularity re-
sults for this boundary value problem are provided by [W2] in the general framework
of a Cauchy-Riemann equation for functions with values in a complex Banach space
and with totally real boundary conditions.

The case 2 < p ≤ 4, when W 1,p-functions are not automatically continuous, poses
some special difficulties in this last step. Firstly, in order to obtain regularity results from
the Cauchy-Riemann equation, one has to straighten out the Lagrangian submanifold
by going to suitable coordinates. This requires a C0-convergence of the connections,
which in case p > 4 is given by a standard Sobolev embedding. In case p > 2 one
still obtains a special compact embedding W 1,p(U × Σ) ↪→ C0(U , Lp(Σ)) that suits
our purposes. Secondly, the straightening of the Lagrangian introduces a nonlinearity
in the Cauchy-Riemann equation that already poses some problems in case p > 4. In
case p ≤ 4 this forces us to also deal with the Cauchy-Riemann equation with values in
an L2-Hilbert space and then use some interpolation inequalities for Sobolev norms.

For the definition of the standard instanton Floer homology it suffices to prove a
compactness result like theorem B for p = ∞. In our case however the bubbling
analysis [W3] requires the compactness result for some p < 3. This is why we have
taken some care to deal with this case.

Our third main result is the Fredholm theory in section 3. It is a step towards proving
that the moduli space of finite energy solutions of (2) is a manifold whose components
have finite (but possibly different) dimensions. This also exemplifies our hope that the
further analytical details of Floer theory will work out along the usual lines once the
right analytic setup has been found in the proof of theorems A and B.
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In the context of Floer homology and in Floer-Donaldson theory it is important to
consider 4-manifolds with cylindrical ends. This requires an analysis of the asymptotic
behaviour which will be carried out elsewhere. Here we shall restrict the discussion
of the Fredholm theory to the compact case. The crucial point is the behaviour of the
linearized operator near the boundary; in the interior we are dealing with the usual anti-
self-duality equation. Hence it suffices to consider the following model case. Let Y be
a compact oriented 3-manifold with boundary ∂Y = Σ and suppose that (gs)s∈S1 is a
smooth family of metrics on Y such that

X = S1 × Y, τ : S1 ×Σ → X, g = ds2 + gs

satisfy the assumptions of definition 1.2. Here the space-time splitting τ of the bound-
ary is the obvious inclusion τ : S1 × Σ ↪→ ∂X = S1 × Σ, where Σ =

⋃n
i=1Σi

might be a disjoint union of an n-tuple of connected Riemann surfaces Σi. An n-
tuple of Lagrangian submanifolds Li ⊂ A0,p(Σi) as in (1) then constitutes a gauge
invariant Lagrangian submanifold L := L1 × . . .× Ln of the symplectic Banach space
A0,p(Σ) = A0,p(Σ1)× . . .×A0,p(Σn) such that L ⊂ A0,p

flat(Σ).
In order to linearize the boundary value problem (2) together with the local slice

condition, fix a smooth connectionA+Φds ∈ A(S1×Y ) such thatAs := A(s)|∂Y ∈ L
for all s ∈ S1. Here Φ ∈ C∞(S1×Y, g) andA ∈ C∞(S1×Y,T∗Y ⊗g) is an S1-family
of 1-forms on Y (not a 1-form on X as previously). Now let E1,p

A be the space of S1-
families of 1-forms α ∈W 1,p(S1 × Y,T∗Y ⊗ g) that satisfy the boundary conditions

∗α(s)|∂Y = 0 and α(s)|∂Y ∈ TAsL for all s ∈ S1. (3)

Then the linearized operator

D(A,Φ) : E1,p
A ×W

1,p(S1 × Y, g) −→ Lp(S1 × Y,T∗Y ⊗ g)× Lp(S1 × Y, g)

is given with ∇s = ∂s + [Φ, ·] by

D(A,Φ)(α,ϕ) =
(
∇sα− dAϕ+ ∗dAα , ∇sϕ− d∗Aα

)
.

The second component of this operator is −d∗A+Φds(α + ϕds), and the first bound-
ary condition is ∗(α + ϕds)|∂X = 0, corresponding to the choice of a local slice at
A+Φds. In the first component of D(A,Φ) we have used the global space-time splitting
of the metric on S1 × Y to identify the self-dual 2-forms ∗γs − γs ∧ ds with families
γs of 1-forms on Y . The vanishing of this component is equivalent to the linearization
d+
A+Φds(α + ϕds) = 0 of the anti-self-duality equation. Furthermore, the boundary

condition α(s)|∂Y ∈ TAsL is the linearization of the Lagrangian boundary condition
in the boundary value problem (2).

Theorem C (Fredholm properties)
Let Y be a compact oriented 3-manifold with boundary ∂Y = Σ and let S1 × Y
be equipped with a product metric ds2 + gs that is compatible with the embedding
τ : S1 × Σ → S1 × Y . Let A + Φds ∈ A(S1 × Y ) such that A(s)|∂Y ∈ L for all
s ∈ S1. Then the following holds for all p > 2.

(i) D(A,Φ) is Fredholm.
(ii) There is a constant C such that for all α ∈ E1,p

A and ϕ ∈W 1,p(S1 × Y, g)

‖(α,ϕ)‖W 1,p ≤ C
(
‖D(A,Φ)(α,ϕ)‖Lp + ‖(α,ϕ)‖Lp

)
.
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(iii) Let q ∈ (1, 2)∪(2,∞). There is a constant C such that the following holds. Suppose
that β ∈ Lq(S1×Y,T∗Y ⊗g) and ζ ∈ Lq(S1 × Y, g), and assume that there exists
a constant c such that for all α ∈ C∞(S1 × Y,T∗Y ⊗ g) satisfying (3) and for all
ϕ ∈ C∞(S1 × Y, g)∣∣∣∣∫

S1×Y
〈D(A,Φ)(α,ϕ) , (β, ζ) 〉

∣∣∣∣ ≤ c ‖(α,ϕ)‖Lq∗ .

Then β and ζ are of class W 1,q and ‖(β, ξ)‖W 1,q ≤ Cc.
Here and throughout we use the notation 1

p + 1
p∗ = 1 for the conjugate exponent p∗

of p. The above inner product 〈 ·, · 〉 is the pointwise inner product in (T∗Y ⊗ g)× g.
Theorem C (ii) actually extends to an L2-estimate for W 1,p-regular (α, φ), that can

be proven by more elementary methods than the general case, as will be shown in
section 3. In fact, this estimate was already stated in [S] as an indication for the well-
posedness of the boundary value problem (2).

The reason for our assumption q 6= 2 in theorem C (iii) is a technical problem in
dealing with the singularities of L/G1,p(Σ). We resolve them by dividing only by the
based gauge group. This leads to coordinates of Lp(Σ,T∗Σ ⊗ g) in a Banach space,
part of which is a based Sobolev space W 1,p

z (Σ, g) of functions vanishing at a fixed
point z ∈ Σ. So these coordinates that straighten out TL along A|S1×∂Y are well-
defined only for p > 2. We prove theorem C (iii) by using such coordinates either for β
or for the test 1-forms α, so we assume that either q > 2 or q∗ > 2. This is completely
sufficient for our purposes – proving the Fredholm property in theorem C (i) for p > 2.

The Fredholm property of a generalized operator D(A,Φ) for p = 2 follows from
more general Hilbert space techniques, that will be carried out elsewhere.

1.2. Outlook. We give a brief sketch of Salamon’s program for the proof of the Atiyah-
Floer conjecture (for more details see [S]) in order to point out the significance of the
present results for the whole program.

The first step of the program is to define the instanton Floer homology HFinst
∗ (Y,L)

of a 3-manifold Y with boundary ∂Y = Σ and a (singular) Lagrangian submanifold
L = L/G1,p(Σ) ⊂ MΣ in the moduli space of flat connections. The Floer com-
plex will be generated by the gauge equivalence classes of irreducible flat connections
A ∈ A(Y ) with Lagrangian boundary conditions A|Σ ∈ L. 1 For any two such connec-
tions A+, A− one then has to study the moduli space of Floer connecting orbits,

M(A−, A+) =
{
Ã ∈ A(R× Y )

∣∣ Ã satisfies (2), lim
s→±∞

Ã = A±
}
/G(R× Y ).

Theorem A shows that the boundary value problem (2) is well-posed. In particular, the
spaces of smooth connections and gauge transformations in the definition of the above
moduli space can be replaced by the Sobolev completions A1,p

loc and G2,p
loc . The next

step in the construction of the Floer homology groups is the analysis of the asymptotic
behaviour of the finite energy solutions of (2) on R×Y , which will be carried out else-
where. Combining this with theorem C one obtains an appropriate Fredholm theory and

1 A connection A ∈ Aflat(Y ) is called irreducible if its isotropy subgroup of G(Y ) (the group of gauge
transformations that leave A fixed) is discrete, i.e. dA|Ω0 is injective. There should be no reducible flat
connections with Lagrangian boundary conditions other than the gauge orbit of the trivial connection. This
will be guaranteed by certain conditions on Y and L, for example this is the case when L = LY ′ for a
handlebody Y ′ with ∂Y ′ = Σ̄ such that Y ∪Σ Y ′ is a homology-3-sphere.
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proves that for a suitably generic perturbation the spacesM(A−, A+) are smooth mani-
folds. In the monotone case the connections in the k-dimensional part Mk(A−, A+)
have a fixed energy

∫
|FÃ|2.

Theorem B is a major step towards a compactification of the spacesMk(A−, A+).
It proves their compactness under the assumption of an Lp-bound on the curvature
for p > 2, whereas a priori the L2-norm is bounded due to the fixed energy. So the
key remaining analytic task is an analysis of the possible bubbling phenomena. This
is carried out in [W3] and draws upon the techniques developed in this paper. When
this is understood, the construction of the Floer homology groups should be routine. In
particular, for the metric independence note that one can interpolate between different
metrics on Y as in example 1.4, and theorem B allows for the variation of metrics onX .
So this paper sets up the basic analytic framework for the Floer theory of 3-manifolds
with boundary.

Moreover, the consideration of general 4-manifoldsX (rather than justX = R×Y )
in theorems A and B will allow for the definition of a product structure on this new
Floer homology.

The further steps in the program for the proof of the Atiyah-Floer conjecture are
to consider a Heegaard splitting Y = Y0 ∪Σ Y1 of a homology 3-sphere, and identify
HFinst
∗ ([0, 1] × Σ,LY0 × LY1) with HFinst

∗ (Y ) and HFsymp
∗ (MΣ , LY0 , LY1) respec-

tively. (These isomorphisms should also intertwine the ring structures on all three Floer
homologies.) In both cases, the Floer complexes can be identified by elementary argu-
ments, so the main task is to identify the connecting orbits.

In the case of the two instanton Floer homologies, the idea is to choose an embedding
(0, 1) × Σ ↪→ Y starting from a tubular neighbourhood of Σ ⊂ Y at t = 1

2 and
shrinking {t}×Σ to the 1-skeleton of Yt for t = 0, 1. Then the anti-self-dual instantons
on R×Y pull back to anti-self-dual instantons on R×[0, 1]×Σ with a degenerate metric
for t = 0 and t = 1. On the other hand, one can consider anti-self-dual instantons on
R× [ε, 1− ε]×Σ with boundary values in LY0 and LY1 . As ε→ 0, one should be able
to pass from this genuine boundary value problem to solutions on the closed manifold
Y . This is a limit process for the boundary value problem studied in this paper.

The identification of the instanton and symplectic Floer homologies requires an
adaptation of the adiabatic limit argument in [DS] to boundary value problems for
anti-self-dual instantons and pseudoholomorphic curves respectively. Here one again
deals with the boundary value problem (2) studied in this paper. As the metric on Σ
is scaled to zero, the solutions, i.e. anti-self-dual instantons on R × [0, 1] × Σ with
Lagrangian boundary conditions in LY0 and LY1 should be in one-to-one correspon-
dence with connections on R× [0, 1]×Σ that descend to pseudoholomorphic strips in
MΣ with boundary values in LY0 and LY1 . The basic elliptic properties of the boundary
value problem (2) that are established in this paper will also play an important role in
this adiabatic limit analysis.

2. Regularity and compactness

The aim of this section is to prove the regularity theorem A and the compactness theo-
rem B. Both theorems are dealing with a noncompact base manifoldX that is exhausted
by compact submanifolds Xk. We shall use an extension argument by Donaldson and
Kronheimer [DK, Lemma 4.4.5] to reduce the problem to compact base manifolds. For
the following special version of this argument a detailed proof can be found in [W1,
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Propositions 7.6,9.8]. At this point, the assumption that the exhausting compact sub-
manifolds Xk are deformation retracts of X comes in crucially. It ensures that every
gauge transformation on Xk can be extended to X , which is a central point in the argu-
ment due to Donaldson and Kronheimer.

Proposition 2.1. Let the 4-manifold M̃ =
⋃
k∈N Mk be exhausted by compact sub-

manifolds Mk ⊂ intMk+1 that are deformation retracts of M̃ , and let p > 2.

(i) Let A ∈ A1,p
loc(M̃) and suppose that for each k ∈ N there exists a gauge trans-

formation uk ∈ G2,p(Mk) such that u∗kA|Mk
is smooth. Then there exists a gauge

transformation u ∈ G2,p
loc (M̃) such that u∗A is smooth.

(ii) Let a sequence of connections (Aν)ν∈N ⊂ A1,p
loc(M̃) be given and suppose that the

following holds:
For every k ∈ N and every subsequence of (Aν)ν∈N there exist a further subse-
quence (νk,i)i∈N and gauge transformations uk,i ∈ G2,p(Mk) such that

sup
i∈N

∥∥uk,i ∗Aνk,i∥∥
W `,p(Mk)

<∞ ∀` ∈ N.

Then there exists a subsequence (νi)i∈N and a sequence of gauge transformations
ui ∈ G2,p

loc (M̃) such that

sup
i∈N

∥∥ui ∗Aνi∥∥
W `,p(Mk)

<∞ ∀k ∈ N, ` ∈ N.

So in order to prove theorem A it suffices to find smoothing gauge transformations
on the compact submanifolds Xk in view of proposition 2.1 (i). For that purpose we
shall use the so-called local slice theorem. The following version is proven e.g. in [W1,
Theorem 8.1]. Note that we are dealing with trivial bundles, so we will be using the
product connection as reference connection in the definition of the Sobolev norms of
connections.

Proposition 2.2. (Local Slice Theorem)
Let M be a compact 4-manifold, let p > 2, and let q > 4 be such that 1

q >
1
p −

1
4 (or

q =∞ in case p > 4). Fix Â ∈ A1,p(M) and let a constant c0 > 0 be given. Then there
exist constants ε > 0 and CCG such that the following holds. For every A ∈ A1,p(M)
with

‖A− Â‖q ≤ ε and ‖A− Â‖W 1,p ≤ c0
there exists a gauge transformation u ∈ G2,p(M) such that{

d∗
Â

(u∗A− Â) = 0,

∗(u∗A− Â)|∂M = 0,
and

‖u∗A− Â‖q ≤ CCG‖A− Â‖q,
‖u∗A− Â‖W 1,p ≤ CCG‖A− Â‖W 1,p .

Remark 2.3.
(i) If the boundary value problem in proposition 2.2 is satisfied one says that u∗A is

in Coulomb gauge relative to Â. This is equivalent to v∗Â being in Coulomb gauge
relative to A for v = u−1, i.e. the boundary value problem can be replaced by{

d∗A(v∗Â−A) = 0,

∗(v∗Â−A)|∂M = 0.
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(ii) The assumptions in proposition 2.2 on p and q guarantee that one has a compact
Sobolev embedding

W 1,p(M) ↪→ Lq(M).

(iii) One can find uniform constants for varying metrics in the following sense. Fix a
metric g on M . Then there exist constants ε, δ > 0, and CCG such that the assertion
of proposition 2.2 holds for all metrics g′ with ‖g − g′‖C1 ≤ δ.

In the following we outline the proof of theorem A. Given a solution A ∈ A1,p
loc(X)

of (2) one proves the assumption of proposition 2.1 (i) for each of the exhausting sub-
manifold Xk as follows. One finds a sufficiently large compact submanifold M ⊂ X
with Xk ⊂M . Then one chooses a smooth connection A0 ∈ A(M) sufficiently W 1,p-
close to A and applies the local slice theorem with the reference connection Â = A
to find a gauge transformation that puts A0 into relative Coulomb gauge with respect
to A. This is equivalent to finding a gauge transformation that puts A into relative
Coulomb gauge with respect toA0. We denote this gauge transformed connection again
by A ∈ A1,p(M). It satisfies the following boundary value problem:

d∗A0
(A−A0) = 0,

∗FA + FA = 0,
∗(A−A0)|∂M = 0,
τ∗i A|{s}×Σi ∈ Li ∀s ∈ Si, i = 1, . . . , n.

(4)

More precisely, the Lagrangian boundary condition only holds for those s ∈ Si and
i ∈ {1, . . . n} for which τi({s}×Σi) is entirely contained in ∂M . If M is chosen large
enough (in particular, it has to contain the full boundary slice τi({s}×Σi) whenever this
intersects Xk at all), then the regularity theorem 2.6 below will assert the smoothness
of A on Xk.

The proof of theorem B goes along similar lines. We will use proposition 2.1 (ii) to
reduce the problem to compact base manifolds. On these, we shall use the following
weak Uhlenbeck compactness theorem (see [U1], [W1, Theorem 7.1]) to find a subse-
quence of gauge equivalent connections that converges W 1,p-weakly.

Proposition 2.4. (Weak Uhlenbeck Compactness)
Let M be a compact 4-manifold and let p > 2. Suppose that the sequence of connec-
tions Aν ∈ A1,p(M) is such that ‖FAν‖p is uniformly bounded. Then there exists a
subsequence (again denoted (Aν)ν∈N) and a sequence uν ∈ G2,p(M) of gauge trans-
formations such that uν ∗Aν weakly converges in A1,p(M).

The limit A0 of the convergent subsequence then serves as reference connection Â
in the local slice theorem, proposition 2.2, and this way one obtains a W 1,p-bounded
sequence of connections Ãν that solve the boundary value problem (4). This makes
crucial use of the compact Sobolev embedding W 1,p ↪→ Lq on compact 4-manifolds
(with q from the local slice theorem). The estimates in the subsequent theorem 2.6 then
provide the higher W k,p-bounds on the connections that will imply the compactness.
One difficulty in the proof of this regularity theorem is that due to the global nature of
the boundary conditions one has to consider the Σ-components of the connections near
the boundary as maps into the Banach space A0,p(Σ) that solve a Cauchy-Riemann
equation with Lagrangian boundary conditions. In order to prove a regularity result for
such maps one has to straighten out the Lagrangian submanifold by using coordinates
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in A0,p(Σ). (This is done in [W2].) Thus on domains U ×Σ at the boundary a crucial
assumption is that the Σ-components of the connections all lie in one such coordinate
chart, that is one needs the connections to converge strongly in the L∞(U , Lp(Σ))-
norm. In the case p > 4 this is ensured by the compact embedding W 1,p ↪→ L∞ on
U ×Σ. To treat the case 2 < p ≤ 4 we shall make use of the following special Sobolev
embedding.

Lemma 2.5. Let M,N be compact manifolds and let p > max(dimM,dimN). Then
the following embedding is compact,

W 1,p(M ×N) ↪→ L∞(M,Lp(N)).

Proof of lemma 2.5:
Since M is compact it suffices to prove the embedding in (finitely many) coordinate
charts. These can be chosen as either balls B2 ⊂ Rm in the interior or half balls
D2 = B2 ∩Hm in the half space Hm = {x ∈ Rm

∣∣ x1 ≥ 0} at the boundary of M .
We can choose both of radius 2 but cover M by balls and half balls of radius 1. So it
suffices to consider a bounded set K ⊂W 1,p(B2 ×N) and prove that it restricts to a
precompact set in L∞(B1, L

p(N)), and similarly with the half balls. Here we use the
Euclidean metric on Rm, which is equivalent to the metric induced from M .

For a bounded subset K ⊂W 1,p(D2 ×N) of functions over the half ball we define
the subset K′ ⊂ W 1,p(B2 × N) by extending every function u ∈ K to B2 \ Hm via
u(x1, x2, . . . , xm) := u(−x1, x2, . . . , xm) for x1 < 0. The thus extended function is
still W 1,p-regular with twice the norm of u. So K′ also is a bounded subset, and if this
restricts to a precompact set in L∞(B1, L

p(N)), then also K ⊂ L∞(D1, L
p(N)) is

precompact. Hence it suffices to consider the interior case of the full ball.
The claimed embedding is continuous by the standard Sobolev estimates – check

for example in the proof of [Ad, Theorem 5.4,] that the estimates generalize directly to
functions with values in a Banach space. In fact, one obtains an embedding

W 1,p(B2 ×N) ⊂W 1,p(B2, L
p(N)) ↪→ C0,λ(B2, L

p(N))

into some Hölder space with λ = 1 − m
p > 0. One can also use this Sobolev estimate

for W 1,p(N) with λ′ = 1 − n
p > 0 combined with the inclusion Lp ↪→ L1 on B2 to

obtain a continuous embedding

W 1,p(B2 ×N) ⊂ Lp(B2,W
1,p(N)) ↪→ Lp(B2, C0,λ′(N)) ⊂ L1(B2, C0,λ′(N)).

Now consider a bounded subset K ⊂W 1,p(B2×N). The first embedding ensures that
the functions K 3 u : B2 → Lp(N) are equicontinuous. For some constant C

‖u(x)− u(y)‖Lp(N) ≤ C|x− y|λ ∀u ∈ K, x, y ∈ B2. (5)

The second embedding asserts that for some constant C ′∫
B2

‖u‖C0,λ′ (N) ≤ C
′ ∀u ∈ K. (6)

In order to prove that K ⊂ L∞(B1, L
p(N)) is precompact we now fix any ε > 0 and

show that K can be covered by finitely many ε-balls.
Pick J ∈ C∞(Rm, [0,∞)) with supp J ⊂ B1 and

∫
Rm J = 1. Then the functions

Jδ(x) := δ−mJ(x/δ) are mollifiers for δ > 0 with supp Jδ ⊂ Bδ and
∫

Rm Jδ = 1.
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Let δ ≤ 1, then Jδ ∗ u|B1 ∈ C∞(B1, L
p(N)) is well-defined. Moreover, choose δ > 0

sufficiently small such that for all u ∈ K∥∥Jδ ∗ u− u∥∥L∞(B1,Lp(N))
= sup
x∈B1

∥∥∥∫
Bδ

Jδ(y) (u(x− y)− u(x)) dmy
∥∥∥
Lp(N)

≤ sup
x∈B1

∫
Bδ

Jδ(y)C|y|λ dmy ≤ Cδλ ≤ 1
4ε.

Now it suffices to prove the precompactness of Kδ := {Jδ ∗ u
∣∣ u ∈ K}. If this holds

then Kδ can be covered by 1
2ε-balls around Jδ ∗ ui with ui ∈ K for i = 1, . . . , I 2 and

above estimate shows that K is covered by the ε-balls around the ui. Indeed, for each
u ∈ K one has ‖Jδ ∗ u− Jδ ∗ ui‖L∞(B1,Lp(N)) ≤ ε

2 for some i = 1, . . . , I and thus

‖u− ui‖ ≤ ‖u− Jδ ∗ u‖+ ‖Jδ ∗ u− Jδ ∗ ui‖+ ‖Jδ ∗ ui − ui‖ ≤ ε.

The precompactness of Kδ ⊂ L∞(B1, L
p(N)) will follow from the Arzéla-Ascoli

theorem (see e.g. [L, IX §4]). Firstly, the smoothened functions Jδ ∗u are still equicon-
tinuous on B1. For all u ∈ K and x, y ∈ B1 use (5) to obtain

‖(Jδ ∗ u)(x)− (Jδ ∗ u)(y)‖Lp(N) ≤
∫
Bδ

Jδ(z) ‖u(x− z)− u(y − z)‖Lp(N) dmz

≤
∫
Bδ

Jδ(z)C|x− y|λ dmz = C|x− y|λ.

Secondly, the L∞-norm of the smoothened functions is bounded by the L1-norm of the
original ones, so for fixed δ > 0 one obtains a uniform bound from (6) : For all u ∈ K
and x ∈ B1

‖(Jδ ∗ u)(x)‖C0,λ′ (N) ≤
∫
B2

Jδ(x− y) ‖u(y)‖C0,λ′ (N) dmy ≤ C ′‖Jδ‖∞.

Now the embedding C0,λ′(N) ↪→ Lp(N) is a standard compact Sobolev embedding,
so this shows that the subset {(Jδ ∗ u)(x)

∣∣ u ∈ K} ⊂ Lp(N) is precompact for all
x ∈ B1. Thus the Arzéla-Ascoli theorem asserts that Kδ ⊂ L∞(B1, L

p(N)) is com-
pact, and this finishes the proof of the lemma. 2

In the proof of theorem B, the weak Uhlenbeck compactness together with the local
slice theorem and this lemma will put us in the position to apply the following main
regularity theorem that also is the crucial point in the proof of theorem A.

Theorem 2.6. Let (X, τ, g0) be a Riemannian 4-manifold with a boundary space-time
splitting. For every compact subsetK ⊂ X there exists a compact submanifoldM ⊂ X
such that K ⊂M and the following holds for all p > 2.

(i) Suppose that A ∈ A1,p(M) solves (4). Then A|K ∈ A(K) is smooth.3

2 If a subset K ⊂ (X, d) of a metric space is precompact, then for fixed ε > 0 one firstly finds
v1, . . . , vI ∈ X such that for each x ∈ K one has d(x, vi) ≤ ε for some vi. For each vi choose one
such xi ∈ K, or simply drop vi if this does not exist. ThenK is covered by 2ε-balls around the xi: For each
x ∈ K one has d(x, xi) ≤ d(x, vi) + d(vi, xi) for some i = 1, . . . , I .

3 More precisely, there is an open neighbourhood of K ⊂ X on which A is smooth.
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(ii) Fix a smooth connection A0 ∈ A(M) such that τ∗i A0|{s}×Σi ∈ Li for all s ∈ Si
and i = 1, . . . , n. Moreover, fix V =

⋃n
i=1 τ̄0,i(Ui×Σi), a compact neighbourhood

of K ∩ ∂X . (Here τ̄0,i denotes the extension of τi given by the geodesics of g0.)
Then for every given constant C1 there exist constants δ > 0, δk > 0, and Ck for all
k ≥ 2 such that the following holds:
Fix k ≥ 2 and let g be a metric on M that is compatible with τ and satisfies
‖g − g0‖Ck+2(M) ≤ δk. Suppose that A ∈ A1,p(M) solves the boundary value
problem (4) with respect to the metric g and satisfies

‖A−A0‖W 1,p(M) ≤ C1,

‖τ̄∗0,i(A−A0)|Σi‖L∞(Ui,A0,p(Σi)) ≤ δ ∀i = 1, . . . , n.

Then A|K ∈ A(K) is smooth by (i) and

‖A−A0‖Wk,p(K) ≤ Ck.

We first give some preliminary results for the proof of theorem 2.6. The interior
regularity as well as the regularity of the Ui-components on a neighbourhood Ui × Σi
of a boundary component Si × Σi will be a consequence of the following regularity
result for Yang-Mills connections. The proof is similar to that of lemma A.2 and can be
found in full detail in [W1, Proposition 9.5]. HereM is a compact Riemannian manifold
with boundary ∂M and outer unit normal ν. One then deals with two different spaces
of test functions,

C∞δ (M, g) :=
{
φ ∈ C∞(M, g)

∣∣ φ|∂M = 0
}
,

C∞ν (M, g) :=
{
φ ∈ C∞(M, g)

∣∣ ∂φ
∂ν

∣∣
∂M

= 0
}
.

Proposition 2.7. Let (M, g) be a compact Riemannian 4-manifold. Fix a smooth refer-
ence connection A0 ∈ A(M). Let X ∈ Γ (TM) be a smooth vector field that is either
perpendicular to the boundary, i.e. X|∂M = h · ν for some h ∈ C∞(∂M), or is tan-
gential, i.e. X|∂M ∈ Γ (T∂M). In the first case let T = C∞δ (M, g), in the latter case
let T = C∞ν (M, g). Moreover, let N ⊂ ∂M be an open subset such that X vanishes
in a neighbourhood of ∂M \ N ⊂ M . Let 1 < p < ∞ and k ∈ N be such that either
kp > 4 or k = 1 and 2 < p < 4. In the first case let q := p, in the latter case let
q := 4p

8−p . Then there exists a constant C such that the following holds.
Let A = A0 + α ∈ Ak,p(M) be a connection. Suppose that it satisfies{

d∗A0
α = 0,

∗α|∂M = 0 on N ⊂ ∂M,
(7)

and that for all 1-forms β = φ · ιXg with φ ∈ T∫
M

〈FA , dAβ 〉 = 0. (8)

Then α(X) ∈W k+1,q(M, g) and

‖α(X)‖Wk+1,q ≤ C
(
1 + ‖α‖Wk,p + ‖α‖3Wk,p

)
.

Moreover, the constant C can be chosen such that it depends continuously on the metric
g and the vector field X with respect to the Ck+1-topology.
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Remark 2.8. In the case k = 1 and 2 < p < 4 the iteration of proposition 2.7 also allows
to obtain W 2,p-regularity and -estimates from initial W 1,p-regularity and -estimates.

To see this remark, first note that the Sobolev embeddingW 2,q ↪→W 1,p′ holds with
p′ = 4q

4−q since q < 4. Now as long as p′ < 4 one can iterate the proposition and
Sobolev embedding to obtain regularity and estimates in W 1,pi with p0 = p and

pi+1 =
4qi

4− qi
=

2pi
4− pi

≥ θpi > pi.

Since θ := 2
4−p > 1 this sequence terminates after finitely many steps at some pN ≥ 4.

Now in case pN > 4 the proposition even yields W 2,pN -regularity and -estimates. In
case pN = 4 one only uses W 1,pN for some smaller p′N > 8

3 in order to conclude
W 2,p′N+1 -regularity and -estimates for p′N+1 > 4.

Similarly, in case k = 1 and p = 4 one only needs two steps to reach W 2,p′ for
some p′ > 4.

The above proposition and remark can be used on all components of the connections
in theorem 2.6 except for the Σ-components in small neighbourhoods U ×Σ of bound-
ary components S ×Σ. For the regularity of their higher derivatives in Σ-direction we
shall use the following lemma. The crucial regularity of the derivatives in the direc-
tion of U of the Σ-components will then follow from the general regularity theory for
Cauchy-Riemann equations in [W2].

Lemma 2.9. Let k ∈ N0 and 1 < p < ∞. Let Ω be a compact manifold, let Σ be a
Riemann surface, and equipΩ×Σ with a product metric gΩ⊕g, where g = (gx)x∈Ω is
a smooth family of metrics on Σ. Then there exists a constant C such that the following
holds:

Suppose that α ∈ W k,p(Ω × Σ,T∗Σ) such that both dΣα and d∗Σα are of class
W k,p on Ω × Σ. Then ∇Σα also is of class W k,p and one has the following estimate
on Ω ×Σ

‖∇Σα‖Wk,p ≤ C
(
‖dΣα‖Wk,p + ‖d∗Σα‖Wk,p + ‖α‖Wk,p

)
.

Here∇Σ denotes the family of Levi-Civita connections on Σ that is given by the family
of metrics g. Moreover, for every fixed family of metrics g one finds a Ck-neighbourhood
of metrics for which this estimate holds with a uniform constant C.

Proof of lemma 2.9:
We first prove this for k = 0, i.e. suppose that α ∈ Lp(Ω×Σ,T∗Σ) and that dΣα,d∗Σα
(defined as weak derivatives) are also of class Lp. We introduce the following functions

f := d∗Σα ∈ Lp(Ω ×Σ), g := − ∗Σ dΣα ∈ Lp(Ω ×Σ),

and choose sequences fν , gν ∈ C∞(Ω×Σ), and αν ∈ C∞(Ω×Σ,T∗Σ) that converge
to f, g, and α respectively in the Lp-norm. Note that

∫
Σ
f =

∫
Σ
g = 0 in Lp(Ω), so the

fν and gν can be chosen such that their mean value over Σ also vanishes at every
x ∈ Ω. Then fix z ∈ Σ and find ξν , ζν ∈ C∞(Ω ×Σ) such that{

∆Σξ
ν = fν ,

ξν(x, z) = 0 ∀x ∈ Ω,

{
∆Σζ

ν = gν ,

ζν(x, z) = 0 ∀x ∈ Ω.
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These solutions are uniquely determined since ∆Σ : W j+2,p
z (Σ) → W j,p

m (Σ) is a
bounded isomorphism for every j ∈ N0 depending smoothly on the metric, i.e. on
x ∈ Ω. Here W j,p

m (Σ) denotes the space of W j,p-functions with mean value zero and
W j+2,p
z (Σ) consists of those functions that vanish at z ∈ Σ.
Furthermore, let πx : Ω1(Σ)→ h1(Σ, gx) be the projection of the smooth 1-forms

to the harmonic part h1(Σ) = ker∆Σ = ker dΣ ∩ ker d∗Σ with respect to the metric gx
on Σ. Then π is a family of bounded operators from Lp(Σ,T∗Σ) to W j,p(Σ,T∗Σ)
for any j ∈ N0, and it depends smoothly on x ∈ Ω. So the harmonic part of α̃ν is also
smooth, π ◦ α̃ν ∈ C∞(Ω ×Σ,T∗Σ). Now consider

αν := dΣξν + ∗ΣdΣζν + π ◦ α̃ν ∈ C∞(Ω ×Σ,T∗Σ).

We will show that the sequence αν of 1-forms converges to α in the Lp-norm and that
moreover∇Σαν is an Lp-Cauchy sequence. For that purpose we will use the following
estimate. For all 1-forms β ∈W 1,p(Σ,T∗Σ) abbreviating dΣ = d

‖β‖W 1,p(Σ) ≤ C
(
‖d∗β‖Lp(Σ) + ‖dβ‖Lp(Σ) + ‖π(β)‖W 1,p(Σ)

)
≤ C

(
‖d∗β‖Lp(Σ) + ‖dβ‖Lp(Σ) + ‖β‖Lp(Σ)

)
. (9)

Here and in the followingC denotes any finite constant that is uniform for all metrics gx
on Σ in a family of metrics that lies in a sufficiently small Ck-neighbourhood of a fixed
family of metrics. To prove (9) we use the Hodge decomposition β = dξ + ∗dζ + π(β).
(See e.g. [Wa, Theorem 6.8] and recall that one can identify 2-forms on Σ with func-
tions via the Hodge ∗ operator.) Here one chooses ξ, ζ ∈W 2,p

z (Σ) such that they solve
∆ξ = d∗β and ∆ζ = ∗dβ respectively and concludes from proposition A.1 for some
uniform constant C

‖dξ‖W 1,p(Σ) ≤ ‖ξ‖W 2,p(Σ) ≤ C‖d∗β‖Lp(Σ),

‖∗dζ‖W 1,p(Σ) ≤ ‖ζ‖W 2,p(Σ) ≤ C‖dβ‖Lp(Σ).

The second step in (9) moreover uses the fact that the projection to the harmonic part is
bounded as map π : Lp(Σ,T∗Σ)→W 1,p(Σ,T∗Σ).

Now consider the 1-forms α − αν ∈ Lp(Ω × Σ,T∗Σ). For almost all x ∈ Ω we
have α(x, ·)−αν(x, ·) ∈ Lp(Σ,T∗Σ) as well as ∗dΣ(α(x, ·)−αν(x, ·)) ∈ Lp(Σ) and
d∗Σ(α(x, ·)−αν(x, ·)) ∈ Lp(Σ). Then for these x ∈ Ω one concludes from the Hodge
decomposition that in fact α(x, ·) − αν(x, ·) ∈ W 1,p(Σ,T∗Σ). So we can apply (9)
and integrate over x ∈ Ω to obtain for all ν ∈ N

‖α− αν‖pLp(Ω×Σ)

≤
∫
Ω

‖α(x, ·)− αν(x, ·)‖pLp(Σ,gx)

≤ C
∫
Ω

(
‖d∗Σ(α− αν)‖pLp(Σ) + ‖dΣ(α− αν)‖pLp(Σ) + ‖π(α− α̃ν)‖pW 1,p(Σ)

)
≤ C

(
‖f − fν‖pLp(Ω×Σ) + ‖g − gν‖pLp(Ω×Σ) + ‖α− α̃ν‖pLp(Ω×Σ)

)
.

In the last step we again used the continuity of π. This proves the convergence αν → α
in the Lp-norm, and hence∇Σαν → ∇Σα in the distributional sense. Next, we use (9)
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to estimate for all ν ∈ N

‖∇Σαν‖pLp(Ω×Σ) =
∫
Ω

‖∇Σαν(x, ·)‖pLp(Σ,gx)

≤ C
∫
Ω

(
‖d∗Σαν‖Lp(Σ) + ‖dΣαν‖Lp(Σ) + ‖αν‖Lp(Σ)

)p
≤ C

(
‖d∗Σαν‖

p
Lp(Ω×Σ) + ‖dΣαν‖pLp(Ω×Σ) + ‖αν‖pLp(Ω×Σ)

)
.

Here one deals with Lp-convergent sequences d∗Σα
ν = ∆Σξ

ν = fν → f = d∗Σα,
−∗ dΣαν = ∆Σζ

ν = gν → g = −∗ dΣα, and αν → α. So (∇Σαν)ν∈N is uniformly
bounded in Lp(Ω ×Σ) and hence contains a weakly Lp-convergent subsequence. The
limit is ∇Σα since this already is the limit in the distributional sense. Thus we have
proven the Lp-regularity of∇Σα on Ω×Σ, and moreover above estimate is preserved
under the limit, which proves the lemma in the case k = 0,

‖∇Σα‖Lp(Ω×Σ)

≤ lim inf
ν→∞

‖∇Σαν‖Lp(Ω×Σ)

≤ lim inf
ν→∞

C
(
‖d∗Σαν‖Lp(Ω×Σ) + ‖dΣαν‖Lp(Ω×Σ) + ‖αν‖Lp(Ω×Σ)

)
= C

(
‖d∗Σα‖Lp(Ω×Σ) + ‖dΣα‖Lp(Ω×Σ) + ‖α‖Lp(Ω×Σ)

)
.

In the case k ≥ 1 one can now use the previous result to prove the lemma. Let
α ∈W k,p(Ω ×Σ,T∗Σ) and suppose that dΣα,d∗Σα are of class W k,p. We denote
by∇ the covariant derivative on Ω×Σ. Then we have to show that∇k∇Σα is of class
Lp. So let X1, . . . , Xk be smooth vector fields on Ω ×Σ and introduce

α̃ := ∇X1 . . .∇Xkα ∈ Lp(Ω ×Σ,T∗Σ).

Both dΣα̃ and d∗Σα̃ are of class Lp since

dΣα̃ = [dΣ ,∇X1 . . .∇Xk ]α+∇X1 . . .∇XkdΣα,
d∗Σα̃ = [d∗Σ ,∇X1 . . .∇Xk ]α+∇X1 . . .∇Xkd∗Σα.

So the result for k = 0 implies that ∇Σα̃ is of class Lp, hence ∇k∇Σα also is of class
Lp since for all smooth vector fields

∇X1 . . .∇Xk∇Σα = [∇Σ ,∇X1 . . .∇Xk ]α+∇Σα̃.

With the same argument – using coordinate vector fields Xi and cutting them off – one
obtains the estimate

‖∇k∇Σα‖Lp(Ω×Σ)

≤ C
(
‖∇kd∗Σα‖Lp(Ω×Σ) + ‖∇kdΣα‖Lp(Ω×Σ) + ‖α‖Wk,p(Ω×Σ)

)
.

Now this proves the lemma,

‖∇Σα‖Wk,p(Ω×Σ) ≤ ‖∇Σα‖Wk−1,p(Ω×Σ) + ‖∇k∇Σα‖Lp(Ω×Σ)

≤ C
(
‖d∗Σα‖Wk,p(Ω×Σ) + ‖dΣα‖Wk,p(Ω×Σ) + ‖α‖Wk,p(Ω×Σ)

)
.

2
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Proof of theorem 2.6 :
Recall that a neighbourhood of the boundary ∂X ⊂ X can be covered by embeddings
τ̄0,i : Ui ×Σi ↪→ X such that τ̄∗0,ig0 = ds2 + dt2 + g0;s,t. (In the case (i) we put
g0 := g.) Since K ⊂ X is compact one can cover it by a compact subset Kint ⊂ intX
and Kbdy :=

⋃n
i=1 τ̄0,i(I0,i× [0, δ0]×Σi) for some δ0 > 0 and I0,i ⊂ Si that are either

compact intervals in R or equal to S1. Moreover, one can ensure that Kbdy ⊂ intV
lies in the interior of the fixed neighbourhood of K ∩ ∂X . Since X is exhausted by the
compact submanifolds Xk one then finds M := Xk ⊂ X such that both Kbdy and Kint
are contained in the interior of M (and thus also K ⊂M ). Now let A ∈ A1,p(M) be a
solution of the boundary value problem (4) with respect to a metric g that is compatible
with τ . Then we will prove its regularity and the corresponding estimates in the interior
case on Kint and in the boundary case on Kbdy separately.

Interior case :
Firstly, sinceKint ⊂ intM andKint ⊂ intX = X \∂X we find a sequence of compact
submanifolds Mk ⊂ intX such that Kint ⊂ Mk+1 ⊂ intMk ⊂ M for all k ∈ N.
We will prove inductively A|Mk

∈ Ak,p(Mk) for all k ∈ N, in each step improving
the differentiability of A at the expense of restriction to a smaller submanifold. This
will imply that A|Kint ∈ A(Kint) is smooth. Moreover, we inductively find constants
Ck, δk > 0 such that the additional assumptions of (ii) in the theorem imply

‖A−A0‖Wk,p(Mk) ≤ Ck. (10)

Here we use the fixed smooth metric g0 to define the Sobolev norms – for a sufficiently
small Ck-neighbourhood of metrics, the Sobolev norms are equivalent with a uniform
constant independent of the metric. Moreover, recall that the reference connection A0

is smooth.
To start the induction we observe that this regularity and estimate are satisfied for

k = 1 by assumption. For the induction step assume this regularity and estimate to hold
for some k ∈ N. Then we will use proposition 2.7 on A|Mk

∈ Ak,p(Mk) to deduce the
regularity and estimate on Mk+1.

Every coordinate vector field on Mk+1 can be extended to a vector field X on Mk

that vanishes near the boundary ∂Mk. So it suffices to consider such vector fields, i.e.
use N = ∅ in the proposition. Then α := A − A0 satisfies the assumption (7). For the
weak equation (8) we calculate for all β = φ · ιXg with φ ∈ T = C∞δ (Mk, g)

−
∫
Mk

〈FA , dAβ 〉 =
∫
Mk

〈dA(φ · ιXg) ∧ FA 〉 =
∫
∂Mk

〈φ · ιXg ∧ FA 〉 = 0.

We have used Stokes’ theorem while approximating A by smooth connections Ã, for
which the Bianchi identity dÃFÃ = 0 holds. Now proposition 2.7 and remark 2.8
imply that A|Mk+1 ∈ Ak+1,p(Mk+1). In the case (ii) of the theorem the proposi-
tion moreover provides δk+1 > 0 and a uniform constant C for all metrics g with
‖g − g0‖Ck+1(Mk) ≤ δk+1 such that the following holds: If (10) holds for some con-
stant Ck, then

‖A−A0‖Wk+1,p(Mk+1) ≤ C
(

1 + ‖A−A0‖Wk,p(Mk) + ‖A−A0‖3Wk,p(Mk)

)
≤ C

(
1 + Ck + C3

k

)
=: Ck+1.
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Here we have used the fact that the Sobolev norm of a 1-form is equivalent to an ex-
pression in terms of the Sobolev norms of its components in the coordinate charts. In
case k = 1 and p ≤ 4, this uniform bound is not found directly but after finitely
many iterations of proposition 2.7 that give estimates on manifolds N1 = M1 and
M2 ⊂ Ni+1 ⊂ intNi. In each step one chooses a smaller δ2 > 0 and a bigger C2. This
iteration uses the same Sobolev embeddings as remark 2.8. This proves the induction
step on the interior part Kint.

Boundary case :
It remains to prove the regularity and estimates on the part Kbdy near the boundary.
So consider a single boundary component K ′ := τ̄0(I0 × [0, δ0] × Σ). We identify
I0 = S1 ∼= R/Z or shift the compact interval such that I0 = [−r0, r0] and hence
K ′ = τ̄0([−r0, r0]× [0, δ0]×Σ) for some r0 > 0. Since Kbdy (and thus also K ′) lies
in the interior of M as well as V , one then finds R0 > r0 and ∆0 > δ0 such that
τ̄0([−R0, R0] × [0, ∆0] × Σ) ⊂ M ∩ V . Here τ̄0 is the embedding that brings the
metric g0 into the standard form ds2 + dt2 + g0;s,t. A different metric g compatible
with τ defines a different embedding τ̄ such that τ̄∗g = ds2 + dt2 + gs,t. However,
if g is sufficiently C1-close to g0, then the geodesics are C0-close and hence τ̄ is C0-
close to τ̄0. (These embeddings are fixed for t = 0, and for t > 0 given by the normal
geodesics.) Thus for a sufficiently small choice of δ2 > 0 one finds R > r > 0 and
∆ > δ > 0 such that for all τ -compatible metrics g in the δ2-ball around g0

K ′ ⊂ τ̄([−r, r]× [0, δ]×Σ) and τ̄([−R,R]× [0, ∆]×Σ) ⊂M ∩ V.

(In the case (i) this holds with r0, δ0, R0, and ∆0 for the fixed metric g = g0.) We
will prove the regularity and estimates for τ̄∗A on [−r, r] × [0, δ] × Σ. This suffices
because for Ck+2-close metrics the embedding τ̄ will be Ck+1-close to the fixed τ̄0,
so that one obtains uniform constants in the estimates between the W k,p-norms of A
and τ̄∗A. Furthermore, the families gs,t of metrics on Σ will be Ck-close to g0;s,t for
(s, t) ∈ [−R,R]× [0, ∆] if δk is chosen sufficiently small. Now choose compact sub-
manifolds Ωk ⊂ H := {(s, t) ∈ R2

∣∣ t ≥ 0} such that for all k ∈ N

[−r, r]× [0, δ] ⊂ Ωk+1 ⊂ intΩk ⊂ [−R,R]× [0, ∆].

We will prove the theorem by establishing the regularity and estimates for τ̄∗A on the
Ωk×Σ in Sobolev spaces of increasing differentiability. We distinguish the cases p > 4
and 4 ≥ p > 2. In case p > 4 one uses the following induction.

I) Let p > 2 and suppose thatA ∈ A1,2p(M) solves (4). Then we will prove inductively
that τ̄∗A|Ωk×Σ ∈ Ak,p(Ωk×Σ) for all k ≥ 2. Moreover, we will find a constant δ > 0
and constants Ck, δk > 0 for all k ≥ 2 such that the following holds:

If in addition ‖g − g0‖Ck+2(M) ≤ δk and

‖A−A0‖W 1,2p(M) ≤ C1,

‖τ̄∗0 (A−A0)|Σ‖L∞(U,A0,p(Σ)) ≤ δ,

then for all k ≥ 2
‖τ̄∗(A−A0)‖Wk,p(Ωk×Σ) ≤ Ck.

This is sufficient to conclude the theorem in case p > 4 as follows. One uses I)
with p replaced by 1

2p to obtain regularity and estimates of A − A0 in A1,p(Ω1 × Σ),



20 Katrin Wehrheim

A2, p2 (Ω2 × Σ), and Ak,
p
2 (Ωk × Σ) for all k ≥ 3. Recall that the component K ′ of

Kbdy is contained in each τ̄(Ωk × Σ). In addition, one has the Sobolev embeddings
W k+1, p2 ↪→ W k,p ↪→ Ck−1 on the compact 4-manifolds Ωk+1 × Σ, c.f. [Ad, Theo-
rem 5.4]. So this proves the regularity and estimates on Kbdy.

In the case 4 ≥ p > 2 a preliminary iteration is required to achieve the regularity
and estimates that are assumed in I). In contrast to I) the iteration is in p instead of k.

II) Let 4 ≥ p > 2 and suppose that A ∈ A1,p(M) solves (4). Then we will prove
inductively that τ̄∗A|Ωj×Σ ∈ A1,pj (Ωj × Σ) for a sequence (pj) with p1 = p and
pj+1 = θ(pj) · pj , where θ : (2, 4] → (1, 17

16 ] is monotonely increasing and thus the
sequence terminates with pN > 4 for some N ∈ N.

Moreover, we will find constants δ > 0 and C1,j , δ1,j > 0 for j = 2, . . . , N such
that the following holds:

If for some j = 1, . . . , N with ‖g − g0‖C3(M) ≤ δ1,j we have

‖A−A0‖W 1,p(M) ≤ C1,

‖τ̄∗0 (A−A0)|Σ‖L∞(U,A0,p(Σ)) ≤ δ,

then
‖τ̄∗(A−A0)‖W 1,pj (Ωj×Σ) ≤ C1,j .

Assuming I) and II) we first prove the theorem for the case 4 ≥ p > 2. After finitely
many steps the iteration of II) gives regularity and estimates in A1,pN (ΩN × Σ) with
pN > 4 and under the assumption ‖g − g0‖C3(M) ≤ δ1,N on the metric. Now if nec-
essary decrease pN slightly such that 2p ≥ pN > 4, then one still has A1,pN -regularity
and estimates on all components of Kbdy as well as on Kint (from the previous argu-
ment on the interior). Thus the assumptions of I) are satisfied with p replaced by 1

2pN
and C1 replaced by a combination of C1,N and a constant from the interior iteration
(both of which only depend on C1). One just has to choose δ2 ≤ δ1,N and choose the
δ > 0 in I) smaller than the δ > 0 from II). Then the iteration in I) gives regularity and
estimates of A − A0 in Ak, 12pN (Ωk × Σ) for all k ≥ 2. This proves the theorem in
case 2 < p ≤ 4 due to the Sobolev embeddings W k+1, 12pN ↪→ W k,p ↪→ Ck−2. So it
remains to establish I) and II).

Proof of I):
As start of the induction we will use τ̄∗A|Ω1×Σ ∈ A1,q(Ω1 × Σ) and ‖τ̄∗(A −
A0)‖W 1,q(Ω1×Σ) ≤ C ′1, which holds by assumption with q = 2p after replacing C1

by a larger constant C ′1 to make up for the effect of τ̄∗. For the induction step assume
that W k,q-regularity and estimates hold for some k ∈ N with q = p or q = 2p depend-
ing on whether k ≥ 2 or k = 1. Then we consider the following decomposition of the
connection A and its curvature:

τ̄∗A = Φds+ Ψ dt+B,

τ̄∗FA = FB + (dBΦ− ∂sB) ∧ ds+ (dBΨ − ∂tB) ∧ dt (11)
+ (∂sΨ − ∂tΦ+ [Φ, Ψ ]) ds ∧ dt.

Here Φ, Ψ ∈ W k,q(Ωk × Σ, g), and B ∈ W k,q(Ωk × Σ,T∗Σ ⊗ g) is a 2-parameter
family of 1-forms on Σ. Choose a further compact submanifold Ω ⊂ intΩk such that
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Ωk+1 ⊂ intΩ. Now we shall use proposition 2.7 to deduce the higher regularity of
Φ and Ψ on Ω × Σ. For this purpose one has to extend the vector fields ∂s and ∂t
on Ω × Σ to different vector fields on Ωk × Σ, both denoted by X , and verify the
assumptions (7) and (8) of proposition 2.7. These extensions will be chosen such that
they vanish in a neighbourhood of (∂Ωk \ ∂H) × Σ. Then α := τ̄∗(A − A0) satisfies
(7) on M = τ̄(Ωk ×Σ) with N = τ̄((∂Ωk ∩ ∂H)×Σ).

Choose a cutoff function h ∈ C∞(Ωk, [0, 1]) that equals 1 on Ω and vanishes in
a neighbourhood of ∂Ωk \ ∂H. Then firstly, X := h∂t is a vector field as required
that is perpendicular to the boundary ∂Ωk × Σ. For this type of vector field we have
to check the assumption (8) for all β = φh · dt with φ ∈ C∞δ (Ωk × Σ, g). Note that
τ̄∗β = (φ · h) ◦ τ̄−1 · ι(τ̄∗∂t)g can be trivially extended to M and then vanishes when
restricted to ∂M . So we can use partial integration as in the interior case to obtain∫

Ωk×Σ
〈Fτ̄∗A , dτ̄∗Aβ 〉 =

∫
M

〈FA , dAτ̄∗β 〉 = −
∫
∂M

〈 τ̄∗β ∧ FA 〉 = 0.

Secondly, X := h∂s also vanishes in a neighbourhood of (∂Ωk \ ∂H) × Σ and is
tangential to the boundary ∂Ωk × Σ. So we have to verify (8) for all β = φh · ds
with φ ∈ T = C∞ν (Ωk × Σ, g). Again, τ̄∗β extends trivially to M . Then the partial
integration yields∫

Ωk×Σ
〈Fτ̄∗A , dτ̄∗Aβ 〉 = −

∫
τ̄−1(∂M)

〈β ∧ τ̄∗FA 〉

= −
∫

(Ωk∩∂H)×Σ
〈φh · ds ∧ FB 〉 = 0.

The last step uses the fact that B(s, 0) = τ∗A|{s}×Σ ∈ L ⊂ A0,p
flat(Σ), and hence

FB vanishes on ∂H × Σ. However, we have to approximate A by smooth connec-
tions in order that Stokes’ theorem holds and FB is well-defined. So this calculation
crucially uses the fact that a W 1,p-connection with boundary values in the Lagrangian
submanifold L can be W 1,p-approximated by smooth connections with boundary val-
ues in L ∩ A(Σ). This was proven in [W2, Corollary 4.5]. So we have verified the
assumptions of proposition 2.7 for both Φ = τ̄∗A(∂s) and Ψ = τ̄∗A(∂t) and thus can
deduce Φ, Ψ ∈W k+1,q(Ω ×Σ). Moreover, under the additional assumptions of (ii) in
the theorem we have the estimates

‖Φ− Φ0‖Wk+1,q(Ω×Σ) ≤ Cs
(
1 + Ck + C3

k

)
=: Csk+1,

‖Ψ − Ψ0‖Wk+1,q(Ω×Σ) ≤ Ct
(
1 + Ck + C3

k

)
=: Ctk+1. (12)

The constantsCs andCt are uniform for all metrics in some small Ck+1-neighbourhood
of g0;s,t, so by a possibly smaller choice of δk+1 > 0 they become independent of gs,t.
Note that in the above estimates we also have decomposed the reference connection in
the tubular neighbourhood coordinates, τ̄∗A0 = Φ0 ds+ Ψ0 dt+B0.

It remains to consider theΣ-componentB in the tubular neighbourhood. The bound-
ary value problem (4) becomes in the coordinates (11)

d∗B0
(B −B0) = ∇s(Φ− Φ0) +∇t(Ψ − Ψ0),

∗FB = ∂tΦ− ∂sΨ + [Ψ, Φ],
∂sB + ∗∂tB = dBΦ+ ∗dBΨ,

Ψ(s, 0)− Ψ0(s, 0) = 0 ∀(s, 0) ∈ ∂Ωk,
B(s, 0) ∈ L ∀(s, 0) ∈ ∂Ωk.

(13)
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Here dB is the exterior derivative on Σ that is associated with the connection B, simi-
larly d∗B0

is the coderivative associated with B0. Moreover, ∗ is the Hodge operator on
Σ with respect to the metric gs,t, and ∇sΦ := ∂sΦ + [Φ0, Φ], ∇tΦ := ∂tΦ + [Ψ0, Φ].
We rewrite the first two equations in (13) as a system of differential equations for
α := B −B0 on Σ. For each (s, t) ∈ Ωk

d∗Σα(s, t) = ξ(s, t), dΣα(s, t) = ∗ζ(s, t). (14)

Here we have abbreviated

ξ = ∗[B0 ∧ ∗(B −B0)] +∇s(Φ− Φ0) +∇t(Ψ − Ψ0),

ζ = − ∗ dΣB0 − ∗ 1
2 [B ∧B] + ∂tΦ− ∂sΨ + [Ψ, Φ].

These are both functions in W k,q(Ω ×Σ, g) due to the smoothness of A0 and the pre-
viously established regularity of Φ and Ψ . (This uses the fact that W k,q ·W k,q embeds
into W k,q due to W k,q ↪→ L∞.) So lemma 2.9 asserts that ∇Σ(B − B0) is of class
W k,q onΩ×Σ, and under the assumptions of (ii) in the theorem we obtain the estimate

‖∇Σ(B −B0)‖Wk,q(Ω×Σ)

≤ C
(
‖ξ‖Wk,q + ‖ζ‖Wk,q + ‖B −B0‖Wk,q

)
≤ C

(
1 + ‖B −B0‖Wk,q + ‖Φ− Φ0‖Wk+1,q + ‖Ψ − Ψ0‖Wk+1,q

+ ‖B −B0‖2Wk,q + ‖Φ− Φ0‖Wk,q‖Ψ − Ψ0‖Wk,q

)
≤ C

(
1 + Ck + Csk+1 + Ctk+1 + C2

k

)
=: CΣk+1. (15)

Here C denotes any constant that is uniform for all metrics in a Ck+1-neighbourhood
of the fixed g0;s,t, so this might again require a smaller choice of δk+1 > 0 in order that
the constant CΣk+1 becomes independent of the metric gs,t.

Now we have established the regularity and estimate for all derivatives ofB of order
k + 1 containing at least one derivative in Σ-direction. (Note that in the case k = 1
we even have Lq-regularity with q = 2p where only Lp-regularity was claimed. This
additional regularity will be essential for the following argument.) It remains to consider
the pure s- and t- derivatives of B and establish the Lp-regularity and -estimate for
∇k+1

H B on Ωk+1×Σ, where∇H is the standard covariant derivative on H with respect
to the metric ds2 + dt2. The reason for this regularity, as we shall show, is the fact
that B ∈ W k,q(Ω,A0,p(Σ)) satisfies a Cauchy-Riemann equation with Lagrangian
boundary conditions, {

∂sB + ∗∂tB = G,

B(s, 0) ∈ L ∀(s, 0) ∈ ∂Ω.
(16)

The inhomogeneous term is

G := dBΦ+ ∗dBΨ ∈ W k,q(Ω,A0,p(Σ)).

Here one uses the fact that W k,q(Ω × Σ,T∗Σ ⊗ g) ⊂ W k,q(Ω,A0,p(Σ)) since the
smooth 1-forms are dense in both spaces and the norm on the second space is weaker
than the W k,q-norm on Ω ×Σ, c.f. [W2, Lemma 2.2].

Now one has to apply the regularity result [W2, Theorem 1.2] for the Cauchy-
Riemann equation on the complex Banach spaceA0,p(Σ). As reference complex struc-
ture J0 we use the Hodge ∗ operator on Σ with respect to the fixed family of metrics
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g0;s,t on Σ (that varies smoothly with (s, t) ∈ Ω). The smooth family J of complex
structures in the equation is given by the Hodge operators with respect to the metrics
gs,t. The Lagrangian submanifold L ⊂ A0,p(Σ) is totally real with respect to any
Hodge operator, and it is modelled on a closed subspace of Lp(Σ,Rn) for some n ∈ N
(see [W2, Lemma 4.2, Corollary 4.4] ) . In the case (ii) of the theorem moreover a fam-
ily of connections B0= τ̄∗A0|Σ ∈ C∞(Ω,A(Σ)) is given such that B0(s, 0) ∈ L for
all (s, 0) ∈ ∂Ω and B satisfies

‖B −B0‖L∞(Ω,A0,p(Σ)) = ‖τ̄∗(A−A0)|Σ‖L∞(Ω,A0,p(Σ))

≤ C‖τ̄∗0 (A−A0)|Σ‖L∞(U,A0,p(Σ)) ≤ Cδ.

Here one uses the fact that τ̄(Ω × Σ) ⊂ τ̄0(U × Σ) lies in a component of the fixed
neighbourhood V of K ∩ ∂X . The assumption of closeness to A0 in A0,p(Σ) was
formulated for τ̄∗0 (A − A0)|Σ . However, for a metric g in a sufficiently small C2-
neighbourhood of the fixed metric g0 the extensions τ̄ and τ̄0 are C1-close and one
obtains the above estimate with a constant C independent of the metric. Moreover, by
induction hypothesis we have

‖B −B0‖Wk,q(Ω,A0,p(Σ)) ≤ C‖τ̄∗(A−A0)‖Wk,q(Ωk×Σ) ≤ CCk,

where the additional constant C comes from the continuous embedding Lq(Σ) →
Lp(Σ), and is nontrivial in case k = 1 due to q = 2p. So the functionB ∈W k,q(Ω,A0,p(Σ))
satisfies the assumptions of [W2, Theorem 1.2] if δ > 0 is chosen sufficiently small.
(Note that this choice is independent of k ∈ N.)

Now [W2, Theorem 1.2] givesB ∈W k+1,p(Ωk+1,A0,p(Σ)). By [W2, Lemma 2.2]
this also proves ∇k+1

H B ∈ Lp(Ωk+1,A0,p(Σ)) = Lp(Ωk+1 ×Σ,T∗Σ ⊗ g), and this
finishes the induction step τ̄∗A|Ωk+1×Σ ∈ Ak+1,p(Ωk+1 × Σ) for the regularity near
the boundary. The induction step for the estimate in case (ii) of the theorem now follows
from the estimate from [W2, Theorem 1.2],

‖∇k+1
H (B −B0)‖Lp(Ωk+1×Σ)

≤ ‖B −B0‖Wk+1,p(Ωk+1,A0,p(Σ))

≤ C
(
‖G‖Wk,q(Ω,A0,p(Σ)) + ‖B −B0‖Wk,q(Ω,A0,p(Σ))

)
≤ C

(
Ck + C2

k + Csk+1 + Ctk+1

)
=: CH

k+1. (17)

Here the constant from [W2, Theorem 1.2] is uniform for a sufficiently small Ck+1-
neighbourhood of complex structures. In this case, these are the families of Hodge
operators on Σ that depend on the metric gs,t. Thus for sufficiently small δk+1 > 0 that
constant (and also the further Sobolev constants that come into the estimate) becomes
independent of the metric. The final constant Ck+1 then results from all the separate
estimates, see the decomposition (11) and the estimates in (12), (15), and (17),

‖τ̄∗(A−A0)‖Wk+1,p(Ωk+1×Σ) ≤ Ck + Csk+1 + Ctk+1 + CΣk+1 + CH
k+1.

Proof of II):
Except for the higher differentiability of B in direction of H this iteration works by
the same decomposition and equations as in I). The start of the induction k = 1
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is given by assumption. For the induction step we assume that the claimed W 1,pk -
regularity and -estimates hold for some k ∈ N with pk ≤ 4. Then proposition 2.7 gives
Φ, Ψ ∈W 2,qk(Ω ×Σ) with corresponding estimates and

qk =


4pk

8−pk ; if pk < 4,

3 ; if pk = 4.

(In the case pk = 4 one applies the proposition only assuming W 1,p′k -regularity for
p′k = 24

7 < 4, then one obtains W 2,qk -regularity with qk = 3.) Now the right hand
sides in (14) lie in W 1,qk(Ω×Σ), so lemma 2.9 gives W 1,qk -regularity and -estimates
for ∇ΣB on Ω × Σ. Next, B ∈ W 1,pk(Ω,A0,p(Σ)) satisfies the Cauchy-Riemann
equation (16) with the inhomogeneous termG ∈W 1,qk(Ω×Σ,T∗(Ω×Σ)⊗g). Now
we shall use the Sobolev embedding W 1,qk(Ω ×Σ) ↪→ Lrk(Ω ×Σ) with

rk =
4qk

4− qk
=


2pk

4−pk ; if pk < 4,

12 ; if pk = 4.

Note that rk > pk ≥ p due to pk > 2, so that we have G ∈ Lrk(Ω,A0,p(Σ)).
We cannot apply [W2, Theorem 1.2] directly because that would require the initial
regularity B ∈ W 1,2p(Ω,A0,p(Σ)) for some p > 2. However, we still proceed as in
its proof and introduce the coordinates from [W2, Lemma 4.3] that straighten out the
Lagrangian submanifold,

Θs,t :Ws,t → A0,p(Σ).

HereWs,t ⊂ Y × Y is a neighbourhood of zero, Y is a closed subspace of Lp(Σ,Rm)
for some m ∈ N, Θ is in Ck+1-dependence on (s, t) in a neighbourhood U ⊂ Ω of
some (s0, 0) ∈ Ω ∩ ∂H and it maps diffeomorphically to a neighbourhood of B(s, t)
or B0(s, t) in case (ii). Thus one can write

B(s, t) = Θs,t(v(s, t)) ∀(s, t) ∈ U

with v = (v1, v2) ∈W 1,pk(U, Y ×Y ). Moreover, we already have theW 1,qk -regularity
of both B and ∇ΣB on U × Σ, so B ∈ W 1,qk(U,A1,qk(Σ)) ⊂ W 1,qk(U,A0,sk(Σ))
with corresponding estimates. Here we use the Sobolev embedding [Ad, Theorem 5.4]
W 1,qk(Σ) ↪→ Lsk(Σ) with

sk =



2qk
2−qk = 4pk

8−3pk
; if pk < 8

3 ,

44pk−80
8−pk ; if pk ≥ 8

3 ,

31
2 ; if pk = 4.

(Here we have chosen suitable values of sk for later calculations in case pk ≥ 8
3 and

thus qk ≥ 2.) The special structure of the coordinate map Θ in [W2, Lemma 4.3] (it is
a local diffeomorphism between A0,sk(Σ) and a closed subset of Lsk(Σ,R2m) since
sk > pk > 2) implies that v ∈W 1,qk(U,Lsk(Σ,R2m)), which will be important later.

The Cauchy-Riemann equation (16) now becomes{
∂sv + I∂tv = f,
v2(s, 0) = 0 ∀s ∈ R.
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Here I = (dvΘ)−1 ∗ (dvΘ) ∈W 1,pk(U,End(Y × Y )) and

f = (dvΘ)−1(G− ∂sΘ(v)− ∗∂tΘ(v)) ∈ Lrk(U, Y × Y ).

We now approximate f in Lrk(U, Y ×Y ) by smooth functions that vanish on ∂U , then
partial integration in [W2, (2.4) or (10)] yields for all φ ∈ C∞(U, Y ∗ × Y ∗) and a
smooth cutoff function h ∈ C∞(U, [0, 1]) with ∂th|t=0 = 0 as in the proof of [W2,
Theorem 1.2]∫

U

〈hv , ∆φ 〉 =
∫
U

〈 f , ∂s(hφ)− ∂t(h · I∗φ) 〉 +
∫
U

〈 F̃ , φ 〉

+
∫
∂U∩∂H

〈 v1 , ∂t(hφ1) + ∂s(hφ2) 〉. (18)

Here F̃ = (∆h)v + 2(∂sh)∂sv + 2(∂th)∂tv + h(∂tI)∂sv − h(∂sI)∂tv contains the
crucial terms (∂tI)(∂sv) and (∂sI)(∂tv) and thus lies in L

1
2pk(U, Y × Y ). This is a

weak Laplace equation with Dirichlet boundary conditions for hv2, Neumann bound-
ary conditions for hv1, and with the inhomogeneous term in W−1,rk(U, Y × Y ). The
latter is the dual space of W 1,r′k(U, Y ∗ × Y ∗) with 1

rk
+ 1

r′k
= 1. (The inclusion

L
1
2pk(U) ↪→ W−1,rk(U) is continuous as can be seen via the dual embedding that is

due to 1
2 −

1
r′k
≥ −1 + 1

pk/2
.) Recall that Y ⊂ Lp(Σ,Rm) is a closed subspace. Since

rk > p the special regularity result [W2, Lemma 2.1] for the Laplace equation with val-
ues in a Banach space cannot be applied to deduce hv ∈ W 1,rk(U, Y × Y ). However,
the general regularity theory for the Laplace equation extends to functions with values
in a Hilbert space. So we use the embedding Lp(Σ) ↪→ L2(Σ). Then (18) is a weak
Laplace equation with the inhomogeneous term in W−1,rk(U,L2(Σ,R2m)) and en-
ables us to deduce hv ∈W 1,rk(U,L2(Σ,R2m)) and thus v ∈W 1,rk(Ũ , L2(Σ,R2m))
with the corresponding estimates for some smaller domain Ũ (where h|Ũ ≡ 1; a finite
union of such domains still covers a neighbourhood of Ω ∩ ∂H). Furthermore, recall
that v ∈ W 1,qk(U,Lsk(Σ,R2m)). Now we claim that the following inclusion with the
corresponding estimates holds for some suitable pk+1

W 1,rk(Ũ , L2(Σ)) ∩ W 1,qk(Ũ , Lsk(Σ)) ⊂ W 1,pk+1(Ũ , Lpk+1(Σ)). (19)

To show (19) it suffices to estimate the Lpk+1(Ũ × Σ)-norm of a smooth function by
its Lrk(Ũ , L2(Σ))- and Lqk(Ũ , Lsk(Σ))-norms. Let α > 2 and t ∈ [1, 2), then the
Hölder inequality gives for all f ∈ C∞(Ũ ×Σ,R2m)

‖f‖α
Lα(Ũ×Σ)

=
∫
Ũ

∫
Σ

|f |t|f |α−t

≤
∫
Ũ

‖f‖tL2(Σ)‖f‖
α−t

L
2α−t2−t (Σ)

≤ ‖f‖t
Lr(Ũ,L2(Σ))

‖f‖α−t
L
r α−t
r−t (Ũ,L

2α−t2−t (Σ))

≤ ‖f‖α
Lr(Ũ,L2(Σ))

+ ‖f‖α
L
r α−t
r−t (Ũ,L

2α−t2−t (Σ))
.

Here we abbreviated r := rk > pk > 2. Now we want

qk =
rk(α− t)
rk − t

and sk =
2(α− t)

2− t
. (20)
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Indeed, in the case pk = 4 our choices qk = 3, rk = 12, and sk = 31
2 together with

t := 5
3 and α := 17

4 solve these equations. So we obtain pk+1 = α = 17
16pk. In case

pk < 4 the first equation gives

α =
4 + t

8− pk
pk. (21)

If moreover pk ≥ 8
3 , then we choose t := 5

3 to obtain α = 17
24−3pk

pk ≥ 17
16pk. This

also solves (20) with our choice sk = 44pk−80
8−pk , so we obtain pk+1 = 17

16pk. Finally, in
case 8

3 > pk > 2 one obtains from (20)

t =
p2
k

−p2
k + 7pk − 8

∈ [1, 2).

Inserting this in (21) yields α = θ(pk) · pk with

θ(pk) =
3pk − 4

−p2
k + 7pk − 8

.

One then checks that θ(2) = 1 and θ′(p) > 0 for p > 2, thus θ(p) > 1 for p > 2.
Moreover, θ( 8

3 ) = 9
8 , so θ(p′) = 17

16 for some p′ ∈ (2, 8
3 ). Now for p ≥ p′ we extend

the function constantly to obtain a monotonely increasing function θ : (2, 4]→ (1, 17
16 ].

With this modified function we finally choose pk+1 = θ(pk) · pk for all 2 < pk ≤ 4.
This finishes the proof of (19) and thus shows that v ∈W 1,pk+1(Ũ , Lpk+1(Σ)).

In addition, note that our choice of pk+1 ≤ α will always satisfy pk+1 ≤ rk. In case
pk = 4 see the actual numbers, in case pk < 4 this is due to (21), t ≤ 2, and pk > 2,

α ≤ 6
8− pk

pk ≤
2

4− pk
pk = rk.

Now we again use the special structure of the coordinates Θ in [W2, Lemma 4.3] to
deduce that B = Θ ◦ v ∈ W 1,pk+1(Ũ ,A0,pk+1(Σ)) with the corresponding estimates.
Above, we already established the W 1,rk - and thus W 1,pk+1 -regularity and -estimates
for Φ and Ψ as well as B ∈ Lpk+1(Ũ ,A1,pk+1(Σ)). (Recall the Sobolev embedding
W 1,qk ↪→ Lrk , and that pk ≥ qk and rk ≥ pk+1, so we have Lrk(Ũ , Lrk(Σ))-
regularity of B as well as ∇ΣB.) Putting all this together we have established the
W 1,pk+1 -regularity and -estimates for τ̄∗A over Ũi × Σ, where the Ũi cover a neigh-
bourhood of Ωk+1 ∩ ∂H. The interior regularity again follows directly from proposi-
tion 2.7.

This iteration gives a sequence (pk) with pk+1 = θ(pk) · pk ≥ θ(p) · pk. So this
sequence grows at a rate greater or equal to θ(p) > θ(2) = 1 and hence reaches pN > 4
after finitely many steps. This finishes the proof of II) and the theorem. 2

Proof of theorem A :
Fix a solution A ∈ A1,p

loc(X) of (2) with p > 2. We have to find a gauge transfor-
mation u ∈ G2,p

loc (X) such that u∗A ∈ A(X) is smooth. Recall that the manifold
X =

⋃
k∈N Xk is exhausted by compact submanifolds Xk meeting the assumptions

of proposition 2.1. So it suffices to prove for every k ∈ N that there exists a gauge
transformation u ∈ G2,p(Xk) such that u∗A|Xk is smooth.

For that purpose fix k ∈ N and choose a compact submanifold M ⊂ X that is
large enough such that theorem 2.6 applies to the compact subset K := Xk ⊂ M .
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Next, choose A0 ∈ A(M) such that ‖A − A0‖W 1,p(M) and ‖A−A0‖Lq(M) are suf-
ficiently small for the local slice theorem, proposition 2.2, to apply to A0 with the
reference connection Â = A. Here due to p > 2 one can choose q > 4 in the local
slice theorem such that the Sobolev embedding W 1,p(M) ↪→ Lq(M) holds. Then by
proposition 2.2 and remark 2.3 (i) one obtains a gauge transformation u ∈ G2,p(M)
such that u∗A is in relative Coulomb gauge with respect to A0. Moreover, u∗A also
solves (2) since both the anti-self-duality equation and the Lagrangian submanifolds Li
are gauge invariant. The latter is due to the fact that u restricts to a gauge transforma-
tion in G1,p(Σi) on each boundary slice τi({s} × Σi) due to the Sobolev embedding
G2,p(Ui ×Σ) ⊂W 1,p(Ui,G1,p(Σi)) ↪→ C0(Ui,G1,p(Σi)). So u∗A ∈ A1,p(M) is a
solution of (4) and theorem 2.6 (i) asserts that u∗A|Xk ∈ A(Xk) is indeed smooth.

Such a gauge transformation u ∈ G2,p(Xk) can be found for every k ∈ N, hence
proposition 2.1 (i) asserts that there exists a gauge transformation u ∈ G2,p

loc (X) on the
full noncompact manifold such that u∗A ∈ A(X) is smooth as claimed. 2

Proof of theorem B :
Fix a smoothly convergent sequence of metrics gν → g that are compatible to τ and let
Aν ∈ A1,p

loc(X) be a sequence of solutions of (2) with respect to the metrics gν . Recall
that the manifold X =

⋃
k∈N Xk is exhausted by compact submanifolds Xk meeting

the assumptions of proposition 2.1. We will find a subsequence (again denoted Aν) and
a sequence of gauge transformations uν ∈ G2,p

loc (X) such that the sequence uν ∗Aν is
bounded in the W `,p-norm on Xk for all ` ∈ N and k ∈ N. Then due to the compact
Sobolev embeddingsW `,p(Xk) ↪→ C`−2(Xk) one finds a further diagonal subsequence
that converges uniformly with all derivatives on every compact subset of X .

By proposition 2.1 (ii) it suffices to construct the gauge transformations and establish
the claimed uniform bounds over Xk for all k ∈ N and for any subsequence of the con-
nections (again denoted Aν). So fix k ∈ N and choose a compact submanifold M ⊂ X
such that theorem 2.6 holds with K = Xk ⊂ M . Choose a further compact submani-
fold M ′ ⊂ X such that theorem 2.6 holds with K = M ⊂ M ′. Then by assumption
of the theorem ‖FAν‖Lp(M ′) is uniformly bounded. So the weak Uhlenbeck compact-
ness, proposition 2.4, provides a subsequence (still denoted Aν), a limit connection
A0 ∈ A1,p(M ′), and gauge transformations uν ∈ G2,p(M ′) such that uν ∗Aν → A0

in the weak W 1,p-topology. The limit A0 then satisfies the boundary value problem
(2) with respect to the limit metric g. (For the boundary conditions this follows from
the compact embedding in lemma 2.5 and the fact that every Li ⊂ A0,p(Σi) is a Ba-
nach submanifold and hence Lp-closed.) So as in the proof of theorem A one finds
a gauge transformation u0 ∈ G2,p(M) such that u∗0A0 ∈ A(M) is smooth. (Note
however that we do not have sufficient boundary conditions on ∂M ′ \ ∂X to obtain
smoothness on M ′. Thus we had to start out from the larger submanifold M ′ 6= M .)
Now replace A0 by u∗0A0 and uν by uνu0 ∈ G2,p(M), then still uν ∗Aν → A0 (since
(uνu0)∗Aν − u∗0A0 = u−1

0 (uν ∗Aν − A0)u0 and conjugation by u0 is continuous in
the weak W 1,p-topology). Thus one has a W 1,p-bound, ‖uν ∗Aν − A0‖W 1,p(M) ≤ c0
for some constant c0.

Due to p > 2 one can now choose q > 4 in the local slice theorem such that
the Sobolev embedding W 1,p(M) ↪→ Lq(M) is compact. Hence for a further sub-
sequence of the connections uν ∗Aν → A0 in the Lq-norm. Let ε > 0 be the con-
stant from proposition 2.2 for the reference connection Â = A0, then one finds a
further subsequence such that ‖uν ∗Aν − A0‖Lq(M) ≤ ε for all ν ∈ N. So the lo-
cal slice theorem provides further gauge transformations ũν ∈ G2,p(M) such that
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the ũν ∗Aν are in relative Coulomb gauge with respect to A0. The gauge transformed
connections still solve (2), hence the ũν ∗Aν are solutions of (4). Moreover, we have
‖ũν ∗Aν −A0‖q ≤ CCG‖uν ∗Aν −A0‖q , hence ũν ∗Aν → A0 in the Lq-norm, and∥∥ũν ∗Aν −A0

∥∥
W 1,p(M)

≤ CCGc0.

The higher W k,p-bounds will now follow from theorem 2.6 after we verify its assump-
tions. Fix the metric g0 := g and a compact neighbourhood V =

⋃n
i=1 τ̄0,i(Ui ×Σi) of

K ∩∂X . Then the τ̄∗0,i(ũ
ν ∗Aν −A0)|Σi are uniformly W 1,p-bounded and converge to

zero in the Lq-norm on Ui × Si as seen above. Now the embedding

W 1,p(Ui ×Σi,T∗Σi ⊗ g) ↪→ L∞(Ui,A0,p(Σi))

is compact by lemma 2.5. Thus one finds a subsequence such that the τ̄∗0,i(ũ
ν ∗Aν)|Σi

converge in L∞(Ui,A0,p(Σi)). The limit can only be τ̄∗0,iA0|Σi since this already is the
Lq-limit. Now in theorem 2.6 (ii) choose the constant C1 = CCGc0 and let δ > 0 be the
constant determined from C1. Then one can take a subsequence such that

‖τ̄∗0,i(ũν ∗Aν −A0)Σi‖L∞(Ui,A0,p(Σi)) ≤ δ ∀i = 1, . . . , n, ∀ν.

Now theorem 2.6 (ii) provides the claimed uniform bounds as follows. Fix ` ∈ N, then
‖gν − g‖C`+2(M) ≤ δ` for all ν ≥ ν` with some ν` ∈ N, and thus∥∥ũν ∗Aν −A0

∥∥
W `,p(Xk)

≤ C` ∀ν ≥ ν`.

This finally implies the uniform bound for this subsequence,

sup
ν∈N

∥∥ũν ∗Aν∥∥
W `,p(Xk)

<∞.

Here the gauge transformations ũν ∈ G2,p(Xk) still depend on k ∈ N and are only
defined on Xk. But now proposition 2.1 (ii) provides a subsequence of (Aν) and gauge
transformations uν ∈ G2,p

loc (X) defined on the full noncompact manifold such that
uν ∗Aν is uniformly bounded in every W `,p-norm on every compact submanifold Xk.
Now one can iteratively use the compact Sobolev embeddings W `+2,p(X`) ↪→ C`(X`)
for each ` ∈ N to find a further subsequence of the connections that converges in
C`(X`). If in each step one fixes one further element of the sequence, then this iteration
finally yields a sequence of connections that converges uniformly with all derivatives
on every compact subset of X to a smooth connection A ∈ A(X). 2

3. Fredholm theory

This section concerns the linearization of the boundary value problem (2) in the special
case of a compact 4-manifold of the form X = S1 × Y , where Y is a compact ori-
entable 3-manifold whose boundary ∂Y = Σ is a disjoint union of connected Riemann
surfaces. The aim of this section is to prove theorem C. (The actual Fredholm property
in part (i) will be proven last, building on (ii) and (iii), which are stated separately for
future reference.)

So we equip S1×Y with a product metric g̃ = ds2 +gs (where gs is an S1-family of
metrics on Y ) and assume that this is compatible with the natural space-time splitting
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of the boundary ∂X = S1 × Σ. This means that for some ∆ > 0 there exists an
embedding

τ : S1 × [0, ∆)×Σ ↪→ S1 × Y

preserving the boundary, τ(s, 0, z) = (s, z) for all s ∈ S1 and z ∈ Σ, such that

τ∗g̃ = ds2 + dt2 + gs,t.

Here gs,t is a smooth family of metrics onΣ. This assumption on the metric implies that
the normal geodesics are independent of s ∈ S1 in a neighbourhood of the boundary. So
in fact, the embedding is given by τ(s, t, z) = (s, γz(t)), where γ is the normal geodesic
starting at z ∈ Σ. This seems like a very restrictive assumption, but it suffices for our
application to Riemannian 4-manifolds with a boundary space-time splitting. Indeed,
the neighbourhoods of the compact boundary components are isometric to S1×Y with
Y = [0, ∆]×Σ and a metric ds2 + dt2 + gs,t.

Now fix p > 2 and letL ⊂ A0,p
flat(Σ) be a gauge invariant Lagrangian submanifold of

A0,p(Σ) as in the introduction. Then for Ã ∈ A1,p(S1 × Y ) we consider the nonlinear
boundary value problem {

∗FÃ + FÃ = 0,
Ã|{s}×∂Y ∈ L ∀s ∈ S1.

(22)

Fix a smooth connection Ã ∈ A(S1 × Y ) with Lagrangian boundary values (but
not necessarily a solution of this boundary value problem). It can be decomposed as
Ã = A+ ΦdswithΦ ∈ C∞(S1×Y, g) and withA ∈ C∞(S1 × Y,T∗Y ⊗ g) satisfying
As := A(s)|∂Y ∈ L for all s ∈ S1. Similarly, a tangent vector α̃ to A1,p(S1 × Y ) de-
composes as α̃ = α+ϕdswith ϕ ∈W 1,p(S1×Y, g) and α ∈W 1,p(S1×Y,T∗Y ⊗g).
Now let E1,p

A ⊂ W 1,p(S1 × Y,T∗Y ⊗ g) be the subspace of S1-families of 1-forms
α that satisfy the boundary conditions from the linearization of (22) and the Coulomb
gauge,

∗α(s)|∂Y = 0 and α(s)|∂Y ∈ TAsL for all s ∈ S1.

Then the linearized operator for the study of the moduli space of gauge equivalence
classes of solutions of (22) is as in the introduction

D(A,Φ) : E1,p
A ×W

1,p(S1 × Y, g) −→ Lp(S1 × Y,T∗Y ⊗ g)× Lp(S1 × Y, g)

given by
D(A,Φ)(α,ϕ) =

(
∇sα− dAϕ+ ∗dAα , ∇sϕ− d∗Aα

)
.

Here dA denotes the exterior derivative corresponding to the connection A(s) on Y for
all s ∈ S1, ∗ denotes the Hodge operator on Y with respect to the s-dependent metric
gs on Y , and we use the notation∇sα := ∂sα+ [Φ, α]. Our main result, theorem C (i),
is the Fredholm property of D(A,Φ). We now give an outline of its proof.

The first crucial point is the estimate in theorem C (ii), which ensures that D(A,Φ)

has a closed image and a finite dimensional kernel. It can be rephrased as follows due
to the identities

d+

Ã
α̃ = 1

2 ∗
(
∇sα− dAϕ+ ∗dAα

)
− 1

2

(
∇sα− dAϕ+ ∗dAα

)
∧ ds,

d∗
Ã
α̃ = −∇sϕ+ d∗Aα. (23)
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Lemma 3.1. There is a constant C such that for all α̃ ∈W 1,p(X,T∗X ⊗ g) satisfying

∗α̃|∂X = 0 and α̃|{s}×∂Y ∈ TAsL ∀s ∈ S1

one has the estimate

‖α̃‖W 1,p ≤ C
(
‖d+

Ã
α̃‖p + ‖d∗

Ã
α̃‖p + ‖α̃‖p

)
.

The second part of the Fredholm theory for D(A,Φ) is the identification of the coker-
nel with the kernel of a slightly modified linearized operator, which will be used to prove
that the cokernel is finite dimensional. To be more precise let σ : S1 × Y → S1 × Y
denote the reflection given by σ(s, y) := (−s, y), where S1 ∼= R/Z. Then we will
establish the following duality:

(β, ζ) ∈ (imD(A,Φ))⊥ ⇐⇒ (β ◦ σ, ζ ◦ σ) ∈ kerDσ∗(A,Φ),

whereDσ∗(A,Φ) is the linearized operator at the connection σ∗Ã = A◦σ−Φ◦σdswith
respect to the metric σ∗g̃ on S1×Y . Once we know that imD(A,Φ) is closed, this gives
an isomorphism between (cokerD(A,Φ))∗ ∼= (imD(A,Φ))⊥ and kerDσ∗(A,Φ). Here Z∗
denotes the dual space of a Banach space Z, and for a subspace Y ⊂ Z we denote
by Y ⊥ ⊂ Z∗ the space of linear functionals that vanish on Y . Now the estimate in
theorem C (ii) will also apply to Dσ∗(A,Φ), and this implies that its kernel – and hence
the cokernel of D(A,Φ) – is of finite dimension. The main difficulty in establishing the
above duality is the regularity result theorem C (iii).

This regularity as well as the estimate in theorem C (ii) or lemma 3.1 will be proven
analogously to the nonlinear regularity and estimates in section 2. Again, the interior
regularity and estimate is standard elliptic theory, and one has to use a splitting near
the boundary. We shall show that the S1- and the normal component both satisfy a
Laplace equation with Neumann and Dirichlet boundary conditions respectively. The
Σ-component will again gives rise to a (weak) Cauchy-Riemann equation in a Banach
space, only this time the boundary values will lie in the tangent space of the Lagrangian.
In contrast to the required Lp-estimates we shall first show that the L2-estimate for Lp-
regular 1-forms can be obtained by more elementary methods. These were already out-
lined in [S] as indication for the Fredholm property of the boundary value problem (22).

Let α̃ ∈ W 1,p(X,T∗X ⊗ g) be as in lemma 3.1 for some p > 2. From the first
boundary condition ∗α̃|∂X = 0 one obtains

‖∇α̃‖22 = ‖dα̃‖22 + ‖d∗α̃‖22 −
∫
∂X

g̃(Yα̃,∇Yα̃ν).

Here the vector field Yα̃ is given by ιYα̃ g̃ = α̃, so
∫
∂X

g̃(Yα̃,∇Yα̃ν) ≥ −C‖α̃‖2L2(∂X).
For this last term one then uses the following special version of the Sobolev trace theo-
rem for general 1 < q <∞.
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Let τ : [0, ∆) × ∂X → X be a diffeomorphism to a tubular neighbourhood of ∂X
in X . Then for all δ > 0 one finds a constant Cδ such that for all f ∈W 1,q(X)

‖f‖qLq(∂X)

=
∫
∂X

∫ 1

0

d
ds

(
(s− 1)|f(τ(s, z))|q

)
dsd3z

≤
∫
∂X

∫ 1

0

|f(τ(s, z))|q dsd3z +
∫
∂X

∫ 1

0

q|f(τ(s, z))|q−1|∂sf(τ(s, z))|dsd3z

≤ C
(
‖f‖qLq(X) + ‖f‖q−1

Lq(X)‖∇f‖Lq(X)

)
≤
(
δ‖f‖W 1,q(X) + Cδ‖f‖Lq(X)

)q
. (24)

This uses the fact that for all x, y ≥ 0 and δ > 0

xq−1y ≤
{
δqyq ; if x ≤ δ

q
q−1 y

δ−
q
q−1xq ; if x ≥ δ

q
q−1 y

}
≤
(
δy + δ−

1
q−1x

)q
.

So we obtain
‖α̃‖W 1,2 ≤ C

(
‖dÃα̃‖2 + ‖d∗

Ã
α̃‖2 + ‖α̃‖2

)
. (25)

In fact, the analogous W 1,p-estimates hold true for general p, as is proven e.g. in [W1,
Theorem 5.1]. However, in the case p = 2 one can calculate further for all δ > 0

‖dÃα̃‖
2
2 =

∫
X

〈dÃα̃ , 2d+

Ã
α̃ 〉 −

∫
X

〈dÃα̃ ∧ dÃα̃ 〉

= 2‖d+

Ã
α̃‖22 −

∫
X

〈 α̃ ∧ [FÃ ∧ α̃] 〉 −
∫
∂X

〈 α̃ ∧ dÃα̃ 〉

≤ 2‖d+

Ã
α̃‖22 + Cδ‖α̃‖22 + δ‖α̃‖2W 1,2 . (26)

Here the boundary term above is estimated as follows. We use the universal cover-
ing of S1 = R/Z to integrate over [0, 1] × ∂Y instead of ∂X = S1 × ∂Y . Introduce
A := (As)s∈S1 , which is a smooth path in L. Then using the splitting α̃|∂X = α+ϕds
with α : S1 ×Σ → T∗Σ ⊗ g and ϕ : S1 ×Σ → g one obtains

−
∫
∂X

〈 α̃ ∧ dÃα̃ 〉

= −
∫ 1

0

∫
Σ

〈ϕ , dAα 〉dvolΣ ∧ ds −
∫ 1

0

∫
Σ

〈α ∧ (dAϕ−∇sα) 〉 ∧ ds

=
∫ 1

0

∫
Σ

〈α ∧∇sα 〉 ∧ ds

≤ δ‖α̃‖2W 1,2(X) + C ′δ‖α̃‖2L2(X).

Firstly, we have used the fact that dAα|Σ = 0 since α(s) ∈ TAsL ⊂ ker dAs for
all s ∈ S1. Secondly, we have also used that both α and dAϕ lie in TAL, hence the
symplectic form

∫
Σ
〈α ∧ dAϕ 〉 vanishes for all s ∈ S1. This is not strictly true since

α̃ only restricts to an Lp-regular 1-form on ∂X . However, as 1-form on [0, 1] × Y it
can be approximated as follows by smooth 1-forms that meet the Lagrangian boundary
condition on [0, 1]×Σ.
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We use the linearization of the coordinates in [W2, Lemma 4.3] at As for every
s ∈ [0, 1]. Since the path s 7→ As ∈ L ∩ A(Σ) is smooth, this gives a smooth path of
diffeomorphisms Θs for any q > 2,

Θs : Z × Z −→ Lq(Σ,T∗Σ ⊗ g)
(ξ, v, ζ, w) 7−→ dAsξ +

∑m
i=1 v

iγi(s) + ∗dAsζ +
∑m
i=1 w

i ∗ γi(s),

with Z := W 1,q
z (Σ, g) × Rm and where the γi ∈ C∞([0, 1] × Σ,T∗Σ ⊗ g) satisfy

γi(s) ∈ TAsL for all s ∈ [0, 1]. We perform the above estimate on [0, 1] × Y since
we can not necessarily achieve γi(0) = γi(1). In these coordinates, we mollify to
obtain the required smooth approximations of α̃ near the boundary. Furthermore, we
use these coordinates for q = 3 to write the smooth approximations on the boundary
as α(s) = dAsξ(s) +

∑m
i=1 v

i(s)γi(s) with ‖ξ(s)‖W 1,3(Σ) + |v(s)| ≤ C‖α(s)‖L3(Σ).
Then for all s ∈ [0, 1]∫

Σ

〈α(s) ∧∇sα(s) 〉 =
∫
Σ

〈α ∧
(
dAs∂sξ +

∑m
i=1 ∂sv

i · γi
)
〉

+
∫
Σ

〈α ∧
(
[Φ, α] + [∂sA, ξ] +

∑m
i=1 v

i · ∂sγi
)
〉

≤ C‖α(s)‖L2(Σ)‖α(s)‖L3(Σ).

Here the crucial point is that dA∂sξ and ∂svi · γi are tangent to the Lagrangian, hence
the first term vanishes. Now one uses (24) for q = 2 and the Sobolev trace theorem (the
restriction W 1,2(X) → L3(∂X) is continuous by e.g. [Ad, Theorem 6.2] ) to obtain
the estimate,∫ 1

0

∫
Σ

〈α ∧∇sα 〉 ∧ ds ≤ C‖α̃‖L2(∂X)‖α̃‖L3(∂X)

≤ δ
2‖α̃‖

2
W 1,2(X) + Cδ‖α̃‖L2(X)‖α̃‖W 1,2(X)

≤ δ‖α̃‖2W 1,2(X) + C ′δ‖α̃‖2L2(X).

This proves (26). Now δ > 0 can be chosen arbitrarily small, so the term ‖α̃‖W 1,2 can
be absorbed into the left hand side of (25), and thus one obtains the claimed estimate

‖α̃‖W 1,2 ≤ C
(
‖d+

Ã
α̃‖2 + ‖d∗

Ã
α̃‖2 + ‖α̃‖2

)
.

Proof of theorem C (ii) or lemma 3.1 :
We will use lemma A.2 for the manifold M := S1 × Y in several different cases to
obtain the estimate for different components of α̃. The first weak equation in lemma A.2
is the same in all cases. For all η ∈ C∞(M ; g)∫

M

〈 α̃ , dη 〉 =
∫
M

〈d∗α̃ , η 〉+
∫
∂M

〈 η , ∗α̃ 〉

=
∫
M

〈d∗
Ã
α̃+ ∗[Ã ∧ ∗α̃] , η 〉 =

∫
M

〈 f , η 〉.

Here one uses the fact that ∗α̃|∂M = 0 . Then f ∈ Lp(M, g) and

‖f‖p ≤ ‖d∗Ãα̃‖p + 2‖Ã‖∞‖α̃‖p. (27)
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To obtain the second weak equation in lemma A.2 we calculate for all λ ∈ Ω1(M ; g)∫
M

〈 α̃ , d∗dλ 〉 =
∫
M

〈 α̃ , d∗dλ+ d∗ ∗ dλ 〉 (28)

=
∫
M

〈 γ , dλ 〉 −
∫
S1×∂Y

〈 α̃ ∧ ∗dλ 〉 −
∫
S1×∂Y

〈 α̃ ∧ dλ 〉,

where γ = dα̃+ ∗dα̃ = 2d+

Ã
α̃− 2[Ã ∧ α̃]+ ∈ Lp(M,Λ2T∗M ⊗ g) and

‖γ‖p ≤ 2‖d+

Ã
α̃‖p + 4‖Ã‖∞‖α̃‖p. (29)

Now recall that there is an embedding τ : S1 × [0, ∆) × Σ ↪→ S1 × Y to a tubular
neighbourhood of S1×∂Y such that τ∗g̃ = ds2 +dt2 +gs,t for a family gs,t of metrics
on Σ. One can then cover M = S1×Y with τ(S1× [0, ∆2 ]×Σ) and a compact subset
V ⊂M \ ∂M .

For the claimed estimate of α̃ over V it suffices to use lemma A.2 for vector fields
X ∈ Γ (TM) that are equal to coordinate vector fields on V and vanish on ∂M . So one
has to consider (28) for λ = φ · ιX g̃ with φ ∈ C∞δ (M, g). Then both boundary terms
vanish and hence lemma A.2 directly asserts, with some constants C and CV , that

‖α̃‖W 1,p(V ) ≤ C
(
‖f‖Lp(M) + ‖γ‖Lp(M) + ‖α̃‖Lp(M)

)
≤ CV

(
‖d+

Ã
α̃‖Lp(M) + ‖d∗

Ã
α̃‖Lp(M) + ‖α̃‖Lp(M)

)
.

So it remains to establish the estimate for α̃ near the boundary ∂M = S1 × Σ.
For that purpose we introduce the decomposition τ∗α̃ = ϕds + ψdt + α, where
ϕ,ψ ∈W 1,p(S1 × [0, ∆)×Σ, g) and α ∈ W 1,p(S1 × [0, ∆) × Σ,T∗Σ ⊗ g). Let
Ω := S1 × [0, 3

4∆] and let K := S1 × [0, ∆2 ]. Then we will prove the estimate for ϕ
and ψ on Ω ×Σ and for α on K ×Σ.

Firstly, note that ψ = α̃(τ∗∂t) ◦ τ , where −τ∗∂t|∂M = ν is the outer unit normal to
∂M . So one can cut off τ∗∂t outside of τ(Ω×Σ) to obtain a vector field X ∈ Γ (TM)
that satisfies the assumption of lemma A.2, that is X|∂M = −ν is perpendicular to the
boundary. Then one has to test (28) with λ = φ · ιX g̃ for all φ ∈ C∞δ (M, g). Again both
boundary terms vanish. Indeed, on S1 × ∂Y we have φ ≡ 0 and ιX g̃ = τ∗dt, hence
dλ|R×∂Y = 0 and ∗dλ|R×∂Y = −∂φ∂ν ∗ τ∗(dt ∧ dt) = 0. Thus lemma A.2 yields the
following estimate.

‖ψ‖W 1,p(Ω×Σ) ≤ C‖α̃(X)‖W 1,p(M)

≤ C
(
‖f‖Lp(M) + ‖γ‖Lp(M) + ‖α̃‖Lp(M)

)
≤ Ct

(
‖d+

Ã
α̃‖Lp(M) + ‖d∗

Ã
α̃‖Lp(M) + ‖α̃‖Lp(M)

)
.

Here C denotes any finite constant and the bounds on the derivatives of τ enter into the
constant Ct.

Next, for the regularity ofϕ = α̃(∂s)◦τ one can apply lemma A.2 with the tangential
vector field X = ∂s. Recall that τ preserves the S1-coordinate. One has to verify the
second weak equation for all φ ∈ C∞ν (M, g), i.e. consider (28) for λ = φ · ιX g̃ = φ ·ds.
The first boundary term vanishes since one has ∗dλ|S1×∂Y = −∂φ∂ν dvol∂Y = 0. For
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the second term one can choose any δ > 0 and then finds a constant Cδ such that for all
φ ∈ C∞ν (M, g)∣∣∣∣∫

S1×∂Y
〈 α̃ ∧ dλ 〉

∣∣∣∣ =
∣∣∣∣∫
S1

∫
Σ

〈α(s, 0) ∧ dΣ(φ ◦ τ)(s, 0) 〉 ∧ ds
∣∣∣∣

=
∣∣∣∣∫
S1×∂Y

〈 α̃ ∧ [Ã, φ] 〉 ∧ ds
∣∣∣∣

≤ ‖α̃‖Lp(∂M)‖Ã‖∞‖φ‖Lp∗ (∂M)

≤
(
δ‖α̃‖W 1,p(M) + Cδ‖α̃‖Lp(M)

)
‖φ‖W 1,p∗ (M).

This uses the fact that α(s, 0) and dAs(φ ◦ τ)|(s,0)×Σ both lie in the tangent space
TAsL to the Lagrangian, on which the symplectic form vanishes. So we have the iden-
tity

∫
Σ
〈α ∧ dA(φ ◦ τ) 〉 = 0. Moreover, we have used the trace theorem for Sobolev

spaces, in particular (24) with q = p. Now lemma A.2 and remark A.3 yield with
c1 = ‖f‖p, c2 = ‖γ‖Lp(M) + δ‖α̃‖W 1,p(M) + Cδ‖α̃‖Lp(M), and using (27), (29)

‖ϕ‖W 1,p(Ω×Σ)

≤ C
(
‖f‖Lp(M) + c2 + ‖α̃‖Lp(M)

)
≤ δ‖α̃‖W 1,p(M) + Cs(δ)

(
‖d+

Ã
α̃‖Lp(M) + ‖d∗

Ã
α̃‖Lp(M) + ‖α̃‖Lp(M)

)
.

Here again δ > 0 can be chosen arbitrarily small and the constant Cs(δ) depends on
this choice.

It remains to establish the estimate for the Σ-component α near the boundary. In the
coordinates τ on Ω ×Σ, the forms d∗

Ã
α̃ and d+

Ã
α̃ become

τ∗d∗
Ã
α̃ = −∂sϕ− ∂tψ + d∗Σα− τ∗(∗[Ã ∧ ∗α̃]),

τ∗d+

Ã
α̃ = 1

2

(
−(∂sα+ ∗Σ∂tα) ∧ ds+ ∗Σ(∂sα+ ∗Σ∂tα) ∧ dt

)
+ 1

2

(
dΣα+ (∗ΣdΣα)ds ∧ dt

)
+ τ∗([Ã ∧ α̃]+).

So one obtains the following bounds: The components in the mixed direction of Ω and
Σ of the second equation yields for some constant C1

‖∂sα+ ∗Σ∂tα‖Lp(Ω×Σ) ≤
∥∥τ∗d+

Ã
α̃
∥∥
Lp(Ω×Σ)

+
∥∥τ∗([Ã ∧ α̃]+)

∥∥
Lp(Ω×Σ)

≤ C1

(
‖d+

Ã
α̃‖Lp(M) + ‖α̃‖Lp(M)

)
.

Similarly, a combination of the first equation and the Σ-component of the second equa-
tion can be used for every δ > 0 to find a constant C2(δ) such that

‖dΣα‖Lp(Ω×Σ) + ‖d∗Σα‖Lp(Ω×Σ)

≤ C
(
‖d+

Ã
α̃‖Lp(M) + ‖d∗

Ã
α̃‖Lp(M) + ‖α̃‖Lp(M) + ‖ϕ‖W 1,p(Ω×Σ) + ‖ψ‖W 1,p

)
≤ δ‖α̃‖W 1,p(M) + C2(δ)

(
‖d+

Ã
α̃‖Lp(M) + ‖d∗

Ã
α̃‖Lp(M) + ‖α̃‖M)

)
.

Now lemma 2.9 provides an Lp-estimate for the derivatives of α in Σ-direction,

‖∇Σα‖Lp(Ω×Σ)

≤ C
(
‖dΣα‖Lp(Ω×Σ) + ‖d∗Σα‖Lp(Ω×Σ) + ‖α‖Lp(Ω×Σ)

)
≤ δ‖α̃‖W 1,p(M) + CΣ(δ)

(
‖d+

Ã
α̃‖Lp(M) + ‖d∗

Ã
α̃‖Lp(M) + ‖α̃‖Lp(M)

)
,
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where again CΣ(δ) depends on the choice of δ > 0. For the derivatives in s- and t-
direction, we will apply [W2, Theorem 1.3] on the Banach spaceX = Lp(Σ,T∗Σ⊗g)
with the complex structure ∗Σ determined by the metric gs,t on Σ and hence depending
smoothly on (s, t) ∈ Ω. The Lagrangian submanifoldL ⊂ X is totally real with respect
to all Hodge operators and it is modelled on a closed subspace of Lp(Σ,Rn) as seen
in [W2, Lemma 4.2, Corollary 4.4]. Now α ∈ W 1,p(Ω,X) satisfies the Lagrangian
boundary condition α(s, 0) ∈ TAsL for all s ∈ S1, where s 7→ As is a smooth loop in
L. Thus [W2, Corollary 1.4] yields a constant C such that the following estimate holds:

‖∇Ωα‖Lp(K×Σ) ≤ ‖α‖W 1,p(K,X)

≤ C
(
‖∂sα+ ∗Σ∂tα‖Lp(Ω,X) + ‖α‖Lp(Ω,X)

)
≤ CK

(
‖d+

Ã
α̃‖Lp(M) + ‖α̃‖Lp(M)

)
.

Here CK also includes the above constant C1. Now adding up all the estimates for the
different components of α̃ gives for all δ > 0

‖α̃‖W 1,p ≤ (CV + Ct + Cs(δ) + CΣ(δ) + CK)
(
‖d+

Ã
α̃‖p + ‖d∗

Ã
α̃‖p + ‖α̃‖p

)
+ 2δ‖α̃‖W 1,p .

With δ = 1
4 the term ‖α̃‖W 1,p can be absorbed into the left hand side, which finishes

the proof of the lemma. 2

Proof of theorem C (iii) :
Let β ∈ Lq(S1 × Y,T∗Y ⊗ g) and ζ ∈ Lq(S1 × Y, g) be as supposed in theorem C.
Then there exists a constant c such that for all α ∈ C∞(S1 × Y,T∗Y ⊗ g) satisfying
(3) and for all ϕ ∈ C∞(S1 × Y, g)∣∣∣∣∫

S1

∫
Y

〈∇sα− dAϕ+ ∗dAα , β 〉 +
∫
S1

∫
Y

〈∇sϕ− d∗Aα , ζ 〉
∣∣∣∣

=
∣∣∣∣∫
S1×Y

〈D(A,Φ)(α,ϕ) , (β, ζ) 〉
∣∣∣∣

≤ c‖(α,ϕ)‖q∗ . (30)

The higher regularity of ζ is most easily seen if we go back to the notation α̃ = α+ϕds.
With this we can write D(A,Φ)(α,ϕ) = (2γ , −d∗

Ã
α̃), where d+

Ã
α̃ = ∗γ − γ ∧ ds . We

abbreviateM := S1×Y , then we have for all α̃ ∈ C∞(M,T∗M ⊗g) with ∗α̃|∂M = 0
and α̃|{s}×∂Y ∈ TAsL for all s ∈ S1

∣∣∣∣∫
M

〈 2d+

Ã
α̃ , β ∧ ds 〉+

∫
M

〈d∗
Ã
α̃ , ζ 〉

∣∣∣∣ ≤ c‖α̃‖q∗ .
Now use the embedding τ : S1×[0, ∆)×Σ ↪→M to construct a connection Â ∈ A(M)
such that τ∗Â(s, t, z) = As(z) near the boundary (this can be cut off and then extends
trivially to all of M ). Then α̃ := dÂφ satisfies the above boundary conditions for all
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φ ∈ C∞ν (M, g) since dÂφ(ν) = ∂φ
∂ν +[Â(ν), φ] = 0 and dÂφ|{s}×∂Y = dAsφ ∈ TAsL

for all s ∈ S1. Thus we obtain for all φ ∈ C∞ν (M, g) in view of ∆φ = d∗(α̃− [Â, φ])∣∣∣∣∫
M

〈∆φ , ζ 〉
∣∣∣∣

=
∣∣∣∣∫
M

〈d∗
Ã
α̃+ ∗[Ã ∧ ∗α̃]− d∗[Â, φ] , ζ 〉

∣∣∣∣
≤ c‖α̃‖q∗ +

∣∣∣∣∫
M

〈−2d+

Ã
dÂφ , β ∧ ds 〉

∣∣∣∣+
∣∣∣∣∫
M

〈 ∗[Ã ∧ ∗dÂφ]− d∗[Â, φ] , ζ 〉
∣∣∣∣

≤ C
(
c+ ‖β‖q + ‖ζ‖q

)
‖φ‖W 1,q∗ .

(Here and in the following we denote by C any constant C = C(q, Ã, Â) that is in-
dependent of (β, ζ).) The regularity theory for the Neumann problem, e.g. proposi-
tion A.1, then asserts that ζ ∈W 1,q(M) with

‖ζ‖W 1,q ≤ C(c+ ‖(β, ζ)‖q). (31)

To deduce the higher regularity of β we will mainly use lemma A.2. The first weak
equation in the lemma is given by choosing α = 0 in (30). For all ϕ ∈ C∞(M, g)∣∣∣∣∫

M

〈β , dϕ 〉
∣∣∣∣ =

∣∣∣∣∫
S1

∫
Y

〈β , dAϕ− [A,ϕ] 〉
∣∣∣∣

≤ c‖ϕ‖q∗ +
∣∣∣∣∫
S1

∫
Y

〈∇sζ , ϕ 〉
∣∣∣∣+
∣∣∣∣∫
S1

∫
Y

〈 [β ∧ ∗A] , ϕ 〉
∣∣∣∣

≤
(
c+ C

(
‖ζ‖W 1,q + ‖β‖q

))
‖ϕ‖q∗ .

For the second weak equation let ϕ = 0 and α = ∗dλ − ∂sλ for λ = φ · ιX g̃ with φ
in C∞δ (M, g) or C∞ν (M, g) corresponding to the vector field X ∈ C∞(M,TY ). If the
boundary conditions for α ∈ E1,p

A are satisfied, then we obtain with d = dY∣∣∣∣∫
M

〈β , d∗MdM (φ · ιXg) 〉
∣∣∣∣

=
∣∣∣∣∫
S1

∫
Y

〈β , ∗d ∗ dλ− ∂2
sλ− ∗(∂s∗)∂sλ 〉

∣∣∣∣
=
∣∣∣∣∫
S1

∫
Y

〈β , ∗dAα− ∗[A ∧ ∗dλ] + ∗dA∂sλ

+∇sα− [Φ, ∂sλ]−∇s ∗ dλ− ∗(∂s∗)∂sλ 〉
∣∣∣∣

≤ c‖α‖q∗ +
∣∣∣∣∫
S1

∫
Y

〈 ζ , d∗Aα 〉
∣∣∣∣+ C‖β‖q‖λ‖W 1,q∗

≤ C
(
c+ ‖ζ‖W 1,q + ‖β‖q

)
‖φ‖W 1,q∗ .

Here we have used the identity

∗dA∂sλ−∇s ∗ dλ = ∗[A ∧ ∂sλ]− [Φ, ∗dλ]− (∂s∗)dλ.
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Moreover, partial integration with vanishing boundary term ∗α|∂Y = 0 gives∫
S1

∫
Y

〈 ζ , d∗Aα 〉 =
∫
S1

∫
Y

〈dAζ , ∗dλ− ∂sλ 〉.

Now let X ∈ C∞(M,TY ) be perpendicular to the boundary ∂M = S1 × ∂Y , then
α = ∗dλ− ∂sλ satisfies the boundary conditions (3) for every φ ∈ C∞δ (M). Indeed, on
the boundary ∂M = S1 × ∂Y the 1-form λ = φ·ιX g̃ vanishes, we have ιX g̃ = h·τ∗dt
for some smooth function h, and moreover dφ = −∂φ∂ν · τ∗dt. Hence

∗α|∂Y = dλ|∂Y − ∗∂sλ|∂Y = 0,

α|∂Y = ∗dλ|∂Y − ∂sλ|∂Y = −∂φ∂ν h ∗ (τ∗dt ∧ τ∗dt) = 0.

Thus for all vector fields X ∈ C∞(M,TY ) that are perpendicular to the boundary,
lemma A.2 and remark A.3 assert that β(X) ∈W 1,q(M, g) and

‖β(X)‖W 1,q ≤ C
(
c+ ‖ζ‖W 1,q + ‖β‖q

)
≤ C

(
c+ ‖(ζ, β)‖q

)
.

Here we have also used the previously established regularity and estimate (31) for ζ.
In particular, this implies W 1,q-regularity and -estimate for β on all compact subsets
in the interior of S1 × Y . So it remains to prove the regularity on the neighbourhood
τ(S1 × [0, ∆2 ]×Σ) of the boundary. We pull back (β, ζ) from τ(S1 × [0, ∆)×Σ)
and write

τ∗β = ξdt+ β̂, τ∗ζ = η.

We have already established that η = ζ ◦ τ and ξ = β(τ∗∂t) ◦ τ lie in W 1,q(Ω ×Σ, g)
with the according estimate, where Ω := S1 × [0, 3

4∆). Here a vector field X on Y
that is perpendicular to ∂Y is constructed by cutting off τ∗∂t outside of τ(Ω ×Σ). So
it remains to consider β̂ ∈ Lq(Ω ×Σ,T∗Σ ⊗ g) and establish its W 1,q-regularity and
-estimate on S1 × [0, ∆2 ]×Σ.

In order to derive a weak equation for β̂ on Ω ×Σ from (30) we use the test 1-form
α̃ = τ∗(ϕds + ψdt + α̂) with ϕ,ψ ∈ C∞0 (Ω × Σ, g) (supported in int(Ω) × Σ)) and
α̂ ∈ C∞(Ω × Σ,T∗Σ ⊗ g) with compact support supp α̂ ⊂ S1 × [0, 3

4∆) × Σ and
α̂(s, 0, ·) ∈ TAsL for all s ∈ S1. This α̃ satisfies the boundary conditions (3) and it can
be extended trivially to a smooth 1-form on all of S1 × Y . Thus we obtain∣∣∣∣∫

Ω×Σ
〈∇sα̂+ ∗∇tα̂− dAϕ− ∗dAψ , β̂ 〉

∣∣∣∣
≤
∣∣∣∣∫
Ω×Σ
〈−∇sψ +∇tϕ− ∗dAα̂ , ξ 〉 +

∫
Ω×Σ
〈∇sϕ+∇tψ − d∗Aα̂ , η 〉

∣∣∣∣
+ c‖τ∗(ϕds+ ψ dt+ α̂)‖Lq∗ (S1×Y ).

Here we have decomposed τ∗Ã = Φds+Ψdt+AwithA ∈ C∞(Ω ×Σ,T∗Σ ⊗ g) sat-
isfying A(s, 0) = As ∈ L for all s ∈ S1. We also use the notation∇tϕ = ∂tϕ+ [Ψ, ϕ]
and denote by dA and ∗ the differential and Hodge operator onΣ. Now if we put α̂ = 0,
then we obtain for all ϕ,ψ ∈ C∞0 (Ω ×Σ, g) by partial integration∣∣∣∣∫

Ω×Σ
〈dAϕ , β̂ 〉

∣∣∣∣ ≤ (Cc+ ‖∇tξ −∇sη‖Lq(Ω×Σ)

)
‖ϕ‖Lq∗ (Ω×Σ),∣∣∣∣∫

Ω×Σ
〈 ∗dAψ , β̂ 〉

∣∣∣∣ ≤ (Cc+ ‖∇sξ +∇tη‖Lq(Ω×Σ)

)
‖ψ‖Lq∗ (Ω×Σ).
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This shows that the weak derivatives d∗Σ β̂ and dΣ β̂ are of class Lq on Ω × Σ. Now
lemma 2.9 implies that∇Σ β̂ is of class Lq on Ω ×Σ with

‖∇Σ β̂‖Lq(Ω×Σ) ≤ C
(
c+ ‖∇tξ −∇sη‖q + ‖∇sξ +∇tη‖q + ‖β̂‖q

)
≤ C

(
c+ ‖(β, ζ)‖Lq(S1×Y )

)
.

So it remains to deduce the Lq-regularity of ∂sβ̂ and ∂tβ̂ on S1 × [0, ∆2 ]×Σ from the
above inequality for ϕ = ψ = 0, namely from∣∣∣∣∫

Ω×Σ
〈∇sα̂+ ∗∇tα̂ , β̂ 〉

∣∣∣∣ ≤ (Cc+ ‖dAη + ∗dAξ‖Lq(Ω×Σ)

)
‖α̂‖Lq∗ (Ω×Σ). (32)

This holds for all α̂ ∈ C∞(Ω×Σ,T∗Σ⊗g) with compact support and α̂(s, 0, ·) ∈ TAsL
for all s ∈ S1. We now employ different arguments in the cases q > 2 and q < 2.

Case q > 2 :
In this case the regularity of ∂sβ̂ and ∂tβ̂ will follow from [W2, Theorem 1.3] on the
Banach space X = Lq(Σ,T∗Σ ⊗ g) with the complex structure given by the Hodge
operator on Σ with respect to the metric gs,t. From (32) one obtains the following
estimate for some constant C and all α̂ as above:∣∣∣∣∫

Ω

∫
Σ

〈 β̂ , ∂sα̂+ ∂t(∗α̂) 〉
∣∣∣∣

≤ C
(
c+ ‖η‖W 1,q(Ω×Σ) + ‖ξ‖W 1,q(Ω×Σ) + ‖β̂‖Lq(Ω×Σ)

)
‖α̂‖Lq∗ (Ω×Σ)

≤ C
(
c+ ‖(β, ζ)‖Lq(S1×Y )

)
‖α̂‖Lq∗ (Ω,X∗). (33)

Note that this extends to the W 1,q∗(Ω,Lq
∗
(Σ))-closure of the admissible α̂ in (32).

In particular the estimate above holds for all α̂ ∈ W 1,q(Ω,X) that are compactly
supported and satisfy α̂(s, 0, ·) ∈ TAsL for all s ∈ S1. To see that these can be
approximated by smooth α̂ with Lagrangian boundary conditions one uses the Ba-
nach submanifold coordinates for L given by [W2, Lemma 4.3] as before. Here the
Lagrangian submanifold L ⊂ X is totally real with respect to all Hodge operators
as before, and it is the Lq-restriction or -completion of the original submanifold in
A0,p(Σ), hence it is modelled on W 1,q

z (Σ, g) × Rm, a closed subspace of Lq(Σ,Rn)
(see [W2, Lemma 4.2, 4.3]). However, in order to be able to apply [W2, Theorem 1.3],
we need to extend this estimate to all α̂ ∈ W 1,∞(Ω,X∗) with compact support and
α̂(s, 0) ∈ (∗TAsL)⊥ for all s ∈ S1. This is possible since any such α̂ can be approx-
imated in W 1,q∗(Ω,X∗) by α̂i ∈ C∞(Ω,X) that are compactly supported and satisfy
the above stronger boundary condition α̂i(s, 0) ∈ TAsL for all s ∈ S1.

Indeed, [W2, Lemma 2.2] provides such an approximating sequence αi without the
Lagrangian boundary conditions. From the proof via mollifiers one sees that the approx-
imating sequence can be chosen with compact support inΩ. Now for all s ∈ S1 one has
the topological splitting X = TAsL⊕∗TAsL and thus X∗ = (TAsL)⊥⊕ (∗TAsL)⊥.
Since q > 2 the embedding X ↪→ X∗ is continuous. This identification uses the L2-
inner product on X which equals the metric ω(·, ∗·) given by the symplectic form ω
and the complex structure ∗. So due to the Lagrangian condition this embedding maps
TAsL ↪→ (∗TAsL)⊥ and ∗TAsL ↪→ (TAsL)⊥. We write α̂ = γ + δ and αi = γi + δi
according to these splittings to obtain γ, δ ∈ C∞(Ω,X∗) and γi, δi ∈ C∞(Ω,X) such
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that ∗TAL 3 γi → γ ∈ (TAL)⊥ and TAL 3 δi → δ ∈ (∗TAL)⊥ with convergence
in W 1,q∗(Ω,X∗). The boundary condition on α̂ gives γ|t=0 ≡ 0. Moreover, ∂tγ is
uniformly bounded in X∗, so one can find a constant C such that ‖γ(s, t)‖X∗ ≤ Ct for
all t ∈ [0, 3

4∆) and hence for sufficiently small ε > 0

‖γ‖Lq∗ (S1×[0,ε],X∗) ≤ C
1+q∗ ε

1+ 1
q∗ .

Now let δ > 0 be given and choose 1 > ε > 0 such that ‖γ‖Lq∗ (S1×[0,ε],X∗) ≤ εδ
and ‖γ‖W 1,q∗ (S1×[0,ε],X∗) ≤ δ. Next, choose a sufficiently large i ∈ N such that
‖γi − γ‖W 1,q∗ (Ω,X∗) ≤ εδ, and let h ∈ C∞([0, 3

4∆], [0, 1]) be a cutoff function with
h(0) = 0, h|t≥ε ≡ 0, and |h′| ≤ 2

ε . Then α̂i := hγi + δi ∈ C∞(Ω,X) satisfies the
Lagrangian boundary condition α̂i(s, 0) ∈ TAsL and approximates α̂ in view of the
following estimate:

‖α̂i − α̂‖W 1,q∗ (Ω,X∗) ≤ ‖h(γi − γ)‖W 1,q∗ (Ω,X∗) + ‖(1− h)γ‖W 1,q∗ (Ω,X∗)

≤ ‖γi − γ‖W 1,q∗ (Ω,X∗) + 2
ε‖γi − γ‖Lq∗ (Ω,X∗)

+ ‖γ‖W 1,q∗ (S1×[0,ε],X∗) + 2
ε‖γ‖Lq∗ (S1×[0,ε],X∗)

≤ 6δ.

This approximation shows that (33) holds indeed true for all α̂ ∈ W 1,∞(Ω,X∗) with
compact support and α(s, 0) ∈ (∗TAsL)⊥ for all s ∈ S1. Thus [W2, Theorem 1.3]
asserts that β̂ ∈ W 1,q(S1 × [0, ∆2 ], X), and hence ∂sβ̂ and ∂tβ̂ are of class Lq on
K ×Σ wit K := S1 × [0, ∆2 ] as claimed, with

‖∂sβ̂‖Lq(K×Σ) + ‖∂tβ̂‖Lq(K×Σ) ≤ ‖β̂‖W 1,q(K,X) ≤ C
(
c+ ‖(β, ζ)‖Lq(S1×Y )

)
.

Case q < 2 :
In this case we cover S1 by two intervals, S1 = I1 ∪ I2 such that there are isomet-
ric embeddings (0, 1) ↪→ S1 identifying [ 1

4 ,
3
4 ] with I1 and I2 respectively. Abbrevi-

ate K := [1
4 ,

3
4 ] × [0, ∆2 ] and let Ω′ ⊂ (0, 1) × [0, 3

4∆] be a compact submanifold
of the half space H such that K ⊂ intΩ′. Then for each of the above identifica-
tions S1 \ {pt} ∼= (0, 1) one has Lq-regularity of β̂ on Ω′ × Σ by assumption and
of ∗dAξ + dAη from above. Now the task is to establish in both cases the Lq-regularity
of ∂sβ̂ and ∂tβ̂ on K × Σ using (32). For that purpose choose a cutoff function
h ∈ C∞(H, [0, 1]) supported in Ω′ such that h|K ≡ 1. Then it suffices to show that
for all γ ∈ C∞0 (Ω′ ×Σ,T∗Σ ⊗ g) (compactly supported in int(Ω′)×Σ)∣∣∣∣∫

Ω′×Σ
〈 ∂sγ , hβ̂ 〉

∣∣∣∣ ≤ C(c+ ‖(β, ζ)‖Lq(S1×Σ)

)
‖γ‖Lq∗ (Ω′×Σ).

This gives the required Lq-regularity and -estimate for the weak derivative ∂s(hβ̂) and
hence for ∂sβ̂ on K × Σ. The regularity and estimate for ∂tβ̂ follows by the same
argument with ∂sγ replaced by ∂tγ.

We linearize the submanifold chart maps along (As)s∈(0,1) ∈ L ∩ A(Σ) given by
[W2, Lemma 4.3] for the Lagrangian L ⊂ A0,q∗(Σ). Note that this uses the Lq

∗
-

completion of the actual Lagrangian in A0,p(Σ). Abbreviate Z := W 1,q∗

z (Σ, g)× Rm
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and let ∗s,t denote the Hodge operator on Σ with respect to the metric gs,t. Then one
obtains a smooth family of bounded isomorphisms

Θs,t : Z × Z ∼−→ Lq
∗
(Σ,T∗Σ ⊗ g) =: X

defined for all (s, t) ∈ Ω′ by

Θs,t(ξ, v, ζ, w) = dAsξ +
∑m
i=1 v

iγi(s) + ∗s,tdAsζ +
∑m
i=1 w

i ∗s,t γi(s).

Here γi ∈ C∞((0, 1) × Σ,T∗Σ ⊗ g) with γi(s) ∈ TAsL for all s ∈ (0, 1). If we
abbreviate Z∞ := C∞z (Σ, g) × Rm ⊂ Z, then Θs,t maps Z∞ × Z∞ into the set
of smooth 1-forms Ω1(Σ, g). So given any γ ∈ C∞0 (Ω′ × Σ,T∗Σ ⊗ g) we have
f := Θ−1 ◦ γ ∈ C∞0 (Ω′, Z∞ × Z∞) and for some constant C

‖f‖Lq∗ (Ω′,Z×Z) ≤ C‖γ‖Lq∗ (Ω′,X) = C‖γ‖Lq∗ (Ω′×Σ).

Write f = (f1, f2) with fi ∈ C∞0 (Ω′, Z∞) and note that
∫
Ω′
∂sf1 = 0 due to the com-

pact support. So one can solve ∆Ω′φ1 = ∂sf1 by φ1 ∈ C∞ν (Ω′, Z∞) with
∫
Ω′
φ1 = 0

and ∆Ω′φ2 = ∂sf2 by φ2 ∈ C∞δ (Ω′, Z∞). (For the C∞z (Σ, g)-component of Z∞
one has solutions of the Laplace equation on every Ω′ × {x} that depend smoothly on
x ∈ Σ.) Now let Φ := (φ1, φ2) ∈ C∞(Ω′, Z × Z) and consider the 1-form

α̂γ := h ·Θ(−∂sΦ+ J0∂tΦ) ∈ C∞(Ω′, X).

This extends to a 1-form on Ω×Σ that is admissible in (32). Indeed, α̂γ vanishes for s
close to 0 or 1 and thus trivially extends to s ∈ S1. The Lagrangian boundary condition
is met since for all s ∈ S1

α̂γ(s, 0) = h(s, 0) ·Θs,0(−∂sφ1 − ∂tφ2,−∂sφ2 + ∂tφ1) ∈ Θs,0(Z, 0) = TAsL.

So from (32) we obtain for all α̂γ of the above form∣∣∣∣∫
Ω′×Σ

〈 β̂ , ∂sα̂γ + ∂t(∗α̂γ) 〉
∣∣∣∣ ≤ C

(
c+ ‖(β, ζ)‖Lq(S1×Σ)

)
‖α̂γ‖Lq∗ (Ω,X)

Moreover, one has for all γ ∈ C∞0 (Ω′ ×Σ,T∗Σ ⊗ g) and the associated f , Φ and α̂γ

‖α̂γ‖Lq∗ (Ω,X) ≤ C‖Φ‖W 1,q∗ (Ω′,Z×Z) ≤ C‖f‖Lq∗ (Ω′,Z×Z) ≤ C‖γ‖Lq∗ (Ω′×Σ).

Here the second inequality follows from∆Ω′Φ = ∂sf and [W2, Lemma 2.1] as follows.
In the Rm-component of Z, it is the usual elliptic estimate for the Dirichlet or Neumann
problem. For the components in the infinite dimensional part Y := W 1,q∗

z (Σ, g) of Z
(still denoted by φi and fi) this uses the following estimate. For all ψ ∈ C∞ν (Ω′, Y ∗) in
the case i = 1 and for all ψ ∈ C∞δ (Ω′, Y ∗) in the case i = 2∣∣∣∣∫

Ω′×Σ
〈φi , ∆Ω′ψ 〉

∣∣∣∣ =
∣∣∣∣∫
Ω′×Σ

〈∆Ω′φi , ψ 〉
∣∣∣∣

=
∣∣∣∣∫
Ω′×Σ

〈 ∂sfi , ψ 〉
∣∣∣∣

=
∣∣∣∣∫
Ω′×Σ

〈 fi , ∂sψ 〉
∣∣∣∣

≤ ‖fi‖Lq∗ (Ω′,Y )‖ψ‖W 1,q(Ω′,Y ∗).
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Now a calculation shows that

∂sα̂γ +∂t(∗α̂γ) = h ·Θ(∆Φ) +∂s(h ·Θ)(−∂sΦ+J0∂tΦ) +∂t(h ·Θ)(∂tΦ−J0∂sΦ).

We then use ∆Φ = ∂sf to obtain∣∣∣∣∫
Ω′×Σ

〈h · β̂ , ∂sγ 〉
∣∣∣∣

=
∣∣∣∣∫
Ω′×Σ

〈 β̂ , h ·Θ(∆Φ) + h · ∂sΘ(f) 〉
∣∣∣∣

≤
∣∣∣∣∫
Ω′×Σ

〈 β̂ , ∂sα̂γ + ∂t(∗α̂γ) 〉
∣∣∣∣

+ C‖β̂‖Lq(Ω′,X∗)
(
‖ − ∂sΦ+ J0∂tΦ)‖Lq∗ (Ω′,Z×Z) + ‖f‖Lq∗ (Ω′,Z×Z)

)
≤ C

(
c+ ‖(β, ζ)‖Lq(S1×Σ)

)
‖γ‖Lq∗ (Ω′×Σ).

This holds with uniform constants for all γ ∈ C∞0 (Ω′ ×Σ,T∗Σ ⊗ g) and thus implies
the Lq-regularity of ∂sβ̂ on K ×Σ together with the estimate

‖∂sβ̂‖Lq(K×Σ) ≤ C
(
c+ ‖(β, ζ)‖Lq(S1×Y )

)
.

This establishes the Lq-regularity and -estimate for ∂sβ̂ (and analogously of ∂tβ̂) on
S1 × [0, ∆2 ] and thus finishes the proof of theorem C (iii). 2

Proof of theorem C (i) :
Lemma 3.1 and the identities (23) imply that for some constant C and for all (α,ϕ) in
the domain of D(A,Φ)

‖(α,ϕ)‖W 1,p ≤ C
(
‖D(A,Φ)(α,ϕ)‖p + ‖(α,ϕ)‖p

)
.

Note that the embedding W 1,p(X) ↪→ Lp(X) is compact, so this estimate already
implies that kerD(A,Φ) is finite dimensional and imD(A,Φ) is closed (see e.g. [Z,
3.12]). So it remains to consider the cokernel of D(A,Φ). For that purpose we abbre-
viate Z := Lp(S1×Y,T∗Y ⊗ g)×Lp(S1×Y, g), then cokerD(A,Φ) = Z/imD(A,Φ)

is a Banach space since imD(A,Φ) is closed. So it has the same dimension as its dual
space (Z/imD(A,Φ))∗ ∼= (imD(A,Φ))⊥. Now let σ : S1 × Y → S1 × Y denote the
reflection σ(s, y) := (−s, y) on S1 ∼= R/Z, then we claim that there is an isomorphism

(imD(A,Φ))⊥
∼−→ kerDσ∗(A,Φ)

(β, ζ) 7−→ (β ◦ σ, ζ ◦ σ).
(34)

HereDσ∗(A,Φ) = D(A′,Φ′) is the linearized operator corresponding to the reflected con-
nection σ∗Ã = A′ + Φ′ds with respect to the metric σ∗g̃ on X . Note that kerDσ∗(A,Φ)

has finite dimension since the estimate in theorem C (ii) also holds for the operator
Dσ∗(A,Φ). So this would indeed prove that cokerDÃ is of finite dimension and hence
DÃ is a Fredholm operator.
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To establish the above isomorphism consider any (β, ζ) ∈ (imD(A,Φ))⊥, that is
β ∈ Lp∗(S1 × Y,T∗Y ⊗ g) and ζ ∈ Lp∗(S1 × Y, g) such that for all α ∈ E1,p

A and
ϕ ∈W 1,p(S1 × Y, g) ∫

S1×Y
〈D(A,Φ)(α,ϕ) , (β, ζ) 〉 = 0.

Iteration of theorem C (iii) implies that β and ζ are in fact W 1,p-regular: We start with
q = p∗ < 2, then the lemma asserts W 1,p∗ -regularity. Next, the Sobolev embedding
theorem gives Lq1 -regularity for some q1 ∈ ( 4

3 , 2) with q1 > p∗. Indeed, the Sobolev
embedding holds for any q1 ≤ 4p∗

4−p∗ , and 4
3 < 4p∗

4−p∗ as well as p∗ < 4p∗

4−p∗ holds due
to p∗ > 1. So the lemma together with the Sobolev embeddings can be iterated to give
Lqi+1 -regularity for qi+1 = 4qi

4−qi as long as 4 > qi > 2 or 2 > qi ≥ p∗. This iteration
yields q2 ∈ (2, 4) and q3 > 4. Thus another iteration of the lemma gives W 1,q3 - and
thus also Lp-regularity of β and ζ. Finally, since p > 2 the lemma applies again and
asserts the claimed W 1,p-regularity of β and ζ. Now by partial integration

0 =
∫
S1×Y

〈D(A,Φ)(α,ϕ) , (β, ζ) 〉

=
∫
S1

∫
Y

〈∇sα− dAϕ+ ∗dAα , β 〉 +
∫
S1

∫
Y

〈∇sϕ− d∗Aα , ζ 〉

=
∫
S1

∫
Y

〈α , −∇sβ − dAζ + ∗dAβ 〉 +
∫
S1

∫
Y

〈ϕ , −∇sζ − d∗Aβ 〉

−
∫
S1

∫
Σ

〈α ∧ β 〉 −
∫
S1

∫
Σ

〈ϕ , ∗β 〉. (35)

Testing this with all α ∈ C∞0 (S1 × Y,T∗Y ⊗ g) ⊂ E1,p
A and ϕ ∈ C∞0 (S1 × Y, g)

implies−∇sβ−dAζ+∗dAβ = 0 and−∇sζ−d∗Aβ = 0. Then furthermore we deduce
∗β(s)|∂Y = 0 for all s ∈ S1 from testing with ϕ that run through all of C∞(S1×Σ, g)
on the boundary. Finally,

∫
S1

∫
Σ
〈α ∧ β 〉 = 0 remains from (35). Since both α and β

restricted to S1 × Σ are continuous paths in A0,p(Σ), this implies that for all s ∈ S1

and every α ∈ TAsL

0 =
∫
Σ

〈α ∧ β(s) 〉 = ω(α, β(s)),

where ω is the symplectic structure on A0,p(Σ). Since TAsL is a Lagrangian sub-
space, this proves β(s)|∂Y ∈ TAsL for all s ∈ S1 and thus β ∈ E1,p

A , or equiva-
lently β ◦ σ ∈ EA◦σ . So (β ◦ σ, ζ ◦ σ) lies in the domain of Dσ∗(A,Φ). Now note that
σ∗Ã = A ◦ σ − (Φ ◦ σ)ds, thus one obtains (β ◦ σ, ζ ◦ σ) ∈ kerDσ∗(A,Φ) since

Dσ∗(A,Φ)(β ◦ σ, ζ ◦ σ) =
(
(−∇sβ − dAζ + ∗dAβ) ◦ σ , (−∇sζ − d∗Aβ) ◦ σ

)
= 0.

This proves that the map in (34) indeed maps into kerDσ∗(A,Φ). To see the surjectivity
of this map consider any (β, ζ) ∈ kerDσ∗(A,Φ). Then the same partial integration as
in (35) shows that (β ◦ σ, ζ ◦ σ) ∈ (imD(A,Φ))⊥, and thus (β, ζ) is the image of this
element under the map (34). So this establishes the isomorphism (34) and thus shows
that D(A,Φ) is Fredholm. 2
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A. Dirichlet and Neumann problem

Throughout this paper we use various regularity results for the Laplace operator. For
convenience these are summarized in this appendix.

We deal with (homogeneous) Dirichlet boundary conditions and with possibly inho-
mogeneous Neumann boundary conditions. Often, the equations are formulated weakly
with the help of the following test function spaces:

C∞δ (M) =
{
φ ∈ C∞(M)

∣∣ φ|∂M = 0
}
,

C∞ν (M) =
{
φ ∈ C∞(M)

∣∣ ∂φ
∂ν

∣∣
∂M

= 0
}
.

Here and throughout this appendix let M be a manifold with boundary. We abbreviate
∆ := d∗d, and denote by ∂φ

∂ν the Lie derivative in the direction of the outer unit normal.
Moreover, we use the notation N = {1, 2, . . .} and N0 = {0, 1, . . .}. The regularity the-
ory for the Dirichlet and Neumann problem that is used in this paper can be summarized
as follows. References are for example [GT] and [W1, Theorems 2.3’,3.2,D.2].

Proposition A.1. Let 1 < p < ∞ and k ∈ N, then there exists a constant C such
that the following holds. Let f ∈ W k−1,p(M) and G ∈ W k,p(M) and suppose that
u ∈ W k,p(M) is a weak solution of the inhomogeneous Neumann problem (or the
Dirichlet problem, in which case one can drop G), that is for all ψ ∈ C∞ν (M) (or for
all ψ ∈ C∞δ (M)) ∫

M

u ·∆ψ =
∫
M

f · ψ +
∫
∂M

G · ψ.

Then u ∈W k+1,p(M) and

‖u‖Wk+1,p ≤ C
(
‖f‖Wk−1,p + ‖G‖Wk,p + ‖u‖Wk,p

)
.

In the special case k = 0 there exists a constant C such that the following holds: Sup-
pose that u ∈ Lp(M) and that there exists a constant c such that for all ψ ∈ C∞ν (M)
(or for all ψ ∈ C∞δ (M)) ∫

M

u ·∆ψ ≤ c‖ψ‖W 1,p∗ .

Then u ∈W 1,p(M) and ‖u‖W 1,p ≤ C
(
c+ ‖u‖Lp

)
.

We also frequently encounter Laplace equations for 1-forms, where the components
satisfy different boundary conditions. In these cases the following lemma allows to
obtain regularity results for the components separately. The proof relies on the above
standard regularity theory for the Laplace operator.

Lemma A.2. Let (M, g) be a compact Riemannian manifold (possibly with boundary),
let k ∈ N0 and 1 < p < ∞. Let X ∈ Γ (TM) be a smooth vector field that is
either perpendicular to the boundary, i.e. X|∂M = h · ν for some h ∈ C∞(∂M), or
tangential, i.e. X|∂M ∈ Γ (T∂M). In the first case let T = C∞δ (M), in the latter case
let T = C∞ν (M). Then there exists a constant C such that the following holds:

Fix a function f ∈ W k,p(M) and a 2-form γ ∈ W k,p(M,Λ2T∗M) and suppose
that the 1-form α ∈W k,p(M,T∗M) satisfies∫

M

〈α , dη 〉 =
∫
M

f · η ∀η ∈ C∞(M),∫
M

〈α , d∗ω 〉 =
∫
M

〈 γ , ω 〉 ∀ω = d(φ · ιXg) , φ ∈ T .
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Then α(X) ∈W k+1,p(M) and

‖α(X)‖Wk+1,p ≤ C
(
‖f‖Wk,p + ‖γ‖Wk,p + ‖α‖Wk,p

)
.

Remark A.3. In the case k = 0 let 1
p + 1

p∗ = 1, then the weak equations for α can be
replaced by the following: There exist constants c1 and c2 such that

∣∣∣∣∫
M

〈α , dη 〉
∣∣∣∣ ≤ c1 ‖η‖p∗ ∀η ∈ C∞(M),∣∣∣∣∫

M

〈α , d∗d(φ · ιXg) 〉
∣∣∣∣ ≤ c2 ‖φ‖W 1,p∗ ∀φ ∈ T .

The estimate then becomes ‖α(X)‖W 1,p ≤ C
(
c1 + c2 + ‖α‖p

)
.
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Proof of lemma A.2 and remark A.3 :
Let αν ∈ C∞(M,T∗M) be an Lp-approximating sequence for α such that αν ≡ 0 near
∂M . Then one obtains for all φ ∈ T∫

M

α(X) ·∆φ = lim
ν→∞

(∫
M

〈 LXαν , dφ 〉 −
∫
M

〈 ιXdαν , dφ 〉
)

= lim
ν→∞

(
−
∫
M

〈αν , LXdφ 〉 −
∫
M

〈αν , divX · dφ 〉

−
∫
M

〈αν , ιYdφLXg 〉 −
∫
M

〈dαν , ιXg ∧ dφ 〉
)

=
∫
M

〈α , d(−LXφ− divX · φ) 〉 −
∫
M

〈α , d∗(ιXg ∧ dφ) 〉

+
∫
M

〈α , φ · d(divX)− ιYdφLXg 〉

=
∫
M

〈 f , −LXφ− divX · φ 〉+
∫
M

〈 γ , d(φ · ιXg) 〉

−
∫
M

〈α , d∗(φ · dιXg) 〉+
∫
M

〈α , φ · d(divX)− ιYdφLXg 〉.

Here the vector field Ydφ is given by ιYdφg = dφ. In the case k ≥ 1 further partial
integration yields for all φ ∈ T∫

M

α(X) ·∆φ =
∫
M

F · φ+
∫
∂M

G · φ,

where F ∈W k−1,p(M), G ∈W k,p(M), and for some constant C

‖F‖Wk−1,p + ‖G‖Wk,p ≤ C
(
‖f‖Wk,p + ‖γ‖Wk,p + ‖α‖Wk,p

)
.

So the regularity proposition A.1 for the weak Laplace equation with either Neumann
(i.e. T = C∞ν (M)) or Dirichlet (i.e. T = C∞δ (M)) boundary conditions proves that
α(X) ∈W k+1,p(M) with the according estimate.

In the case k = 0 one works with the following inequality: Let 1
p∗ + 1

p = 1, then
there is a constant C such that for all φ ∈ T∣∣∣∣∫

M

α(X) ·∆φ
∣∣∣∣ ≤ C(‖f‖p + ‖γ‖p + ‖α‖p

)
‖φ‖W 1,p∗ .

(Under the assumptions of remark A.3, one simply replaces ‖f‖p and ‖γ‖p by c1 and c2
respectively.) The regularity and estimate for α(X) then follow from proposition A.1.
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