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Abstract

The main purpose of this paper is to give a general regularity result
for Cauchy-Riemann equations in complex Banach spaces with totally
real boundary conditions. The usual elliptic Lp-regularity results hold
true under one crucial assumption: The Banach space is isomorphic to a
closed subspace of an Lp-space. (Equivalently, the totally real submanifold
is modelled on a closed subspace of an Lp-space.) Some minor corrections
are in order on the Sobolev arithmetic in the estimates.

Secondly, we describe a class of examples of such totally real subman-
ifolds, namely gauge invariant Lagrangian submanifolds in the space of
connections over a Riemann surface. These pose natural boundary con-
ditions for the anti-self-duality equation on 4-manifolds with a boundary
space-time splitting, leading towards the definition of a Floer homology
for 3-manifolds with boundary, which is the first step in a program by
Salamon for the proof of the Atiyah-Floer conjecture. The principal part
of such a boundary value problem is an example of a Banach space valued
Cauchy-Riemann equation with totally real boundary condition.

1 Introduction

A complex Banach space is a Banach space X equipped with a complex struc-
ture, i.e. J ∈ EndX that satisfies J2 = −1l. The Cauchy-Riemann equation for
a map u : Ω → X on a domain Ω ⊂ R2 with coordintes (s, t) is ∂su+ J∂tu = 0.
We will also study the equation with an inhomogeneous term on the right hand
side. As in the finite dimensional case, totally real boundary conditions are
natural for this Cauchy-Riemann equation. A Banach submanifold L ⊂ X is
called totally real with respect to the complex structure J if for all x ∈ L one
has the direct sum decomposition

X = TxL ⊕ J TxL. (1)

Let Ω ⊂ H be a compact 2-dimensional submanifold in the half space

H := {(s, t) ∈ R2
∣∣ t ≥ 0}.
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i.e. Ω has smooth boundary that might intersect ∂H = {t = 0}. We will
consider Cauchy-Riemann equations for maps u : Ω → X that satisfy totally
real boundary conditions on the boundary part ∂Ω∩∂H. Fix an inhomogeneous
term G : Ω → X, a family J : Ω → EndX of complex structures on X, and let
L ⊂ X be a Banach submanifold that is totally real with respect to Js,t for all
(s, t) ∈ Ω. Then we study the following boundary value problem for u : Ω → X,{

∂su+ Js,t∂tu = G,
u(s, 0) ∈ L ∀(s, 0) ∈ ∂Ω ∩ ∂H. (2)

The Cauchy-Riemann equation itself is linear, but for the linearization of this
boundary value problem one has to linearize the boundary conditions. So fix
a path x : R → L, then we will also study the Cauchy-Riemann equation with
linearized totally real boundary conditions for u : Ω → X,{

∂su+ Js,t∂tu = G,
u(s, 0) ∈ Tx(s)L ∀(s, 0) ∈ ∂Ω ∩ ∂H. (3)

In this case, there also is a weak formulation of the boundary value problem.
We denote by X∗ the dual space of X and denote by J∗ ∈ EndX∗ the dual
operator of the complex structure J ∈ EndX. Then the weak formulation of
(3) for u : Ω → X is∫

Ω

〈u , ∂sψ + ∂t(J∗ψ) 〉 = −
∫

Ω

〈G , ψ 〉

for all ψ ∈ C∞(Ω, X∗) with suppψ ⊂ intΩ and ψ(s, 0) ∈ (J(s, 0)Tx(s)L)⊥ for
all (s, 0) ∈ ∂Ω ∩ ∂H. In order to obtain regularity results for any of the above
boundary value problems we make the following crucial assumption.

(Hp) Throughout we suppose that the Banach submanifold L ⊂ X is modelled
on a closed subspace Y ⊂ Z of an Lp-space Z = Lp(M,Rm) for some
p > 1, m ∈ N, and a closed manifold M .

Remark. Consider (1) to see that for a totally real submanifold L ⊂ X the
assumption (Hp) is equivalent to X being isomorphic to a closed subspace of an
Lp-space.

To show that this assumption still allows L to be modelled on a wide variety
of Banach spaces, we give the following examples.

Example 1.1

(i) Every finite dimensional space Rm is isometric to the subspace of constants
in Lp(M,Rm) for VolM = 1.

(ii) The Sobolev space W `,p(M) (and thus every closed subspace thereof) is
isomorphic to a closed subspace of Lp(M,Rm).
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To see this, choose vector fields X1, . . . , Xk ∈ Γ(TM) that span TxM for
all x ∈ M . Then the map u 7→ (u,∇X1u, . . . ,∇`

Xk
u) running through all

derivatives of u in the direction of the Xi up to order ` gives an isomor-
phism between W `,p(M) and a closed subspace of Lp(M,Rm) =: Z.

(iii) Finite products of closed subspaces in Lp(Mi,Rmi) are isometric to a
closed subspace of Lp(

∪
Mi,Rmax{mi}).

Our first main theorem gives regularity results and estimates for solutions
of (2) depending on the regularity of the inhomogeneous term in the Cauchy-
Riemann equation. Here and throughout the interior of Ω is defined with re-
spect to the topology of H, so intΩ still contains ∂Ω∩ ∂H. We use the notation
N = {1, 2, . . .}.

Theorem 1.2 Fix 1 < p < ∞ and a compact subset K ⊂ intΩ. Let L ⊂ X be
a Banach submanifold that satisfies (Hp).

(i) Fix k ∈ N and let

q :=


p ; if k ≥ 3 or k = 2, p > 2,

any q > 2 ; if k = 2, p = 2,
4p

2+p ; if k = 2, p < 2,
2p ; if k = 1.

Suppose that u ∈ W k,q(Ω, X) solves (2) for G ∈ W k,q(Ω, X) and with a
family J ∈ W k+1,∞(Ω,EndX) of complex structures on X, with respect
to which L is totally real. Then u ∈W k+1,p(K,X).

(ii) Let J0 ∈ C∞(Ω,EndX) be a smooth family of complex structures on X,
with respect to which L is totally real. Let u0 ∈ C∞(Ω, X) be such that
u0(s, 0) ∈ L for all (s, 0) ∈ ∂Ω ∩ ∂H. Then there exists a constant δ > 0
with the following significance: For every constant c and for every k ∈ N
there exists a constant1 C such that the following holds: If u, G, and J
satisfy the hypotheses of (i) and

‖u− u0‖L∞(Ω,X) ≤ δ, ‖J − J0‖L∞(Ω,EndX) ≤ δ,

‖u− u0‖Wk,q(Ω,X) ≤ c, ‖J − J0‖Wk+1,∞(Ω,EndX) ≤ c,

then

‖u− u0‖Wk+1,p(K,X) ≤ C
(
‖G‖Wk,q(Ω,X) + ‖u− u0‖Wk,q(Ω,X)

)
.

Firstly note the special form of this theorem for k = 1 and k = 2. In order
to deduce W 2,p-regularity of u one needs to assume that u and G are W 1,2p-
regular, due to nonlinearities introduced by the coordinates. If now p > 2 then

1More precisely, the constant C can be bounded by a polynomial in c of order 2k.
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q ≤ p, so W 2,p-regularity directly implies W 3,p-regularity. If however p ≤ 2,
then W 3,p-regularity would only follow if we had W 2,q-regularity for the given
q > p. For maps with values in a finite dimensional space, such arguments can
be iterated together with Sobolev embeddings to prove smoothness, starting
from W 1,2p-regularity for any p > 1. For functions with values in a Banach
space, and the Lagrangian modelled on an Lp-space, this iteration only works
if p > 2.

Secondly, note that the u0 in (ii) satisfies the Lagrangian boundary condition
but is not a solution of the Cauchy-Riemann equation. It will be required as
reference for the construction of coordinates near L that straighten out the
boundary condition but do not depend on the solution u and hence allow to
deduce an estimate for u. In order that the constant in the estimate becomes
independent of the complex structure J , this construction moreover requires
that J is C0-close to a fixed family J0 of complex structures. The W k+1,∞-
bound on the complex structure is only required in order to obtain uniform
constants.

Moreover, for fixed k ∈ N in theorem 1.2 it would actually suffice to have
W k+1,∞-regularity of u0 and J0. For the interior regularity and estimates it
even suffices to have W k,∞-regularity and bounds on J since one does not need
to write u in coordinates that are adapted to the boundary condition and hence
depend on J . This is the same situation as in the finite dimensional case, c.f.
[MS]. Finally, the submanifold L need only be totally real with respect to Js,t
for (s, t) ∈ ∂Ω ∩ ∂H. Since this is an open condition, it is then automatically
totally real in a neighbourhood of ∂Ω ∩ ∂H.

The second main result concerns the linearized boundary value problem (3).
We use its weak formulation to state the following regularity result.

Theorem 1.3 Fix 1 < p < ∞, a compact subset K ⊂ intΩ, and a Banach
submanifold L ⊂ X that satisfies (Hp). Fix a path x ∈ W 1,∞(R,L) in L and
let J ∈ W 1,∞(Ω,EndX) be a family of complex structures on X, with respect
to which L is totally real. Then there is a constant C such that the following
holds:

Suppose that u ∈ Lp(Ω, X) and that there exists a constant cu such that for
all ψ ∈W 1,∞(Ω, X∗) with suppψ ⊂ intΩ and ψ(s, 0) ∈ (J(s, 0)Tx(s)L)⊥ for all
(s, 0) ∈ ∂Ω ∩ ∂H ∣∣∣∣∫

Ω

〈u , ∂sψ + ∂t(J∗ψ) 〉
∣∣∣∣ ≤ cu‖ψ‖Lp∗ (Ω,X∗).

Then u ∈W 1,p(K,X) and

‖u‖W 1,p(K,X) ≤ C
(
cu + ‖u‖Lp(Ω,X)

)
.

For strong solutions of the linearized boundary value problem (3) the more
suitable formulation of theorem 1.3 is the following estimate.
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Corollary 1.4 In the setting of theorem 1.3 there exists a constant C such that
the following holds: Suppose that u ∈ W 1,p(Ω, X) satisfies u(s, 0) ∈ Tx(s)L for
all (s, 0) ∈ ∂Ω ∩ ∂H, then

‖u‖W 1,p(K,X) ≤ C
(
‖∂su+ J∂tu‖Lp(Ω,X) + ‖u‖Lp(Ω,X)

)
.

A first application of the above results is the elliptic theory for anti-self-
dual instantons with Lagrangian boundary conditions. It is developed in [W2],
where theorem 1.2 is used to obtain nonlinear regularity and compactness re-
sults, whereas theorem 1.3 enters in the Fredholm theory. Since the Fredholm
theory is performed on a special compact model domain, we make the following
remark.

Remark. Theorem 1.3 and corollary 1.4 remain true when R is replaced by S1,
i.e. when one considers compact domains K ⊂ intΩ ⊂ S1 × [0,∞) in the half
cylinder and a loop x ∈ C∞(S1,L).

To see this, identify S1 ∼= R/Z, identify K with a compact subset K ′ ⊂ H
in [0, 1] × [0,∞), and periodically extend x and u for s ∈ [−1, 2]. Then u is
defined and satisfies the weak equation on some open domain Ω′ ⊂ H such that
K ′ ⊂ intΩ′, so theorem 1.3 and corollary 1.4 apply. These assert regularity and
estimates on K ′ and hence also on K.

We now proceed to describe a class of examples, to which the above regularity
theory for the Cauchy-Riemann equation can be applied.

A symplectic Banach space (Z, ω) consists of a Banach space Z and a sym-
plectic structure ω, that is a nondegenerate,2 skewsymmetric, bilinear form
ω : Z × Z → R. In the finite dimensional case there always exists an ω-
compatible complex structure J ∈ EndZ, i.e. a complex structure such that
ω(·, J ·) defines a positive definite inner product on Z. In the case of an infinite
dimensional Banach space this is not necessarily true. If an ω-compatible com-
plex structure exists, then the norm on Z that is induced by the inner product
will be bounded but not necessarily complete. The completion of Z with re-
spect to that norm is then a complex Hilbert space. In the example below, this
Hilbert space will always be the same – only the complex structure varies.

Our example of a symplectic Banach space will be the space of connections
over a Riemann surface Σ. We restrict the discussion to the trivial G-bundle over
Σ, where G is a compact Lie group.3 Then the space of Lp-regular connections
is given by the Lp-regular 1-forms with values in the Lie algebra g of G. We
denote this space

A0,p(Σ) = Lp(Σ;T∗Σ ⊗ g).

2Nondegeneracy means that for all z ∈ Z \ {0} there exists a y ∈ Z such that ω(z, y) 6= 0.
3The discussion directly generalizes to nontrivial bundles, where the connections can be

described as 1-forms with values in an associated bundle.
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(For more details on gauge theory and the notation see section 3 and [W1].) For
p ≥ 2 the Banach space A0,p(Σ) is equipped with the symplectic structure

ω(α, β) =
∫

Σ

〈α ∧ β 〉 ∀α, β ∈ Lp(Σ;T∗Σ ⊗ g). (4)

Moreover, for p > 2 the gauge group G1,p(Σ) = W 1,p(Σ,G) acts on A0,p(Σ) by

u∗A = u−1Au+ u−1du ∀A ∈ A0,p(Σ), u ∈ G1,p(Σ).

This gauge action leaves ω invariant. So throughout we assume p > 2. Now
for any metric on Σ, the Hodge ∗ operator induces an ω-compatible complex
structure on A0,p(Σ). The associated inner product is the L2-inner product of
g-valued 1-forms, and the completion of A0,p(Σ) with respect to the induced
norm is always L2(Σ,T∗Σ ⊗ g).

We call a Banach submanifold L ⊂ (A0,p(Σ), ω) Lagrangian if it is isotropic,
i.e. ω|L ≡ 0, and if TAL is maximal for all A ∈ L. By the latter we mean that
for all α ∈ A0,p(Σ) the following implication holds:(

∀β ∈ TAL ω(α, β) = 0
)

=⇒ α ∈ TAL.

In section 3 we will introduce the space of weakly flat Lp-connections A0,p
flat(Σ).

In particular, we prove that every weakly flat connection is gauge equivalent to
a smooth connection. Then we shall show in section 4 that a gauge invariant
Lagrangian submanifold of A0,p(Σ) that also satisfies L ⊂ A0,p

flat(Σ) is automati-
cally totally real with respect to the Hodge ∗ operator for any metric on Σ, i.e.
for all A ∈ L

A0,p(Σ) = TAL ⊕ ∗TAL.

Moreover, such Lagrangian submanifolds satisfy the assumption (Hp) for theo-
rems 1.2 and 1.3. The assumptions of gauge invariance and flatness also ensure
that the Lagrangian submanifold L descends to a Lagrangian submanifold in
the (singular) symplectic manifold MΣ = A0,p

flat(Σ)/G1,p(Σ), the moduli space
of gauge equivalence classes of flat connections. The latter can be viewed as
symplectic quotient, as was first observed by [AB]. Note that both MΣ and the
quotient L/G1,p(Σ) are allowed to have singularities. These do not enter the
discussion since we will be working in the total space.

Now a pseudoholomorphic curve u : Ω → MΣ with Lagrangian boundary
conditions on ∂Ω∩ ∂H lifts to a solution B : Ω×Σ → T∗Σ⊗ g of the boundary
value problem  FB = 0,

∂sB + ∗∂tB= dBΦ + ∗dBΨ,
B|(s,0)×Σ ∈ L ∀(s, 0) ∈ ∂Ω ∩ ∂H.

(5)

Here Φ,Ψ : Ω × Σ → g are determined by the solution B. For given Φ,Ψ, the
above boundary value problem without the first equation is a Cauchy-Riemann
equation with totally real boundary conditions as studied in this paper.
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Changing the first equation in (5) to ∗FB = ∂tΦ− ∂sΨ + [Φ,Ψ] leads to the
the anti-self-duality equation for the connection A = Φds+ Ψdt+B on Ω × Σ
with Lagrangian boundary conditions,{

∗FA + FA = 0,
A|(s,0)×Σ ∈ L ∀(s, 0) ∈ ∂Ω ∩ ∂H. (6)

This boundary value problem arises naturally from the Chern-Simons 1-form
on a 3-manifold Y with boundary Σ : This 1-form becomes closed and it is
in fact the differential of the (multivalued) Chern-Simons functional, when it is
restricted to the space A(Y,L) of connections A on Y with Lagrangian boundary
conditions A|Σ ∈ L. Now the gradient flow lines of the Chern-Simons functional
are just the solutions of (6) in a special gauge.

It is a program by Salamon [S] to use the boundary value problem (6) to
define a Floer homology HFinst

∗ (Y, L) for 3-manifolds Y with boundary ∂Y = Σ
and Lagrangian submanifolds L = L/G1,p(Σ) ⊂ MΣ, i.e. a generalized Morse
homology for the Chern-Simons functional on A(Y,L). As a first indication
for the wellposedness of (6) we prove in corollary 4.5 that every W 1,p-regular
connection satisfying the boundary condition in (6) can be approximated by
smooth connections satisfying the same boundary condition. The elliptic theory
for the definition of this Floer homology is set up in [W2], where the regularity
theorems 1.2 and 1.3 play a crucial role.

Another approach to the definition of a Floer homology for 3-manifolds with
boundary was introduced by Fukaya [F]. This also uses Lagrangian boundary
conditions, but the construction is restricted to the case of nontrivial bundles,
in which case the quotient L/G1,p(Σ) is smooth.

Finally, a concrete example of a totally real submanifold in a complex Banach
space is given in lemma 4.6. Let Σ = ∂Y be the boundary of a handle body Y
and consider the Lp-closure of the set of smooth flat connections on Σ that can
be extended to a flat connection on Y ,

LY := cl
{
A ∈ Aflat(Σ)

∣∣ ∃Ã ∈ Aflat(Y ) : Ã|Σ = A
}

⊂ A0,p(Σ).

This is a Lagrangian submanifold and it is gauge invariant and contained in the
space of flat connections, so as above it also is totally real with respect to the
Hodge operator as complex structure.

These submanifolds occur in the Atiyah-Floer conjecture for homology 3-
spheres as follows: A Heegaard splitting Y = Y0 ∪Σ Y1 of a homology 3-sphere
Y into two handlebodies Y0 and Y1 with common boundary Σ gives rise to two
Lagrangian submanifolds LYi ⊂ A0,p(Σ) in the space of SU(2)-connections. One
then has a symplectic Floer homology HFsymp

∗ (MΣ, LY0 , LY1) for the quotients
LYi := LYi/G1,p(Σ) ⊂ MΣ. (This is generated by the intersection points of
the Lagrangian submanifolds and the boundary operator arises from counting
pseudoholomorphic strips with Lagrangian boundary conditions, i.e. solutions
of a boundary value problem like (5).) It was conjectured by Atiyah [At] and
Floer that this should be isomorphic to the instanton Floer homology HFinst

∗ (Y ),
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the generalized Morse homology for the Chern-Simons functional on the space
of SU(2)-connections on Y . Now the program by Salamon [S] is to establish
this isomorphism in two steps via the intermediate HFinst

∗ ([0, 1]×Σ, LY0 ×LY1)
by adiabatic limit type arguments similar to [DS2]. These adiabatic limits will
again require elliptic estimates for boundary value problems including a Cauchy-
Riemann equation with totally real boundary conditions as studied in this paper.

This paper is organized as follows: In section 2 we prove theorems 1.2 and
1.3 and corollary 1.4. Section 3 is of preliminary nature: We introduce the
notion of a weakly flat connection, prove the fundamental regularity result for
weakly flat connections, and discuss the moduli space of flat conections over a
Riemann surface. Section 4 deals with gauge invariant Lagrangian submanifolds
in the space of connections. We establish their basic properties and prove the
approximation result mentioned above. Moreover, we show that the LY are
indeed examples of Lagrangian and totally real submanifolds.
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2 Regularity

In this section we prove the regularity theorems 1.2, 1.3, and corollary 1.4. Let
Ω ⊂ H be a compact 2-dimensional submanifold of the half space. Consider
a Banach space X with a family J : Ω → EndX of complex structures. Let
L ⊂ X be a Banach submanifold that satisfies (Hp), i.e. it is modelled on a
closed subspace Y ⊂ Z of an Lp-space Z = Lp(M,Rm) for some p > 1, m ∈ N,
and a closed manifold M , and suppose that L is totally real with respect to all
Js,t for (s, t) ∈ Ω. Then we consider maps u : Ω → X that solve the boundary
value problem (2), restated here:{

∂su+ Js,t∂tu = G,
u(s, 0) ∈ L ∀(s, 0) ∈ ∂Ω ∩ ∂H. (7)

The idea for the proof of theorem 1.2 is to straighten out the boundary condition
by going to local coordinates in Y × Y near u(s, 0) ∈ X such that Y × {0}
corresponds to the submanifold L and the complex structure becomes standard
along Y ×{0}. For theorem 1.3, concerning the linearization of (7), one chooses
R-dependent coordinates for X that identify Y × {0} with Tx(s)L along the
path x : R → L. Then the boundary value problem (7) or its linearization
yields Dirichlet and Neumann boundary conditions for the two components of u
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and one can use regularity results for the Laplace equation with such boundary
conditions.

However, there are two difficulties. Firstly, by straightening out the totally
real submanifold, the complex structure J becomes explicitly dependent on u,
so one has to deal carfully with nonlinearities in the equation. Secondly, this
approach requires a Caldéron-Zygmund inequality for functions with values in
a Banach space. In general, the Caldéron-Zygmund inequality is only true for
values in Hilbert spaces. However, due to the assumption that L is modelled
on an Lp-space, we only need the Lp-inequality for functions with values in Lp-
spaces. In that case, the Caldéron-Zygmund inequality holds, as can be seen
by integrating over the real valued inequality. This will be made precise in the
following lemma, in which (i),(iii) are regularity results for the homogeneous
Dirichlet problem and (ii),(iv) concern the Neumann problem with possibly
inhomogeneous boundary conditions. In (i),(ii) the minimum regularity of u is
W 1,p – in the case of lower regularity one has to use the weak formulation in
(iii), (iv). We abbreviate ∆ := d∗d and denote by ν the outer unit normal to
∂Ω. We write Z∗ for the dual space of any Banach space Z and write 〈 ·, · 〉 for
the pairing of Z and Z∗. The Sobolev spaces of Banach space valued functions
considered below are all defined as completions of the smooth functions with
respect to the respective Sobolev norm. Moreover, we use the notation

C∞
δ (Ω, Z∗) := {ψ ∈ C∞(Ω, Z∗)

∣∣ ψ|∂Ω = 0},
C∞
ν (Ω, Z∗) := {ψ ∈ C∞(Ω, Z∗)

∣∣ ∂ψ
∂ν

∣∣
∂Ω

= 0}.

Lemma 2.1 Fix 1 < p < ∞ and k ∈ N and let Ω be a compact Riemannian
manifold with boundary. Let Z = Lp(M) for some closed manifold M . Then
there exists a constant C such that the following holds.

(i) Let f ∈W k−1,p(Ω, Z) and suppose that u ∈W k,p(Ω, Z) solves∫
Ω

〈u , ∆ψ 〉 =
∫

Ω

〈 f , ψ 〉 ∀ψ ∈ C∞
δ (Ω, Z∗).

Then u ∈W k+1,p(Ω, Z) and ‖u‖Wk+1,p ≤ C‖f‖Wk−1,p .

(ii) Let f ∈ W k−1,p(Ω, Z), g ∈ W k,p(Ω, Z), and suppose that u ∈ W k,p(Ω, Z)
solves ∫

Ω

〈u , ∆ψ 〉 =
∫

Ω

〈 f , ψ 〉 +
∫
∂Ω

〈 g , ψ 〉 ∀ψ ∈ C∞
ν (Ω, Z∗).

Then u ∈W k+1,p(Ω, Z) and

‖u‖Wk+1,p ≤ C
(
‖f‖Wk−1,p + ‖g‖Wk,p + ‖u‖Lp

)
.

(iii) Suppose that u ∈ Lp(Ω, Z) and there exists a constant cu such that∣∣∣∣∫
Ω×M

u · ∆Ωψ

∣∣∣∣ ≤ cu‖ψ‖W 1,p∗ (Ω,Z∗) ∀ψ ∈ C∞
δ (Ω ×M).

Then u ∈W 1,p(Ω, Z) and ‖u‖W 1,p(Ω,Z) ≤ Ccu.
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(iv) Suppose that u ∈ Lp(Ω, Z) and there exists a constant cu such that∣∣∣∣∫
Ω×M

u · ∆Ωψ

∣∣∣∣ ≤ cu‖ψ‖W 1,p∗ (Ω,Z∗) ∀ψ ∈ C∞
ν (Ω ×M).

Then u ∈W 1,p(Ω, Z) and ‖u‖W 1,p(Ω,Z) ≤ C
(
cu + ‖u‖Lp(Ω,Z)

)
.

If moreover
∫
Ω
u = 0 then in fact ‖u‖W 1,p(Ω,Z) ≤ Ccu.

The key to the proof of (i) and (ii) is the fact that the functions f and g can
be approximated not only by smooth functions with values in the Banach space
Lp(M), but by smooth functions on Ω ×M .

Lemma 2.2 Let Ω be a compact manifold (possibly with boundary), let M be a
closed manifold, let 1 < p, q <∞, and k, ` ∈ N0. Then the following holds.

(i) C∞(Ω ×M) is dense in W k,q(Ω,W `,p(M)).

(ii) A function u ∈W k,q(Ω,W `,p(M)) with zero boundary values u|∂Ω = 0 can
be approximated by uν ∈ C∞(Ω ×M) with uν |∂Ω×M = 0.

(iii) If `p > dimM and z ∈ M , then a function u ∈ W k,q(Ω,W `,p(M)) with
u(·, z) = 0 ∈ W k,q(Ω) can be approximated by uν ∈ C∞(Ω × M) with
uν(·, z) ≡ 0.

Proof of lemma 2.2:
We first prove (i). By definition C∞(Ω,W `,p(M)) is dense in W k,q(Ω,W `,p(M)).
So we fix g ∈ C∞(Ω,W `,p(M)) and show that in every W k,q(Ω,W `,p(M))-
neighbourhood of g there exists a g̃ ∈ C∞(Ω×M). Firstly, we prove this in the
case k = 0 for closed manifolds M as well as in the following case (that will be
needed for the proof in the case k ≥ 1): M = Rn, g is supported in Ω×V and g̃
is required to have support in Ω×U for some open bounded domains V,U ⊂ Rn
such that V ⊂ U .

Fix δ > 0. Since Ω is compact one finds a finite covering Ω =
∪N
i=1 Ui by

neighbourhoods Ui of xi ∈ Ω such that

‖g(x) − g(xi)‖W `,p(M) ≤ δ
2 ∀x ∈ Ui.

Next, choose gi ∈ C∞(M) such that ‖gi − g(xi)‖W `,p(M) ≤ δ
2 . In the case

M = Rn one has supp g(xi) ⊂ V and hence can choose gi such that it is
supported in U (e.g. using mollifiers with compact support). Then choose a
partition of unity

∑N
i=1 φi = 1 by φi ∈ C∞(Ω, [0, 1]) with suppφi ⊂ Ui. Now

one can define g̃ ∈ C∞(Ω ×M) by

g̃(x, z) :=
N∑
i=1

φi(x)gi(z) ∀x ∈ Ω, z ∈M.

10



In the case M = Rn this satisfies supp g̃ ⊂ Ω × U as required. Moreover,

‖g̃ − g‖q
Lq(Ω,W `,p(M))

=
∫

Ω

∥∥∑N
i=1 φi(gi − g)

∥∥q
W `,p(M)

≤
∫

Ω

(∑N
i=1 φi · supx∈Ui

‖gi − g(x)‖W `,p(M)

)q
≤

∫
Ω

δq = δq VolΩ.

Thus we have proven the lemma in the case k = 0. For k ≥ 1 this method does
not work since one picks up derivatives of the cutoff functions φi. Instead, one
has to use mollifiers and the result for k = 0 on M = Rn.

So we assume k ≥ 1, fix g ∈ C∞(Ω,W `,p(M)) and pick some δ > 0. Let
M =

∪N
i=1 Φi(Ui) be an atlas with bounded open domains Ui ⊂ Rn and charts

Φi : Ui → M . Let Vi ⊂ V i ⊂ Ui be open sets such that still M =
∪N
i=1 Φi(Vi).

Then there exists a partition of unity
∑N
i=1 ψi ◦Φ−1

i = 1 by ψi ∈ C∞(Rn, [0, 1])
such that suppψi ⊂ Vi. Now g =

∑N
i=1 gi◦(idΩ × Φ−1

i ) with

gi(x, y) = ψi(y) · g(x,Φi(y)) ∀x ∈ Ω, y ∈ Ui.

Here gi ∈ C∞(Ω,W `,p(Rn)) is extended by 0 outside of supp gi ⊂ Ω × Vi,
and it suffices to prove that each of these functions can be approximated in
W k,q(Ω,W `,p(Rn)) by g̃i ∈ C∞(Ω × Rn) with supp g̃i ⊂ Ω × Ui. So drop the
subscript i and consider g ∈ C∞(Ω,W `,p(Rn)) that is supported in Ω×V , where
V,U ⊂ Rn are open bounded domains such that V ⊂ U .

Let σε(y) = ε−nσ(y/ε) be a family of compactly supported mollifiers for
ε > 0, i.e. σ ∈ C∞(Rn, [0,∞)) such that suppσ ⊂ B1(0) and

∫
σ = 1. Then for

all ε > 0 define g̃ε ∈ C∞(Ω × Rn) by

g̃ε(x, y) := [σε ∗ g(x, ·)](y) ∀x ∈ Ω, y ∈ Rn.

Firstly, suppσε ⊂ Bε(0), so for sufficiently small ε > 0 the support of g̃ε lies
within Ω × U . Secondly, we abbreviate for j ≤ k, m ≤ `

fj,m := ∇j
Ω∇

m
Rng ∈ C∞(Ω, Lp(Rn)),

which are supported in Ω × V . Then

‖g̃ε − g‖q
Wk,q(Ω,W `,p(Rn))

=
∑
j≤k

∫
Ω

∥∥∇j
Ω

(
σε ∗ g(x, ·) − g(x, ·)

)∥∥q
W `,p(Rn)

≤ (`+ 1)
q
p

∑
j≤k

∑
m≤`

∫
Ω

∥∥σε ∗ fj,m(x, ·) − fj,m(x, ·)
∥∥q
Lp(Rn)

.

Now use the result for k = 0 on M = Rn (with values in a vector bundle) to
find f̃j,m ∈ C∞(Ω × Rn) supported in Ω × U such that

‖f̃j,m − fj,m‖Lq(Ω,Lp(Rn)) ≤ δ.

11



Then for all x ∈ Ω and sufficiently small ε > 0 the functions σε ∗ f̃j,m(x, ·) are
supported in some fixed bounded domain U ′ ⊂ Rn containing U . Moreover, the
f̃j,m are Lipschitz continuous, hence one finds a constant C (depending on the
f̃j,m, i.e. on g and δ) such that for all x ∈ Ω∥∥σε ∗ f̃j,m(x, ·) − f̃j,m(x, ·)

∥∥p
Lp(Rn)

=
∫
U ′

∣∣∣∫
Rn

σε(y′ − y)
(
f̃j,m(x, y′) − f̃j,m(x, y)

)
dny′

∣∣∣pdny
≤

∫
U ′

(∫
Rn

σε(y′ − y) sup
|y−y′|≤ε

|f̃j,m(x, y′) − f̃j,m(x, y)|dny′
)p

dny

≤ VolU ′(Cε)p.

Now use the fact that the convolution with σε is continuous with respect to the
Lp-norm, ‖σε ∗ f‖p ≤ ‖f‖p (see e.g. [Ad, Lemma 2.18]) to estimate

∫
Ω

∥∥σε ∗ fj,m(x, ·) − fj,m(x, ·)
∥∥q
Lp(Rn)

≤
∫

Ω

(∥∥σε ∗ (
fj,m(x, ·) − f̃j,m(x, ·)

)∥∥
Lp(Rn)

+
∥∥fj,m(x, ·) − f̃j,m(x, ·)

∥∥
Lp(Rn)

+
∥∥σε ∗ f̃j,m(x, ·) − f̃j,m(x, ·)

∥∥
Lp(Rn)

)q
≤ 2 · 3q

∥∥fj,m − f̃j,m
∥∥q
Lq(Ω,Lp(Rn))

+ 3q VolΩ (VolU)
q
p (Cε)q ≤ 3 · 3qδq.

Here we have chosen 0 < ε ≤ C−1(VolΩ)−
1
q (VolU)−

1
p δ. Thus we obtain

‖g̃ε − g‖Wk,q(Ω,W `,p(Rn)) ≤ 3(`+ 1)
1
p (3(k + 1)(`+ 1))

1
q δ.

This proves (i). To show (ii) one first approximates in C∞(Ω,W `,p(M)) with
zero boundary values and then mollifies on M as in (i) as follows.

In case k = 0 the boundary condition is meaningless, but the approxima-
tion with zero boundary values can be done elementary by cutting off in small
neighbourhoods of the boundary. For k ≥ 1 consider a local chart of Ω in
[0, 1] × Rn such that {t = 0} corresponds to the boundary, where t denotes
the [0, 1]-coordinate. Let f ∈ W k,q([0, 1] × Rn, Z) for any vector space Z with
f |t=0 = 0 and compact support. Let σε be mollifiers on Rn as above, then
fε(t, ·) := σε ∗ f(t, ·) defines fε ∈ C∞(Rn,W k,q([0, 1], Z)) for all ε > 0. One
checks that ‖fε − f‖Wk,q([0,1]×Rn) → 0 as ε → 0. We choose the σε with com-
pact support, then the fε are also compactly supported and hence have finite
W k,q([0, 1],W `,q(Rn))-norm for any ` ∈ N. Moreover, note that still fε|t=0 = 0.
In order to approximate fε with zero boundary values one chooses ` = k, then
(i) gives a smooth approximation gν → ∂tfε in the W k−1,q([0, 1],W k,q(Rn))-
norm. Now fνε (t, x) :=

∫ t
0
gν(τ, x)dτ defines functions in C∞([0, 1]×Rn, Z) that

vanish at t = 0 and approximate fε in the W k,q([0, 1],W k,q(Rn))-norm, which
is even stronger than the W k,q-norm on [0, 1] × Rn.
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Finally, to prove (iii), we choose an approximation by uν ∈ C∞(Ω ×M).
Then uν(·, z) → 0 in W k,q(Ω) since the evaluation at z is a continuous map
W `,p(M) → R. Now uν − uν(·, z) ∈ C∞(Ω × M) still converges to u in
W k,q(Ω,W `,p(M)) but it vanishes at z. 2

In the case q = p lemma 2.2 provides the continuous inclusion

W k,p(Ω,W `,p(M)) ⊂W `,p(M,W k,p(Ω))

since the norms on these spaces are identical.4 Moreover, for p = q and k = ` = 0
the lemma identifies Lp(Ω, Lp(M)) = Lp(Ω×Σ) as the completion of C∞(Ω×M)
under the Lp-norm.

Proof of lemma 2.1 (i) and (ii) :
We first give the proof of the regularity for the inhomogeneous Neumann prob-
lem (ii) in full detail; (i) is proven in complete analogy – using the regularity
theory for the Laplace equation on R-valued functions with Dirichlet boundary
condition instead of the Neumann condition.

Fix f ∈ W k−1,p(Ω, Z), g ∈ W k,p(Ω, Z), and let f i, gi ∈ C∞(Ω × M) be
approximating sequences given by lemma 2.2. Testing the weak equation with
ψ ≡ α for all α ∈ Z∗ implies

∫
Ω
f +

∫
∂Ω
g = 0 and thus hi :=

∫
Ω
f i +

∫
∂Ω
gi → 0

in Z as i→ ∞, so one can replace the f i by f i−hi/VolΩ ∈ C∞(Ω, Z) to achieve∫
Ω

f i(·, y) +
∫
∂Ω

gi(·, y) = 0 ∀y ∈M, i ∈ N.

Now for each y ∈M there exist unique solutions ui(·, y) ∈ C∞(Ω) of
∆ui(·, y) = f i(·, y),

∂
∂νu

i(·, y)
∣∣
∂Ω

= gi(·, y)
∣∣
∂Ω
,∫

Ω
ui(·, y) = 0.

For each of these Laplace equations with Neumann boundary conditions one
obtains an Lp-estimate for the solution, see e.g. [W1, Theorems 3.1, 3.2]. The
constant can be chosen independently of y ∈M since it varies continuously with
y and M is compact. Then integration of those estimates yields (with different
constants C)

‖ui‖p
Wk+1,p(Ω,Z)

=
∫
M

∥∥ui∥∥p
Wk+1,p(Ω)

≤
∫
M

C
(
‖f i‖Wk−1,p(Ω) + ‖gi‖Wk,p(Ω)

)p
≤ C

(
‖f i‖Wk−1,p(Ω,Z) + ‖gi‖Wk,p(Ω,Z)

)p
.

4The spaces are actually equal. The proof requires an extension of the approximation
argument to manifolds with boundary. We do not carry this out here because we will only
need this one inclusion.
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Here one uses the crucial fact that Lp(Ω, Lp(M)) ⊂ Lp(M,Lp(Ω)) with identical
norms. (Note that this is not the case if the integrability indices over Ω and M
are different.) Similarly, one obtains for all i, j ∈ N

‖ui − uj‖Wk+1,p(Ω,Z) ≤ C
(
‖f i − f j‖Wk−1,p(Ω,Z) + ‖gi − gj‖Wk,p(Ω,Z)

)
.

So ui is a Cauchy sequence and hence converges to some ũ ∈ W k+1,p(Ω, Z).
Now suppose that u ∈W k,p(Ω, Z) solves the weak Neumann equation for f and
g, then we claim that in fact u = ũ+ c ∈W k+1,p(Ω, Z), where c ∈ Z is given by

c(y) :=
1

VolΩ

∫
Ω

(
u(·, y) − ũ(·, y)

)
∀y ∈M.

In order to see that indeed c ∈ Lp(M) = Z and that for some constant C
one has ‖c‖Lp(M) ≤ C(‖u‖Lp(Ω,Z) + ‖ũ‖Lp(Ω,Z)) note that lemma 2.2 yields the
continuous inclusion W k,p(Ω, Lp(M)) ⊂ Lp(M,W k,p(Ω)) ⊂ Lp(M,L1(Ω)). To
establish the identity u = ũ+ c, we first note that for all φ ∈ C∞(M) ⊂ Z∗∫

Ω

〈 ũ+ c− u , φ 〉 =
∫
M

φ ·
(
VolΩ · c−

∫
Ω

(u− ũ)
)

= 0.

Next, for any φ ∈ C∞(Ω ×M) let

φ0 :=
1

VolΩ

∫
Ω

φ ∈ C∞(M).

Then one finds ψ ∈ C∞
ν (Ω ×M) such that φ = ∆Ωψ + φ0. (There exist unique

solutions ψ(·, y) of the Neumann problem for φ(·, y) − φ0(y), and these depend
smoothly on y ∈ M .) So we find that for all φ ∈ C∞(Ω ×M), abbreviating
∆Ω = ∆∫

Ω

〈u− ũ− c , φ 〉 =
∫

Ω

〈u , ∆ψ 〉 −
∫

Ω

〈 ũ+ c , ∆ψ 〉 +
∫

Ω

〈u− ũ− c , φ0 〉

=
∫

Ω

〈 f , ψ 〉 +
∫
∂Ω

〈 g , ψ 〉 − lim
i→∞

∫
Ω

〈ui , ∆ψ 〉

= lim
i→∞

(∫
Ω

〈 f − ∆ui , ψ 〉 +
∫
∂Ω

〈 g − ∂ui

∂ν , ψ 〉
)

= 0.

This proves u = ũ+c ∈W k+1,p(Ω, Z) and the estimate for ui yields in the limit

‖u‖Wk+1,p(Ω,Z) ≤ ‖ũ‖Wk+1,p(Ω,Z) + (VolΩ)
1
p ‖c‖Lp(M)

≤ C
(
‖f‖Wk−1,p(Ω,Z) + ‖g‖Wk,p(Ω,Z) + ‖u‖Lp(Ω,Z)

)
.

This finishes the proof of (ii), and analogously of (i). 2

Proof of lemma 2.1 (iii) and (iv) :
Let u ∈ Lp(Ω, Z) be as supposed in (iii) or (iv), where Z = Lp(M) and thus
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Z∗ = Lp
∗
(M). Then we have u ∈ Lp(Ω ×M) and the task is to prove that

dΩu also is of class Lp on Ω ×M . So we have to consider
∫
Ω×M u · d∗

Ωτ for
τ ∈ C∞

δ (Ω ×M,T∗Ω) (which are dense in Lp
∗
(Ω ×M,T∗Ω)). In the case (iii)

one finds for any such smooth family τ of 1-forms on Ω a smooth function
ψ ∈ C∞

δ (Ω ×M) such that d∗
Ωτ = ∆Ωψ. Then there is a constant C such that

for all y ∈M (see e.g. [W1, Theorem D.2’]

‖ψ(·, y)‖W 1,p∗ ≤ C ‖∆Ωψ(·, y)‖(W 1,p)∗ ≤ C ‖τ(·, y)‖p∗ .

In the case (iv) one similarly finds ψ ∈ C∞
ν (Ω ×M) such that d∗

Ωτ = ∆Ωψ and
‖ψ(·, y)‖W 1,p∗ ≤ C ‖τ(·, y)‖p∗ for all y ∈ M and some constant C. (Note that∫
Ω

d∗
Ωτ ≡ 0 since τ vanishes on ∂Ω ×M and we have used e.g. [W1, Theorems

2.2,2.3’].) In both cases we can thus estimate for all τ ∈ C∞
δ (Ω×M,T∗Ω) using

the assumption∣∣∣∣∫
Ω×M

u · d∗
Ωτ

∣∣∣∣ =
∣∣∣∣∫

Ω×M
u · ∆Ωψ

∣∣∣∣ ≤ cu

(∫
M

‖ψ‖p
∗

W 1,p∗ (Ω)

) 1
p∗

≤ Ccu

(∫
M

‖τ‖p
∗

Lp∗ (Ω)

) 1
p∗

≤ Ccu‖τ‖Lp∗ (Ω×M).

Now in both cases the Riesz representation theorem (e.g. [Ad, Theorem 2.33])
asserts that

∫
Ω×M u ·d∗

Ωτ =
∫
Ω×M f ·τ for all τ with some f ∈ Lp(Ω×M). This

proves the Lp-regularity of dΩu and yields the estimate

‖dΩu‖Lp(Ω×M) ≤ Ccu.

In the case (iii), one can moreover deduce u|∂Ω = 0. Indeed, partial integration
in the weak equation gives for all ψ ∈ C∞

δ (Ω ×M)∣∣∣∣∫
∂Ω×M

u · ∂ψ∂ν

∣∣∣∣ =
∣∣∣∣∫

Ω×M
u · ∆Ωψ −

∫
Ω×M

〈 dΩu , dΩψ 〉
∣∣∣∣

≤ (cu + ‖dΩu‖Lp(Ω×M))‖ψ‖W 1,p∗ (Ω×M).

For any given g ∈ C∞(∂Ω ×M) one now finds ψ ∈ C∞(Ω ×M) with ψ|∂Ω = 0
and ∂ψ

∂ν = g, and these can be chosen such that ‖ψ‖W 1,p∗ becomes arbitrarily
small. Then one obtains

∫
∂Ω×M u g = 0 and thus u|∂Ω = 0. Thus in the case (iii)

one finds a constant C ′ such that

‖u‖pW 1,p(Ω,Z) =
∫
M

‖u‖pW 1,p(Ω) ≤ C ′
∫
M

‖dΩu‖pLp(Ω) = C ′‖dΩu‖pLp(Ω×M),

which finishes the proof of (iii).
In case (iv) with the additional assumption

∫
Ω
u = 0 one also has a constant

C ′ such that ‖u(·, y)‖W 1,p(Ω) ≤ C ′‖dΩu(·, y)‖Lp(Ω) for all y ∈M and thus

‖u‖W 1,p(Ω,Z) ≤ C ′‖dΩu‖Lp(Ω×M) ≤ C ′Ccu.
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In the general case (iv) one similarly has

‖u‖pW 1,p(Ω,Z) = ‖dΩu‖pLp(Ω×M) + ‖u‖pLp(Ω×M) ≤
(
Ccu + ‖u‖Lp(Ω,Z)

)p
.

2

The proof of theorem 1.2 will moreover use the following quantitative version
of the implicit function theorem. This is proven e.g. in [MS, Proposition A.3.4]
by a Newton-Picard method. (Here we only need the special case x0 = x1 = 0.)

Proposition 2.3 Let X and Y be Banach spaces and let U ⊂ Y be a neigh-
bourhood of 0. Suppose that f : U → X is a continuously differentiable map
such that d0f : Y → X is bijective. Then choose constants c ≥ ‖(d0f)−1‖ and
δ > 0 such that Bδ(0) ⊂ U and

‖dyf − d0f‖ ≤ 1
2c ∀y ∈ Bδ(0).

Now if ‖f(0)‖ ≤ δ
4c then there exists a unique solution y ∈ Bδ(0) of f(y) = 0.

Moreover, this solution satisfies

‖y‖ ≤ 2c‖f(0)‖.

Proof of theorem 1.2 :
Let z0 ∈ L and let J0 ∈ EndX be a complex structure with respect to which L is
totally real. Choose a Banach manifold chart φ : V → L from a neighbourhood
V ⊂ Y of 0 to a neighbourhood of φ(0) = z0. Then one obtains a Banach
submanifold chart of L ⊂ X from a neighbourhood W ⊂ Y ×Y of zero to a ball
Bε(z0) ⊂ X around z0,

Θ : W ∼−→ Bε(z0)
(v1, v2) 7−→ φ(v1) + J0dv1φ(v2).

To see that this is indeed a diffeomorphism for sufficiently small W and ε > 0
we just check that D := d(0,0)Θ = d0φ ⊕ J0d0φ is an isomorphism. This is
since d0φ : Y → Tz0L is an isomorphism and so is the map Tz0L × Tz0L → X
given by the splitting X = Tz0L ⊕ J0 Tz0L. The size ε > 0 of the chart can be
quantified by proposition 2.3 as follows. For the maps f = Θ − x : V × V → X
one finds constants c = ‖D−1‖ and δ > 0 independently of x ∈ X such that
Bδ(0) ⊂ V × V and

‖dyf − d0f‖ = ‖dyΘ − d0Θ‖ ≤ 1
2c ∀y ∈ Bδ(0).

Then for ‖x− z0‖ ≤ δ
4c =: ε one obtains a unique y = Θ−1(x) in Bδ(0).

Next, if one replaces z0 and J0 by z ∈ L and a complex structure J ∈ EndX
in sufficiently small neighbourhoods of z0 and J0 respectively, then one still
obtains a Banach submanifold chart Θ : W → Bε(z) with Θ(0) = z. Here W
varies with (z, J), but one can choose a uniform ε > 0. This is since one can find
uniform constants c and δ in proposition 2.3. (The map Θ varies with z via the
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chart map φz : V → L, v 7→ φ(φ−1(z) + v) that is defined for sufficiently small
V and that satisfies φz(0) = z.) Moreover, one obtains the uniform estimate

‖Θ−1(x)‖Z×Z ≤ C‖x− z‖X ∀x ∈ Bε(z). (8)

(Recall that Y is a closed subspace of the Banach space Z, so the norm on Y is
induced by the norm on Z.)

Now consider a solution u ∈ W k,q(Ω, X) of (2) for some G ∈ W k,q(Ω, X)
and J ∈ W k+1,∞(Ω,EndX) as in theorem 1.2 (i). Fix any (s0, 0) ∈ K and let
z ≡ u(s0, 0) ∈ L. Then the above construction of the coordinates Θ can be done
for all J = Js,t with (s, t) ∈ U for a neighbourhood U ⊂ Ω of (s0, 0). Thus one
obtains a W k+1,∞-family of chart maps for (s, t) ∈ U ,

Θs,t : Y × Y ⊃ Ws,t
∼−→ Bε(zs,t).

Recall that u is either of class W 1,2p or of class W k,p with k ≥ 2 and p > 1.
On the 2-dimensional domain Ω, the Sobolev embeddings thus ensure that u is
continous. So on a possibly even smaller neighbourhood U of (s0, 0) the map u
can be expressed in local coordinates,

u(s, t) = Θs,t(v(s, t)) ∀(s, t) ∈ U,

where v ∈ W k,q(U,Z × Z). This follows from the fact that the composition of
the W k+1,∞-map Θ−1 with a W k,q-map u is again W k,q-regular if kq > 2 (see
e.g. [W1, Lemma B.8]). Moreover, v actually takes values in W ⊂ Y × Y .

In order to obtain the estimate in (ii), the map Θ has to be constructed inde-
pendently of u and J , using the fixed u0 and J0. In that case let zs,t := u0(s, 0),
which is welldefined on a small neighbourhood U of (s0, 0) ∈ K ⊂ intΩ. Then
the coordinates Θs,t are defined for all (s, t) ∈ U and for all complex structures
in a sufficiently small neighbourhood of J0(s0, 0). In particular, Θs,t is defined
for all J = Js,t with (s, t) ∈ U , provided that J ∈ W k+1,∞(Ω,EndX) satisfies
the assumption ‖J−J0‖L∞ ≤ δ. Here one again makes sufficiently small choices
of U and δ > 0. Thus one obtains a W k+1,∞-family of chart maps Θs,t as above
that now also satisfy the uniform estimate (8) for all (s, t) ∈ U , where the con-
stant C only depends on u0 and J0. Now in order to again express u in local
coordinates, choose U even smaller such that u0(s, t) ∈ B ε

2
(x0) for all (s, t) ∈ U

and let δ ≤ ε
2 . Then every u ∈ W k,q(Ω, X) that satisfies ‖u − u0‖L∞(Ω,X) ≤ δ

can be written u = Θ◦v as above. Now integration of (8) together with the fact
that all derivatives of Θ−1 up to order k are bounded (due to the W k,∞-bound
on J) yields the estimate

‖v‖Wk,q(U,Z×Z) ≤ C‖u− u0‖Wk,q(U,X).

Here and in the following C denotes any constant that is independent of the
specific choices of J and u in the fixed neighbourhoods of J0 and u0, however,
it may depend on c and k.

In the coordinates constructed above, the boundary value problem (7) now
becomes {

∂sv + I∂tv = f,
v2(s, 0) = 0 ∀s ∈ R. (9)
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with v = (v1, v2) and

f = (dvΘ)−1
(
G− ∂sΘ(v) − J∂tΘ(v)

)
∈ W k,q(U, Y × Y ),

I = (dvΘ)−1JdvΘ ∈ W k,q(U,End(Y × Y )).

Note the following difficulty: The complex structure I now explicitly depends on
the solution v of the equation (9) and thus is only W k,q-regular. This cannot be
avoided when straightening out the Lagrangian boundary condition. However,
one obtains one more simplification of the boundary value problem: Θ was
constructed such that one obtains the standard complex structure along L.
Indeed, for all (s, 0) ∈ U using that J2 = −1l

I(s, 0) = (d(v1,0)Θ)−1Jd(v1,0)Θ =
(
dv1φ⊕ Jdv1φ

)−1
J
(
dv1φ⊕ Jdv1φ

)
=

(
0 −1l
1l 0

)
=: I0.

Moreover, in case (ii) one has the following estimates on U :

‖I‖Wk,q ≤ C,

‖f‖Wk,q ≤ C
(
‖G‖Wk,q + ‖u− u0‖Wk,q

)
.

So for every boundary point (s0, 0) ∈ K ∩ ∂H we have rewritten the boundary
value problem (7) over some neighbourhood U ⊂ Ω. Now for the compact set
K ⊂ Ω one finds a covering K ⊂ V ∪

∪N
i=1 Ui by finitely many such neigh-

bourhoods Ui at the boundary and a compact domain V ⊂ Ω \ ∂Ω away from
the boundary. Note that the Ui can be replaced by interior domains Ũi (that
intersect ∂Ui only on ∂H) that together with V still cover K. We will establish
the regularity and estimate for u on all domains Ũi near the boundary and on
the remaining domain V separately. So firstly consider a domain Ui near the
boundary and drop the subscript i. After possibly replacing U by a slightly
smaller domain one can assume that U is a manifold with smooth boundary
and still Ũ ∩ ∂U ⊂ ∂H. The task is now to prove the regularity and estimate
for u = Θ ◦ v on Ũ from (9).

Since Θs,t : Y × Y → X are smooth maps in W k+1,∞-dependence on
(s, t) ∈ U , it suffices to prove that v ∈ W k+1,p(Ũ , Z × Z) with the accord-
ing estimate. (One already knows that v takes values – almost everywhere –
in Y × Y , so one automatically also obtains v ∈ W k+1,p(Ũ , Y × Y ).) For that
purpose fix a cutoff function h ∈ C∞(H, [0, 1]) with h ≡ 1 on Ũ and h ≡ 0 on
H \ U . Moreover, this function can be chosen such that ∂th|t=0 = 0. Note that
h ≡ 0 on ∂U \ ∂H, so hv2 satisfies the Dirichlet boundary condition on ∂U .
Indeed, we will see that hv2 ∈W k,p(U,Z) solves a weak Dirichlet problem.

In the following, Y ∗ denotes the dual space of Y and we write 〈 ·, · 〉 for both
the pairings between Y and Y ∗ and between Y × Y and Y ∗ × Y ∗. We obtain
∆ = −(∂s+∂tI∗)(∂s−I∗∂t)+(∂tI∗)∂s−(∂sI∗)∂t for I∗ ∈W k,q(Ω,End(Y ∗×Y ∗))
the pointwise dual operator of I. Thus for all φ ∈ C∞(Ω, Y ∗ × Y ∗)

h∆φ = −(∂s + ∂tI
∗)(∂s − I∗∂t)(hφ) − (∆h)φ+ 2(∂sh)∂sφ+ 2(∂th)∂tφ

+ (∂tI∗)∂s(hφ) − (∂sI∗)∂t(hφ).
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Hence (9) and partial integration (for smooth approximations of v, f , I) yields∫
U

〈hv , ∆φ 〉

=
∫
U

〈 ∂sv + I∂tv , (∂s − I∗∂t)(hφ) 〉

−
∫
U

〈 (∆h)v + 2(∂sh)∂sv + 2(∂th)∂tv + h(∂tI)∂sv − h(∂sI)∂tv , φ 〉

+
∫
∂U∩∂H

〈 Iv , (∂s − I∗∂t)(hφ) 〉 + 〈h(∂sI)v − 2(∂th)v , φ 〉

=
∫
U

〈h(−∂sf + I∂tf + (∂tI)f − (∂tI)∂sv + (∂sI)∂tv)

− (∆h)v − 2(∂sh)∂sv − 2(∂th)∂tv , φ 〉

+
∫
∂U∩∂H

〈h · If , φ 〉 +
∫
∂U∩∂H

〈 v , ∂t(hφ) 〉 + 〈 Iv , ∂s(hφ) 〉

=
∫
U

〈F , φ 〉 +
∫
∂U

〈H , φ 〉 +
∫
∂U∩∂H

〈 v1 , ∂t(hφ1) + ∂s(hφ2) 〉. (10)

This uses the notation φ = (φ1, φ2), the boundary condition v2|t=0 = 0, and
the fact that I|t=0 ≡ I0. One then reads off F = (F1, F2) ∈W k−1,p(U, Y × Y ),
H = (H1,H2) ∈W k,p(U, Y × Y ), and that in case (ii) for some constants C

‖F‖Wk−1,p + ‖H‖Wk,p ≤ C
(
‖f‖Wk,q + ‖I‖Wk,q‖f‖Wk,q + ‖I‖Wk,q‖v‖Wk,q

)
≤ C

(
‖G‖Wk,q + ‖u− u0‖Wk,q

)
.

We point out that the crucial terms here are (∂sI)∂tv and (∂tI)∂sv. In the case
k ≥ 3 the estimate holds with q = p due to the Sobolev embedding W k−1,p ·
W k−1,p ↪→W k−1,p. In the case k = 1 one only has L2p ·L2p ↪→ Lp and hence one
needs q = 2p in the above estimate. In the case k = 2 the Sobolev embedding
W 1,q ·W 1,q ↪→ W 1,p holds with q = p for p > 2, with any q > 2 for p = 2, and
requires q ≥ 4p

2+p for p < 2.
Now in order to obtain a weak Laplace equation for v2 we test the weak

equation (10) with φ = (φ1, φ2) = (0, π ◦ ψ) for ψ ∈ C∞
δ (U,Z∗) and where

π : Z∗ → Y ∗ is the canonical embedding. In that case, both boundary terms
vanish and one obtains for all ψ ∈ C∞

δ (U,Z∗)∫
U

〈hv2 , ∆ψ 〉 =
∫
U

〈F2 , ψ 〉.

By lemma 2.1 (i) this weak equation for hv2 ∈ W k,p(U,Z) now implies that
hv2 ∈ W k+1,p(U,Z) and thus v2 ∈ W k+1,p(Ũ , Z). Moreover, one obtains the
estimate

‖v2‖Wk+1,p(Ũ,Z) ≤ ‖hv2‖Wk+1,p(U,Z) ≤ C‖F2‖Wk−1,p(U,Z)

≤ C
(
‖G‖Wk,q(Ω,X) + ‖u− u0‖Wk,q(Ω,X)

)
.
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To obtain a weak Laplace equation for v1 we test the weak equation (10) with
φ = (φ1, φ2) = (π ◦ ψ, 0), where ψ ∈ C∞(U,Z∗) such that ∂tψ|t=0 = 0. This
makes the second boundary term vanish, so we obtain for all ψ ∈ C∞

ν (U,Z∗)∫
Ω

〈hv1 , ∆ψ 〉 =
∫

Ω

〈F1 , ψ 〉 +
∫
∂Ω

〈H1 , ψ 〉.

So we have established a weak Laplace equation with Neumann boundary con-
dition for hv1. Now lemma 2.1 (ii) implies that hv1 ∈ W k+1,p(U,Z), hence
v1 ∈W k+1,p(Ũ , Z). Moreover, one obtains the estimate

‖v1‖Wk+1,p(Ũ,Z) ≤ ‖hv‖Wk+1,p(U,Z)

≤ C
(
‖F1‖Wk−1,p(U,Z) + ‖H1‖Wk,p(U,Z) + ‖hv1‖Wk,p(U,Z)

)
≤ C

(
‖G‖Wk,q(Ω,X) + ‖u− u0‖Wk,q(Ω,X)

)
.

This now provides the regularity and the estimate for u = Θ◦v on Ũ as follows.
We have established that v : Ũ → Z × Z is a W k+1,p-map that takes values in
W ⊂ Y × Y . All derivatives of Θ : Ω×W → X up to order k+ 1 are uniformly
bounded on Ω. Hence u ∈W k+1,p(Ũ ,X) and5

‖u− u0‖Wk+1,p(Ũ,X) ≤ C
(
‖v‖Wk+1,p(Ũ,X)

)
≤ C

(
‖G‖Wk,q(Ω,X) + ‖u− u0‖Wk,q(Ω,X)

)
.

For the regularity of u on the domain V ⊂ Ω \ ∂Ω away from the boundary one
does not need any special coordinates. As for U , one replaces Ω by a possibly
smaller domain with smooth boundary. Moreover, one chooses a cutoff function
h ∈ C∞(H, [0, 1]) such that h|V ≡ 1 and that vanishes outside of Ω ⊂ H and in
a neighbourhood of ∂Ω. Then in the same way as for (10) one obtains a weak
Dirichlet equation. For all φ ∈ C∞

δ (Ω, X∗)∫
Ω

〈hu , ∆φ 〉 =
∫

Ω

〈h
(
−∂sG+ J∂tG+ (∂tJ)G− (∂tJ)∂su+ (∂sJ)∂tu

)
− (∆h)u− 2(∂sh)∂su− 2(∂th)∂tu , φ 〉.

Note that X ∼= Y × Y ⊂ Z × Z also is bounded isomorphic to a closed
subspace of an Lp-space. So by lemma 2.1 this weak equation implies that
hu ∈W k+1,p(Ω, X), and thus u ∈W k+1,p(V,X) with the estimate

‖u‖Wk+1,p(V,X) ≤ C
(
‖G‖Wk,q(Ω,X) + ‖u− u0‖Wk,q(Ω,X)

)
.

(Note that here it suffices to have aW k,∞-bound on J .) Thus we have proven the
regularity and estimates of u on all parts of the finite covering K ⊂ V ∪

∪N
i=1 Ui,

which finishes the proof of the theorem. 2

5Here and in the following we dropped a constant term C(1 + . . .) from the estimate.
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Proof of theorem 1.3 :
The Banach manifold charts near the path x : R → L give rise to a W 1,∞-
path of isomorphisms φs : Y ∼→ Tx(s)L for all s ∈ R. Together with the
family of complex structures J ∈ W 1,∞(Ω,EndX) these give rise to a family
Θ ∈W 1,∞(Ω,Hom(Y × Y,X)) of bounded isomorphisms

Θs,t : Y × Y
∼−→ X

(z1, z2) 7−→ φs(z1) + Js,tφs(z2).

The inverses of the dual operators of Θs,t give a family of bounded isomorphisms
Θ′ ∈W 1,∞(Ω,Hom(Y ∗ × Y ∗, X∗)) ,

Θ′
s,t := (Θ∗

s,t)
−1 : Y ∗ × Y ∗ ∼−→ X∗.

One checks that for all (s, t) ∈ Ω

Θ−1
s,tJs,tΘs,t =

(
0 −1l
1l 0

)
=: I0 ∈ End(Y × Y ).

Next, after possibly replacing Ω by a slightly smaller domain that still contains
K in its interior, one can assume that Ω is a manifold with smooth boundary.
Then fix a cutoff function h ∈ C∞(H, [0, 1]) such that h|K ≡ 1 and supph ⊂ Ω,
i.e. h ≡ 0 near ∂Ω \ ∂H. Now let u ∈ Lp(Ω, X) be given as in the theorem and
express it in the above coordinates as u = Θ ◦ v, where v ∈ Lp(Ω, Y × Y ). We
will show that v satisfies a weak Laplace equation. For all φ ∈ C∞(Ω, Y ∗ × Y ∗)
we introduce ψ := Θ′((∂s + I0∂t)φ) ∈W 1,∞(Ω, X∗) and calculate

∂s(hψ) + ∂t(J∗hψ) = hΘ′((∂s + I∗0∂t)(∂s + I0∂t)φ)

+ (∂sh)ψ + ∂t(hJ∗)ψ + h(∂sΘ′ + J∗∂tΘ′)Θ′−1(ψ).

If ψ(s, 0) ∈ (J(s, 0)Tx(s)L)⊥ for all (s, 0) ∈ ∂Ω ∩ ∂H, then hψ is an admissible
test function in the given weak estimate for u in the theorem and we obtain,
denoting all constants by C and using Θ∗Θ′ = id,∣∣∣∣∫

Ω

〈hv , ∆φ 〉
∣∣∣∣ =

∣∣∣∣∫
Ω

〈Θ(v) , hΘ′((−∂s + I0∂t)(∂s + I0∂t)φ
)
〉
∣∣∣∣

=
∣∣∣∣∫

Ω

〈u , ∂s(hψ) + ∂t(J∗hψ) 〉
∣∣∣∣

+
∣∣∣∣∫

Ω

〈u , (∂sh)ψ + ∂t(hJ∗)ψ + h(∂sΘ′ + J∗∂tΘ′)Θ′−1(ψ) 〉
∣∣∣∣

≤
(
cu + C‖u‖Lp(Ω,X)

)
‖ψ‖Lp∗ (Ω,X∗)

≤ C
(
cu + ‖u‖Lp(Ω,X)

)
‖φ‖W 1,p∗ (Ω,Y ∗×Y ∗).

Here we used the fact that J∗ and Θ′ as well as their first derivatives and inverses
are bounded linear operators between Y ∗ × Y ∗ and X∗. This inequality then
holds for all φ = (φ1, φ2) with φ1 ∈ C∞

ν (Ω, Y ∗) and φ2 ∈ C∞
δ (Ω, Y ∗) since in
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that case ψ is admissible. Indeed, ψ|t=0 = Θ′(∂sφ1 − ∂tφ2, 0) ∈ (JTxL)⊥ due
to Θ′(Y ∗ × {0}) = Θ′(I0(Y × {0}))⊥ = (JTxL)⊥.

Recall that Y ⊂ Z is a closed subset of the Banach space Z with the induced
norm. So one has v ∈ Lp(Ω, Z×Z). Let π : Z∗ → Y ∗ be the natural embedding,
then above inequality holds with φ = (π ◦ ψ1, π ◦ ψ2) for all ψ1 ∈ C∞

ν (Ω, Z∗)
and ψ2 ∈ C∞

δ (Ω, Z∗). Since ‖π ◦ ψi‖Y ∗ ≤ ‖ψi‖Z∗ one then obtains for all such
Ψ = (ψ1, ψ2) ∈ C∞(Ω, Z∗ × Z∗)∣∣∣∣∫

Ω

〈hv , ∆Ψ 〉
∣∣∣∣ ≤ C

(
cu + ‖u‖Lp(Ω,X)

)
‖Ψ‖W 1,p∗ (Ω,Z∗×Z∗).

Now lemma 2.1 (iii) and (iv) asserts the W 1,p-regularity of hv and hence one
obtains v ∈W 1,p(Ω, Z × Z) with the estimate

‖v‖W 1,p(K,Z×Z) ≤ ‖hv‖W 1,p(Ω,Z×Z) ≤ C
(
cu + ‖u‖Lp(Ω,X) + ‖v‖Lp(Ω,Z×Z)

)
.

For the first factor of Z × Z, this follows from lemma 2.1 (iv), in the second
factor one uses (iii). Since it was already known that v takes values in Y × Y
(almost everywhere), one in fact has v ∈W 1,p(Ω, Y ×Y ) with the same estimate
as above. Finally, recall that u = Θ ◦ v and use the fact that all derivatives up
to first order of Θ and Θ−1 are bounded to obtain u ∈ W 1,p(K,X) with the
claimed estimate (using again [W1, Lemma B.8])

‖u‖W 1,p(K,X) ≤ C‖v‖W 1,p(K,Z×Z) ≤ C
(
cu + ‖u‖Lp(Ω,X)

)
.

2

Proof of corollary 1.4:
Let u ∈ W 1,p(Ω, X) and ψ ∈ W 1,∞(Ω, X∗) such that suppψ ⊂ intΩ and with
the boundary conditions u(s, 0) ∈ Tx(s)L and ψ(s, 0) ∈ (J(s, 0)Tx(s)L)⊥ for all
(s, 0) ∈ ∂Ω. Then one obtains the weak estimate, where the boundary term
vanishes,∣∣∣∣∫

Ω

〈u , ∂sψ + ∂t(J∗ψ) 〉
∣∣∣∣ =

∣∣∣∣∫
Ω

〈 ∂su+ J∂tu , ψ 〉 −
∫
∂Ω∩∂H

〈 Ju , ψ 〉
∣∣∣∣

≤ ‖∂su+ J∂tu‖Lp(Ω,X)‖ψ‖Lp∗ (Ω,X∗).

This holds for all ψ as above, so the estimate follows from theorem 1.3. 2

3 Weakly flat connections

In this section we consider the trivial G-bundle over a closed manifold Σ of
dimension n ≥ 2. Here G is a compact Lie group with Lie algebra g. We recall
that g is equipped with a Lie bracket [·, ·] and a G-invariant inner product 〈 ·, · 〉
that moreover satisfy the relation

〈 [ξ, η], ζ 〉 = 〈 ξ, [η, ζ] 〉 ∀ξ, ζ, η ∈ g.
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A (smooth) connection on this bundle is a g-valued 1-form A ∈ Ω1(Σ; g). The
exterior derivative dA associated to it is given by dAη = dη + [A ∧ η] for all g-
valued differential forms η. Here the Lie bracket indicates how the values of the
differential forms are paired. Now dA ◦dA vanishes if and only if the connection
is flat, that is its curvature FA = dA+ 1

2 [A ∧A] vanishes.
Now fix p > n and consider the space A0,p(Σ) = Lp(Σ,T∗Σ⊗g) of Lp-regular

connections. Their curvature is not welldefined, but the flatness condition can
also be formulated weakly: A connection A ∈ A0,p(Σ) is called weakly flat if∫

Σ

〈A , d∗ω − 1
2 (−1)n ∗ [A ∧ ∗ω] 〉 = 0 ∀ω ∈ Ω2(Σ; g). (11)

For sufficiently regular connections one sees by partial integration that (11) is
equivalent to the connection being flat. We denote the space of weakly flat
Lp-connections over Σ by

A0,p
flat(Σ) :=

{
A ∈ A0,p(Σ)

∣∣A satisfies (11)
}
.

One can check that this space is invariant under the action of the gauge group
G1,p(Σ) = W 1,p(Σ,G),

u∗A = u−1Au+ u−1du ∀A ∈ A0,p(Σ), u ∈ G1,p(Σ).

Note that (11) is welldefined for p ≥ 2, but G1,p(Σ) and its action on A0,p(Σ) are
only welldefined for p > n, see e.g. [W1, Appendix B]. The next theorem shows
that the quotient A0,p

flat(Σ)/G1,p(Σ) can be identified with the usual moduli space
of flat connections Aflat(Σ)/G(Σ) – smooth flat connections modulo smooth
gauge transformations.

Theorem 3.1 For every weakly flat connection A ∈ A0,p
flat(Σ) there exists a

gauge transformation u ∈ G1,p(Σ) such that u∗A ∈ Aflat(Σ) is smooth.

The proof will be based on the following Lp-version of the local slice theorem,
a proof of which can be found in [W1, Theorem 8.3].

Proposition 3.2 Fix a reference connection Â ∈ A0,p(Σ). Then there exists a
constant δ > 0 such that for every A ∈ A0,p(Σ) with ‖A− Â‖p ≤ δ there exists
a gauge transformation u ∈ G1,p(Σ) such that∫

Σ

〈
u∗A− Â , dÂη

〉
= 0 ∀η ∈ C∞(Σ, g). (12)

Equivalently, one has for v = u−1 ∈ G1,p(Σ)∫
Σ

〈
v∗Â−A , dAη

〉
= 0 ∀η ∈ C∞(Σ, g).
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The weak flatness together with the weak Coulomb gauge condition (12) form
an elliptic system, so theorem 3.1 is then a consequence of the regularity the-
ory for the Laplace operator, or the Hodge decomposition of Lp-regular 1-forms.

Proof of theorem 3.1 :
Consider a weakly flat connection A ∈ A0,p

flat(Σ). Let δ > 0 be the constant from
proposition 3.2 for the reference connection A and choose a smooth connection
Ã ∈ A(Σ) such that ‖Ã−A‖p ≤ δ. Then by proposition 3.2 there exists a gauge
transformation u ∈ G1,p(Σ) such that∫

Σ

〈
u∗A− Ã , dÃη

〉
= 0 ∀η ∈ C∞(Σ, g).

Now [W1, Theorem 5.3(ii)] asserts that α := u∗A − Ã ∈ Lp(Σ,T∗Σ ⊗ g) is
in fact smooth. (By the definition of Sobolev spaces via coordinate charts it
suffices to prove the regularity and estimate for α(X), where X ∈ Γ(TΣ) is any
smooth vector field on Σ. Alternatively to this lemma – a consequence of the
regularity theory for the Laplace operator – one can also deduce the regularity
of α directly from the regularity of the Hodge decomposition.) This is due to
the weak equations∫

Σ

〈α , dη 〉 = −
∫

Σ

〈 ∗[α ∧ ∗Ã] , η 〉 ∀η ∈ C∞(Σ, g),∫
Σ

〈α , d∗ω 〉 = −
∫

Σ

〈 dÃ+ 1
2 [u∗A ∧ u∗A] , ω 〉 ∀ω ∈ Ω2(Σ; g).

Firstly, the inhomogeneous terms are of class L
p
2 , hence the lemma asserts

W 1, p
2 -regularity of α and u∗A. Now if p ≤ 2n, then the Sobolev embedding

gives Lp1 -regularity of u∗A with p1 := np
2n−p (in case p = 2n one can choose any

p1 > 2n). This is iterated to obtain Lpj -regularity for the sequence pj+1 = npj

2n−pj

(or any pj+1 > 2n in case pj ≥ 2n) with p0 = p. One checks that pj+1 ≥ θpj
with θ = n

2n−p > 1 due to p > n. So after finitely many steps this yields W 1,q-
regularity for some q = pN

2 > n. The same is the case if p > 2n at the beginning.
Next, if u∗A is of class W k,q for some k ∈ N, then the inhomogeneous terms
also are of class W k,q and the lemma asserts the W k+1,q-regularity of α and
hence u∗A. Iterating this argument proves the smoothness of u∗A = Ã+ α. 2

Weakly flat connections over a Riemann surface

Now we consider more closely the special case when Σ is a Riemann surface.
Theorem 3.1 shows that the injection Aflat(Σ)/G(Σ) ↪→ A0,p

flat(Σ)/G1,p(Σ) in fact
is a bijection. These moduli spaces are identified and denoted by MΣ. Further-
more, the holonomy induces an injection from MΣ to the space of conjugacy
classes of homomorphisms from π1(Σ) to G (see e.g. [DK, Proposition 2.2.3]),

MΣ := A0,p
flat(Σ)/G1,p(Σ) ∼= Aflat(Σ)/G(Σ) ↪→ Hom(π1(Σ),G)/ ∼ .
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If G is connected and simply connected, then every G-bundle over a Riemann
surface is automatically trivial and the holonomy in fact induces a bijection. If
there exist nontrivial G-bundles with flat connections, then Hom(π1(Σ),G)/ ∼
is identified with the union of the moduli spaces for all such bundles. From this
one sees that MΣ is a finite dimensional singular manifold.

For G = SU(2) for example, MΣ
∼= Hom(π1(Σ),SU(2))/ ∼ has singularities

at the product connection and at the further reducible connections 6 – corre-
sponding to the connections for which the holonomy group is not SU(2) but
only {1l} or is conjugate to the maximal torus S1 ⊂ SU(2). 7 Away from these
singularities, the dimension of MΣ is 6g − 6, where g is the genus of Σ. (The
arguments in [DS1, §4] show that T[A]MΣ

∼= ker dA/imdA = h1
A has dimension

3 · (2g − 2) at irreducible connections A.)
For the same reasons, the space of weakly flat connections A0,p

flat(Σ) is in
general not a Banach submanifold of A0,p(Σ) but a principal bundle over a
singular base manifold. To be more precise fix a point z ∈ Σ and consider the
space of based gauge transformations, defined as

G1,p
z (Σ) :=

{
u ∈ G1,p(Σ)

∣∣ u(z) = 1l
}
.

This Lie group acts freely on A0,p
flat(Σ). The quotient space A0,p

flat(Σ)/G1,p
z (Σ)

can be identified with Hom(π1(Σ),G) (or a subset thereof if there exist non-
trivial G-bundles over Σ) via the holonomy based at z. This based holon-
omy map ρz : A0,p

flat(Σ) → Hom(π1(Σ),G) is defined by first choosing a based
gauge transformation that makes the connection smooth and then computing
the holonomy around loops based at z. Now ρz gives A0,p

flat(Σ) the structure of a
principal bundle with fibre G1,p

z (Σ) over the finite dimensional singular manifold
Hom(π1(Σ),G) (or a subset thereof)

G1,p
z (Σ) ↪→ A0,p

flat(Σ)
ρz−→ Hom(π1(Σ),G).

Note that this discussion does not require the Riemann surface Σ to be con-
nected. Only when fixing a base point for the holonomy map and the based
gauge transformations one has to adapt the definition. Whenever Σ =

∪n
i=1 Σi

has several connected components Σi, then ’fixing a point z ∈ Σ’ implicitly
means that one fixes a point zi ∈ Σi in each connected component. The group
of based gauge transformations then becomes

G1,p
z (

∪n
i=1 Σi) :=

{
u ∈ G1,p(Σ)

∣∣ u(zi) = 1l ∀i = 1, . . . , n
}
.

4 Lagrangians in the space of connections

Consider the trivial G-bundle over a (possibly disconnected) Riemann surface
Σ of (total) genus g, where G is a compact Lie group with Lie algebra g. There

6A connection A ∈ Aflat(Σ) is called reducible if its isotropy subgroup of G(Σ) (the group
of gauge transformations that leave A fixed) is not discrete.

7The holonomy group of a connection is given by the holonomies of all loops in Σ. Now the
isotropy subgroup of G(Σ) of the connection is isomorphic to the centralizer of the holonomy
group, see [DK, Lemma 4.2.8].
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is a gauge invariant symplectic form ω on the space of connections A0,p(Σ) for
p > 2 defined as follows. For tangent vectors α, β ∈ Lp(Σ,T∗Σ⊗g) to the affine
space A0,p(Σ)

ω(α, β) =
∫

Σ

〈α ∧ β 〉. (13)

The action of the infinite dimensional gauge group G1,p(Σ) on the symplectic
Banach space (A0,p(Σ), ω) is Hamiltonian with moment map A 7→ ∗FA (more
precisely, the equivalent weak expression in (W 1,p∗(Σ, g))∗). So the moduli space
of flat connections MΣ = A0,p

flat(Σ)/G1,p(Σ) can be viewed as the symplectic quo-
tient A0,p(Σ)//G1,p(Σ) as was first observed by Atiyah and Bott [AB]. However,
0 is not a regular value of the moment map, so MΣ is a singular symplectic
manifold. Due to these singularities at the reducible connections the infinite
dimensional setting suggests itself.

Note that for any metric on Σ the Hodge ∗ operator is an ω-compatible
complex structure since ω(·, ∗·) is the L2-metric: For all α, β ∈ Lp(Σ,T∗Σ ⊗ g)

ω(α, ∗β) =
∫

Σ

〈α ∧ ∗β 〉 = 〈α , β 〉L2 . (14)

Next, we call a Banach submanifold L ⊂ A0,p(Σ) Lagrangian if it is isotropic,
i.e. ω|L ≡ 0, and if TAL is maximal for all A ∈ L in the following sense: If
ω(TAL, α) = {0} for some α ∈ A0,p(Σ), then α ∈ TAL. In general, this condi-
tion does not imply that L is also totally real with respect to any ω-compatible
complex structure. However, we will only consider Lagrangian submanifolds
L ⊂ A0,p(Σ) that are gauge invariant and contained in the space of weakly flat
connections. These are automatically totally real with respect to the Hodge ∗
operator, as lemma 4.2 will show. It is based on the following twisted Hodge
decomposition.

Lemma 4.1 Fix a metric on Σ and let A ∈ A0,p
flat(Σ). Then

Lp(Σ,T∗Σ ⊗ g) = dAW 1,p(Σ, g) ⊕ ∗dAW 1,p(Σ, g) ⊕ h1
A,

with the finite dimensional space h1
A = ker dA ∩ ker d∗

A ⊂ W 1,q(Σ,T∗Σ ⊗ g) for
1
q = 1

2 + 1
p .

Proof: Recall that p > 2, hence dAW 1,2(Σ, g) ⊂ L2(Σ,T∗Σ ⊗ g) due to the
Sobolev embedding W 1,2(Σ) ↪→ Lr(Σ) for any r < ∞. The weak flatness of
A then implies that dAW 1,2(Σ, g) and ∗dAW 1,2(Σ, g) are L2-orthogonal. The
orthogonal complement of their direct sum then exactly is h1

A. (To see that every
L2-regular 1-form that is orthogonal to im dA and to ∗imdA is automatically
W 1,q-regular, one can use the regularity theory for the Laplace operator or
the Hodge decomposition, or see e.g. [W1, Theorem 5.3].) Next, note that
h1
A ⊂ Lp(Σ,T∗Σ ⊗ g) due to the Sobolev embedding W 1,q(Σ) ↪→ Lp(Σ). Now

the same regularity arguments as above show that the orthogonal decomposition

L2(Σ,T∗Σ ⊗ g) = dAW 1,2(Σ, g) ⊕ ∗dAW 1,2(Σ, g) ⊕ h1
A (15)
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restricts to the claimed decomposition of Lp(Σ,T∗Σ⊗g). Finally, to see that h1
A

is finite dimensional note that it is isomorphic to the cokernel of the operator
dA ⊕ ∗dA : W 1,p(Σ, g) ×W 1,p(Σ, g) → Lp(Σ,T∗Σ ⊗ g). Now this operator is
a compact perturbation of the Fredholm operator d ⊕ ∗d, hence its cokernel is
finite dimensional. 2

Lemma 4.2 Let L ⊂ A0,p(Σ) be a Lagrangian submanifold. Suppose that L is
invariant under the action of G1,p(Σ) and that L ⊂ A0,p

flat(Σ). Then L is totally
real with respect to the Hodge ∗ operator for any metric on Σ.

Proof: Pick any A ∈ L and denote L := TAL. Then we have to show that
A0,p(Σ) = L ⊕ ∗L. Firstly, the only element α ∈ L ∩ ∗L in the intersection is
α = 0 since ∗α ∈ ∗ ∗ L = L and thus ‖α‖2

L2 = ω(α, ∗α) = 0.
Secondly, to see that the direct sum L⊕∗L exhausts all of A0,p(Σ), assume

the contrary. Then there exists a nonzero linear functional φ on A0,p(Σ) that
vanishes on L⊕∗L. Due to the gauge invariance of L one has dAW 1,p(Σ, g) ⊂ L,
so φ vanishes in particular on dAW 1,p(Σ, g) ⊕ ∗dAW 1,p(Σ, g). Now recall the
Hodge decomposition in lemma 4.1 and (15). It implies that φ has to be nonzero
on h1

A and hence can be extended to a nonzero linear functional on A0,2(Σ) that
vanishes on dAW 1,2(Σ, g) ⊕ ∗dAW 1,2(Σ, g). Thus the extended functional can
be written as φ = 〈α, · 〉L2 for some α ∈ L2(Σ,T∗Σ⊗g). But now the orthogonal
decomposition (15) implies that α ∈ h1

A ⊂ A0,p(Σ). Now for all β ∈ L = TAL
one has

ω(β, α) = 〈α, ∗β 〉L2 = φ(∗β) = 0.

The Lagrangian property of L then implies that α ∈ L and hence

‖α‖2
L2 = 〈α, α 〉L2 = φ(α) = 0.

This proves α = 0 in contradiction to the assumption φ 6= 0. Hence L is indeed
totally real with respect to the complex structure ∗, i.e. for all A ∈ L

Lp(Σ,T∗Σ ⊗ g) = TAL ⊕ ∗TAL. (16)

2

The assumption L ⊂ A0,p
flat(Σ) directly implies that L is gauge invariant if G

is connected and simply connected. On the other hand, the gauge invariance of
L implies L ⊂ A0,p

flat(Σ) if the Lie bracket on G is nondegenerate (i.e. the center
of G is discrete). So for example in the case G = SU(2) both conditions are
equivalent. We will always assume both conditions. Then moreover, L descends
to a (singular) submanifold of the (singular) moduli space of flat connections,

L := L/G1,p(Σ) ⊂ A0,p
flat(Σ)/G1,p(Σ) =: MΣ.

This submanifold is obviously isotropic, i.e. the symplectic structure induced
by (13) on MΣ vanishes on L. Moreover, its tangent spaces have half of the
dimension of those of MΣ, so L ⊂ MΣ is a Lagrangian submanifold. Indeed,
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in the Hodge decomposition, lemma 4.1, ∗dAW 1,p(Σ, g) is the complement of
ker dA = TAA0,p

flat(Σ), dAW 1,p(Σ, g) is the tangent space to the orbit of G1,p(Σ)
through A, and so h1

A
∼= T[A]MΣ. Now compare this with the decomposition

(16). Here TAL = dAW 1,p(Σ, g) ⊕ V , where the complement V ⊂ A0,p(Σ) is
finite dimensional and V ⊕∗V can replace h1

A in the Hodge decomposition. Thus
T[A]L ∼= TAL/dAW 1,p(Σ, g) ∼= V must have half the dimension of h1

A.
Moreover, our assumptions on the Lagrangian submanifold ensure that the

holonomy map ρz : L → Hom(π1(Σ),G) based at z ∈ Σ is welldefined and in-
variant under the action of the based gauge group G1,p

z (Σ). (The holonomy map
and based gauge group are introduced in section 3.) Note that Hom(π1(Σ),G)
naturally embeds into Hom(π1(Σ \ {z}),G), which is a smooth manifold diffeo-
morphic to G2g. This gives Hom(π1(Σ),G) a differentiable structure (that is in
fact independent of z ∈ Σ), however, it is a manifold with singularities. In the
following lemma we list some crucial properties of the Lagrangian submanifolds.
Here we use the notation

W 1,p
z (Σ, g) :=

{
ξ ∈W 1,p(Σ, g)

∣∣ ξ(z) = 0
}

for the Lie algebra T1lG1,p
z (Σ) of the based gauge group. (If Σ is not connected

then as before one fixes a base point in each connected component and modifies
the definition of W 1,p

z (Σ, g) accordingly.) Moreover, we will denote the differen-
tial of a map φ at a point x by Txφ in order to distinguish it from the exterior
differential on differential forms, dA, associated with a connection A.

Lemma 4.3 Let L ⊂ A0,p(Σ) be a Lagrangian submanifold and fix z ∈ Σ.
Suppose that L ⊂ A0,p

flat(Σ) and that L is invariant under the action of G1,p(Σ).
Then the following holds:

(i) L := L/G1,p
z (Σ) is a smooth manifold of dimension m = g · dimG and

the holonomy induces a diffeomorphism ρz : L → M to a submanifold
M ⊂ Hom(π1(Σ),G).

(ii) L has the structure of a principal G1,p
z (Σ)-bundle over M ,

G1,p
z (Σ) ↪→ L ρz−→M.

(iii) Fix A ∈ L. Then there exists a local section φ : V → L over a neighbour-
hood V ⊂ Rm of 0 such that φ(0) = A and ρz ◦ φ is a diffeomorphism to
a neighbourhood of ρz(A). This gives rise to Banach submanifold coordi-
nates for L ⊂ A0,p(Σ), namely a smooth embedding

Θ : W → A0,p(Σ)

defined on a neighbourhood W ⊂ W 1,p
z (Σ, g) × Rm ×W 1,p

z (Σ, g) × Rm of
zero by

Θ(ξ0, v0, ξ1, v1) := exp(ξ0)∗φ(v0) + ∗dAξ1 + ∗T0φ(v1).
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Moreover, if A is smooth, then the local section can be chosen such that
the image is smooth, φ : V → L ∩ A(Σ). Now the same map Θ is a
diffeomorphism between neighbourhoods of zero in W 1,p

z (Σ, g2)×R2m and
neighbourhoods of A in A0,p(Σ) for all p > 2.

We postpone the proof and first note that this lemma shows that the La-
grangian submanifolds considered here all satisfy the crucial assumption for
theorem 1.2 and 1.3.

Corollary 4.4 Let L ⊂ A0,p(Σ) be as in lemma 4.3, then it satisfies (Hp), i.e.
L is modelled on a closed subspace of an Lp-space.

Proof of corollary 4.4:
The bundle structure of L in lemma 4.3 (ii) shows that L is modelled on
W 1,p
z (Σ, g) × Rm. This is since the Banach manifold G1,p

z (Σ) is modelled on
W 1,p
z (Σ, g), which is a closed subspace of W 1,p(Σ, g). Now recall example 1.1 to

see that L indeed satisfies (Hp). 2

The Banach submanifold charts Θ in lemma 4.3 (iii) are essentially the same
as the charts Θ in the proof of theorem 1.2. In this special case, we have more
detailed information on the structure of Θ, which is the main point in the proof
of the following approximation result for W 1,p-connections with Lagrangian
boundary values.

Corollary 4.5 Let L ⊂ A0,p(Σ) be as in lemma 4.3 and let

Ω ⊂ H := {(s, t) ∈ R2
∣∣ t ≥ 0}

be a compact submanifold. Suppose that A ∈ A1,p(Ω×Σ) satisfies the boundary
condition

A|(s,0)×Σ ∈ L ∀(s, 0) ∈ ∂Ω. (17)

Then there exists a sequence of smooth connections Aν ∈ A(Ω×Σ) that satisfy
(17) and converge to A in the W 1,p-norm.

Proof of corollary 4.5:
We decompose A = Φds + Ψdt + B into two functions Φ,Ψ ∈ W 1,p(Ω × Σ, g)
and a family of 1-forms B ∈ W 1,p(Ω × Σ,T∗Σ ⊗ g) on Σ such that B(s, 0) ∈ L
for all (s, 0) ∈ ∂Ω. Then it suffices to find an approximating sequence for B
with Lagrangian boundary conditions on a neighbourhood of Ω∩ ∂H. This can
be patched together with any smooth W 1,p-approximation of B on the rest of
Ω and can be combined with standard approximations of the functions Φ and
Ψ to obtain the required approximation of A.

So fix any (s0, 0) ∈ Ω ∩ ∂H and use theorem 3.1 to find u0 ∈ G1,p(Σ)
such that A0 := u∗0B(s0, 0) is smooth. Lemma 4.3 (iii) gives a diffeomorphism
Θ : W → V between neighbourhoods W ⊂ W 1,p

z (Σ, g2) × R2m of zero and
V ⊂ A0,p(Σ) of A0. This was constructed such that C∞(Σ, g2)×R2m is mapped
to A(Σ) and such that Θ : W ∩ W 2,p

z (Σ, g2) × R2m → V ∩ A1,p(Σ) also is
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a diffeomorphism. Now note that B ∈ C0(Ω,A0,p(Σ)). Hence there exists a
neighbourhood U ⊂ Ω of (s0, 0) and one can choose a smooth gauge trans-
formation u ∈ G(Σ) that is W 1,p-close to u0 such that u∗B(s, t) ∈ V for all
(s, t) ∈ U . Now we define ξ = (ξ0, ξ1) : U → W 1,p

z (Σ, g2) and v = (v0, v1) :
U → R2m by Θ(ξ(s, t), v(s, t)) = u∗B(s, t). Recall that B is of class W 1,p

on U × Σ, hence it lies in both W 1,p(U,A0,p(Σ)) and Lp(U,A1,p(Σ)). Thus
ξ ∈W 1,p(U,W 1,p

z (Σ, g2))∩Lp(U,W 2,p
z (Σ, g2)) and v ∈W 1,p(U,R2m), and these

satisfy the boundary conditions ξ1|t=0 = 0 and v1|t=0 = 0 due to the La-
grangian boundary condition for B. Now there exist ξν ∈ C∞(U × Σ, g2) and
vν ∈ C∞(U,R2m) such that ξν → ξ and vν → v in all these spaces, ξν(·, z) ≡ 0,
ξν1 |t=0 = 0, and vν1 |t=0 = 0. (These are constructed with the help of mollifiers as
in lemma 2.2. One first reflects ξ at the boundary and mollifies it with respect to
U to obtain approximations in C∞(U,W 2,p

z (Σ, g2)) with zero boundary values.
Next, one mollifies on Σ, and finally one corrects the value at z.) It follows that
Bν(s, t) := (u−1)∗Θ(ξν(s, t), vν(s, t)) is a sequence of smooth maps from U to
A(Σ) which satisfies the Lagrangian boundary condition and converges to B in
the W 1,p-norm.

Now Ω∩∂H is compact, so it is covered by finitely many such neighbourhoods
Ui on which there exist smooth W 1,p-approximations of B with Lagrangian
boundary values. These can be patched together in a finite procedure since the
above construction allows to interpolate in the coordinates between ξν , vν and
other smooth approximations ξ′, v′ (arising from approximations of B on an-
other neighbourhood U ′ in different coordinates) of ξ and v respectively. This
gives the required approximation of B in a neighbourhood of Ω ∩ ∂H and thus
finishes the proof. 2

Proof of lemma 4.3:
Fix A ∈ L and consider the following two decompositions:

Lp(Σ,T∗Σ ⊗ g) = TAL ⊕ ∗TAL (18)

= dAW 1,p
z (Σ, g) ⊕ ∗dAW 1,p

z (Σ, g) ⊕ h̃A.

The first direct sum is due to lemma 4.2. In the second decomposition, h̃A is a
complement of the image of the following Fredholm operator:

DA :
W 1,p
z (Σ, g) ×W 1,p

z (Σ, g) −→ Lp(Σ,T∗Σ ⊗ g)
(ξ, ζ) 7−→ dAξ + ∗dAζ.

To see that DA is Fredholm note that for every A ∈ A0,p
flat(Σ) the operator DA is

injective and is a compact perturbation of D0. Hence the dimension of cokerDA

(and thus of h̃A) is the same as that of cokerD0. In the case A = 0 one can
choose the space of g-valued harmonic 1-forms h1 = ker d∩ker d∗ as complement
h̃0. So h̃A must always have the dimension dim h̃A = dimh1 = 2g ·dimG = 2m.
(Note that in general one can choose h̃A to contain h1

A, but this might not
exhaust the whole complement.)

30



Due to the G1,p
z (Σ)-invariance of L the splittings (18) now imply that there

exists an m-dimensional subspace LA ⊂ h̃A such that

TAL = dAW 1,p
z (Σ, g) ⊕ LA.

So TAL is isomorphic to the Banach space W 1,p
z (Σ, g)×Rm via dA⊕F for some

isomorphism F : Rm → LA. Here we have used the fact that dA is injective
when restricted to W 1,p

z (Σ, g). Now choose a coordinate chart Φ : TAL → L
defined near Φ(0) = A, then the following map is defined for a sufficiently small
neighbourhood V ⊂ Rm of 0,

Ψ :
G1,p
z (Σ) × V −→ L

(u, v) 7−→ u∗
(
Φ ◦ (T0Φ)−1 ◦ F (v)

)
.

We will show that this is an embedding and a submersion (and thus a diffeomor-
phism to its image). Firstly, T(1l,0)Ψ : (ξ, w) 7→ dAξ + Fw is an isomorphism.
Next, note that Ψ(u, v) = u∗Ψ(1l, v) and use this to calculate for all u ∈ G1,p

z (Σ),
ξ ∈W 1,p

z (Σ, g), and v, w ∈ Rm

T(u,v)Ψ : (ξu,w) 7→ u−1
(
dΨ(1l,v)ξ + T(1l,v)Ψ(0, w)

)
u.

One sees that u(T(u,v)Ψ)u−1 is a small perturbation of T(1l,0)Ψ, hence one can
choose V sufficiently small (independently of u) such that T(u,v)Ψ also is an
isomorphism for all v ∈ V . So it remains to check that Ψ in fact is globally
injective.

Suppose that u, u′ ∈ G1,p
z (Σ) and v, v′ ∈ V such that Ψ(u, v) = Ψ(u′, v′).

Rewrite this as Ψ(1l, v) = Ψ(ũ, v′) with ũ := u′u−1 ∈ G1,p
z (Σ). Now by the choice

of a sufficiently small V the norm ‖Ψ(1l, v)−Ψ(1l, v′)‖p can be made arbitrarily
small. Then the identity Ψ(1l, v) = ũ∗Ψ(1l, v′) automatically implies that ũ is
C0-close to 1l. (Otherwise one would find a sequence of Lp-connections Aν → A
and uν ∈ G1,p

z (Σ) such that ‖uν ∗Aν − Aν‖p → 0 but dC0(uν , 1l) ≥ ∆ > 0.
However, from (uν)−1duν = uν ∗Aν − (uν)−1Aνuν one obtains an Lp-bound on
duν and thus finds a weakly W 1,p-convergent subsequence of the uν . Its limit
u ∈ G1,p

z (Σ) would have to satisfy u∗A = A, hence u ≡ 1l in contradiction to
dC0(u, 1l) ≥ ∆ > 0.) So one can write ũ = exp(ξ) where ξ ∈ W 1,p

z (Σ, g) is small
in the L∞-norm. Next, the identity

ũ−1dũ = Ψ(1l, v) − ũ−1Ψ(1l, v′)ũ

shows that ‖ξ‖W 1,p will be small if V is small (and thus ũ is C0-close to 1l).
Hence if V is sufficiently small, then (ũ, v′) and (1l, v) automatically lie in a
neighbourhood of (1l, 0) on which Ψ is injective, and hence u = u′ and v = v′.

We have thus shown that Ψ : G1,p
z (Σ) × V → L is a diffeomorphism to

its image. This provides manifold charts ψ : V → L/G1,p
z (Σ), v 7→ [Ψ(1l, v)] for

L := L/G1,p
z (Σ). Now fix 2g generators of the fundamental group π1(Σ) based at

z, then the corresponding holonomy map ρz : L→ G×· · ·×G is an embedding,
so its image M ⊂ Hom(π1(Σ),G) is a smooth submanifold. This proves (i).
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For (ii) the diffeomorphism Ψ gives a bundle chart over U := ρz(ψ(V )) ⊂ M ,
namely

Ψ ◦
(
id × (ρz ◦ ψ)−1

)
: G1,p

z (Σ) × U −→ L.

Furthermore, the local section for (iii) is given by φ(v) := Ψ(1l, v). However,
this is a map φ : V → L; it does not necessarily take values in the smooth
connections. Now if A ∈ L ∩ A(Σ) is smooth, then for a sufficiently small
neighbourhood V this section can be modified by gauge transformations such
that φ : V → L ∩ A(Σ). To see this, note that the gauge transformations in
the local slice theorem are given by an implicit function theorem: One solves
D(v, ξ) = 0 for ξ = ξ(v) ∈W 1,p(Σ, g) with the following operator:

D : V ×W 1,p(Σ, g) −→ imd′
A ⊂

(
W 1,p∗(Σ, g)

)∗
(v, ξ) 7−→ d′

A

(
exp(ξ)∗φ(v) −A

)
.

Here d′
A denotes the dual operator of dA on W 1,p∗(Σ, g). One has D(0, 0) = 0

and checks that ∂2D(0, 0) : ξ → d′
AdAξ is a surjective map to im d′

A, see e.g.
[W1, Lemma 8.5]. The implicit function theorem [L, XIV,Theorem 2.1] then
gives the required gauge transformations exp(ξ(v)) ∈ G1,p(Σ) that bring φ(v)
into local Coulomb gauge and thus make it smooth. (By construction φ(v) is
weakly flat, then see the proof of theorem 3.1.) This modification by gauge
transformations however does not affect the topological direct sum decomposi-
tion TAL = dAW 1,p

z (Σ, g) ⊕ imT0φ.
To see that the given map Θ is a diffeomorphism between neighbourhoods

of 0 and A just note that the inverse of T0Θ is given by the splitting

Lp(Σ,T∗Σ ⊗ g) = TAL ⊕ ∗TAL
= dAW 1,p

z (Σ, g) ⊕ imT0φ⊕ ∗dAW 1,p
z (Σ, g) ⊕ ∗imT0φ

composed with the inverses of dA|W 1,p
z (Σ,g) and T0φ. 2

Now observe that the choice of p > 2 for the Lagrangian submanifolds in
the above lemma is accidental. All connections A ∈ L are gauge equivalent
to a smooth connection, and the Lq-completion of L ∩ A(Σ) is a Lagrangian
submanifold in A0,q(Σ) for all q > 2. In fact, this simply is the restricted
(q > p) or completed (q < p) G1,q

z (Σ)-bundle over M .

The main example

Suppose that G is connected and simply connected and that Σ = ∂Y is the
boundary of a handlebody Y . (Again, the handlebody and thus its bound-
ary might consist of several connected components.) The crucial property of
the handle body Y is that the inclusion ι : Σ → Y induces an isomorphism
π1(Y ) ∼= π1(Σ)/∂π2(Y,Σ). This is since Y retracts onto its 1-skeleton, which
can be chosen to lie in Σ, so we have the exact sequence

0 = π2(Y ) → π2(Y,Σ) ∂→ π1(Σ) ι→ π1(Y ) → π1(Y,Σ) = 0.

32



The assumptions on G together with the fact that π2(G) = 0 for any Lie group G
(see e.g. [B, Proposition 7.5]) ensure that the gauge group G1,p(Σ) is connected
and that every gauge transformation on Σ can be extended to Y .

Let p > 2 and let LY be the Lp(Σ)-closure of the set of smooth flat connec-
tions on Σ that can be extended to a flat connection on Y ,

LY := cl
{
A ∈ Aflat(Σ)

∣∣ ∃Ã ∈ Aflat(Y ) : Ã|Σ = A
}

⊂ A0,p(Σ).

This is an example of a totally real submanifold of (A0,p(Σ, g), ∗) that satisfies
the assumption of theorem 1.2 and 1.3. This is due to the lemmata 4.2 and 4.3
and the following properties of LY .

Lemma 4.6

(i) LY =
{
u∗(A|Σ)

∣∣A ∈ Aflat(Y ), u ∈ G1,p(Σ)
}

(ii) LY ⊂ A0,p(Σ) is a Lagrangian submanifold.

(iii) LY ⊂ A0,p
flat(Σ) and LY is invariant under the action of G1,p(Σ).

(iv) Fix any z ∈ Σ. Then

LY =
{
A ∈ A0,p

flat(Σ)
∣∣ ρz(A) ∈ Hom(π1(Y ),G) ⊂ Hom(π1(Σ),G)

}
,

where we identify

Hom(π1(Y ),G) ∼=
{
ρ ∈ Hom(π1(Σ),G)

∣∣ ρ(∂π2(Y,Σ)) = {1l}
}
.

So LY obtains the structure of a G1,p
z (Σ)-bundle over the g-fold product

M = G × · · · × G ∼= Hom(π1(Y ),G),

G1,p
z (Σ) ↪→ LY

ρz−→ Hom(π1(Y ),G).

Proof: Firstly, LY ⊂ A0,p
flat(Σ) follows from the fact that weak flatness is an

Lp-closed condition for p > 2. The holonomy ρz : A0,p
flat(Σ) → G × · · · × G

is continuous with respect to the Lp-topology. Thus for every A ∈ LY the
holonomy vanishes on those loops in Σ that are contractible in Y . On the other
hand, in view of theorem 3.1, every A ∈ A0,p

flat(Σ) whose holonomy descends
to Hom(π1(Y ),G) can be written as A = u∗Ã, where u ∈ G1,p

z (Σ) and the
holonomy of Ã ∈ Aflat(Σ) also vanishes along the loops that are contractible in
Y . Thus Ã can be extended to a flat connection on Y and smooth approximation
of u proves that A ∈ LY . This proves the alternative definitions of LY in (iv)
and (i). Then (iii) is a consequence of (i).

To prove the second assertion in (iv) we explicitly construct local sections
of LY . Let the loops α1, β1, . . . , αg, βg ⊂ Σ be disjoint from z and represent
the standard generators of π1(Σ) such that α1, . . . , αg generate π1(Y ) and such
that the only nonzero intersections are αi ∩ βi. 8 One can then modify the αi

8π1(Σ) is the group generated by α1, β1, . . . , αg , βg with the relation

α1β1α−1
1 β−1

1 . . . αgβgα−1
g β−1

g = 1l, whereas π1(Y ) is the free group generated by α1, . . . , αg .
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such that they run through z but still do not intersect the βj for j 6= i. Now
fix A ∈ LY . In order to change its holonomy along αi by some g ∈ G close to
1l, one gauge transforms A in a small neighbourhood of βi in Σ with a smooth
gauge transformation that equals 1l and g respectively near the two boundary
components of that ring about βi. That way one obtains a smooth local section
φ : V → LY defined on a neighbourhood V ⊂ gg of 0, such that φ(0) = A and
ρz ◦ φ : V → Hom(π1(Y ),G) is a bijection onto a neighbourhood of ρz(A). This
leads to a bundle chart

Ψ :
G1,p
z (Σ) × V −→ LY

(u, v) 7−→ u∗φ(v).

Note that for smooth A ∈ LY ∩ A(Σ) the local section φ constructed above
in fact is a section in the smooth part LY ∩ A(Σ) of the Lagrangian. Using
these bundle charts one also checks that LY ⊂ A0,p(Σ) is indeed a Banach
submanifold. Now a submanifold chart near Ψ(u, v) ∈ A0,p(Σ) is given by
(ξ, w) 7→ Ψ(exp(ξ)u, v + w) + ∗T(u,v)Ψ(ξ, w). As in lemma 4.3 one checks that
this is a local diffeomorphism.

To verify the Lagrangian condition it suffices to consider ω on TAA0,p(Σ)
for smooth A ∈ LY . This is because both ω and LY are invariant under the
gauge action. So we pick some A ∈ LY ∩ A(Σ) and find Ã ∈ Aflat(Y ) such
that A = Ã|Σ. Let α, β ∈ TALY , then by the characterization of LY in (i)
we find ξ, ζ ∈ W 1,p(Σ, g) and paths Ãα, Ãβ : [−1, 1] → Aflat(Y ) such that
Ãα(0) = Ãβ(0) = Ã and

α = dAξ + d
ds

∣∣
s=0
Ãα(s)|Σ, β = dAζ + d

ds

∣∣
s=0
Ãβ(s)|Σ.

Now firstly Stokes’ theorem on Σ with ∂Σ = ∅ proves

ω(dAξ , dAζ) = lim
ν→∞

∫
Σ

〈dAξν ∧ dAζν 〉 = lim
ν→∞

∫
Σ

d〈 ξν ∧ dAζν 〉 = 0.

Here we have used smooth W 1,p-approximations ξν and ζν of ξ and ζ respec-
tively.

Similarly, one obtains ω(dAξ, d
ds Ã

β |Σ) = 0 and ω( d
ds Ã

α|Σ,dAζ) = 0 since
dA

(
d
ds Ã

α|Σ
)

= d
dsFÃα

∣∣
Σ

= 0. Finally, Stokes’ theorem with ∂Y = Σ yields due
to FÃα(s) = 0 for all s

ω(α , β) =
∫

Σ

〈 d
ds Ã

α|Σ ∧ d
ds Ã

β |Σ 〉 =
∫
Y

d〈 d
ds Ã

α ∧ d
ds Ã

β 〉

=
∫
Y

〈 d
dsFÃα ∧ d

ds Ã
β 〉 −

∫
Y

〈 d
ds Ã

α ∧ d
dsFÃβ 〉 = 0.

This proves that ω|TALY = 0 and recalling (14) one moreover sees that TALY
and ∗TALY are L2-orthogonal. In fact, we even have the topological decom-
position Lp(Σ,T∗Σ ⊗ g) = TALY ⊕ ∗TALY , and this proves the Lagrangian
property of LY . To see that this direct sum indeed exhausts the whole space
consider the Hodge type decomposition as in the proof of lemma 4.3,

Lp(Σ,T∗Σ ⊗ g) = dAW 1,p
z (Σ, g) ⊕ ∗dAW 1,p

z (Σ, g) ⊕ h̃A.
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Here we have dim h̃A = 2g · dim G, and we have already seen that LY is
a G1,p

z (Σ)-bundle over the (g · dimG)-dimensional manifold Hom(π1(Y ),G).
So dAW 1,p

z (Σ, g) ⊂ TALY is the tangent space to the fibre through A, and
then for dimensional reasons TALY ⊕ ∗TALY also exhausts h̃A and thus all of
Lp(Σ,T∗Σ ⊗ g). 2
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