
Updates and Corrections for

“Harmonic Analysis on Commutative Spaces”

modified whole pages follow this listing

April 10, 2012

p.75, `.18: change “Fix a family {sα}α∈A of maps” to “Fix a countable family {sα}α∈A of maps”
`.2 of Lemma 4.6.2: change “is a Hilbert space.” to “is a separable Hilbert space.”

pp.163-164: replace the paragraph containing equation (8.3.14) through the proof of Theorem 8.3.3,
by the following

The proof of Theorem 8.3.3 combines results of Gelfand [Ge1], Godement [Go] and
Helgason [H1]. Gelfand found the differential equations for the spherical functions and
Godement developed their properties and related them to work of Harish–Chandra
[Ha]. In [H1, Chapter 10, Corollary 7.4], Helgason characterized the solutions to these
differential equations by a functional equation

(8.3.14) ϕ(x)ϕ0(y) =

∫
K
ϕ(xky) dµK (k) where ϕ0(y) =

∫
K
ϕ(ky) dµK (k),

based on the following result, which extends Theorem 8.3.3.

Proposition 8.3.15. Suppose that D(G,K) is commutative. Let ϕ ∈ C(G/K) with
ϕ(1K) = 1. Then ϕ satisfies (8.3.14) if and only if (i) ϕ ∈ C∞(G/K) and (ii) ϕ is a
joint eigenfunction of D(G,K).

Proof. We follow Helgason [H1, Chapter X, Proposition 3.2 and Corollary 7.4]. Iden-
tify ϕ with its lift to G. Suppose first that ϕ is C∞ and is a joint eigenfunction of
D(G,K), and that ϕ(1) = 1. The manifold G/K is Cω, as is any G–invariant rie-
mannian metric, so the Laplace–Beltrami operator ∆ for any such metric is Cω. As
∆ ∈ D(G,K) and ∆ is elliptic, now ϕ is Cω by elliptic regularity.

Fix x ∈ G. Define h(y) =
∫
K ϕ(xky)dµK (k). Then h ∈ Cω(K\G/K). If D ∈ D(G,K),

say Dϕ = χ(D)ϕ, then (Dh)(y) =
∫
K(Dϕ)(xky) dµK (k) = χ(D)h(y) and Dϕ0 =

χ(D)ϕ0. Thus [D(ϕ0(1)h− h(1)ϕ0)](1) = 0. As in [H1, equation (3) on page 400] (see
Lemma 8.3.16 below) the map D̃ 7→

∫
K(D̃ ·r(k))dµK (k) sends the algebra D(G), of left–

invariant differential operators on G, onto D(G,K). Now [D̃(ϕ0(1)h− h(1)ϕ0)](1) = 0
for D̃ ∈ D(G), where we have pulled the functions ϕ0 and h back to G. Thus all deriva-
tives of ϕ0(1)h− h(1)ϕ0 vanish at 1. Since ϕ is Cω, so is the function ϕ0(1)h− h(1)ϕ0,
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while its Taylor series expansion at 1 is identically zero. Thus ϕ0(1)h(y) = h(1)ϕ0(y) for
all y ∈ G. Since ϕ0(1) = 1 and h(1) = ϕ(x) now

∫
K ϕ(xky)dµK (k) = h(y) = ϕ(x)ϕ0(y).

Thus ϕ satisfies (8.3.14).

Conversely suppose that ϕ satisfies (8.3.14). Choose u ∈ C∞c (G) such that∫
G u(y)ϕ0(y)dµG(y) 6= 0. Compute

ϕ(x)

∫
G
u(y)ϕ0(y)dµG(y) =

∫
G
u(y)

(∫
K
ϕ(xky)dµK (k)

)
dµG(y)

=

∫
K

(∫
G
u(y)ϕ(xky)dµG(y)

)
dµK (k)

=

∫
K

(∫
G
u(k−1x−1z)ϕ(z)dµG(z)

)
dµK (k)

=

∫
G

(∫
K
u(kx−1z)dµK (k)

)
ϕ(z)dµG(z).

That transfers differentiation in x from ϕ to the C∞ function u, proving ϕ ∈ C∞(G).
Thus also ϕ0 ∈ C∞(G). Now look again at (8.3.14). Fix x ∈ G and let D ∈ D(G,K).
Then ϕ(x)(Dϕ0)(y) =

∫
K(Dϕ)(xky)dµK (k). If y = 1 then

ϕ(x)(Dϕ)(1) =

∫
K

(Dϕ)(xk)dµK (k) = Dϕ(x).

Thus ϕ is a joint eigenfunction of D(G,K). That completes the proof of the converse.
Proposition 8.3.15 is proved. �

Proof of Theorem 8.3.3. According to Theorem 8.2.6, a K–bi–invariant continuous
function ϕ : G→ C is spherical if and only if it satisfies (8.3.14). According to Propo-
sition 8.3.15, ϕ satisfies (8.3.14) if and only if (i) ϕ ∈ C∞(G), (ii) ϕ(1) = 1, and (iii) ϕ
is a joint eigenfunction of D(G,K). �

p.303, `.-12: change “acts by a : (z, w) 7→ (a2, az)” to “acts by a : (z, w) 7→ (a2z, aw)”

Theorem 13.2.2 should read as follows. This drops the hypotheses “connected” and “acting
irreducibly” on K.

Theorem 13.2.2. (Carcano [Ca]) Let K be a closed subgroup of U(n) acting naturally
on Cn. Then (Hn oK,K) is a Gelfand pair if and only if the representation of K on
Cn is “multiplicity free” in the sense that and irreducible representation of K occurs at
most once in the representation of K on polynomials on Cn.

p.305, `.-20: change “classification of irreducible” to “classification of connected irreducible”

pp.308-309: replace the material from ”Now we sum up the condition ...” (p.308, `. -12 to -11)
through the end of Section 13.2 (p.309, `.14) by the following.

If each (Gi,Ki) is a Gelfand pair then their product (G̃, K̃) is a Gelfand pair. The
converse fails, as seen by the following example of Benson and Ratcliff.
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Example 13.2.13. Let V = V1 ⊕ V2 where V1 = C2 and V2 = S2(C2), so V = C5. Let
K = U(2) acting on V diagonally. If we view V2 as symmetric 2× 2 complex matrices
then k : (u, v) 7→ (ku, kvktr). Now (G1,K1) = (H2 o U(2), U(2)) and (G2,K2) =
(H3 o U(2), U(2)) are Gelfand pairs.

The action τ1 of K on V1 = C2 has diagram b1 ×1 , so its action on C[V1] is
∑

a=0 S
a(τ1),

and Sa(τ1) has diagram ba ×a . Here the circle refers to SU(2) and the × refers to the

circle center of U(2). The action τ2 of K on V2 = S2(C2) is S2(τ1) with diagram b2 ×2 ,
so its action on C[V2] is

∑
b=0 S

b(τ2).

Write τ`,m for the irreducible representation of K with diagram b̀ ×m . Thus Sa(τ1) =
τa,a and Sb(τ2) is given by

S2c(τ2) =
∑

05i5c
τ4(c−i),4c and S2c+1(τ2) =

∑
05i5c

τ4(c−i)+2,4c+2.

The action of K on C[v] is ∑
a,b=0

Sa(τ1)⊗ Sb(τ2).

Since
τ`,m ⊗ τs,t = τu,m+t ⊕ τu+2,m+t⊕τu+4,m+t ⊕ . . .⊕ τ`+s,m+t

where u = max{`, s} −min{`, s}

we have
Sa(τ1)⊗ Sb(τ2) =

∑
05i5a, 05a+2b−2i

τa+2b−2i,a+2b.

In particular S2(τ1) ⊗ S1(τ2) and S0(τ1) ⊗ S2(τ2) each has τ4,4 as a summand. Thus
the representation of K on C[v] fails to be multiplicity free. In other words, (G,K) is
not a Gelfand pair. ♦

p.320, `.11: change “(G/Z, (H ∩ Z))” to “(G/Z, (K ∩ Z))”

p.345, `.-7: change “(G/Z, (H ∩ Z))” to “(G/Z, (K ∩ Z))”

p.347, `.3 of Proposition 15.1.5: change “centralizer of l1 in n is” to “centralizer of li in n is”

The following pages are complete book pages with the changes indicated above
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4.6. Continuous Direct Sums of Representations

The discrete direct sums of representations discussed above are sufficient for
dealing with compact groups, but for noncompact groups we need the notion of di-
rect integral. That notion extends the idea of direct sum in the way that integration
extends the idea of addition.

The following result describes Lp direct integrals of Hilbert spaces and shows
that the concept makes sense. There are several distinct ingredients in this recipe,
and each has a special rôle. The basic ingredient is the family {Hy}y∈Y of Hilbert
spaces to be summed. The next ingredient is the measure space5 structure
(Y,M, τ), which provides the framework for the summation. The third and crucial
ingredient is the family {sα}α∈A of “vector fields” y 7→ sα(y) ∈ Hy. First, it tells
us which of the “vector fields” y 7→ s(y) ∈ Hy in the sum of the {Hy} will be
measurable. Second, it tells us which of those measurable fields will be Lp. Third,
it gives us the global Lp norm. Fourth, in the unitary case it defines the global
inner product underlying the L2 norm. These rôles understood, the construction is
straightforward. Here is the formal definition.

Definition 4.6.1. Let (Y,M, τ) be a measure space. For each y ∈ Y let Hy be
a separable Hilbert space. Fix a countable family {sα}α∈A of maps Y →

⋃
y∈Y Hy

such that

(i) sα(y) ∈ Hy a.e. (Y,M, τ), for all α ∈ A,
(ii) y 7→ 〈sα(y), sβ(y)〉Hy belongs to L1(Y, τ), for all α, β ∈ A, and

(iii) Hy is the closed span of {sα(y)}α∈A a.e. (Y, τ).

Then the (Hilbert space) direct integral defined by the measure space (Y,M, τ),
the family {Hy | y ∈ Y } of Hilbert spaces, and the family {sα}α∈A, is the vector
space

H2 =

∫
Y

Hy dτ(y) : all maps s : Y →
⋃
y∈Y

Hy such that

(i) s(y) ∈ Hy a.e. (Y, τ),

(ii) y 7→ 〈s(y), sα(y)〉Hy is measurable, for each α ∈ A, and

(iii) y 7→ 〈s(y), sα(y)〉Hy belongs to L1(Y, τ), for all α ∈ A

with inner product 〈s, s′〉 =
∫
Y
〈s(y), s′(y)〉Hy dτ(y). ♦

Lemma 4.6.2. The inner product of Definition 4.6.1 is well defined, and the
direct integral H2 is a separable Hilbert space.

Definition 4.6.3. Let 1 5 p 5 ∞. Fix a measure space (Y,M, τ), a family
{Hy | y ∈ Y } of separable Hilbert spaces, and a family {sα}α∈A as in Definition

5By measure space we mean the usual: a set Y , a σ–algebra M of subsets of Y , and a

σ–additive function τ :M→ R+ ∪{∞}. Then τ is the measure, the sets M ∈M are measurable,

and M ∈M has measure τ(M). We require (Y,M, τ) to be complete: if M ∈M with τ(M) = 0,
and if M ′ ⊂M , then M ′ ∈M with τ(M ′) = 0.
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We give C−∞c (G) the weakest topology for which the maps T 7→ T (f), where
f ∈ Cω(G), are continuous. Item (5.) shows that this topology is Hausdorff. The
next item is an observation of Godement [Go].

Lemma 8.3.12. {E ∈ C−∞(G) | Supp (E) = {1}} is dense in C−∞c (G).

This comes right out of the Hahn–Banach Theorem. Suppose f ∈ Cω(G) such
that E(f) = 0 whenever E ∈ C−∞(G) with Supp (E) = {1}. Then Df(1) = 0 for
all left–invariant differential operators D on G, so f = 0.

Lemma 8.3.13. Let S ∈ C−∞(G). Then the operators T 7→ T ∗S and T 7→ S∗T
on C−∞c (G) are continuous.

For example (T ∗ S)(f) = T (f ∗ S′) for some S′ ∈ C−∞(G), and f ∗ S′ is Cω by
Lemma 8.3.10.

Proof of Theorem 8.3.1 By Lemma 8.3.13, T 7→ δK ∗ T ∗ δK is contin-
uous on C−∞c (G). By Lemma 8.3.8 its image is the subalgebra A(K\G/K) of
C−∞c (K\G/K) corresponding to D(G,K). Thus by Lemma 8.3.12 A(K\G/K) is
dense in C−∞c (K\G/K). If D(G,K) is commutative now C−∞c (K\G/K) is com-
mutative, and then Lemma 8.3.6 says that (G,K) is a Gelfand pair. �

The proof of Theorem 8.3.3 combines results of Gelfand [Ge1], Godement
[Go] and Helgason [H1]. Gelfand found the differential equations for the spherical
functions and Godement developed their properties and related them to work of
Harish–Chandra [Ha1]. In [H1, Chapter 10, Corollary 7.4], Helgason characterized
the solutions to these differential equations by a functional equation

(8.3.14) ϕ(x)ϕ0(y) =

∫
K

ϕ(xky) dµ
K

(k) where ϕ0(y) =

∫
K

ϕ(ky) dµ
K

(k),

based on the following result, which extends Theorem 8.3.3.

Proposition 8.3.15. Suppose that D(G,K) is commutative. Let ϕ ∈ C(G/K)
with ϕ(1K) = 1. Then ϕ satisfies (8.3.14) if and only if (i) ϕ ∈ C∞(G/K) and
(ii) ϕ is a joint eigenfunction of D(G,K).

Proof. We follow Helgason [H1, Chapter X, Proposition 3.2 and Corollary
7.4]. Identify ϕ with its lift to G. Suppose first that ϕ is C∞ and is a joint
eigenfunction of D(G,K), and that ϕ(1) = 1. The manifold G/K is Cω, as is any
G–invariant riemannian metric, so the Laplace–Beltrami operator ∆ for any such
metric is Cω. As ∆ ∈ D(G,K) and ∆ is elliptic, now ϕ is Cω by elliptic regularity.

Fix x ∈ G. Define h(y) =
∫
K
ϕ(xky)dµ

K
(k). Then h ∈ Cω(K\G/K). If

D ∈ D(G,K), say Dϕ = χ(D)ϕ, then (Dh)(y) =
∫
K

(Dϕ)(xky) dµ
K

(k) = χ(D)h(y)
and Dϕ0 = χ(D)ϕ0. Thus [D(ϕ0(1)h − h(1)ϕ0)](1) = 0. As in [H1, equation (3)

on page 400] (see Lemma 8.3.16 below) the map D̃ 7→
∫
K

(D̃ · r(k))dµ
K

(k) sends
the algebra D(G), of left–invariant differential operators on G, onto D(G,K). Now

[D̃(ϕ0(1)h − h(1)ϕ0)](1) = 0 for D̃ ∈ D(G), where we have pulled the functions
ϕ0 and h back to G. Thus all derivatives of ϕ0(1)h− h(1)ϕ0 vanish at 1. Since ϕ
is Cω, so is the function ϕ0(1)h− h(1)ϕ0, while its Taylor series expansion at 1 is
identically zero. Thus ϕ0(1)h(y) = h(1)ϕ0(y) for all y ∈ G. Since ϕ0(1) = 1 and
h(1) = ϕ(x) now

∫
K
ϕ(xky)dµ

K
(k) = h(y) = ϕ(x)ϕ0(y). Thus ϕ satisfies (8.3.14).
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Conversely suppose that ϕ satisfies (8.3.14). Choose u ∈ C∞c (G) such that∫
G
u(y)ϕ0(y)dµ

G
(y) 6= 0. Compute

ϕ(x)

∫
G

u(y)ϕ0(y)dµ
G

(y) =

∫
G

u(y)

(∫
K

ϕ(xky)dµ
K

(k)

)
dµ

G
(y)

=

∫
K

(∫
G

u(y)ϕ(xky)dµ
G

(y)

)
dµ

K
(k)

=

∫
K

(∫
G

u(k−1x−1z)ϕ(z)dµ
G

(z)

)
dµ

K
(k)

=

∫
G

(∫
K

u(kx−1z)dµ
K

(k)

)
ϕ(z)dµ

G
(z).

That transfers differentiation in x from ϕ to the C∞ function u, proving ϕ ∈
C∞(G). Thus also ϕ0 ∈ C∞(G). Now look again at (8.3.14). Fix x ∈ G and let
D ∈ D(G,K). Then ϕ(x)(Dϕ0)(y) =

∫
K

(Dϕ)(xky)dµ
K

(k). If y = 1 then

ϕ(x)(Dϕ)(1) =

∫
K

(Dϕ)(xk)dµ
K

(k) = Dϕ(x).

Thus ϕ is a joint eigenfunction of D(G,K). That completes the proof of the con-
verse. Proposition 8.3.15 is proved. �

Proof of Theorem 8.3.3 According to Theorem 8.2.6, a K–bi–invariant
continuous function ϕ : G → C is spherical if and only if it satisfies (8.3.14).
According to Proposition 8.3.15, ϕ satisfies (8.3.14) if and only if (i) ϕ ∈ C∞(G),
(ii) ϕ(1) = 1, and (iii) ϕ is a joint eigenfunction of D(G,K). �

Lemma 8.3.16. Identify the space D(G) of left G–invariant differential opera-
tors on G with the universal enveloping algebra G, so D(G,K) is identified with the
algebra of all D|C∞(G/K) as D ranges over the fixed point set of AdG(K) on G. Let

π : D(G) → D(G,K) denote the projection D 7→ (
∫
K

(Ad(k)D)dµ
K

(k))|C∞(G/K).
Then π is surjective, and if D ∈ D(G) and ϕ ∈ C∞(K\G/K) then (Dϕ)(1) =
(π(D)ϕ)(1).

Proof. If Ξ ∈ G then AdG(K)Ξ lies in a finite dimensional subspace of G,
because K is compact. Thus G is the algebraic direct sum of the convolutions ψ∗G
as ψ runs over the normalized characters of irreducible representations of K. In
particular π is surjective.

If f ∈ C∞(K\G/K), ζi ∈ g for 1 5 i 5 `, and k ∈ K, then

((Ad(k)(ζ1 . . . ζ`))f)(1) = d
dt1

∣∣∣
t1=0

. . . d
dt`

∣∣∣
t`=0

f(k exp(t1ζ1) . . . exp(t`ζ`)k
−1)

= d
dt1

∣∣∣
t1=0

. . . d
dt`

∣∣∣
t`=0

f(exp(t1ζ1) . . . exp(t`ζ`))

= (ζ1 . . . ζ`)(f)(1)

If D ∈ D(G) now ((Ad(k)D)f)(1) = (Df)(1). Taking the integral over K we
conclude that (π(D)f)(1) = (Df)(1). �

Proof of Theorem 8.3.4 At the end of the proof of Proposition 8.3.15
we saw that any spherical function ϕ satisfies (Dϕ)(x) = (Dϕ)(1)ϕ(x) for every
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metric, carried to m. Then v is the sum of the orthocomplement to [n, n] in n
(which generates n) and the orthocomplement to n in m, and all these summands
are AdG(K)–stable.

The standard expression of the Levi–Cività connection on a homogeneous
riemannian manifold shows that t 7→ exp(tξ)(x0) is a geodesic if and only if
〈[ξ, η]m, ξm〉 = 0 for all η ∈ m. See [Ko-V]. Let p : m → [n, n] be the projection
with kernel v. Let ξ ∈ g such that t 7→ exp(tξ)(x0) is a geodesic, and ξ = ξk + ξm
according to g = k + m, such that ξm ∈ v. Let ζ ∈ [n, n] and compute

0 = 〈[ξ, ζ]m, ζ〉 = 〈[ξ, ζ][n,n], ζ〉 = 〈[ξk, ζ], ζ〉+ 〈p(ad(ξm)(ζ)), ζ〉.
As ad(ξk) is skew–symmetric on m we have 〈[ξk, ζ], ζ〉 = 0, so 〈p(ad(ξm)(ζ)), ζ〉 = 0.
Thus p ·ad(β)|[n,n] is skew–symmetric for every β ∈ v. But p ·ad(β)|[n,n] is nilpotent
for every β ∈ n, so now p·ad(n∩v)|[n,n] = 0. In other words [(n∩v), [n, n]] = 0. Since
n∩v generates n now [n, n] is central in n. Thus n is abelian or 2–step nilpotent. �

Combining Propositions 13.1.8 and 13.1.9 we have

Theorem 13.1.10. Let (M,ds2) be a connected and simply connected weakly
symmetric riemannian manifold, let G = I(M,ds2)0, and let N be the nilradical of
G. Then N is abelian or 2–step nilpotent.

13.2. The Case Where N is a Heisenberg Group

In this section we look at the cases where (M,ds2) is a connected and simply
connected weakly symmetric riemannian nilmanifold. Those M = G/K were the
first cases of nonsymmetric commutative pairs (G,K) where G is not reductive.
Our treatment depends on the paper [B-J-R1] of Benson, Jenkins and Ratcliff.

The standard Heisenberg group Hn of real dimension 2n + 1 is the group
Hn,0;C of Sections 2.10 and 4.10. There

Hp,q;F : real vector space ImF + Fp,q with group composition

(z, w)(z′, w′) = (z + z′ + Imh(w,w′), w + w′).

where F is R, C or H, h is a hermitian form of signature (p, q) on Fp+q, and Im
denotes imaginary component.

The automorphism group Aut(Hn) = (R∗×Sp(n;R))/{±(1, 1)}. The R∗ factor
acts by a : (z, w) 7→ (a2z, aw). The Sp(n;R) factor is the automorphism group of
the antisymmetric bilinear form ω(v, w) := −i Imh(v, w) on Cn = R2n, and it acts
by g : (z, w) 7→ (z, gw). (Here we need the −i factor in ω because Imh(u, v) ∈ iR
and we want ω to be real–valued.) The maximal compact subgroup of Aut(Hn) is
the usual complex unitary group U(n), and it acts by k : (z, w) 7→ (z, kw). This
leads to the family of pairs

(13.2.1) (G,K) where K is a closed subgroup of U(n) and G = Hn oK.

Theorem 13.2.2. (Carcano [Ca]) Let K be a closed subgroup of U(n) acting
naturally on Cn. Then (HnoK,K) is a Gelfand pair if and only if the representa-
tion of K on Cn is “multiplicity free” in the sense that any irreducible representation
of K occurs at most once in the representation of K (as a subgroup of U(n)) on
polynomials on Cn.
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Proof. The matrix a = diag{a1, a2, . . . , an} ∈ Tn sends the monomial

zm := zm1
1 zm2

2 . . . zmnn

to a−m1
1 a−m2

2 . . . a−mnn zn. Thus the representations of Tn on the various znC are
inequivalent. Now Theorem 13.2.2 says that (Hn o Tn, Tn) is a Gelfand pair. In
other words the convolution algebra L1(Tn\Hn o Tn/Tn) is commutative. Thus
its subalgebra L1(K\Hn o K/K) is commutative and (Hn o K,K) is a Gelfand
pair. �

Remark. One can prove Corollary 13.2.3 without reference to the machinery
of Theorem 13.2.2 as follows. By direct computation one checks that the double

cosets U(1)xU(1) in H1 o U(1) commute. Let H̃ denote H1 × · · · ×H1 (n factors)

and let Ũ denote U(1)×· · ·×U(1). Now the double cosets ŨxŨ commute in H̃oŨ .

Note that Hn is a central quotient of H̃ and that Ũ = Tn. Thus the double cosets
TnxTn commute in Hn o Tn, and (Hn o Tn, Tn) is a Gelfand pair. The argument
now goes as in the proof above of Corollary 13.2.3.

Example. Let K = U(n1)×· · ·×U(nr) where n = n1 + · · ·+nr and the n` are
positive integers. Then K is a closed subgroup of U(n) that contains the maximal
torus Tn. Thus (Hn oK,K) is a Gelfand pair.

We combine Theorem 13.2.2 with Kač’ classification of connected irreducible
complex linear groups that are multiplicity–free on the polynomial ring. The table
is taken from [Ka, Theorem 3], except that we list the compact group K as well as
its complexification KC .

Theorem 13.2.4. ([B-J-R1, Theorem 4.6]) Let K be a closed connected sub-
group of U(n) acting irreducibly on Cn. Then the following are equivalent.

1. (G,K) is a Gelfand pair where G is the semidirect product group Hn oK.

2. The representation of KC on Cn is “multiplicity free” in the sense that
any irreducible representation of KC occurs at most once as a summand of the
corresponding representation on the ring of polynomials on Cn.

3. The representation of K on Cn is equivalent to one of the following.

(13.2.5)

“Multiplicity Free” Irreducible Representations of K and KC on Cn

Group K Group KC Acting on Conditions on n

1 SU(n) SL(n;C) Cn n = 2

2 U(n) GL(n;C) Cn n = 1

3 Sp(m) Sp(m;C) Cn n = 2m

4 U(1)× Sp(m) C∗ × Sp(m;C) Cn n = 2m

5 U(1)× SO(n) C∗ × SO(n;C) Cn n = 2

6 U(m) GL(m;C) S2(Cm) m = 2, n = 1
2
m(m+ 1)

continued on next page



308 13. STRUCTURE OF COMMUTATIVE NILMANIFOLDS

annoyance by writing “multiplicity free” (with quotes to indicate that the term is
not precise) when the term really refers to the corresponding representation on the
polynomial ring of the representation space. Thus Table 13.2.5 gives the classifica-
tion of finite dimensional irreducible “multiplicity free” representations of compact
or complex connected Lie groups. ♦

Consider the case where K fails to be irreducible on Cn. The underlying real
symplectic structure of (Cn, h) is (R2n, ω) where ω(u, v) = −i Imh(u, v) as above.
Suppose that R2n = U ⊕ V where U and V are K–invariant real subspaces, and
that (G,K) is a Gelfand pair where G = Hn o K. We can assume that U ⊥ V
relative to the real bilinear form Reh(u, v). If u ∈ U and v ∈ V then

(0, u, 1)(0, v, 1) ∈ K(0, v, 1)(0, u, 1)K,

in other words there exist k, k′ ∈ K with

(0, u, 1)(0, v, 1) = (0, 0, k)(0, v, 1)(0, u, 1)(0, 0, k′).

Thus

(Imh(u, v), u+ v, 1) = (0, kv, k)(0, u, k′)

= (0, kv, 1)(0, ku, kk′) = (Imh(kv, ku), kv + ku, kk′).

Now Imh(u, v) = Imh(kv, ku) = Imh(v, u) = −Imh(u, v). We have just seen that
Imh(u, v) = 0. We already had Reh(u, v) = 0. Now h(U, V ) = 0, in particular
U = V ⊥ and V = U⊥ relative to h. Thus U and V are h–orthogonal complex
subspaces of Cn and ω is nondegenerate on each of them.

Now we have a decomposition Cn = V1⊕· · ·⊕V` where the Vi are K–irreducible
complex subspaces that are mutually orthogonal relative to the hermitian form h.
Then K acts on Vi as a closed subgroup Ki of the unitary group U(Vi). Let
ni = dimVi so we have the Heisenberg group Hni and the pair (Gi,Ki) given

by Gi = Hni o Ki. Denote H̃n = Hn1
× · · · × Hn` , K̃ = K1 × · · · × K`, and

G̃ = G1 × · · · ×G`. Then G̃ = H̃n o K̃, K is a quotient K̃/Ξ where Ξ is a closed

normal subgroup of K, Hn is a quotient H̃n/Y where Y is a closed connected

subgroup of codimension 1 in the center of H̃n, G is the quotient G̃/Y Ξ, and

G̃/Y = Hn o K̃.

If each (Gi,Ki) is a Gelfand pair then their product (G̃, K̃) is a Gelfand pair.
The converse fails, as seen by the following example of Benson and Ratcliff.

Example 13.2.13. Let V = V1 ⊕ V2 where V1 = C2 and V2 = S2(C2), so
V = C5. Let K = U(2) acting on V diagonally. If we view V2 as symmetric 2 × 2
complex matrices then k : (u, v) 7→ (ku, kvktr). Now (G1,K1) = (H2 oU(2), U(2))
and (G2,K2) = (H3 o U(2), U(2)) are Gelfand pairs.

The action τ1 of K on V1 = C2 has diagram b1 ×1 , so its action on C[V1] is∑
a=0 S

a(τ1), and Sa(τ1) has diagram ba ×a . Here the circle refers to SU(2) and

the × refers to the circle center of U(2). The action τ2 of K on V2 = S2(C2) is

S2(τ1) with diagram b2 ×2 , so its action on C[V2] is
∑
b=0 S

b(τ2).
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Write τ`,m for the irreducible representation of K with diagram b̀ ×m . Thus
Sa(τ1) = τa,a and Sb(τ2) is given by

S2c(τ2) =
∑

05i5c
τ4(c−i),4c and S2c+1(τ2) =

∑
05i5c

τ4(c−i)+2,4c+2.

The action of K on C[v] is ∑
a,b=0

Sa(τ1)⊗ Sb(τ2).

Since

τ`,m ⊗ τs,t = τu,m+t ⊕ τu+2,m+t⊕τu+4,m+t ⊕ . . .⊕ τ`+s,m+t

where u = max{`, s} −min{`, s}
we have

Sa(τ1)⊗ Sb(τ2) =
∑

05i5a, 05a+2b−2i
τa+2b−2i,a+2b.

In particular S2(τ1)⊗S1(τ2) and S0(τ1)⊗S2(τ2) each has τ4,4 as a summand. Thus
the representation of K on C[v] fails to be multiplicity free. In other words, (G,K)
is not a Gelfand pair. ♦

13.3. The Chevalley–Vinberg Decomposition

In this section we discuss the Chevalley decomposition for real linear algebraic
groups, its analogs for real Lie groups, and the corresponding result for the groups
that occur in Gelfand pairs. This last is due to Vinberg and it gives the original
proof of a refined form of the 2–step Nilpotent Theorem. That proof is based on
the notion of weakly commutative space, and it uses both Poisson geometry and
invariant theory.

13.3A. Digression: Chevalley Decompositions. Let GC ⊂ GL(n;C) be a
complex linear algebraic group. Its unipotent radical UC is the maximal normal
subgroup consisting of unipotent linear transformations of Cn. It is automatic that
UC is connected. If LC is any maximal reductive linear algebraic subgroup of GC

then GC is the semidirect product UC oLC ; that is the Chevalley decomposition,
and LC is called a reductive component of GC . Similarly, if G ⊂ GL(n;R) is a
real linear algebraic group, its unipotent radical U is defined as in the complex case,
and there is a Chevalley semidirect product decomposition G = U o L whenever
L is a maximal reductive linear algebraic subgroup of G. The same holds for real
linear algebraic groups.

The corresponding result for Lie groups is considerably more complicated.

A subalgebra l ⊂ g is reductive in g if the adjoint action of l on g is
completely reducible, in other words if every ad(l)–invariant subspace of g has an
ad(l)–invariant complement. Thus a Lie algebra l is reductive if and only if it is
reductive in itself, and if l is reductive in g then in particular it is reductive. If
l is maximal among the subalgebras of g reductive in g then it is a (reductive)
Levi subalgebra of g. A variation on (12.4.1) points out the distinction between
reductive subalgebra of g and subalgebra that is reductive in g. Let n = m+ 2r and

(13.3.1) g =
{
ξ ∈ gl(n;R)

∣∣∣ ξ =
(
a u v
0 0 w
0 0 0

)
; a ∈ gl(m;R);u, v ∈ Rm×r;w ∈ Rr×r

}
.
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acting effectively on M = G/K with compact isotropy, M is simply connected, and
some nilpotent subgroup N of G is transitive on M . Then G = N oK and N is
its nilpotent radical.) We will discuss square integrable representations of N and,
in the square integrable cases, describe the (N o K,K)–spherical representations
and the (N oK,K)–spherical functions.

13.4A. The Irreducible Case — Classification. Theorem 13.1.1 says that
N is abelian or 2–step nilpotent. We first consider the case where (N oK,K) is
irreducible in the sense that [n, n] (which must be central) is the center of n and
K acts irreducibly on n/[n, n].

Let (G,K) be a Gelfand pair and Z0
G the identity component of the center of G.

If Z is a closed connected Ad(K)–invariant subgroup of Z0
G, then (G/Z,K/(K∩Z))

is a Gelfand pair and is called a central reduction of (G,K). The pair (G,K) is
called maximal if it is not a nontrivial central reduction. Here is a table of all
the groups K and algebras n = z + v, z = [n, n], for irreducible maximal Gelfand
pairs (N o K,K) where N is a connected simply connected nilpotent Lie group.
As toward the end of Section 2.10, here ImFs×s is the space of skew hermitian
s × s matrices over F, ReFs×s is the space of hermitian s × s matrices over F;
ImFs×s0 and ReFs×s0 are those of trace 0. Similarly SkewFs×s and SymFs×s are
the antisymmetric and the symmetric s × s matrices over F. The Lie algebra
structure v× v→ z is explained just below the table.

(13.4.1)

Maximal Irreducible Nilpotent Gelfand Pairs (N oK,K) ([V1], [V2])

Group K v z U(1) max

1 SO(n) Rn SkewRn×n = so(n)

2 Spin(7) R8 = O R7 = ImO
3 G2 R7 = ImO R7 = ImO
4 U(1) · SO(n) Cn ImC n 6= 4

5 (U(1)·)SU(n) Cn Λ2Cn ⊕ ImC n odd

6 SU(n), n odd Cn Λ2Cn
7 SU(n), n odd Cn ImC
8 U(n) Cn ImCn×n = u(n)

9 (U(1)·)Sp(n) Hn ReHn×n0 ⊕ ImH
10 U(n) S2Cn R
11 (U(1)·)SU(n), n = 3 Λ2Cn R n even

12 U(1) · Spin(7) C8 R7 ⊕ R
13 U(1) · Spin(9) C16 R
14 (U(1)·)Spin(10) C16 R
15 U(1) ·G2 C7 R
16 U(1) · E6 C27 R
17 Sp(1)× Sp(n) Hn ImH = sp(1) n = 2

18 Sp(2)× Sp(n) H2×n ImH2×2 = sp(2)

19 (U(1)·)SU(m)× SU(n)
m,n = 3 Cm ⊗ Cn R m = n

20 (U(1)·)SU(2)× SU(n) C2 ⊗ Cn ImC2×2 = u(2) n = 2

21 (U(1)·)Sp(2)× SU(n) H2 ⊗ Cn R n 5 4 n = 3

22 U(2)× Sp(n) C2 ⊗ Hn ImC2×2 = u(2)

23 U(3)× Sp(n) C3 ⊗ Hn R n = 2

Often one can replace K by a smaller group in such a way that (G,K) continues
to be a Gelfand pair. For example, in Table 13.4.1, Item 2, whereN is the octonionic



CHAPTER 15

Classification of Commutative Spaces

We now summarize the last two chapters of Yakimova’s thesis [Y3]. There are
three parts here. The first is a commutativity criterion for a pair (G,K), G = NoL
with K ⊂ L, as before; it leads to a reduction of the classification to the cases where
G is reductive and the nilmanifold cases L = K. The second indicates a recipe for
dropping the requirements that (G,K) be Sp(1)–saturated or that it be principal.
The third is a discussion of just which commutative pairs are weakly symmetric.

15.1. The Classification Criterion

The basic result for classifying the Gelfand pairs (G,K) such that G is neither
reductive nor nilpotent is the following. It is the first big step in combining the
reductive and the nilpotent classifications. As usual, if a group F acts on a space
X and x ∈ X then Fx denotes the F–stabilizer of x.

Theorem 15.1.1. (Yakimova [Y3]; or see [Y4]) Let G = N o L where N is a
connected simply connected nilpotent Lie group and L is a reductive Lie group. Let
K be a compact subgroup of L. Then (G,K) is a Gelfand pair if and only if the
following conditions all hold.

1. R[n]L = R[n]K .

2. If γ ∈ n∗ then (Lγ ,Kγ) is a Gelfand pair.

3. If β ∈ (l/k)∗ then (N oKβ ,Kβ) is a Gelfand pair.

In this section we set up the criteria for a pair (G,K) to be a maximal, in-
decomposable, principal, Sp(1)–saturated Gelfand pair. These conditions will be
dropped in later sections. As before, G is a connected Lie group and K is a compact
subgroup such that M = G/K is simply connected and G acts effectively on M .
First we recall the definitions of some of the relevant terms and give the definitions
of the others.

Let (G,K) be a Gelfand pair and Z0
G the identity component of the center of G.

If Z is a closed connected Ad(K)–invariant subgroup of Z0
G, then (G/Z,K/(K∩Z))

is a Gelfand pair and is called a central reduction of G/K. The pair (G,K) is
called maximal if it is not a nontrivial central reduction.

A Gelfand pair (G,K) is decomposable if up to local isomorphism it is a
product of Gelfand pairs. Thus (G,K) is decomposable if there is a decomposition
g = g1 ⊕ g2 with dim gi > 1 such that (i) k = k1 ⊕ k2 with ki = k ∩ gi , (ii) the
corresponding analytic subgroups Gi and Ki are closed in G and (iii) the (Gi,Ki)

345
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and as R[n]L = R[n]K the group L also preserves b. Now L/P = K/(K ∩ P ) is
contained in the orthogonal group O(n) defined by b. We have proved (i) and (ii),
and (iii) and (iv) follow. �

Remark 15.1.4. For the classification of principal commutative pairs (G,K),
it suffices to consider the cases where (i) the semisimple part L′ of L is a linear
group, and thus is contained in its complexification L′

C
, and (ii) the center ZL of L

is compact. This is seen as follows.

Let E denote the kernel of the conjugation action of ZL on n. Then E = ZL∩P
and is central in P . With the assumption that (G,K) is principal now E0 is trivial,
i.e. E is discrete. As it is central in G, we can replace G by G/E for purposes of
classification. That done, we have replaced L′ by L′/E, which is linear.

(In Section 15.3 we will reduce the classification of Gelfand pairs (G,K) to the
case where (G,K) is principal, starting with the principal case and then seeing just
how one can insert a central factor into P .)

Let P denote the identity component of the kernel of the conjugation action
of L on n, as before. Then L‡ is the complementary closed connected normal
subgroup, so L = P ·L‡ with P ∩L‡ discrete. Note that the center ZP is a discrete
central subgroup of G, and that and for purposes of classification we may replace
G by G/ZP . Thus we may assume that ZP = {1}. In particular L = P × L‡ and
ZL = ZL‡ .

Since L‡ is a connected real reductive Lie group its center ZL‡ is isomorphic to
a product C × V ×D where C is compact, V is a vector group, and D is a finitely
generated free abelian group. We already made the reduction to the case that L′

is linear, so D does not occur.

Corollary 15.1.3(ii) says that L/P ⊂ O(n). Taking the closure of L/P in O(n)

in effect changes ZL‡ = C × V to Z̃L‡ = C × T where T is a torus in which the
vector group V is dense. The resulting group G̃ has the same subgroups N , P and
K, but has L̃‡ compact with L‡ as a dense subgroup. Since (G,K) is a Gelfand pair
we have (KgK)(Kg′K) = (Kg′K)(KgK) for (g, g′) in the dense subgroup G × G
of G̃× G̃, so now (KgK)(Kg′K) = (Kg′K)(KgK) for (g, g′) ∈ G̃× G̃ and (G̃,K)

is a Gelfand pair in which L̃ has compact center

To go the other way we just replace a torus subgroup of ZL̃ by a dense vector
subgroup and modify the subspace topology of that vector subgroup to its Lie
group topology. That further reduces the classification of principal (G,K) to the
case where ZL is compact. ♦

Proposition 15.1.5. ([Y3], [Y4]) Let (N oL,K) be a Gelfand pair such that
k ( l and l acts effectively on n. Then L is compact. Suppose further that l has a
simple ideal li 6= sp(1) such that li 6⊂ k and the centralizer of li in n is contained in
[n, n]. Then all possibilities for L, K and N are given by

L K n L K n

(S)U(2n) Sp(n)(·U(1)) h2n or C2n SO(8)× SO(2) Spin(7)× SO(2) h8 or R8×2

SO(7) G2 R7 SO(8) Spin(7) R8×2

Spin(7) Spin(6) R8 SO(8) Spin(7) R8

SO(2n) U(n) R2n


