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1 Introduction

Scope of relations to other fields.

1. Topology: genus, manifolds. Algebraic topology, intersection for on
H1(X,Z),

∫
α ∧ β.

2. 3-manifolds. (a) Knot theory of singularities. (b) Isometries of H3 and
Aut Ĉ. (c) Deformations of M3 and ∂M3.

3. 4-manifolds. (M,ω) studied by introducing J and then pseudo-holomorphic
curves.

4. Differential geometry: every Riemann surface carries a conformal met-
ric of constant curvature. Einstein metrics, uniformization in higher
dimensions. String theory.
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5. Algebraic geometry: compact Riemann surfaces are the same as alge-
braic curves. Intrinsic point of view: x2+y2 = 1, x = 1, y2 = x2(x+1)
are all ‘the same’ curve. Moduli of curves. π1(Mg) is the mapping
class group.

6. Arithmetic geometry: Genus g ≥ 2 implies X(Q) is finite. Other
extreme: solutions of polynomials; C is an algebraically closed field.

7. Complex geometry: Sheaf theory; several complex variables. The Ja-
cobian Jac(X) ∼= Cg/Λ determines an element of Hg/Sp2g(Z): arith-
metic quotients of bounded domains.

8. Dynamics: unimodal maps exceedingly rich, can be studied by com-
plexification: Mandelbrot set, Feigenbaum constant, etc.

Examples of Riemann surfaces.

1. C, C∗, ∆, ∆∗, H.

2. The space Ĉ ∼= P1. The automorphism groups of these surfaces.

3. Quotients X/Γ, Γ ⊂ Aut(X). Covering spaces. C/(z 7→ z + 1) ∼= C∗

by exp(2πiz); H/(z 7→ z + 1) ∼= ∆∗.

Theorem 1.1 H/(z 7→ λz) is isomorphic to A(r) = {z : r < |z| < 1}
where r = exp(−2π2/| log λ|).

Warning. A : C∗ → C∗ by A(x + iy) = (2x + iy/2) does not have a
Hausdorff quotient! The action of 〈A〉 is free but not properly discon-
tinuous (consider the images under An of the circle |z| = 1). There
are points on the real and imaginary axes whose neighborhoods in the
quotient always intersect.

Theorem 1.2 If Γ is a discrete group of isometries acting freely, then
the action is properly discontinuous and X covers the quotient mani-
fold X/Γ.

4. The group Γ(2) ⊂ SL2(Z); isometric for hyperbolic metric; quotient is
triply-punctured sphere.

5. Branched covers. pn : ∆ → ∆ by pn(z) = zn. Covers of the 4-times
punctured sphere.
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6. Algebraic curves. A curve C ⊂ C2 defined by f(x, y) = 0 is smooth
df 6= 0 along C. Example: f(x, y) = y2 − p(x) is smooth iff p has no
multiple roots. Example: y2 = x3, y2 = x2(x+ 1).

7. Symmetric examples. Square with opposite sides identified yields a
curve E ∼= C/Z[i] of genus one. The quotient E/(z 7→ −z) is a sphere
with four distinguished points B. The symmetry z 7→ iz gives a sym-
metry of the configuration B, fixing two points and interchanging two
others. Thus we can take B = {0,∞,±1}.

8. A regular Euclidean octagon with opposite sides identified has an 8-
fold automorphism r : X → X. The quotient X/(r4) ∼= Ĉ is branched
over six points B. The action of r gives an order 4 symmetry of B
that fixes 2 points and cyclically permutes the remaining 4. Thus X
is defined by y2 = x(x4 − 1).

Note: if one is worried about the vertices of the octagon, one can take
a regular hyperbolic octagon with interior angles of 45◦.

2 Maps between Riemann surfaces

Let f : X → Y be a nonconstant map. Then f is locally modeled on z 7→ zm.
We write m(f, p) for the multiplicity of f at p. It follows that:

1. The map f is open and discrete.

2. f satisfies the maximum principle.

3. If X is compact, then f(X) = Y .

4. An analytic function on a compact Riemann surface is constant.

Removable singularities. An isolated singularity of a bounded analytic
function is removable. Consequently:

1. A bounded analytic function on a Riemann surface of finite type (com-
pact with a finite number of points removed) is constant.

2. A bounded analytic function on C is constant. (Proof: it extends to
Ĉ.)

3. Every polynomial of degree d ≥ 1 has a root in C.
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Covering maps. Let π : X → Y be a covering space of a Riemann surface
Y . There is a unique complex structure on X such that π is holomorphic.
The space X is determined up to isomorphism over Y by the subgroup
H ∼= π1(X, p) ⊂ π1(Y, q).

The deck group is defined by Γ = Deck(X/Y ) ⊂ Aut(X) is the group
of automorphisms α such that π ◦ α = π. We say X/Y is normal (Galois,
regular) if the deck group acts transitively on the fibers of π.

In general Deck(X/Y ) = N(H)/H where N(H) is normalizer of H in
G. To see this think of Y as Ỹ /G: then a deck transformation lifts to a g
in G satisfying gh1x = h2gx, so it descends to X = Ỹ /H. This requires
gh1g

−1 = h2 and thus g ∈ N(H).
The key property of covering space is an algebraic solution to the lifting

problem for f : Z → Y .

Branched coverings. Now let π : X → Y be a general nonconstant map
between Riemann surfaces. Let C = {x : mult(f, x) > 1}, let B = f(C)
and let B̃ = π−1(B). Let X∗ = X − B̃ and Y ∗ = Y −B.

We say π is a branched covering if B is discrete, π : X∗ → Y ∗ is a
covering map, and for any small loop γ around a single point of B, every
component of π−1(γ) is compact.

Theorem 2.1 A branched covering X is uniquely determined, up to iso-
morphism over Y , by a discrete set B and a subgroup H ⊂ G = π1(Y, p).
Any subgroup that meets each peripheral subgroup of G with finite index
determines such a covering.

As before a covering is normal (Galois, regular) if Deck(X/Y ) acts tran-
sitivity on fibers; this is equivalent to X∗/Y ∗ being normal.

Theorem 2.2 Any properly discontinuous subgroup Γ ⊂ Aut(X) yields a
quotient Riemann surface Y and a branched covering map π : X → Y with
Deck(X/Y ) = Γ.

Proper maps. Let f : X → Y be a proper, nonconstant map between
Riemann surfaces. That is, assume K compact implies f−1(K) compact.
Then:

1. f is closed: i.e. E closed implies f(E) closed. (This requires only local
connectivity of the base Y .)

2. f is surjective. (Since it is also open).
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3. If D ⊂ X is discrete, so is f(D). (Since f(D) meets any compact set
K in a finite set, namely the image of D ∩ f−1(K).)

4. In particular, the branch locus B(f) ⊂ Y is discrete.

5. f−1(q) is finite for all q ∈ Y . (Since f is discrete.)

6. For any neighborhood U of f−1(q) there exists a neighborhood V of q
whose preimage is contained in U . (Since f(X−U) is closed and does
not contain q.)

7. If f is a proper local homeomorphism, then it is a covering map. (This
only requires that Y is locally compact.)

Proof. A local homeomorphism is discrete, so given q ∈ Y we can
choose neighborhoods Ui of its preimages p1, . . . , pn such that f : Ui →
Vi is a homeomorphism. Let V be a neighborhood of q such that
f−1(V ) is contained in

⋃
Ui. Then f evenly covers V .

8. For any q ∈ Y with f−1(q) = {p1, . . . , pn}, there exists a disk V
containing q such that f−1(V ) =

⋃
Ui with Ui a disk, pi ∈ Ui and

fi = f |Ui satisfies fi : (Ui, pi) → (V, q) is conjugate to z 7→ zdi on ∆.

(Here one can use the Riemann mapping theorem to prove that if
g : ∆ → ∆ is given by g(z) = zm, and V ⊂ ∆ is a simply-connected
neighborhood of z = 0, then the pullback of g to V is also conjugate
to z 7→ zm.)

9. The function
∑

f(p)=q m(f, p) is independent of q. It is called the degree
of f .

Properness and branched covers.

Theorem 2.3 Any proper map is a branched covering. A branched covering
is proper iff it has finite degree, i.e. the cardinality of one (and hence every)
fiber is finite, i.e. X∗ → Y ∗ has finite degree.

Proof. For the first statement use the fact that a proper map has a degree
set of branch values, and a proper local homeomorphism is a covering. For
the second, use the fact that a finite covering map is proper.
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Extension of proper maps. Let Y ∗ be the complement of a discrete set D
in a Riemann surface Y , and let f : X∗ → Y ∗ be a proper map. Then there
is a unique way to complete X and f to obtain a proper map f : X → Y .

Examples.

1. Any rational map f : Ĉ → Ĉ is a proper branched covering; it is a
covering map iff it is a Möbius transformation. An entire function is
proper iff it is a polynomial.

2. Any proper map of the disk to itself is given by a Blaschke product,

f(z) = exp(iθ)
d∏

1

z − ai

1 − aiz
·

3. The map f : Ĉ → Ĉ given by f(z) = zd is a degree d, proper, regular
branched cover with B = {0,∞} and Deck(X/Y ) = Z/d. Its restric-
tion to a map C∗ → C∗ is a covering map. (As a map C∗ → C, it is
not a covering map.)

4. The map f(z) = zd+1/zd is a regular branched cover, with deck group
the dihedral group generated by z 7→ 1/z and z 7→ exp(2πi/d)z.

5. A basic example of an irregular cover is given by f(z) = z3 − 3z. This
map has branched points at ±1 and branch values B = {±2}; we have
B̃ = f−1(B) = {±1,±2}, and f : C−B̃ → C−B is an irregular degree
three cover. It corresponds to the ‘abbaab’ triple cover of a bouquet
of circles.

6. The map f(z) = z3 : H → C is not proper, even though it is a
local homeomorphism. Its extension to H is proper, but not a local
homeomorphism.

7. The map f(z) = ez : C → C∗ is a regular covering map, but not
proper. Its deck group Z is generated by z 7→ z + 2πi.

8. The map f(z) = tan(z) : C → f(C) ⊂ Ĉ is a covering map. In fact
tan(z) = g(e2iz) where g(z) = −i(z−1)/(z+1). Thus f(C) = Ĉ−{±i}.

9. The map f(z) = cos(z) : C → C is a regular branched covering. Its
branch values are B = {±1}, and its branch points are B̃ = πZ. The
deck group is the infinite dihedral group generated by z 7→ −z and
z 7→ z + 2π. Note that cos(z) = g(eiz) where g(z) = (z + 1/z)/2.
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The Riemann-Hurwitz formula. A Riemann surface X is of finite type
if it is obtained from a compact Riemann surface by deleting a finite number
of points. In this case χ(X) = 2 − 2g − n where g is the genus and n is the
number of points removed.

Theorem 2.4 If f : X → Y is a branched covering map between Riemann
surfaces of finite type, then

χ(X) = dχ(Y ) −
∑

X

(mult(f, x) − 1).

Since χ(X) = 2 − 2g(X), this formula also relates the genera of X and
Y .

Example: Let f : Ĉ → Ĉ be a map of degree d. The f has 2d− 2 critical
points.

Example: The only compact Riemann surfaces admitting self maps of
degree d > 1 are Ĉ and C/Λ. The latter only admit self covering maps.

(Second proof: if f : C → C is a lift of a self-map of C/Λ, then f ′(z) is
a holomorphic, doubly-periodic function, hence constant.)

Hurwitz problem. Here is an unsolved problem. Let f : Ĉ → Ĉ be
a rational map of degree d with critical values B = (bi)

n
1 . Let pi be the

partition of d corresponding to the fiber over bi. What partitions (p1, . . . , pn)
can be so realized?

This is really a problem in topology or group theory. We have to lift
each pi to an element gi ∈ Sd in the conjugacy class specified by pi, in such
a way that g1 · · · gn = e.

Belyi’s Theorem.

Theorem 2.5 A compact Riemann surface X is defined over a number field
iff it can be presented as a branched cover of Ĉ, branched over just 3 points.

We first need to explain what it means for X to be defined over a number
field. For our purposes this means there exists a branched covering map
f : X → Ĉ with B(f) consisting of algebraic numbers. Alternatively, X
can be described as the completion of a curve in C2 defined by an equation
f(x, y) = 0 with algebraic coefficients.

Grothendieck wrote that this was the most striking theorem he had heard
since at age 10, in a concentration camp, he learned the definition of a circle
as the locus of points equidistant from a given center.
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Proof. I. Suppose X is defined over a number field, and f : X → Ĉ is given
with B(f) algebraic. We will show there exists a polynomial p : Ĉ → Ĉ such
that B(p) ⊂ {0, 1,∞} and p(B(f)) ⊂ {0, 1,∞}. This suffices, since

B(p ◦ f) = B(p) ∪ p(B(f)).

We may assume ∞ 6∈ B(f). Let deg(B) denote the maximal degree over
Q of the points of B, and let z ∈ B(f) have degree deg(B). Then there
exists a polynomial p ∈ Q[z] of degree d such that p(z) = 0. Moreover
deg(B(p)) ≤ d− 1 since the critical values of B are the images of the zeros
of p′(z). Thus

B′ = B(p) ∪ p(B)

has fewer points of degree deg(B) over Q. Iterating this process, we can
reduce to the case where B ⊂ Q.

Now comes a second beautiful trick. Consider the polynomial p(z) =
Cza(1 − z)b. This polynomial has critical points at 0, 1 and w = a/(a+ b).
By choosing the value of C ∈ Q correctly, we can arrange that p(w) = 1
and hence B(p) ⊂ {0, 1,∞}. Thus if w ∈ B is rational, we can choose p
so that B′ = p(B) ∪ B(p) has fewer points outside {0, 1,∞}. Thus we can
eventually eliminate all such points.

II. Let X be a Riemann surface presented as a branched covering f :
X → Ĉ with B(f) = {0, 1,∞}. We need a nontrivial factor: there exists a
second g ∈ M(X) and a cofinite set X∗ ⊂ X such that (f, g) : X∗ → C2 is
an immersion with image the zero locus Vp of a polynomial p(x, y) ∈ C[x, y].

This polynomial has the property that the projection of (the normaliza-
tion of) Vp to the first coordinate — which is just f — is branched over
just 0, 1 and ∞. The set of all such polynomials of given degree is an alge-
braic subset W of the space of coefficients CN for some large N . This locus
W is defined by rational equations. Thus the component of W contain-
ing our given p also contains a polynomial q with coefficients in a number
field. But Vq and Vp are isomorphic, since they have the same branch locus
and the same covering data under projection to the first coordinate. Thus
X∗ ∼= Vp

∼= Vq is defined over a number field.

Corollary 2.6 X is defined over a number field iff X can be built by gluing
together finitely many unit equilateral triangles.

Proof. If X can be built in this way, one can 2-color the barycentric
subdivision and hence present X as a branched cover of the double of a
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30-60-90 triangle. The converse is clear, since the sphere can be regarded as
the double of an equilateral triangle.

Example: A square torus can be built by gluing together 8 isosceles right
triangles. But these can also be taken to be equilateral triangles, with the
same result! This is because the double of any two triangles is the same, as
a Riemann surface.

3 Sheaves and analytic continuation

Presheaves and sheaves. A presheaf of abelian groups on X is a functor
F(U) from the category of open sets in X, with inclusions, to the category
of abelian groups, with homomorphisms.

It is a sheaf if (I) elements f ∈ F(U) are determined by their restrictions
to an open cover Ui, and (II) any collection fi ∈ F(Ui) with fi = fj on Uij

for all i, j comes from an f ∈ F(U).
Example: applying (I) to the empty cover of the empty set, we see

F(∅) = (0). Thus the presheaf that assigns a fixed, nontrivial group G to
every open set is not a sheaf.

Examples of presheaves and sheaves. The sheaves C, C∞, O and M, of
rings of continuous, smooth, holomorphic and meromorphic functions. The
multiplicative group sheaves O∗ and M∗.

If G is a nontrivial abelian group, F(U) = G for U nonempty and F(∅) =
(0) is a presheaf. But it is not a sheaf: F(U1 ⊔ U2) 6= G⊕G.

To rectify this we can define F(U) to be the additive group of locally
constant maps f : U → G. This is now a sheaf; it is often denoted simply
by G. (E.g. R, C, Q, S1, Z.)

The presheaf F(U) = O(U)/C(U) is not a sheaf. For example, local
logarithms do not assemble.

Stalks. Let F be a presheaf.
The stalk Fx is the direct limit of F(U) over the (directed) system of

open sets containing x ∈ X. It can be described directly as the disjoint
union of these groups modulo f1 ∼ f2 if they have a common restriction
near x. (Alternatively, Fx = (⊕F(U))/N where N is generated by elements
of the form (f |U1) − (f |U2), f ∈ F(U1 ∪ U2).)

There is a natural map F(U) → Fx for any neighborhood U of x. We
let fx denote the image of f ∈ F(U) under this map. We have fx = 0 iff
there is a neighborhood V of x such that f |V = 0.

Example: Oa
∼= C{{za}} for any local chart (uniformizer) za : U → C,

za(a) = 0.
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Theorem 3.1 Let F be a sheaf. Then f ∈ F(U) is zero iff fx = 0 for all
x ∈ U .

Éspace étalé. The éspace étalé |F| of a presheaf is the disjoint union
of the stalks Fx, with a base for the topology given by sets of the form
[U, f ] = {fx : x ∈ U}. It comes equipped with a natural projection
p : |F| → X which is a local homeomorphism.

We say F satisfies the identity theorem if whenever U is open and con-
nected, f, g ∈ F(U) and fx = gx for some x ∈ U , then f = g. Examples: O
and M.

Theorem 3.2 |F| is Hausdorff if F satisfies the identity theorem.

Structure of |O|. There is a unique complex structure on |O| such that
p : |O| → X is an analytic local homeomorphism.

There is also a natural map F : |O| → C given by F (fx) = f(x). This
map is analytic. However |O| is never connected, since the stalks Ox are
uncountable.

For any holomorphic map π : X → Y , there is a natural map π∗ : |OY | →
|OX | compatible with projections to the base spaces X and Y . If π(a) = b
then π∗(fb) = fb ◦ π ∈ Oa.

There is also a pushforward map π∗ when π is a local homeomorphism.

Path lifting. We now recall some results from the theory of covering spaces.
Let p : X → Y be a local homeomorphism between Hausdorff spaces. Let
f : I = [0, 1] → Y be a path, and x ∈ X a point such that p(x) = f(0). A
lifting of f based at x is a path F : I → X such that f = p◦F and F (0) = x.

Theorem 3.3 A lifting is unique if it exists.

Proof. If we have two liftings, F1 and F2, the set of t ∈ I such that
F1(t) = F2(t) is open since p is a local homeomorphism, closed since X is
Hausdorff, and nonempty since F1(0) = F2(0) = x. By connectedness it is
the whole interval.

Now let fs(t) be a homotopy of paths parameterized by s ∈ [0, 1], such
that fs(0) = y0 and fs(1) = y1 are constant. Suppose for every s there is a
lift Fs of fs based at x0. We then have:

Theorem 3.4 (Monodromy Theorem) The terminus Fs(1) = x1 is in-
dependent of s. Moreover Fs(t) is a lift of fs(t) as a function on I × I. In
particular, F0(t) and F1(t) are homotopic rel their endpoints.
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Non-unique path lifting. Let F be the space of continuous functions
on R. Consider the functions f(x) = 0 and g(x) = max(0, x). The germs
of these functions determine a subspace Y of |F|. The space p : Y → R

has 1 points over (−∞, 0) and two points over [0,∞). In particular the two
solutions to p(y) = 0 cannot be separated by disjoint open sets, since these
sets always meet over the negative real axis.

In this case fa = ga for any a < 0, and the path [a, 1] → R can be lifted
to |F| in two different ways, both starting at this point.

Analytic continuation. Let O be the sheaf of analytic functions on X =
C. Let γ : [0, 1] → C be path with a = γ(0) and b = γ(1). Let fa be the
germ of an analytic function at z = a, i.e. let f ∈ Oa.

We say fb ∈ Ob is obtained from fa by analytic continuation along γ if
there are analytic functions gi on balls Bi containing γ(ti), i = 0, . . . , n such
that:

1. 0 = t0 < t1 < · · · < tn = 1;

2. Bi meets Bi+1, gi and gi+1 agree there, and γ[ti, ti+1] ⊂ Bi ∩ Bi+1;
and

3. g0 = fa and g1 = fb.

Example: For a = 0, fa(z) =
∑
zn/n = log(1/(1−z)) can be analytically

continued to any point in C∗, in many ways; the various possibilities for fb(z)
differ by multiplies of 2πi.

Observation: analytic continuation along γ is equivalent to path-lifting
to the space p : |O| → C.

Corollary 3.5 An analytic continuation is unique if it exists.

Corollary 3.6 (Monodromy theorem) If analytic continuation from a
to b is possible along a family of paths γs, s ∈ I, then the result fb is always
the same.

Maximal analytic continuation (spreads). If f : X → Y is holomor-
phic and f(a) = b then there is a natural pullback map f∗ : Ob → Oa given
by composition with f . If mult(f, a) = 1 then f∗ is an isomorphism and
hence there is also a pushforward f∗ : Oa → Ob. (Remark: by summing
over sheets, pushforward can also be defined at general points.)

To keep track of the potential multi-valuedness, we define an analytic
continuation of fa ∈ Oa, a ∈ C, to be a pointed Riemann surface (Y, b)
endowed with a local analytic homeomorphism p : (Y, b) → (C, a) and an
F ∈ O(Y ) such that p∗Fb = Fa.
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Theorem 3.7 Every germ of an analytic function fa has a unique maximal
analytic continuation, obtained by taking Y to be the connected component
of |O| containing fa, and restricting the natural maps F : |O| → C and
p : |O| → C to Y .

Proof. By map y 7→ p∗(Fy) gives an embedding of any analytic continu-
ation into |O|, which is then tautologically dominated by the maximal one
described above.

Examples.

1. The maximal domain of f(z) =
∑
zn! is the unit disk.

2. For log(1/(1−z)) =
∑
zn/n, the maximal analytic continuation is the

Riemann surface C with F : C → C the identity map, and p : C →
C − {1} the map p(z) = 1 − e−z.

3. Let f(z) =
√
q(z) where q(z) = 4z3 + az + b. Then its maximal

analytic continuation is given by Y = E − E[2] with E = C/Λ, with
p : Y → C given p(z) = ℘(z), and with F (z) = ℘′(z).

Remark. One can replace the base C of analytic continuation with any
other Riemann surface X. Note however that the ‘maximal’ analytic con-
tinuation may become larger under an inclusion X →֒ X ′.

4 Algebraic functions

We will develop two main results.

Theorem 4.1 Let π : X → Y be a holomorphic branched covering of degree
d. Then M(X)/M(Y ) is an algebraic field extension, of degree at most d.

In fact the degree is exactly d, but to see this we need to know that
M(X) separates the points of X.

Theorem 4.2 Let K/M(Y ) be a field extension of degree d. Then there is
a unique degree d branched covering π : X → Y such that K ∼= M(X) over
M(Y ).

Moreover M(X)/M(Y ) is Galois iff X/Y is Galois, in which case there
is a natural isomorphism

Gal(M(X)/M(Y )) ∼= Deck(X/Y ).
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Putting these results together, we find for example that X 7→ M(X)
establishes an equivalence between (i) the category of finite-sheeted branched
coverings of Ĉ, and (ii) the category of finite field extensions of C(x).

Symmetric functions. The proof of the first result is based on the idea of
symmetric functions. Recall that the ‘elementary symmetric functions’ si of
f1, . . . , fd are related to the coefficients ci ∈ Z[f1, . . . , fd] of the polynomial

P (T ) =

d∏

1

(T − fi) = T d + c1T
d−1 + · · · + cd (4.1)

by si = (−1)ici. (Thus s1 =
∑
fi, s2 =

∑
i<j fifj and sd =

∏
fi.) Clearly

these polynomials si lie in Z[fi]
Sd and in fact they generate the ring of

invariant polynomials [La, §IV.6].
Now let π : X∗ → Y ∗ be the unbranched part of the degree d branched

covering π : X → Y , and let f ∈ M(Y ). By deleting more points if
necessary, we can assume f ∈ O(Y ∗).

Given y ∈ Y ∗, let π−1(y) = {x1, . . . , xd} and let ci(y) denote the coeffi-
cients of the polynomial with roots f(xi)

d
1. Locally we can express ci(y) as

the symmetric functions of the pullbacks fi of f under the d branches of f−1.
Thus ci ∈ O(Y ∗), and these coefficients define a polynomial P ∈ O(Y ∗)[T ]
such that P (f) = 0. (Here we have identified functions on Y ∗ with their
pullbacks to X∗.)

We claim the coefficients ci extends to M(Y ). Suppose b ∈ Y − Y ∗.
If f is bounded on the fiber over b, then this follows by Riemann’s remov-
able singularities theorem. Otherwise, we can choose a local coordinate zb
vanishing at b and a k > 0 such that zk

b f is analytic over b, and thus the
coefficients c′i of

∏
(T − zk

b fi) are analytic at b. But c′i and ci differ only by
a power of zb, so c′i is meromorphic at b.

By continuity, the function f is still a zero of the extended polynomial
P (T ) ∈ M(Y )[T ]. Thus f has degree at most n over M(Y ). By the theorem
of the primitive element, deg(M(X)/M(Y )) ≤ n.

Local algebraic functions. Now let us go backwards from a polynomial
P (T ) of degree d to analytic functions (fi)

d
1. We first work locally.

Let P (T ) be a monic polynomial of degree d with coefficients ci(z) in
the local ring Oa, a ∈ Y .

Theorem 4.3 If P (T, a) = T d + c1(a)T
d−1 + · · · + cd(a) has simple zeros,

then there exist fi ∈ Oa such that P (T ) =
∏

(T − fi).
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Proof. This is simply the statement that the zeros of P (T, z) vary holo-
morphically as its coefficients do. To make this precise, let w1, . . . , wd be
the zeros of P (T, a), and let γ1, . . . , γd be the boundaries of disjoint disks in
C, centered at these zeros. We can then take:

fi(z) =
1

2πi

∫

γi

ζP ′(ζ, z) dζ

P (ζ, z)
·

Here fi(z) is analytic in z so long as P (ζ, z) never vanishes on γi. This is
true for P (ζ, a), so by continuity it remains true in a small neighborhood of
z = a.

Resultant and discriminant. To go further, it is useful to recall the
resultant R(f, g).

Let K be a field, and let f, g ∈ K[T ] be nonzero polynomials with
deg(f) = d and deg(g) = e. Recall that K[T ] is a PID and hence a UFD.
We wish to determine if f and g have a common factor, say h, of degree 1 or
more. In this case f = hf1, g = hg1 and hence g1f − f1g = 0. Conversely,
if we can find nonzero r and s with deg(r) < e and deg(s) < d such that
rf + sg = 0, then f and g have a common factor.

The existence of such r and s is the same as a linear relation among the
elements (f, xf, . . . , xe−1f, g, xg, . . . , xd−1g), and hence it can be written as
a determinant R(f, g) which is simply a polynomial in the coefficients of f
and g. We have R(f, g) = 0 iff f and g have a common factor.

The discriminant D(f) = R(f, f ′) is nonzero iff f has simple zeros.

From a field extension to a branched cover. Now let K be a degree
d field extension of M(Y ). By the theorem of the primitive element, there
exists a monic irreducible polynomial P (T ) with coefficients ci ∈ M(Y ) such
that K ∼= M(Y )[T ]/(P (T )).

By irreducibility, the discriminant D(P ) ∈ M(Y ) is not identically zero.
Let Y ∗ ⊂ Y be the complement of the zeros and poles of D(P ), and of the
poles of the coefficients ci.

Let X∗ ⊂ |OY ∗ | be the set of germs fa such that P (fa, a) = 0. By the
preceding local result, X∗ is a degree d covering space of Y ∗. The tautolog-
ical map f : X∗ → C sending fa to fa(a) is analytic. We can complete X∗

to a branched covering π : X → Y , and extend f to a meromorphic function
on X using Riemann’s removable singularities theorem.

By construction, P (f) = 0.
We must show that X is connected. If not, one of its connected com-

ponents X0/Y has degree d0 < d. But then f |X0 satisfies a polynomial

14



Q ∈ M(Y )[T ] of degree d0 < d, which is a factor of P . This contradicts
irreducibility of P .

It remains to consider the Galois group. Suppose X/Y is Galois as a
branched covering. Since Pa(T ) has distinct zeros for some a ∈ Y , the group
Deck(X/Y ) maps injectively into Gal(M(X)/M(Y )); indeed, only the iden-
tity stabilizes the function f . By degree considerations, this map is surjective
as well. Similarly, if M(X)/M(Y ) is Galois, then G = Gal(M(X)/M(Y ))
permutes the roots of the polynomial P (T ). These correspond to the sheets
of X, so we get a map G → Deck(X/Y ) which is an isomorphism again by
degree considerations.

The Riemann surface X can be regarded as a completion of the maximal
analytic continuation of fa, for any germ fa ∈ Oa(Y ) satisfying P (fa, a) = 0
at a point where the discriminant of P (T ) is not zero.

Puiseux series.

Avec les series de Puiseux,
Je marche comme sur des oeufs.
Il s’ensuit que je les fuis
Comme un poltron que je suis.
—A. Douady, 1996

(Variante: Et me refugie dans la nuit.)
Let K = Mp be the local field of a point p on a Riemann surface; it

is isomorphic to the field of convergent Laurent series
∑∞

−n aiz
i in a local

parameter z ∈ Op.

Theorem 4.4 Every algebraic extension of K of degree d is of the form
L = K[ζ], where ζd = z.

Proof. Let P (T ) ∈ K[T ] be the degree d irreducible polynomial for a
primitive element f ∈ L (so L = K(f)).) Let Y = {|z| < r} be a small
neighborhood of P . Then we can find an r > 0 such that the coefficients ci of
P (T ) are well-defined on Y , only have poles at z = 0, and the discriminant
D(P )|Y vanishes only at z = 0 as well.

Note that P (T ) remains irreducible as a polynomial in M(Y )[T ]. Thus
it defines a degree d branched covering X → Y , branched only over the
origin z = 0. But there is also an obvious branched covering Yd → Y given
by ζ 7→ ζd = z. Since π1(Y

∗) ∼= Z has a unique subgroup of index d, we
have Yd

∼= X over Y .
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Corollary 4.5 Any irreducible, degree d polynomial P (T ) = 0 with coeffi-
cients in Mp has a solution of the form

f(z) =
∞∑

−n

aiz
i/d.

In particular, any polynomial is locally ‘solvable by radicals’, i.e. its
roots can be expressed in the form fi(z) = z1/dgi(z), where gi(z) is analytic.
Equivalent, after the change of variables z = ζd, the polynomial P (T ) factors
into linear terms.

Example. For P (T ) = T 3 + T 2 − z = 0, we have a solution

f(z) = z1/2 − z

2
+

5z3/2

8
− z2 +

231z5/2

128
− · · ·

Why is this only of degree 1/2? Because the original polynomial has two
distinct roots when z = 0: it is reducible over M0!

Construction as a curve. An alternative to the construction of π : X →
Y is the following. Fix P (T ) ∈ M(Y )[T ], irreducible, and as before let Y ∗

be the locus where the discriminant is nonzero and where the coefficients of
P (T ) are holomorphic. Then define

X∗ = {(x, y) : Py(x) = 0} ⊂ C × Y ∗.

Let (F, π) be projections of X∗ to its two coordinates. Then π : X∗ → Y ∗ is
a covering map, and F : X∗ → C is an analytic function satisfying P (F ) = 0;
and the remainder of the construction carries through as before.

Examples. For any polynomial p(z) ∈ C[z] which is not a square (i.e.
which at least one root of odd order), we can form the Riemann surface
π : X → Ĉ corresponding to adjoining f(z) =

√
p(z) to K = C(z) = M(Ĉ).

When p has 2n or 2n−1 simple zeros, the map π is branched over 2n points
(including infinity in the latter case), and henceX has genus n−1. Note that
the polynomial P (T ) = T 2 − p(z) has discriminant Res(P,P ′) = −4p(z).

Valuations on Ĉ. A discrete valuation on a field K is a surjective homo-
morphism v : K∗ → Z such that v(f + g) ≥ min v(f), v(g).

Example: for K = C(z) = K(Ĉ), the order of zero (or pole) a rational
function at a given point p ∈ Ĉ gives a point valuation vp(f).

Theorem 4.6 Every valuation on K(Ĉ) is a point valuation.
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Riemann surfaces Number fields

K = M(Ĉ) = C(z) K = Q

A = C[z] A = Z

p ∈ C pZ prime ideal

uniformizer zp = (z − p) ∈ C[z] uniformizer p ∈ Z

order of vanishing of f(z) at p power of p dividing n ∈ Z

Ap = Op = {∑∞
0 anz

n
p } Ap = Zp = {∑ anp

n}
mp = zpOp mp = pZp

residue field k = Ap/mp = C residue field k = Ap/mp = Fp

value f(p), f ∈ C[z] value nmod p, n ∈ Z

L = M(X), π : X → Ĉ extension field L/Q

B = {f holomorphic on X0 = π−1(C)} B = integral closure of A in L

P ∈ X0 : π(P ) = p prime P lying over p

BP ·mp = me
P ; e = ramification index

k′ = BP/mP = C k′ = BP /mP = Fpf ; f = residue degree

Table 1. A brief dictionary.
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Proof. Let v : K∗ → Z be a valuation. We claim v vanishes on the constant
subfield C ⊂ K. Indeed, if f ∈ K∗ has arbitrarily large roots f1/n, then
v(f1/n) = v(f)/n → 0 and thus v(f) = 0.

Next suppose v(z − a) > 0 for some a. We claim v(z − b) = 0 for all
b 6= a. Indeed, v(z − b) ≥ min v(z − a), v(b − a) = 0. If in fact v(z − b) > 0
then we’d have v(b− a) ≥ min v(z − a), v(z − b) > 0, a contradiction. Since
every rational function is a product of a constant and terms of the form
(z − c) and their reciprocals, the valuation is now determined by its value
on z − a. Since the valuation is surjective, v(z − a) = 1 and thus v = va.

Finally suppose v(z − a) ≤ 0 for all a. Using the fact that (z − a)−1 −
(z − b)−1 is a constant multiple of ((z − a)(z − b))−1, we find:

v((z − a)−1) ≥ min v(((z − a)(z − b))−1), v((z − b)−1) = v((z − b)−1).

Thus v(z − c) is the same negative constant for all values of c. As before
the constant must be −1, and thus v = v∞ measures the order of vanishing
of f at infinity.

Local rings and fields. For a summary of connection, see Table 1. Ex-
ample: Let L = Q(

√
D), where D ∈ Z is square-free. Then (forgetting the

prime 2) we have ramification over the primes p|D. At these primes we have
BP

∼= Zp[p
1/2], just as for Puiseux series. For primes not dividing D, either:

(i) T 2 − D is irreducible mod p, f = 1 and there is a unique P
over p; or
(ii) D is a square mod p, and there are two primes P1 and P2

over p.

In case (i) the prime p behaves like a circle (closed string?) rather than a
point, and P like a double cover of p.

In general when P/p has ramification index e and residue degree f , it can
be thought of roughly as modeled on the map (z,w) 7→ (ze, wf ) of ∆ × S1

to itself.

5 Holomorphic and harmonic forms

The cotangent space. Let p ∈ X be a point on a Riemann surface, and
let mp ⊂ C∞

p be the ideal of smooth, complex-valued functions vanishing at
p. Let m2

p be the ideal generated by products of element in mp.

Theorem 5.1 The ideal m2
p consists exactly of the smooth functions all of

whose derivatives vanish at p.
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Proof. (Cf. [Hel, p.10]). Clearly the derivatives of fg, f, g ∈ mp, all vanish.
For the converse, let us work locally at p = 0 ∈ C, and suppose f ∈ m0.

Let f1 and f2 denote the partial derivatives of f with respect to x and y.
Then we have:

f(x, y) =

∫ 1

0

d

dt
f(tx, ty) dt = x

∫ 1

0
f1(tx, ty) dt + y

∫ 1

0
f2(tx, ty) dt

= xg1(x, y) + yg2(x, y)

where gi(0, 0) = fi(0, 0). Thus g1, g2 ∈ mp if both derivatives of f vanish,
which implies f ∈ m2

p.

Corollary 5.2 The vector space T
(1)
p = mp/m

2
p is isomorphic to C2.

We refer to T
(1)
p as the complexified cotangent space of the real surface

X at p. The exterior differential of a function can then be regarded as the
map defined by

(df)p = [f(z) − f(p)] ∈ mp/m
2
p.

The subspace dOp is T
(1,0)
p = T ∗

pX
∼= C, the complex (or holomorphic)

tangent space. Its complex conjugate is T (0,1). In a local holomorphic
coordinate z = x+ iy, we have:

T (1)
p = C · dx⊕ C · dy = C · dz ⊕ C · dz = T (1,0)

p ⊕ T (0,1)
p .

The dual of T ∗
p is Tp, the complex tangent space to X at p.

Exterior differentials. We have a natural splitting d = ∂ + ∂ where:

df =
df

dz
dz +

df

dz
dz = ∂f + ∂f,

and

d(f dz + g dz) =

(
− df
dz

+
dg

dz

)
dz ∧ dz.

(Recall that dz ∧ dz = 2i dx ∧ dy.) Note that one 1-forms we have:

d(f dz) = (∂f) dz and d(g dz) = (∂g) dz.

Holomorphic forms. A function f : X → C is holomorphic if ∂f = 0.
A (1, 0)-form α on X is holomorphic if the following equivalent conditions

hold:
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1. dα = 0; i.e. α is closed.

2. Locally α = df with f holomorphic.

3. Locally α = α(z) dz with α(z) holomorphic.

4. ∂α = 0.

The space of all such forms is denoted Ω(X).
Examples: Ω(Ĉ) = 0; Ω(C/Λ) = C · dz; dz/z ∈ Ω(C∗).

Meromorphic forms and the residue theorem. These are forms ex-
pressed locally as α = α(z) dz, with α(z) meromorphic.

The residue of α at p ∈ X is defined by Resp(α) = a1 if locally α(z) =∑
anz

n dz, where z(p) = 0; equivalently, by Resp(α) = (2πi)−1
∫
γ α where

γ is a small loop around p (inside of which α has only one pole).

Theorem 5.3 If X is compact, then
∑

p Resp(α) = 0.

By considering df/f = d log f , this gives another proof of:

Corollary 5.4 If f : X → Ĉ is a meromorphic function on a compact
Riemann surface, then f has the same number of zeros as poles (counted
with multiplicity).

(The first proof was that
∑

f(x)=y mult(f, x) = deg(f) by general consider-
ations of proper mappings.)

Since the ratio α1/α2 of any two meromorphic 1-forms is a meromorphic
function (so long as α2 6= 0), we have:

Theorem 5.5 The ‘degree’ of a meromorphic 1-form on a compact Rie-
mann surface — that is, the difference between the number of zeros and the
number of poles — is independent of the form.

Example: meromorphic 1-forms on Ĉ have degree −2, i.e. they have 2
more poles than zeros.

Harmonic forms and periods. A function u : X → C is harmonic if
∂∂u = 0; equivalently, if ∂u is a holomorphic 1-form.

A 1-form ω on X is harmonic if the following equivalent conditions hold:

1. ∂ω = ∂ω = 0 (in particular, ω is closed);

2. Locally ω = du with u harmonic;
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3. Globally ω = α+ β with α ∈ Ω(X) and β ∈ Ω(X).

The space of all such forms is denoted H1(X). By the last condition we
have H1(X) = Ω(X) ⊕ Ω(X). In particular, every holomorphic 1-form is
harmonic.

Example: dx and dy are harmonic 1-forms on X = C/Λ.
The period map associates to ω the homomorphism γ 7→

∫
γ ω on π1(X).

Theorem 5.6 Let X be a compact Riemann surface of genus g. Then the
period map

H1(X) → Hom(π1(X),C) ∼= C2g

is injective.

Proof. Any form in the kernel can be expressed globally as ω = du where
u is harmonic — and hence constant — on the compact Riemann surface
X.

Corollary 5.7 The space Ω(X) has dimension ≤ g, and the space H1(X)
has dimension ≤ 2g.

Example: the torus. For X = C/Λ we have Ω(X) = Cω with ω = dz,
and the period map sends π1(X) ∼= Z2 to Λ.

Example: the regular octagon. Here is concrete example of a compact
Riemann surface X and a holomorphic 1-form ω ∈ Ω(X). Namely let X =
Q/ ≡ where Q is a regular octagon in the plane, with vertices at the 8th
roots of unity, and ≡ identifies opposite edges. Since translations preserve
dz, the form ω = dz/ ≡ is well-defined on X. It has a zero of order two
at the single point p ∈ X coming from the vertex. The edges of Q form a
system of generators for π1(X), and the periods

∫
α ω are given by ζi+1 − ζi

where ζ is a primitive 8th root of unity.

Example: hyperelliptic Riemann surfaces.

Theorem 5.8 Let B ⊂ C be a finite set of cardinality 2n, and let p(T ) =∏
B(T − b). Let π : X → Ĉ be the unique 2-fold covering of Ĉ branched over

B. Then X has genus g = n− 1, and the forms

ωi =
zi dz√
p(z)

, i = 0, 1, . . . , n− 2

form a basis for Ω(X). In particular dim Ω(X) = g.
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Proof. To check this, we begin by investigating ω0. Note that if z = w2 then
dz = 2w dw. Thus the pullback of dz to X has simple zeros at the branch
points of π, which lie over the zeros of p(z). Also

√
p(z), as a meromorphic

function on X, has simple zeros in the same locations. These zeros cancel
when we form the quotient dz/

√
p(z), and thus ω0 is holomorphic except

possibly over the two unbranched points p1, p2 ∈ X lying over z = ∞. But
now dz has a pole of order 2 at z = ∞, while 1/

√
p(z) has a zero of order

n at z = ∞. We conclude:

The form ω0 is holomorphic on X, with zeros of order n − 2 at
p1 and p2 and nowhere else.

In particular, the degree of a meromorphic 1-form on X is 2n− 4 = 2g − 2.
Since zi has a pole of order i at z = ∞, it follows that the g forms ωi on X
are holomorphic for i ≤ n− 2.

Note: periods. When B = {r1, . . . , r2n} ⊂ R, the periods of ω0 can be
expressed in terms of the integrals

∫ ri+1

ri

dx√
(x− r1) · · · (x− r2n)

·

We can also allow one point of B to become infinity. An example of a period
that can be determined explicitly comes from the square torus:

∫ 1

0

dx

x(x2 − 1)
=

−2i
√
π Γ(5/4)

Γ(3/4)
·

A more general type of period is:

ζ(3) =
∑

n−3 =

∫

0<x<y<z<1

dx dy dz

(1 − x)yz
·

See [KZ] for much more on periods.

General surfaces of genus g. The case of hyperelliptic curves suggests
the following result, which we will later prove.

Theorem 5.9 For any compact Riemann surface of genus g, we have dim Ω(X) =
g; and any meromorphic 1-form on X has 2g − 2 more zeros than poles.

The Hodge star operator. Let V be an n-dimensional real vector space
with an inner product 〈v1, v2〉. Choose an orthonormal basis e1, . . . , en for
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V . Then the wedge products eI = ei1 ∧ · · · eik provide an orthonormal basis
for ∧kV . The Hodge star operator ∗ : ∧kV → ∧n−kV is the unique linear
map satisfying

∗eI = eJ where eI ∧ ∗eI = e1 ∧ e2 ∧ · · · en.

Here J are the indices not occurring in I, ordered so the second equation
holds. More generally we have:

v ∧ ∗w = 〈v,w〉e1 ∧ e2 ∧ · · · en.

and thus v ∧ ∗w = w ∧ ∗v. Since v ∧ ∗v = (−1)k(n−k)∗v ∧ v, we have
∗2 = (−1)k(n−k) on ∧kV . Equivalently, ∗2 = (−1)k when n is even, and
∗2 = 1 when n is odd.

Now let (M,g) be a compact Riemannian manifold. We can then try
to represent each cohomology class by a closed form minimizing

∫
M 〈α,α〉.

Formally this minimization property implies:

dα = d ∗ α = 0, (5.1)

using the fact that a minimizer satisfies

∫

M
〈dβ, α〉 =

∫

M
(dβ) ∧ ∗α = −

∫

M
β ∧ d ∗ α = 0

for all smooth (k − 1)-forms β. Thus we call α harmonic if (5.1) holds, and
let Hk(M) denote the space of all harmonic k-forms.

Theorem 5.10 (Hodge) There is a natural isomorphism Hk(M) ∼= Hk
DR(M).

Adjoints. The adjoint differential d∗ : Ek(M) → Ek−1(M) is defined so
that:

〈dα, β〉 = 〈α, d∗β〉,
where 〈α, β〉 =

∫
M α ∧ ∗β. It is given by

d∗(α) = ± ∗ d ∗ α

for a suitable choice of sign, since:

〈dα, β〉 =

∫
dα ∧ ∗β = −

∫
α ∧ d ∗ β = ±

∫
α ∧ ∗(∗d ∗ β).
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Since ∗2 = 1 on an odd-dimensional manifold, in that case we have d∗ =
− ∗ d∗. For a k-form β on an even dimensional manifold, we have instead:

d∗β = (−1)k ∗ d ∗ β.

Here we have used the fact that ∗2 = (−1)k−1 on n− (k − 1) forms such as
d ∗ β.

Generalized Hodge theorem. Once the adjoint d∗ is in play, the argu-
ments of the Hodge theorem give a complete picture of all smooth k-forms
on M .

Theorem 5.11 The space of smooth k-forms has an orthogonal splitting:

Ek(M) = dEk−1(M) ⊕Hk(M) ⊕ d∗Ek+1(M).

The Laplacian. Once we have a metric we can combine d and d∗ to obtain
the Hodge Laplacian

∆ : Ek(M) → Ek(M),

defined by
∆α = (dd∗ + d∗d)α.

Theorem 5.12 A form α on a compact manifold is harmonic iff ∆α = 0.

Proof. Clearly dα = d ∗α = 0 implies ∆α = 0. Conversely if ∆α = 0 then:

0 =

∫

M
〈∆α,α〉

=

∫

M
〈dα, dα〉 + 〈d∗α, d∗α〉

and so dα = d ∗ α = 0 as well.

Note that on functions these definitions give

∆f = d∗df = − ∗ d ∗ df,

independent of the dimension of M . This satisfies
∫
〈f,∆f〉 ≥ 0, but differs

by a sign from the usual Euclidean Laplacian. (For example on S1 we have∫
ff ′′ = −

∫
|f ′|2 ≤ 0 for the usual Laplacian.)

Riemann surfaces. Now suppose M has even dimension n = 2k. The
Hodge star on the middle-dimensional k-forms is then conformally invariant.
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Thus it makes sense to talk about harmonic k-forms when only a conformal
structure is present.

In particular, the Hodge star is canonical for 1-forms on a Riemann
surface, and can be expressed by ∗dx = dy and ∗dy = −dx for a local
coordinate with z = x+ iy. The pair of conditions dα = d ∗ α = 0 are then
the same as the pair of conditions ∂α = ∂α = 0 for a 1-form.

Geometrically, for α to be closed means that the foliation defined by
Kerα admits a transverse invariant measure. The orthogonal foliation, de-
fined by ∗α, also admits such a measure iff α is harmonic.

Example: the level sets of Re f(z) and Im f(z) give the foliations associ-
ated to the form α = du, u = Re f(z). The case f(z) = z+1/z in particular
gives foliations by confocal ellipses and hyperboli, with foci ±1 coming from
the critical points of f .

Laplacian on Riemann surfaces. A harmonic function is one which
satisfies ∆f = 0; equivalently, d ∗ df = 0. Since the Hodge star is natural
for 1-forms on a Riemann surface, the harmonic functions are conformally
invariant. For the same reason, harmonic 1-forms are conformally natural:
the 2-form d ∗ α = 0 is independent of the conformal factor when α is a
1-form on a 2-manifold. In local coordinates z = x+ iy we have explicitly:

∗dx = dy and ∗ dy = −dx.

We also obtain a ‘conformally natural’ Laplacian sending functions to
2-forms (or measures); it is given by

∆f = d ∗ df = (fxx + fyy) dx ∧ dy
= i(∂ − ∂)(∂ + ∂)f = 2ifzz dz ∧ dz.

(Note that fzz = (1/4)(fxx + fyy) and dz ∧ dz = −2i dx ∧ dy, so indeed
equality holds.)

On the other hand, the spectrum of the Laplacian on functions a Riemann
surface with a metric depends very much on the metric. This is because
we must divide by the volume form to get a map ∆ sending functions to
functions.

Since it is natural to take functions and forms on a Riemann surface to
be complex valued, the complexified Hodge star includes composition with
complex conjugation. This insures, for example, that

∫

M
f ∧ ∗f =

∫

M
|f |2 dV.
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With this convention, ∗(iα) = −i ∗ α, and thus

∗dz = ∗(dx + i dy) = dy + i dx = idz,

and ∗dz = −i dz.

6 Cohomology of sheaves

Maps of sheaves; exact sequences. A map between sheaves is always
specified at the level of open sets, by a family of compatible morphisms
F(U) → G(U). A map of sheaves induces maps Fp → Gp between stalks.
We say F → G is injective, surjective, an isomorphism, etc. iff Fp → Gp has
the same property for each point p.

We say a sequence of sheaves A → B → C is exact at B if the sequence
of groups

Ap → Bp → Cp

is exact, for every p.

The exponential sequence. As a prime example: on any Riemann surface
X, the sequence of sheaves

0 → Z → O → O∗ → 0

is exact. But it is only exact on the level of stalks! For every open set the
sequence

0 → Z(U) → O(U) → O∗(U)

is exact, but the final arrow need not be surjective. (Consider f(z) = z ∈
O∗(C∗); it cannot be written in the form f(z) = exp(g(z)) with g ∈ O(C∗).)

More generally, we have:

Theorem 6.1 The global section functor is left exact. That is, for any
short exact sequence of sheaves, 0 → A → B → C → 0, the sequence of
global sections

0 → A(U) → B(U) → C(U)

is also exact.

Sheaf cohomology is the derived functor which measures the failure of
exactness to hold on the right.

Čech: the nerve of a covering. A precursor to sheaf cohomology is Čech
cohomology. The idea here is that any open covering U = (Ui) of X has an
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associated simplicial complex that is an approximation to the topology of X.
The simplices in this complex are simply ordered finite sequence of indices
I such that

⋂
I Ui 6= ∅.

This works especially well if we require that all the multiple intersections
are connected. Note that this is equivalent to requiring that Z(UI) ∼= Z

whenever UI 6= ∅.
Cochains, cocycles and coboundaries. Now suppose we also have a
sheaf F in play (for classical Čech cohomology, this sheaf is just Z). We
then put ‘weights on our simplices’ and define the space of q-cochains by:

Cq(U,F) =
∏

|I|=q+1

F(UI).

Here I ranges over ordered sets of indices (i0, . . . , iq), and

UI = Ui0 ∩ · · · ∩ Uiq .

Examples: a 0-cochain is the data fi ∈ F(Ui); a 0-cochain is the data
gij ∈ F(Ui ∩ Uj); etc.

Next we define a boundary operator

δ : Cq(U,F) → Cq+1(U,F)

by setting δf = g where, for q = 0:

gij = fj − fi;

for q = 1:
gijk = fjk − fik + fij,

and more generally

gI =

q∑

0

(−1)jfIj

where Ij = (i0, i1, . . . , îj , . . . , iq+1). When two indices are eliminated, they
come with opposite sign, so δ2 = 0.

The kernel of δ is the group of cocycles Zq(U,F), its image is the group
of coboundaries Bq(U,F), and the qth cohomology group of F relative to
the covering U is defined by:

Hq(U,F) = Zq(U,F)/Bq(U,F).
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Example: H0. A 0-cocycle (fi) is a coboundary iff fj − fi = gij = 0 for
all i and j. By the sheaf axioms, this happens iff fi = f |Ui, and thus:

H0(U,F) = F(X).

Example: H1. A 1-cocycle gij satisfies gii = 0, gij = −gji and

gij + gjk = gik

on Uijk. It is a coboundary if it can be written in the form gij = fi − fj.

Refinement. Whenever V = (Vi) is a finer covering than U = (Ui), we can
choose a refinement map on indices such that Vi ⊂ Uρi. Once ρ is specified,
it determines maps F(UρI) → F(VI), and hence chain maps giving rise to a
homomorphism

Hq(U,F) → Hq(V,F).

Theorem 6.2 The refinement map Hq(U,F) → Hq(V,F) is independent
of ρ.

Definition. We define the cohomology of X with coefficients in F by:

Hq(X,F) = lim
−→

Hq(U,F),

where the limit is taken over the system of all open coverings, directed by
refinement.

Theorem 6.3 The refinement map Hq(U,F) → Hq(V,F) is injective.

Proof for q = 1. Suppose we are given coverings (Ui) and (Vi) with
Vi ⊂ Uρi. Let gij be a 1-cocycle for the covering (Ui) that becomes trivial
for (Vi). That means there exist fi ∈ F(Vi) such that

gρi,ρj = fi − fj

on Vij.
Our goal is to find hi ∈ F(Ui) so gij = hi − hj . Note that on Vij ∩ Uk

we have:
gρi,k + gk,ρj = fi − fj,

and thus we can define

hk = fi − gρi,k = fj − gρj,k

consistently throughout Uk. We then have, on Ukl ∩ Vi,

hk − hl = fi − gρi,k − fi + gρi,l = gkl

as desired.
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Theorem 6.4 (Leray) If U is acyclic (Hq(UI ,F) = 0 for all q > 0) then

Hq(X,F) ∼= Hq(U,F).

If just H1(Ui,F) = 0 for every i, U can still be used to compute H1.

Example: Let S1 = U0 ∪ U1 be a covering by a pair of intervals. Then
Z1(U,Z) = Z(U0 ∩ U1) = Z2, since U0 ∩ U1 has two components; while
B1(U,Z) = Z = {(a− b, a− b)} ⊂ Z2. Thus H1(S1,Z) = Z.

Vanishing theorem by dimension. Using the existence of fine coverings
where the (n+ 2)-fold intersections are all empty, we have:

Theorem 6.5 For any n-dimensional space X and any sheaf F , Hp(X,F) =
0 for all p > n.

Vanishing theorems for smooth functions, forms, etc. Let F be the
sheaf of C∞ functions on a (paracompact) manifold X, or more generally a
sheaf of modules over C∞. We then have:

Theorem 6.6 The cohomology groups Hq(X,F) = 0 for all q > 0.

Proof for q = 1. To indicate the argument, we will show H1(U,F) = 0
for any open covering U = (Ui). We will use the fact that there exists a
partition of unity ρi ∈ C∞(X) subordinate to Ui: that is, a set of functions
with Ki = supp ρi ⊂ Ui, such that Ki forms a locally finite covering of X
and

∑
ρi(x) = 1 for all x ∈ X.

Let gij ∈ Z1(U,F) be a 1-cocycle. Then gii = 0, gij = −gji and gij +
gjk = gik. Our goal is to write gij = fj − fi (or fi − fj).

How will we ever get from gij , which is only define on Uij, a function fi

define on all of Ui? The central observation is that:

ρjgij , extended by 0, is smooth on Ui.

This is because suppρjgij ⊂ Kj ∩Ui is closed as a subset of Ui (even though
it might not be closed as a subset of X.) Thus we can define:

fi =
∑

k

ρkgik;

and then:

fi − fj =
∑

k

ρk(gik − gjk) =
∑

k

ρk(gik + gkj) =
∑

k

ρkgij = gij .
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The exact cohomology sequence; deRham cohomology. We can now
explain how sheaf cohomology is used to capture global aspects of analytic
problems that can be solved locally.

Let Ep denote the sheaf of smooth p-forms on a manifold X. Suppose
α ∈ E1(X) is closed; then locally α = df for f ∈ E0(X). When we can we
find a global primitive for α?

To solve this problem, let U = (Ui) be an open covering of X by disks.
Then we can write α = dfi on Ui. On the overlaps, gij = fi − fj satisfies
dgij = 0, i.e. it is a constant function. Moreover we obviously have gij+gjk =
gik, i.e. gij is an element of Z1(U,C).

Now we may have chosen our fi wrong to fit together, since fi is not
uniquely determined by the condition dfi = αi; we can always add a constant
function ci. But if we replace fi by fi + ci, then gij will change by the
coboundary ci − cj . Thus we can conclude:

α = df iff [gij ] = 0 in H1(X,C) .

The exact cohomology sequence. The conceptual theorem underlying
the preceding discussion is the following:

Theorem 6.7 Any short exact sequence of sheaves on X,

0 → A → B → C → 0,

gives rise to a long exact sequence

0 → H0(X,A) → H0(X,B) → H0(X, C) →
H1(X,A) → H1(X,B) → H1(X, C) →
H2(X,A) → H2(X,B) → H2(X, C) → · · ·

on the level of cohomology.

Note: for any open set U , we get an exact sequence

0 → A(U) → B(U) → C(U), (6.1)

as can be checked using the sheaf axioms. Surjectivity of the maps Bx → Cx

implies that for any c ∈ C(X), there is an open covering (Ui) and bi ∈ B(Ui)
mapping to c.

To obtain the connecting homomorphism

δ∗ : H0(X, C) → H1(X,A),
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we use the exactness of (6.1) to write bi−bj as the image of aij. The resulting
cocycle [aij ] ∈ H1(X,A) is the image δ∗(c).

Example: deRham cohomology. Let Zp denote the sheaf of closed p-
forms, then (by the Poincaré lemma) we have an exact sequence of sheaves:

0 → Zp−1 → Ep−1 d→ Zp → 0.

Recall that the deRham cohomology groups of X are given by:

Hp
DR(X) = Zp(X)/dEp−1(X).

Now let p = 1. Then Zp−1 = C. By examining the associate long exact
sequence we find:

Theorem 6.8 For any manifold X, we have H1
DR(X) ∼= H1(X,C).

More generally, using all the terms in the exact sequence and all values
of p, we find:

Theorem 6.9 For any manifold X, we have

Hp
DR(X) ∼= H1(X,Zp−1) ∼= H2(X,Zp−2) ∼= · · ·Hp(X,Z0) = Hp(X,C).

Corollary 6.10 The deRham cohomology groups of homeomorphic smooth
manifolds are isomorphic.

(In fact one can replace ‘homeomorphic’ by ‘homotopy equivalent’ here.)

Finiteness. Now it is easy to prove that Hp
DR(Rn) = 0 for all p > 0. We

thus have, by taking a Leray covering:

Theorem 6.11 For any compact manifold, the cohomology groups Hp(X,C)
are finite.

Periods revisited. Finally we mention the fundamental group:

Theorem 6.12 For any connected manifold X, we have

H1(X,C) ∼= H1
DR(X) ∼= Hom(π1(X),C).

Proof. We have
∫
γ df = 0 for all closed loops γ, so the period map is

well-defined; if α has zero periods then f(q) =
∫ q
p α is also well-defined and

satisfies df = α. To prove surjectivity, take a (Leray) covering of X by
geodesically convex sets, and observe that (i) every element of π1(X) is rep-
resented by a 1-chain and (ii) every 1-boundary is a product of commutators.
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Remarks. One can define the period map H1(X,C) → Hom(π1(X),C)
directly, using γ : S1 → X to obtain from ξ ∈ H1(X,C) a class φ(γ) ∈
H1(S1,C) ∼= C. For more exotic topological spaces, however, this map need
not be an isomorphism: e.g. the ‘topologist’s sine curve’ is a compact,
connected space X with π1(X) = 0 but H1(X,Z) = Z.

7 Cohomology on a Riemann surface

On a Riemann surface we have the notion of holomorphic functions and
forms. Thus in addition to the sheaves Ep we have the important sheaves:

O — the sheaf of holomorphic functions; and
Ω — the sheaf of holomorphic 1-forms.

Let hi(F) = dimH i(X,F). We will show that a compact Riemann surface
satisfies:

h0(O) = 1, h0(Ω) = g,

h1(O) = g, h1(Ω) = 1.

The symmetry of this table is not accidental: it is rather the first instance
of Serre duality, which we will also prove.

The Dolbeault Lemma. Just as the closed forms can be regarded as
the subsheaf Ker d ⊂ Ep, the holomorphic functions can be regarded as the
subsheaf Ker ∂ ⊂ C∞ = E0. So we must begin by studying the ∂ operator.

We begin by studying the equation df/dz = g ∈ L1(C). An example is
given for each r > 0 by:

fr(z) =

{
1/z if |z| > r,

z/r2 if |z| ≤ r,

which satisfies gr = df/dz = (1/r2)χB(0,r)(z). In particular
∫
gr = π is

independent of r, which suggests the distributional equation:

d

dz

1

z
= πδ0.

Using this fundamental solution (and the fact that dx dy = 1/(2i)dz ∧ dz),
we obtain:

Theorem 7.1 For any g ∈ C∞
c (C), a solution to the equation df/dz = g is

given by:

f(z) = g ∗ 1

πz
=

1

2πi

∫

C

g(w) dw ∧ dw
z − w

·
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Theorem 7.2 For any g ∈ C∞(∆), there is an f ∈ C∞(∆) with df/dz = g.

Proof. Write g =
∑
gn where each gn is smooth and compactly supported

outside the disk Dn of radius 1 − 1/n. Solve dfn/dz = gn. Then fn is
holomorphic on Dn. Expanding it in power series, we can find holomorphic
functions hn on the disk such that |fn − hn| < 2−n n Dn. Then f =∑

(fn −hn) = limFn converges uniformly, and F −Fi is holomorphic on Dn

for all i > n, so the convergence is also C∞.

Corollary 7.3 For any g ∈ C∞(∆), there is an f ∈ C∞(∆) with ∆f = g.

Proof. First solve dh/dz = g, then df/dz = h. Then ∆(f/4) = d2f/dz dz =
g.

Note: the same results hold with ∆ replaced by C.

Dolbeault cohomology. Let us define, for any Riemann surface X,

H0,1(X) =
E0,1(X)

∂E0(X)
·

The preceding results show the sequence of sheaves:

0 → O → E0 ∂→ E0,1 → 0

is exact. Consequently we have:

Theorem 7.4 For any Riemann surface X, H1(X,O) ∼= H0,1(X).

Thus the Dolbeault lemma can be reformulated as:

Theorem 7.5 The unit disk satisfies H1(∆,O) ∼= H0,1(∆) = 0. The same
is true for the complex plane.

Corollary 7.6 We have H1(Ĉ,O) = 0.

Proof. Let U1 ∪ U2 be the usual covering by U1 = C and U2 = Ĉ − {0}.
By the preceding result, H1(Ui,O) = 0. Thus by Leray’s theorem, this
covering is sufficient for computing H1: H1(Ĉ,O) = H1(U,O). Suppose
g12 ∈ O(U12) = O(C∗) is given. Then g12(z) =

∑∞
−∞ anz

n. Splitting this
Laurent series into its positive and negative parts, we obtain fi ∈ O(Ui)
such that g12 = f2 − f1.

33



Similarly, we define

H1,1(X) =
E1,1(X)

∂E1,0(X)
·

Theorem 7.7 We have H1(X,Ω) = H1,1(X).

Proof. Consider the exact sequence of sheaves

0 → Ω → E1,0 ∂→ E1,1 → 0.

The Dolbeault isomorphism. Using the fact that ∂
2

= 0 one can defined
the Dolbeault cohomology groups for general complex manifolds, and prove
using sheaf theory the following variant of the deRham theorem:

Theorem 7.8 For any compact complex manifold X, we have Hp,q

∂
(X) ∼=

Hq(X,Ωp).

Here Ωq is the sheaf of holomorphic (q, 0)-forms.

The residue map. Since d = ∂ on E1,0, the residue map

Res(α) =
1

2πi

∫

X
α

gives a canonical map

Res : H1(X,Ω) ∼= H1,1(X) → C.

(We will later see that this map is an isomorphism.)
Now suppose we have an element ξ = [αij ] ∈ H1(X,Ω) that can be

expressed in the form αij = ωi − ωj, with ωi ∈ M(1)(Ui). We then refer to
(ωi) as Mittag-Leffler data, and ξ as a Mittag-Leffler coboundary. We can
then associate to ξ quantity

R(ξ) =
∑

p

Resp(ωi).

Note that if αij = βi−βj then there exists a global meromorphic form given
locally by η = ωi−βi. Since

∑
Resp(η) = 0, the value of R(ξ) is well-defined.

Example. For any point P ∈ X we can choose a local coordinate z : U1
∼=

∆, set U2 = X − {P}, and define ω1 = dz/z and ω2 = 0. Then α12 = dz/z
on U12, and ξ = [αij ] satisfies R(ξ) = 1.
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Theorem 7.9 If ξ = [ωi − ωj] is a Mittag-Leffler coboundary, then

Res(ξ) =
∑

Resp(ωi).

Proof. Using the fact that H1(X, E1,0) = 0, we can write the cocycle
ξ = (αij) as a coboundary in two ways: we have

αij = ωi − ωj = gi − gj

with gi ∈ E1,0(Ui). Then η = dgi is globally well-defined and Res(ξ) =
∫
X η.

Now let X∗ ⊂ X be the complement of very small disks around the
poles of the ωi. Then on X∗, we have a global smooth 1-form h = gi − ωi

on Ui (these definitions agree on the overlap by the above). Since ωi is
holomorphic, we have dh = dgi = η, and thus:

2πiRes(ξ) =

∫

X
η ≈

∫

X∗

dh =

∫

∂X∗

h ≈ 2πi
∑

Resp(ωi).

In the last step we have taken into account the fact that ∂X∗ is oriented
to give loops that go negatively around the points p, and that

∫
∂X∗ gi ≈ 0

since gi is smooth at p.

Finiteness. Recall that we already know dimΩ(X) ≥ g, by period con-
siderations; in particular, Ω(X) is finite-dimensional. We remark that a
more robust proof of this finite-dimensionality can be given by endowing
Ω(X) with a reasonable normal — e.g. ‖α‖2 =

∫
X |α|2 — and then ob-

serving that the unit ball is compact. (The same proof applies to show
dimO(X) < ∞, without using the maximum principle. More generally the
space of holomorphic sections of a complex line bundle over a compact space
is finite-dimensional.)

Serre duality, special case. We can now use this finiteness to show
finiteness of cohomology groups. (An alternative proof, again based on
norms, is given in Forster.)

Theorem 7.10 On any compact Riemann surface X, we have H1(X,O)∗ ∼=
Ω(X). In particular, H1(X,O)∗ is finite-dimensional.

We let ga = dim Ω(X), the arithmetic genus of X. We will eventually
see that ga = g = the topological genus.

Proof. By Dolbeault we have

H1(X,O) ∼= H0,1(X) = E(0,1)(X)/∂E0(X).

35



We claim ∂E0(X) is closed in E(0,1)(X) in the C∞ topology. If not, there
is a sequence fn ∈ E0(X) with ∂fn → ω in the C∞ topology, such that fn

has no convergent subsequence in E0(X). Since bounded sets in E0(X) are
compact, the latter condition implies for some k ≥ 0, ‖fn‖Ck → ∞. From
this we will obtain a contradiction.

Dividing through by the Ck-norm, we can arrange that ‖fn‖Ck = 1 in
E0/C and ∂fn → 0. Taking a bump function ρ in a chart, we have

∂(ρfn) = ρ(∂fn) + (∂ρ)fn.

Since fn is bounded in Ck and ∂fn tends to zero, the right-hand side is
bounded in Ck. But since the solution to the ∂ equation is given by con-
volution with 1/z, a smoothing operator, we find that 〈ρfn〉 is precompact
in Ck. Thus we can pass to a Ck convergent subsequence, fn → g. Then
∂g = 0 so g is constant. But then ‖fn‖Ck → 0 in E0(X)/C, a contradiction.

Since ∂E0(X) is closed, we have

H1(X,O)∗ = W ∼= (∂E0(X))⊥ ⊂ (E0,1(X))∗ = D1,0(X).

But any (1, 0)-current ω ∈W satisfies
∫
ω ∧ (∂f) = 0 for all smooth f , and

thus ∂ω = 0, which implies ω is holomorphic and thus W = Ω(X).

Corollary 7.11 We have natural isomorphisms H1,0(X) ∼= Ω(X) and H0,1(X) ∼=
Ω(X).

Proof. There is a natural isomorphism Ω(X) ∼= Ω(X)∗ coming from the
pairing 〈α, β〉 =

∫
X α ∧ β, which is obviously nondegenerate since 〈α,α〉 =∫

|α|2.

Taking stock. In preparation for Riemann-Roch, we now knowH1(X,O)∗ ∼=
Ω(X), ga = dim Ω(X) ≥ g, and dimH1(X,Ω) ≥ 1 because of the residue
map.

8 Riemann-Roch

One of the most basic questions about a compact Riemann surface X is:
does there exist a nonconstant holomorphic map f : X → Ĉ? But as we
have seen already in the discussion of the field M(X), it is desirable to ask
more: for example, do the meromorphic functions on X separate points?
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Even better, does there exist a holomorphic embedding X → Pn for some
n?

To answer these questions we aim to determine the dimension of the
space of meromorphic functions with controlled zeros and poles. This is the
Riemann-Roch problem.

Divisors. Let X be a compact Riemann surface. The group of divisors
Div(X) is the free abelian group generated by the points of X. A divisor is
sum D =

∑
aPP , where aP ∈ Z and aP = 0 for all but finitely many P ∈ X.

We say D ≥ 0 if aP ≥ 0 for all P . A divisor is effective if D ≥ 0. Any divisor
can be written unique as a difference of effective divisors, D = D+ −D−.

The degree of a divisor, deg(D) =
∑
aP , defines a homomorphism deg :

Div(X) → Z.
Note: one can also define a sheaf by Div(U) = {∑ aPP} where the

sum is locally finite. This is the sheaf canonically generated by the presheaf
M∗/O∗.

Associated to any meromorphic function f 6= 0 is a divisor of degree zero
recording its zeros and poles:

(f) =
∑

P

ord(f, P ) · P.

The divisors that arise in this way are said to be principal. Note that:

(fg) = (f) + (g),

so (f) defines a homomorphism from M∗(X) into Div0(X). Note also that
the topological degree of f is given by deg(f)+.

The sheaf OD consists of meromorphic functions f such that (f)+D ≥ 0.
For example, OnP (X) is the vector space of meromorphic functions on X
with poles of order at most n at p.

Isomorphisms between sheaves. If D − E = (f) is principal, we say D
and E are linearly equivalent. Then the map h 7→ hf gives an isomorphism
of sheaves:

OD = OE+(f)
∼= OE ,

because
(hf) + E = (h) + (f) +E = (h) +D.

The divisor K = (ω) of a nonzero meromorphic 1-form ω is defined similarly.
Once we have such a canonical divisor, we get an isomorphism

OK
∼= Ω
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by h 7→ hω, because hω is holomorphic iff

(hω) = (h) +K ≥ 0

iff h ∈ OK .

Riemann-Roch Problem. The Riemann-Roch problem is to calculate or
estimate

h0(D) = dimH0(X,OD) = dimOD(X).

Example: if X is a complex torus, we have h0(nP ) = 1, 1, 2, 3, . . .. This can
be explained by the fact that ResP (f dz) = 0.

It is a general principle that Euler characteristics are more stable than
individual cohomology groups, and we define:

χ(F) =
∑

(−1)qhq(F).

We then have:

Theorem 8.1 (Riemann-Roch, Euler characteristic version) For any
divisor D, we have

χ(OD) = h0(OD) − h1(OD) = degD − ga + 1.

Here ga = dim Ω(X) is the arithmetic genus.
For the proof we will use:

Theorem 8.2 If 0 → A → B → C → 0 is an exact sequence of sheaves with
finite-dimensional cohomology groups on a finite-dimensional space X, then
we have:

χ(B) = χ(A) + χ(C).

Proof. Let the homomorphisms in dimension p for the resulting long exact
sequence be denoted by αp, βp and δp. We then have:

χ(A) =
∑

(−1)p(dim Kerαp + dim Imαp),

−χ(B) =
∑

(−1)p(− dim Kerβp − dim Imβp), and

χ(C) =
∑

(−1)p(dim Ker δp + dim Im δp).
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By exactness we have:

0 =
∑

(−1)p(dim Imαp − dim Kerβp),

0 =
∑

(−1)p(− dim Imβp + dim Ker δp), and

0 =
∑

(−1)p(dim Im δp − dimKerαp+1),

and thus χ(A) − χ(B) + χ(C) = 0.

Skyscrapers. The skyscraper sheaf CP is given by O(U) = C if P ∈ U ,
and O(U) = 0 otherwise. For any divisor D, we have the exact sequence:

0 → OD → OD+P → CP → 0, (8.1)

where the final map records the leading coefficient of the polar part of f at
P . It is easy to see (e.g. by taking fine enough coverings, without P in any
multiple intersections):

Theorem 8.3 We have Hp(X,CP ) = 0 for all p > 0. In particular χ(CP ) =
h0(CP ) = 1.

Theorem 8.4 The cohomology groups Hp(X,OD) are finite-dimensional
for p = 0, 1 and vanish for all p ≥ 2.

Proof. We have already seen the result is true for D = 0: the space
H1(X,O) ∼= Ω(X)∗ is finite-dimensional, and using the Dolbeault sequence,
one can show Hp(X,O) = 0 for all p ≥ 2. The result for general D then
follows induction, using the skyscraper sheaf.

Proof of Riemann-Roch. Since h1(O) = dim Ω(X) = ga, the formula
is correct for the trivial divisor. Using (8.1) and general properties of the
Euler characteristic in long exact sequences, we find:

χ(OD+P ) = χ(OD) + χ(CP ) = χ(OD) + 1,

which implies Riemann-Roch for an arbitrary divisor D.
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Existence of meromorphic functions and forms. A more general form
of Serre duality will lead to a more useful formulation of Riemann-Roch, but
we can already deduce several useful consequences.

Theorem 8.5 Any compact Riemann surface admits a nonconstant map
f : X → P1 with deg(f) ≤ ga + 1.

Proof. We have dimH0(X,OD) ≥ degD − ga + 1. Once degD > ga this
gives dimH0(OD) > 1 = dim C.

Corollary 8.6 Any surface with ga = 0 is isomorphic to P1.

Proof. It admits a map to P1 of degree ga + 1 = 1.

Corollary 8.7 Any compact Riemann carries a nonzero meromorphic 1-
form.

Proof. Take ω = df .

Corollary 8.8 Canonical divisors K = (ω) exist, and satisfy OK
∼= Ω.

The isomorphism is given by f 7→ fω.

Arithmetic and topological genus; degree of canonical divisors;
residues.

Corollary 8.9 The degree of any canonical divisor is 2g−2, where g is the
topological genus of X.

Proof. Apply Riemann-Hurwitz to compute deg(df).

Corollary 8.10 The topological and arithmetic genus of X agree: we have
g = ga; and dimH1(X,Ω) = 1.

Proof. Apply Riemann-Roch to a canonical divisor K: we get

h0(K) − h1(K) = ga − h1(K) = 1 − ga + deg(K) = 2g − ga − 1,

or in other words:
2ga − h1(K) = 2g − 1.

Now we know ga ≤ g and h1(K) ≥ 1, so the only way equality can hold is if
ga = g and h1(K) = 1.

40



Corollary 8.11 The residue map Res : H1(X,Ω) → C is an isomorphism.

Theorem 8.12 (Hodge theorem) On a compact Riemann surface every
class in H1

DR(X,C) is represented by a harmonic 1-form. More precisely we
have

H1
DR(X) = Ω(X) ⊕ Ω(X) = H1,0(X) ⊕H0,1(X) = H1(X).

Proof. We already know the harmonic forms inject into deRham cohomol-
ogy, by considering their periods; since the topological and arithmetic genus
agree, they also surject.

The space of smooth 1-forms. On a compact Riemann surface, the full
Hodge theorem

E1(X) = dE0(X) ⊕H1(X) ⊕ d∗E2(X)

becomes the statement:

E1(X) = (∂ + ∂)E0(X) ⊕ (Ω(X) ⊕ Ω(X)) ⊕ (∂ − ∂)E0(X).

Here ∂−∂ has the same image as ∗d, and hence the same image as d∗. This
is a consequence of the isomorphism H1,0(X) ∼= Ω(X).

Remark: isothermal coordinates. The argument we have just given also
proves the Hodge theorem for any compact, oriented Riemannian 2-manifold
(X, g). To see this, however, we need to know that every Riemannian metric
is locally conformally flat; i.e. that one can introduce ‘isothermal coordi-
nates’ to make X into a Riemann surface with g a conformal metric.

Mittag-Leffler for 1-forms. The Mittag-Leffler problem is to construct
meromorphic 1-form with prescribed principal parts.

The problem does not always have a solution. For example, if just a
single simple pole is specified, then X would have to have genus 0 for f to
exist.

The data is conveniently given by ωi ∈ M(1)(Ui) such that δω = (δω)ij
lies in Z1(Ω), i.e. such that αij = ωj −ωi is holomorphic. Then the problem
of constructing a global ω with the same principal parts reduces to showing
that (δω) is a coboundary in H1(X,Ω).

We are thus lead to consider that cohomology group. Since we have
shown that h1(K) = 1 (above), we have:

Theorem 8.13 There exists a meromorphic 1-form with prescribed princi-
pal parts iff the sum of its residues is equal to zero.
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Proof. The principal parts are specified by a Mittag-Leffler 0-cochain ωi ∈
M(1)(Ui) with boundary

ωi − ωj = αij ∈ Ω(Uij);

and the class ξ = [αij ] ∈ H1(X,Ω) is equal to zero iff Res(ξ) = 0, in
which case αij = βi − βj with βi ∈ Ω(Ui), and ωi + βi = η defines a global
meromorphic 1-form with the prescribed principal parts.

Corollary 8.14 The Mittag-Leffler problem for 1-forms has a solution if
and only if the sum of the residues of the principal parts is zero.

Corollary 8.15 Given any pair of distinct points p1, p2 ∈ X, there is a
meromorphic 1-form ω with simple poles of residues (−1)i at pi and no
other singularities.

This ‘elementary differential of the third kind’ is unique up to the addi-
tion of a global holomorphic differential. Example: the form dz/z works for
0,∞ ∈ Ĉ.

Corollary 8.16 For any p ∈ X and n ≥ 2 there exists a meromorphic
1-form ω with a pole of order n at p (but vanishing residue) and no other
singularities.

This is an ‘elementary differential of the second kind’.

Currents and residues. Here is another formulation of the Mittag-Leffler
problem for 1-forms. Using sheaves of distributions and currents, we have
an exact sequence

0 → Ω → D1,0 ∂→ D1,1 → 0,

which shows the isomorphismH1(X,Ω) ∼= C can be computed using currents
instead of smooth forms. Then a current in D1,1 representing the Mittag-
Leffler cocycle ωi − ωj is given by η = dωi, which is supported just at the
poles of ωi and satisfies

1

2πi

∫
η = Res(ωi).

Thus δωi = 0 iff Res(ωi) = 0.
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9 Serre duality

Let M(1)(X) denote the space of meromorphic 1-forms on X. It is a 1-
dimensional vector space over the field M(X). We define:

ΩD(X) = {ω ∈ M(1)(X) : (ω) +D ≥ 0}.

The sheaf ΩD
∼= OD+K is defined similarly. The goal of this section is to

present:

Theorem 9.1 (Serre duality) For any divisor D, we have a canonical
isomorphism

H1(X,O−D)∗ ∼= ΩD(X).

This result allows us to eliminate h1 entirely from the statement of
Riemann-Roch, and obtain:

Theorem 9.2 (Riemann-Roch, geometric version) For any divisor D
on a compact Riemann surface X, we have

h0(D) = degD − g + 1 + h0(K −D).

Motivation: Mittag-Leffler for functions. Given a finite set of points
pi ∈ X, and the Laurent tails

fi(z) =
bn
zn

+ · · · + b1
z

of meromorphic functions fi in local coordinates near Pi, when can we find
a global meromorphic function f on X with the given principal parts?

Case D ≥ 0 and K − D ≥ 0. Let us consider first the simple case where
fi(z) = ai/z near Pi. Let D =

∑
Pi. Clearly the data (ai)

d
1, d = degD,

determine f uniquely up to a constant; thus we have:

h0(D) ≤ deg(D) + 1.

However, each holomorphic 1-form imposes a linear constraint:
∑

Res(fiω) =
0. These conditions would reduce h0(D) by g = dim Ω(X) if they were lin-
early independent. However, the forms in Ω−D(X) vanish at all the points
Pi and hence impose no conditions. Thus we get:

h0(D) ≤ deg(D) + 1 − g + h0(K −D).
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Now if K−D is also effective, we can interchange the roles of D and K−D
to obtain:

h0(K −D) ≤ deg(K −D) + 1 − g + h0(D) = g − 1 − deg(D) + h0(D).

Summing these two equations, we get:

h0(K −D) + h0(D) ≤ h0(K −D) + h0(D).

Since in fact equality holds here, we conclude it held before, and thus we
have the following special case of the geometric version of Riemann-Roch:

Theorem 9.3 If both D and K −D are effective divisors, we have:

h0(D) = deg(D) + 1 − g + h0(K −D).

Case D ≥ 0. Returning to the original Mittag-Leffler problem, suppose
we are given fi ∈ M(Ui). Then the problem is to find f ∈ M(X) with the
same principal parts.

Equivalently, we want to determine when δfi ∈ H1(X,O) is a cobound-
ary. By the case of Serre duality we have already proven, H1(X,O) is iso-
morphic to Ω(X)∗, so there is a natural pairing between (δfi) ∈ H1(X,O)
and ω ∈ Ω(X).

Recalling from Theorem 7.9 that (up to a constant) the pairing defining
Serre duality is given by

〈δfi, ω〉 = Res(ωfi),

we then have:

Corollary 9.4 The Mittag-Leffler problem specified by (fi) has a solution
iff ∑

Resp(fiω) = 0

for every ω ∈ Ω(X).

This proves the final Riemann-Roch theorem for effective divisors. For
example, suppose D = nP . Then an element f ∈ OD(X) is determined by
its Laurent tail

f(z) =
bn
zn

+ · · · + b1
z

+ b0

in a coordinate system where z(p) = 0. The set of (bi) that can arise is
determined by the constraint Res(ωf) = 0 for all ω ∈ Ω(X). But the
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residue vanishes trivially if ω belongs to Ω−nP (X). Thus the number of
constraints on (b0, . . . , bn) is dim Ω(X) − dim Ω−nP (X) = g − h0(K − nP ),
and we find

h0(nP ) = n+ 1 − g + h0(K − nP )

in agreement with Riemann-Roch.

Proof of Serre duality: dimension counts. A proof of Serre duality
can be given using the elliptic regularity, just as we did for the case Ω(X) ∼=
H1(X,O)∗. For more perspective we give a different argument, based loosely
on Forster.

We begin with some useful qualitative dimension counts that follow im-
mediately from the fact that h0(D) = 0 if deg(D) < 0, h1(D) ≥ 0 and the
fact that Ω ∼= OK .

Theorem 9.5 For deg(D) > 0, we have

dimOD(X) ≥ deg(D) +O(1),

dimΩD(X) ≥ deg(D) +O(1), and

dimH1(X,O−D) = deg(D) +O(1).

Pairings. Next we couple the product map

O−D ⊗ ΩD → Ω

together with the residue map Res : H1(X,Ω) → C to obtain a map

H1(X,O−D) ⊗ ΩD(X) → H1(X,Ω) → C,

or equivalently a natural map

ΩD(X) → H1(X,O−D)∗.

This map explicitly sends ω to the linear functional defined by

φ(ξ) = Res(ξω).

Using the long exact sequence associated to equation (8.1) we obtain:

Theorem 9.6 The inclusion OD → OD+P induces a surjection:

H1(X,OD) → H1(X,OD+P ) → 0.
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Corollary 9.7 We have a natural surjective map:

H1(X,OD) → H1(X,OE) → 0

for any E ≥ D.

Put differently, for E ≥ D we get a surjective map H1(X,O−E) →
H1(X,O−D) and thus an injective map on the level of duals. For organi-
zational convenience we take the direct limit over increasing divisors and
set

V (X) = lim
D→+∞

H1(X,O−D)∗.

Clearly ΩD(X) maps into V (X) for every D, so we get a map M(1)(X) →
V (X).

Theorem 9.8 The natural map M(1)(X) → V (X) is injective. Moreover
a meromorphic form ω maps into H1(X,O−D)∗ iff ω ∈ ΩD(X).

Proof. Both statements are easy to prove, because it is easy to produce
elements of H1(X,OD). For the first, suppose ω ∈ ΩD(X) is a nonzero
meromorphic form. Pick any point P ∈ X with local coordinate z : U1 → ∆,
and let U2 = X − {P}. Choose U1 small enough so that the divisors D and
(ω) have no points in U1 − {P}. Then choose

k = −1 − ordP (ω),

so that ResP (zkω) 6= 0. Set f1 = zk on U1 and f2 = 0 on U2, and ξ = (gij) =
f1 − f2. Then ξ ∈ H1(X,O−D), and

Res(ξω) = ResP (zkω) 6= 0.

This shows ω defines a nonzero element of V (X).
The proof of the second statement is similar. If ω is in H1(X,O−D)∗,

then it must vanish on all coboundaries for this group. Suppose however
−(k + 1) = ordP (ω) < −D(P ) for some P . Then k ≥ D(P ), so in the
construction above we can arrange that ξ = 0 in H1(X,O−D). This is a
contradiction. Thus ordP (ω) ≥ −D(P ) for all P , i.e. ω ∈ ΩD(X).
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Completion of the proof of Serre duality. Note that both M(1)(X)
and V (X) are vector spaces over the field of meromorphic functions M(X).
(Indeed the former vector space is one-dimensional, generated by any mero-
morphic 1-form.)

Given φ ∈ H1(X,O−D)∗ ⊂ V (X), we must show φ is represented by a
meromorphic 1-form ω. (By the preceding result, ω will automatically lie in
ΩD(X).)

The proof will be by a dimension count. We note that for n ≫ 0, we
have

dimH1(X,O−D−nP )∗ = n+O(1).

On the other hand, this space contains ΩD+nP (X) as well as OnP (X) · φ.
Both of these spaces have dimension bounded below by n+O(1). Thus for
n large enough, we can write fφ = ω where f is a meromorphic function
and ω is a meromorphic form. But then φ = ω/f is also a meromorphic
form!

We can now round out the discussion by proving some results promised
above.

Theorem 9.9 For any divisor D we have

H0(X,OD) ∼= H1(X,Ω−D)∗.

Proof. We have

H0(X,OD) ∼= H0(X,ΩD−K) ∼= H1(X,OK−D)∗ ∼= H1(X,Ω−D)∗

Corollary 9.10 We have H1(X,OD) = 0 as soon as deg(D) > deg(K) =
2g − 2.

Proof. Because then H1(X,OD)∗ ∼= Ω−D(X) = 0.

Corollary 9.11 If deg(D) > 2g − 2, then h0(D) = 1 − g + deg(D).

Corollary 9.12 We have H1(X,M) = H1(X,M(1)) = 0.

Proof. Any representative cocycle (fij) for a class in H1(X,M) can be re-
garded as a class inH1(X,OD) for someD of large degree. ButH1(X,OD) =
0 once deg(D) is sufficiently large. Thus (fij) splits for the sheaf OD, and
hence for M.

47



Corollary 9.13 Every element of H1(X,OD) can be represented as a Mittag-
Leffler coboundary, gij = fi − fj with meromorphic (fi). Similarly for
H1(X,ΩD).

Mittag-Leffler for 1-forms, revisited. Here is another proof of the
Mittag-Leffler theorem for 1-forms. Suppose we consider all possible prin-
cipal parts with poles of order at most ni > 0 at Pi, and let D =

∑
niPi.

The dimension of the space of principal parts is then n =
∑
ni = degD.

In addition, the principal part determines the solution to the Mittag-Leffler
problem up to adding a holomorphic 1-form. That is, the solutions lie in the
space ΩD(X), and the map to the principal parts has Ω(X) as its kernel.

Thus the dimension of the space of principal parts that have solutions
is:

k = dimΩD(X) − dim Ω(X).

But by Riemann-Roch we have

dimΩD(X) = h0(K +D) = h0(−D) + deg(K +D) − g + 1

= 2g − 2 + degD − g − 1 = g + degD − 1 = g + n− 1,

so the solvable data has dimension k = n−1. Thus there is one condition on
the principal parts for solvability, and that condition is given by the residue
theorem.

10 Maps to projective space

In this section we explain the connection between the sheaves OD, linear
systems and maps to projective space.

Projective space. Let V be an (n + 1)-dimensional vector space over C.
The space of lines (one-dimensional subspaces) in V forms the projective
space

PV = (V − {0})/C∗.

It has the structure of a complex n-manifold. The subspaces S ⊂ V give
rise to planes PS ⊂ PV ; when S has codimension one, PS is a hyperplane.

The dual projective space PV ∗ parameterizes the hyperplanes in PV , via
the correspondence φ ∈ V ∗ 7→ Ker(φ) = S ⊂ V .

We can also form the quotient space W = V/S. Any line L in V that
is not entirely contained in S projects to a line in W . Thus we obtain a
natural map

π : (PV − PS) → P(V/S).
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All the analytic automorphisms of projective space come from linear
automorphisms of the underlying vector space: that is,

Aut(PV ) = GL(V )/C∗ = PGL(V ).

We let Pn = PCn+1 with homogeneous coordinates [Z] = [Z0 : · · · : Zn]. It
satisfies

Aut(Pn) = PGLn+1(C).

The case n = 1 gives the usual identification of automorphisms of Ĉ with
Möbius transformations.

Projective varieties. The zero set of a homogeneous polynomial f(Z)
defines an algebraic hypersurface V (f) ⊂ Pn. A projective algebraic variety
is the locus V (f1, . . . , fn) obtained as an intersection of hypersurfaces.

The ratio
F (Z) = f1(Z)/f0(Z) = [f0(Z) : f1(Z)]

of two homogeneous polynomials of the same degree defines a meromorphic
‘function’

F : Pn
99K P1.

Its values are undetermined on the subvariety V (f0, f1), which has codimen-
sion two if f0 and f1 are relatively prime.

The Hopf fibration. By considering the unit sphere in Cn+1, we obtain
the Hopf fibration π : S2n+1 →
cxprojn with fibers S1. This shows that projective space is compact. More-
over, for n = 1 the fibers of π are linked circles in S3, and π generates
π3(S

2) ∼= Z.

Affine space. The locus An = Pn − V (Z0) is isomorphic to Cn with
coordinates (z1, . . . , zn) = Zi/Z0, while V (Z0) itself is a hyperplane; thus
we have

Pn ∼= Cn ∪ Pn−1.

By permuting the coordinates, we get a covering of Pn by n+1 affine charts.
Any ordinary polynomial p(zi) has a unique homogeneous version P (Zi)

of the same maximal degree, such that p(zi) = P (1, z1, . . . , zn). Thus any
affine variety V (p1, . . . , pm) has a natural completion V (P1, . . . , Pm) ⊂ Pm.
This variety is smooth if it is a smooth submanifold in each affine chart.

Examples: Curves in P2.

1. The affine curve x2 − y2 = 1 meets the line at infinity in two points
corresponding to its two asymptotes; its homogenization X2−Y 2 = Z2
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is smooth in every chart. In (y, z) coordinates it becomes 1− y2 = z2,
which means the line at infinity (z = 0) in two points.

2. The affine curve defined by p(x, y) = y − x3 = 0 is smooth in C2, but
its homogenization P (X,Y,Z) = Y Z2 −X3 defines the curve z2 = x3

in the affine chart where Y 6= 0, which has a cusp.

3. The space of homogeneous polynomials of degree d in Pn has dimension
given by

dimPd(C
n+1) =

(
d+ n

n

)
·

This can be seen by inserting n markers into a list of d symbols, and
turning all the symbols up to the first marker into Z0’s, then the next
stretch into Z1’s, etc. Thus the space of curves of degree d in P2 is
itself a projective space PN , with N = d(d + 3)/2. E.g. there is a
5-dimensional space of conics, a 9-dimensional space of cubics and a
14-dimensional space of quartics.

The degree of a plane curve. If f is irreducible, then V (f) meets a
typical line in exactly d = deg(f) points. Thus the degree of f is a visible
property of V (f).

If f = f1 · · · fn is a product of distinct irreducibles, then V (f) =
⋃
V (fi).

These are also important examples of curves of degree d. For example, d
distinct lines form a curve of degree d.

The normalization of a singular curve. Every irreducible homogeneous
polynomial f on P2 determines a compact Riemann surface X together with
a generically injective map ν : X → V (f). The Riemann surface X is called
the normalization of the (possibly singular) curve V (f).

To construct X, use projection from a typical point P ∈ P2 − V (f) to
obtain a surjective map π : V (f) → P1. After deleting a finite set from
domain and range, including all the singular points of V (f), we obtain an
open Riemann surface X∗ = V (f) − C and a degree d covering map

π : X∗ → (P1 −B).

As we have seen, there is a canonical way to complete X∗ and π to a compact
Riemann surface X and a branched covering π : X → P1. It is then easy to
see that the isomorphism

ν : X∗ → V (f) −C ⊂ P2

extends to a holomorphic map ν : X → P2 with image V (f).
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Example. The cuspidal cubic y2 = x3 is normalized by ν : P1 → P2 given
by ν(t) = (t2, t3).

Maps to Pn. Two divisors D,E are linearly equivalent if D − E = (f) is
principal; then OD

∼= OE .
A divisor determines a natural map (if n+ 1 = h0(D) > 0):

φD : X → PH0(X,OD)∗ ∼= Pn

by φD(x)(f) = f(x). Here the map should be renormalized near points x
where elements of H0(X,OD) have zeros or poles, by dividing through by
common zeros or poles.

Theorem 10.1 The image φD(X) is not contained in any hyperplane.

Linear systems and the base locus. The linear system |D| determined
by D is the collection of effective divisors E linearly equivalent to D. These
are exactly the divisors of the form E = (f) +D, where f ∈ H0(X,OD).

The divisor E measures the extent to which Ox(f) exceeds −D(x), i.e.
it describes the points where f vanishes to higher order than necessary. We
have a natural bijection

|D| = POD(X).

Equivalent divisors determine the same linear system.

Zeros and poles versus linear systems. Note: although the elements of
OD(X) are meromorphic functions, there is a profound shift in perspective
when we pass to linear systems. Namely we no longer focus on the zeros
and poles of f , but their excess E = (f) +D. This shift in perspective will
eventually be made more systematic using the concept of a line bundle.

Base locus. The base locus B of a linear system |D| is the largest divisor
such that 0 ≤ B ≤ E for all E ∈ |D|. We say |D| is base-point free if B = 0.
This just means for all P ∈ X there is an E ∈ |D| which is supported in
X − {P}.

We say OD is generated by global sections if for each x ∈ X we have a
global section f ∈ H0(X,OD) such that the stalk OD,x, which is an Ox-
module, is generated by f ; that is, OD,x = Ox · f .

Theorem 10.2 The following are equivalent.

1. |D| is base-point free.

2. h0(D − P ) = h0(D) − 1 for all P ∈ X.
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3. OD is generated by global sections.

4. For any x ∈ X there is an f ∈ OD(X) such that ordx(f) = −D(x).

Example. Note that h0(nP ) = 1 for n = 0 and = g for n = 2g− 1. Thus
(for large genus) there must be values of n such that h0(nP ) = h0(nP −P ).
In this case, D = nP is not globally generated.

Hyperplane sections.

Theorem 10.3 If D is base-point free, then |D| consists of the hyperplane
sections φ−1

D (H).

Proof. Let f0, f1, . . . , fn be a basis for OD(X). Then the map to Pn is
given locally near p ∈ X by

φD(z) = [zdf0(z) : zdf1(z) : · · · : zdfn(z)]

where z is a local coordinate, z(p) = 0, and d is the maximum order of pole
at p of the fi(z).

Since OD is globally generated, we have d = D(p). Now p belongs
to the hyperplane at infinity H = (Z0 = 0), determined by coordinates
[Z0 : · · · : Zn] on Pn, if and only if zdf0(p) = 0. But this means exactly
that ordp(f0) > −D(p). Therefore the divisor E = (f0) +D coincides with
φ−1

D (H) (where the preimage is counted with multiplicity).
Conversely, if E = (f)+D ≥ 0, then f can be taken as a basis of element

of OD(X), determining in turn a hyperplane section giving E.

Corollary 10.4 If |D| is base-point free and φD is an embedding, then
φD(X) is a curve of degree degD.

Theorem 10.5 Let φ : X → Pn be a map of X to projective space with
the image not contained in a hyperplane. Then φ = π ◦ φD, where D is the
divisor of a hyperplane section, |D| is a base-point free linear system, and
where π : PN

99K Pn is projection from a linear subspace PS disjoint from
φD(X).

Proof. Since hyperplanes can be moved, the linear system |D| is base-point
free, and all hyperplane sections are linearly equivalent to D. Thus φ can
be regarded as the natural map from X to PS∗, where S is a subspace of
H0(X,OD), so φ can be factored through the map φD to PH0(X,OD)∗.
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Embeddings into projective space.

Theorem 10.6 Let |D| be base-point free. Then for any effective divisor
P = P1 + . . . + Pn on X, the linear system

P + |D − P | ⊂ |D|

consists exactly of the hyperplane sections E = φD(X) ∩H passing through
(P1, . . . , Pn). In particular, the dimension of the space of such hyperplanes
is dim |D − P |.

Proof. A hyperplane section E ∈ |D| passes through P iff E − P ≥ 0 iff
E = P + E′ where E′ ∈ |D − P |.

Theorem 10.7 If h0(D − P −Q) = h0(D)− 2 for any P,Q ∈ X, then |D|
provides a smooth embedding of X into projective space.

Proof. This condition says exactly that the set of hyperplanes passing
through φD(P ) and φD(Q) has dimension 2 less than the set of all hyper-
planes. Thus φD(P ) 6= φD(Q), so φD is 1− 1. The condition on φ(D − 2P )
says that the set of hyperplanes containing φD(P ) and φ′D(P ) is also 2
dimensions less, and thus φD is an immersion. Thus φD is a smooth embed-
ding.

Theorem 10.8 The linear system |D| is base-point free if degD ≥ 2g, and
gives an embedding into projective space if degD ≥ 2g + 1.

Proof. Use the fact that if degD > degK = 2g− 2, then we have h0(D) =
degD − g + 1, which is linear in the degree.

Corollary 10.9 Every compact Riemann surface embeds in projective space.

Remark. By projecting we get an embedding of X into P3 and an immer-
sion into P2.

Not every Riemann surface can be embedded into the plane! In fact a
smooth curve of degree d has genus g = (d − 1)(d − 2)/2, so for example
there are no curves of genus 2 embedded in P2.

Examples of linear systems.
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1. Genus 0. On P1, we have OD
∼= OE if d = deg(D) = deg(E). This

sheaf is usually referred to as O(d); it is well-defined up to isomor-
phism, |D| consists of all effective divisors of degree d. Note that
Od∞(P1) is the d + 1-dimensional space of polynomials of degree d.
The corresponding map φD : P1 → Pd is given in affine coordinates by
φD(t) = (t, t2, . . . , td). Its image is the rational normal curve of degree
d. Particular cases are smooth conics and the twisted cubic.

2. Genus 1. On X = C/Λ with P = 0, the linear system |P | is not base-
point free, but |2P | is, and |3P | gives an embedding into the plane,
via the map z 7→ (℘(z), ℘′(z)).

Recall that D =
∑
miPi is a principal divisor on X iff deg(D) = 0 and

e(D) =
∑
miPi in C/Λ is zero. Thus 3Q ∈ |3P | iff e(3(P − Q)) = 0.

This shows:

A smooth cubic curve X in P2 has 9 flex points, correspond-
ing to the points of order 3 in the group law on X.

The canonical map. Note that the embedding of a curve X of genus 1 into
P2 by the linear series |3P | breaks the symmetry group of the curve: since
Aut(X) acts transitively, the 9 flexes of Y = φ3P (X) are not intrinsically
special.

For genus g ≥ 2 on the other hand there a more natural embedding —
one which does not break the symmetries of X — given by the canonical
linear system |K|.

The linear system |K| corresponds to the map

φK : X → PΩ(X)∗ ∼= Pg−1

given by φ(x) = [ω1(x), . . . , ωg(x)], where ωi is a basis for Ω(X).

Theorem 10.10 The linear system |K| is base-point free.

Proof. Since X is not isomorphic to P1, we have h0(P ) = h0(0) = 1. Thus

h0(K − P ) = h0(P ) + deg(K − P ) − g + 1 = h0(K) − 1.

In other words, for any P ∈ X we have ω(P ) 6= 0 for some ω ∈ Ω(X).

54



Theorem 10.11 Either |K| gives an embedding of X into Pg−1, or X is
hyperelliptic.

Proof. Suppose |K| does not given an embedding. Then h0(K −P −Q) >
h0(K) − 2 for some P,Q ∈ X, and thus h0(P + Q) > 1. Thus there exists
meromorphic function f with polar divisor P + Q, providing a degree two
map f : X → P1.

Now suppose X is hyperelliptic. Then there is a degree two holomorphic
map f : X → P1 branched over the zeros of a polynomial p(z) of degree
2g + 2. A basis for the holomorphic 1-forms on X is given by

ωi =
zi dz√
p(z)

for i = 0, . . . , g − 1. That is, ωi(x) = f(x)iω0. It follows that the canonical
map φ : X → Pg−1 is given by

f(x) = [ωi(x)] = [ω0(x)f(x)i] = [f(x)i].

In other words, the canonical map factors as φ = ψ◦f , where ψ : P1 → Pg−1

is the rational normal curve of degree g − 1.

Canonical curves of genus two. We now describe more geometrically
the canonical curves of genus two, three and four.

Theorem 10.12 Any Riemann surface X of genus 2 is hyperelliptic, and
any degree two map of X to P1 agrees with the canonical map (up to Aut P1).

Proof. In genus 2, we have degK = 2g − 2 = 2, so the canonical map
φ : X → Pg−1 = P1 already presents X as a hyperelliptic curve. If f :
X → P1 is another such map, with polar divisor P + Q, then we have
h0(P + Q) = 2 = h0(K − P − Q) + 2 − 2 + 1; thus there exists an ω with
zeros just at P,Q and therefore P +Q is a canonical divisor.

Corollary 10.13 The moduli space of curves of genus two is isomorphic to
the 3-dimensional space M0,6 of isomorphism classes of unordered 6-tuples
of points on P1. Thus M2 is finitely covered by C3 −D, where D consists
of the hyperplanes xi = 0, xi = 1 and xi = xj.
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Remark. Here is a topological fact, related to the fact that every curve
of genus two is hyperelliptic: if S has genus two, then the center of the
mapping-class group Mod(S) is Z/2, generated by any hyperelliptic involu-
tion. (In higher genus the center of Mod(S) is trivial.)

Canonical curves of genus 3. Let X be a curve of genus 3. Then
X is either hyperelliptic, or its canonical map realizes it as a smooth plane
quartic. We will later see that, conversely, any smooth quartic is a canonical
curve (we already know it has genus 3). This shows:

Theorem 10.14 The moduli space of curves of genus 3 is the union of the
5-dimensional space M0,8 and the 6-dimensional moduli space of smooth
quartics, (P14 −D)/PGL3(C).

Note: a smooth quartic curve that degenerates to a hyperelliptic one be-
comes a double conic. The eight hyperelliptic branch points can be thought
of as the intersection of this conic with an infinitely near quartic curve.

Canonical curves of genus 4. Now let X ⊂ P3 be a canonical curve of
genus 4 (in the non-hyperelliptic case). Then X has degree 6.

Theorem 10.15 X is the intersection of an irreducible quadric and cubic
hypersurface in P3.

Proof. The proof is by dimension counting again. There is a natural lin-
ear from Sym2(Ω(X)) into H0(X,O2K). Since dim Ω(X) = 4, the first
space has dimension

(3+2
2

)
= 10, while the second has dimension 3g −

3 = 9 by Riemann-Roch. Thus there is a nontrivial quadratic equation
Q(ω1, . . . , ω4) = 0 satisfied by the holomorphic 1-forms on X; equivalent X
lies on a quadric. The quadric is irreducible because X does not lie on a
hyperplane.

Carrying out a similar calculation for degree 3, we find dim Sym3(Ω(X)) =(
3+3
3

)
= 20 while dimH0(X,O3K) = 5g − 5 = 15. Thus there is a 5-

dimensional space of cubic relations satisfied by the (ωi). In this space, a
4-dimensional subspace is accounted for by the product of Q with an arbi-
trary linear equation. Thus there must be, in addition, an irreducible cubic
surface containing X.

We will later see that the converse also holds.

Dimension counts for linear systems. Here is another perspective on
the preceding proof. In intersection of surfaces of degree d in P3 with X
gives a birational map between projective spaces,

|dH| → |dK|.

56



Now note that in general a linear map φ : A → B between vector spaces
gives a birational map

Φ : PA 99K PB

which is projection from PC where C = Kerφ. Then dimA−dimB ≤ dimC
and thus

dimPC ≥ dimPA− dim PB − 1.

In the case at hand PC corresponds to the linear system Sd(X) of surfaces
of degree d containing X. Thus we get:

dimSd(X) ≥ dim |dH| − dim |dK| − 1.

For d = 2 this gives

dimS2(X) ≥ 9 − (3g − 4) − 1 = 9 − 8 − 1 = 0

which shows there is a unique quadric Q containing X. For d = 3 we get

dimS3(X) ≥ 19 − (5g − 6) − 1 = 19 − 14 − 1 = 4.

Within S3(X) we have Q+ |H| which is 3-dimensional, and thus there must
be a cubic surface C not containing Q in S3(X) as well.

This cubic is not unique, since we can move it in concert with Q+H.

Special divisors. An effective divisor D is special if h0(K −D) > 0, i.e. if
there is a holomorphic 1-form ω 6= 0 vanishing at D.

In terms of the canonical map φ : X → Pg−1, a divisor D is special iff
φ(D) lies in a hyperplane H (determined by ω). (Moreover, the index of
speciality, i(D) = h0(K −D), is one more than the dimension of the space
of hyperplanes passing through D.)

Special divisors of degree g. The case of divisors of degree g is partic-
ularly interesting. Geometrically we see there exist plenty of such divisors
– note that |H ∩ φ(X)| = 2g − 2, so a given hyperplane determines many
such divisors. On the other hand, g typical points on φ(X) do not span a
hyperplane, so these divisors really are special.

Proposition 10.16 If g ≥ 2 then their exist special divisors of degree g.

Theorem 10.17 An effective divisor D of degree g is special if and only if
there is a nonconstant meromorphic function on X with (f) +D ≥ 0.

Proof. By Riemann-Roch, we have h0(D) = i(D) + degD − g + 1 =
i(D) + 1 > 1 iff i(D) > 0 iff D is special.
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Corollary 10.18 If g ≥ 2 then X admits a meromorphic function of degree
≤ g.

Example: genus 3. A curve of genus 3 either admits a map to P1 of
degree two, or it embeds as a curve X ⊂ P2 of degree 4. In the latter case,
projection to P1 from any P ∈ X gives a map of degree g = 3.

The Wronskian and Weierstrass points. Now we focus on divisors of
the form D = gP . We say P is a Weierstrass point if gP is special, i.e. if
there is a meromorphic function f : X → P1 with a pole of order at least
one and at most g at P , and otherwise holomorphic.

Example: there are no Weierstrass points on a Riemann surface of genus
1. The branch points of every hyperelliptic surface of genus g ≥ 2 are
Weierstrass points.

To have H ∩φ(X) = D = gP , the hyperplane H should contain not just
P but the appropriate set of tangent directions at P , namely

(φ(P ), φ′(P ), φ′′(P ), . . . , φ(g−1)(P )).

For these tangent (g − 1) tangent directions to span a (g − 2)-dimensional
plane H through φ(P ), there must be a linear relation among them; that is,
the Wronskian determinant W (P ) must vanish.

In terms of a basis for Ω and a local coordinate z at P , the Wronskian
is given by

W (z) = det

(
djωi

dzj

)
,

where j = 0, . . . , g − 1 and i = 1, . . . , g.
We can see directly the vanishing of the Wronskian is equivalent to gP

being special.

Theorem 10.19 The Wronskian vanishes at P iff there is a holomorphic
1-form ω 6= 0 with a zero at P of order at least g.

Proof. The determinant vanishes iff there is a linear combination of the
basis elements ωi whose derivatives through order (g − 1) vanish at P .

The quantity W = W (z) dzN turns out to be independent of the choice
of coordinate, where N = 1 + 2 + . . . + g = g(g + 1)/2. This value of N
arises because the jth derivative of a 1-form behaves like dzj+1.

Thus W (z) is a section of ONK , so its number of zeros is degNK =
N(2g − 2) = (g − 1)g(g + 1). This shows:
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Theorem 10.20 Any Riemann surface of genus g has (g−1)g(g+1) Weier-
strass points, counted with multiplicity.

Weierstrass points of a hyperelliptic curve. These correspond to the
branch points of the hyperelliptic map π : X → P1, since the projective
normal curve P1 → Pg−1 has no flexes.

Weierstrass points in genus 3. The Weierstrass points on a smooth
quartic correspond to flexes; there are 2 · 3 · 4 = 24 of them in general. For
example, on the Fermat curve x4 + y4 = 1, there are 12 flexes altogether,
each of multiplicity 2. Of these, 8 lie in the affine plane, and arise when one
coordinate vanishes and the other is a 4th root of unity.

At the flexes we have h0(3P ) = 2. How can one go from a flex P to a
degree 3 branched covering f : X → P1? We can try projection fP from P ,
but in general the line L tangent to X at P will meet X in a fourth point
Q. Thus fP will have a double pole at P and a simple pole at Q.

Instead, we project from Q! Then the line L through P and Q has
multiplicity 3 at P , giving a triple order pole there.

Flexes of plane curves. In general, if C is defined by F (X,Y,Z) = 0,
then the flexes of C are the locus where both F and the Hessian H of F
vanish. For the Fermat curve, we have F (X,Y,Z) = X4 + Y 4 + Z4 and
H = 1728(XY Z)2. On a smooth curve of degree d the number of flexes is
3d(d − 2).

The dimension of moduli space Mg : Riemann’s count. What is the
dimension of Mg? We know the dimension is 0, 1 and 3 for genus g = 0, 1
and 2 (using 6 points on P1 for the last computation).

Here is Riemann’s heuristic. Take a large degree d ≫ g, and consider
the bundle Fd → Mg whose fibers are meromorphic functions f : X → P1

of degree d. Now for a fixed X, we can describe f ∈ Fd(X) by first giving
its polar divisor D ≥ 0; then f is a typical element of H0(X,OD). (The
parameters determining f are its principal parts on D.) Altogether with
find

dimFd(X) = d+ h0(D) = 2d− g + 1.

On the other hand, f has b critical points, where

χ(X) = 2 − 2g = 2d− b,

so b = 2d + 2g − 2. Assuming the critical values are distinct, they can be
continuously deformed to determine new branched covers (X ′, f ′). Thus the
dimension of the total space is given by

b = dimFd = dimFd(X) + dimMg = 2d+ 2g − 2 = 2d− g + 1 + dimMg,
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and thus dimMg = 3g − 3. This dimension is in fact correct.
On the other hand, the space of hyperelliptic Riemann surfaces clearly

satisfies
dimHg = 2g + 2 − dim Aut P1 = 2g − 1,

since such a surface is branched over 2g+ 2 points. Thus for g > 2 a typical
Riemann surface is not hyperelliptic.

Tangent space to Mg. As an alternative to Riemann’s count, we note
that the tangent space to the deformations of X is H1(X,Θ), where Θ ∼=
Ω∗ is the sheaf of holomorphic vector fields on X. By Serre duality and
Riemann-Roch, we have

dimH1(X,Θ) = dimH1(X,O−K) = h0(2K) = 4g − 4 − g + 1 = 3g − 3.

Serre duality also shows H1(X,Θ) is naturally dual to the space of holomor-
phic quadratic differentials Q(X).

Plane curves again. The space of homogeneous polynomials on Cn+1 of
degree d has dimension N =

(
n+d

n

)
. Thus the space of plane curves of degree

d, up to automorphisms of P2, has dimension

Nd =

(
2 + d

d

)
− 9.

We find

Nd =





−3 = dim Aut P1 for d = 2,

1 = dimM1 for d = 3,

6 = dimM3 for d = 4,

12 < dimM6 = 15 for d = 5.

Thus most curves of genus 6 can be realized as a plane curve. In a sense
made precise by the Theorem below, there is no way to simply parameterize
the moduli space of curves of high genus:

Theorem 10.21 (Harris-Mumford) For g sufficiently large, Mg is of
general type.

11 Line bundles

Let X be a complex manifold. A line bundle π : L → X is a 1-dimensional
holomorphic vector bundle.
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This mean there exists a collection of trivializations of L over charts Ui

on X, say Li
∼= Ui×C. Viewing L in two different charts, we obtain clutching

data gij : Ui ∩Uj → C∗ such that (x, yj) ∈ Lj is equivalent to (x, yi) ∈ Li iff
gij(x)yj = yi. This data satisfies the cocycle condition gijgjk = gik.

In terms of charts, a holomorphic section s : X → L is encoded by
holomorphic functions si = yi ◦ s(x) on Ui, such that

si(x) = gij(x)sj(x).

Examples: the trivial bundle X × C; the canonical bundle ∧n T∗X. Here
the transition functions are gij = 1 for the trivial bundle and gij = detDφi ◦
φ−1

j for the canonical bundle, with charts φi : Ui → Cn.
In detail, on a Riemann surface X, with local coordinates zi : Ui → C,

a section of the canonical bundle is locally given by ωi = si(zi) dzi; it must
satisfy si dzi = sj dzj , so si = (dzi/dzj)sj .

Tensor powers. From L we can form the line bundle L∗ = L−1, and more
generally Ld, with transition functions gd

ij .
A line bundle is trivial if it admits a nowhere-vanishing holomorphic

section (which then provides an isomorphism between L and X × C). Such
a section exists iff there are si ∈ O∗(Ui) such that si/sj = gij , i.e. iff gij is
a coboundary.

Thus line bundles up to isomorphism over X are classified by the coho-
mology group H1(X,O∗).

Sections and divisors. Now consider a divisor D on a Riemann surface
X. Then we can locally find functions si ∈ M(Ui) with (si) = D. From
this data we construction a line bundle LD with transition functions gij =
si/sj . These transitions functions are chosen so that si is automatically a
meromorphic section of LD; indeed, a holomorphic section if D is effective.

Theorem 11.1 The sheaf of holomorphic sections L of L = LD is isomor-
phic to OD.

Proof. Choose a meromorphic section s : X → L with (s) = D. (On a
compact Riemann surface, s is well-defined up to a constant multiple.) Then
a local section t : U → L is holomorphic if and only if the meromorphic
function f = t/s satisfies

(t) = (fs) = (f) +D ≥ 0

on U , which is exactly the condition that f ∈ OD. Thus the map f 7→ fs
gives an isomorphism between OD(U) and L(U).
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Line bundles on Riemann surfaces. Conversely, it can be shown that
every line bundle L on a Riemann surface admits a non-constant meromor-
phic section, and hence L = LD for some D. More precisely, if L is the sheaf
of sections of L one can show (see e.g. Forster, Ch. 29):

Theorem 11.2 The group H1(X,L) is finite-dimensional.

Corollary 11.3 Given any P ∈ X, there exists a meromorphic section
s : X → L with a pole of degree ≤ 1+h1(L) at P and otherwise holomorphic.

Corollary 11.4 Every line bundle has the form L ∼= LD for some divisor
D.

From the point of view of sheaf theory, we have

0 → O∗ → M∗ → Div → H1(X,O∗) → H1(X,M∗) → 0,

and since every line bundle is represented by a divisor, we find:

Corollary 11.5 The group H1(X,M∗) = 0.

Divisors and line bundles in higher dimensions. On complex man-
ifolds of higher dimension, we can similarly construct line bundles from
divisors. First, a divisor is simply an element of H0(M∗/O∗); this means
it is locally a formal sum of analytic hypersurfaces, D =

∑
(fi). Then the

associated transition functions are gij = fi/fj as before, and we find:

Theorem 11.6 Any divisor D on a complex manifold X determines a line
bundle LD → X and a meromorphic section s : X → L with (s) = D.

Failure of every line bundle to admit a nonzero section. However
in general not every line bundle arises in this way. For example, there exist
complex 2-tori M = C2/Λ with no divisors but with plenty of line bundles
(coming from characters χ : π1(M) → S1).

Degree. The degree of a line bundle, deg(L), is the degree of the divisor of
any meromorphic section.

In terms of cohomology, the degree is associated to the exponential se-
quence: we have

. . . H1(X,Z) → H1(X,O) → H1(X,O∗) → H2(X,Z) ∼= Z.
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This allows one to define the degree or first Chern class, c1(L) ∈ H2(X,Z),
for a line bundle on any complex manifold.

Projective space. For projective space, we have H1(Pn,C) = 0 and so
H1(X,O) = 0. It follows that line bundles on projective space are classified
by their degree: we have

0 → H1(Pn,O∗) → H2(Pn,Z) ∼= Z.

We let O(d) denote the (sheaf of sections) of the unique line bundle of degree
d. It has the property that for any meromorphic section s ∈ H0(Pn,O(d)),
the divisor D = (s) represents d[H] ∈ H2(Pn,Z), where H ∼= Pn−1 is a
hyperplane.

Example: the tautological bundle. Let Pn be the projective space of
Cn+1 with coordinates Z = (Z0, . . . , Zn). The tautological bundle τ → Pn

has, as its fiber over p = [Z], the line τp = C · Z ⊂ Cn+1. Its total space is
Cn+1 with the origin blown up.

To describe τ in terms of transition functions, let Ui = (Zi 6= 0) ⊂ Pn.
Then we can use the coordinate Zi itself to trivialize τ |Ui; in other words,
we can map τ |Ui to Ui × C the map

(Z0, . . . , Zn) 7→ ([Z0 : · · · : Zn], Zi).

(Here the origin must be blown up.) Then clearly the transition functions
are given simply by gij = Zi/Zj , since they satisfy

Zi = gijZj .

Theorem 11.7 There is no nonzero holomorphic section of the tautological
bundle.

Proof. A section gives a map s : Pn → τ → Cn+1 which would have to be
constant because Pn is compact. But then the constant must be zero, since
this is the only point in Cn+1 that lies on every line through the origin.

As a typical meromorphic section, we can define s(p) to be the intersec-
tion of τp with the hyperplane Z0 = 1. In other words,

s([Z0 : Z1 : · · · : Zn]) = (1, Z1/Z0, . . . , Zn/Z0).

Then si = Zi/Z0. Notice that this section is nowhere vanishing (since Zi

has no zero on Ui), but it has a pole along the divisor H0 = (Z0).

63



Thus we have τ ∼= O(−1). Similarly, τ∗ = O(1).

Homogeneous polynomials. Note that the coordinates Zi are sections
of O(1). Indeed, any element in V ∗ naturally determines a function on the
tautological bundle over PV , linear on the fibers, and hence a section of the
dual bundle. Similarly we have:

Theorem 11.8 The space of global sections of O(d) over Pn can be natu-
rally identified with the homogeneous polynomials of degree d on Cn+1.

Corollary 11.9 The hypersurfaces of degree d in projective space are ex-
actly the zeros of holomorphic sections of O(d).

The canonical bundle. To compute the canonical bundle of project space,
we use the coordinates zi = Zi/Z0, i = 1, . . . , n to define a nonzero canonical
form

ω = dz1 · · · dzn
on U0. To examine this form in U1, we use the coordinates w1 = Z0/Z1,
wi = Zi/Z1, i > 1; then z1 = 1/w1 and zi = wi/w1, i > 1, so we have

ω = d(1/w1) d(w2/w1) · · · d(wn/w1) = −(dw1 · · · dwn)/wn+1
1 .

Thus (ω) = (−n−1)H0 and thus the canonical bundle satisfies K ∼= O(−n−
1) on Pn.

The adjunction formula.

Theorem 11.10 Let X ⊂ Y be a smooth hypersurface inside a complex
manifold. Then the canonical bundles satisfy

KX
∼= (KY ⊗ LX)|X.

Proof. We have an exact sequence of vector bundles on X:

0 → TX → TY → TY/TX = NX → 0,

where NX is the normal bundle. Now (NX)∗ is the sub-bundle of T∗Y |X
spanned by 1-forms that annihilate TX. If X is defined in charts Ui by
fi = 0, then gij = fi/fj defines LX . On the other hand, dfi is a nonzero
holomorphic section of (NX)∗. The 1-forms dfi|X, however, do not fit to-
gether on overlaps to form a global section of (NX)∗. Rather, on X we have
fj = 0 so

dfi = d(gijfj) = gijdfj.
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This shows (dfi) gives a global, nonzero section of (NX)∗ ⊗ LX , and hence
this bundle is trivial on X.

On the other hand KY = KX ⊗ (NX)∗, by taking duals and determi-
nants. Thus KX = KY ⊗NX = KY ⊗ LX .

Smooth plane curves. Using the adjunction formula plus Riemann-Roch
we can obtain some interesting properties of smooth plane curves X ⊂ P2

of degree d.

Theorem 11.11 Let f : X → Pn be a holomorphic embedding. Then f is
given by a subspace of sections of the line bundle L→ X, where L = f∗O(1).

Proof. The divisors of section of O(1) are hyperplanes.

Theorem 11.12 Every smooth plane curve of degree d has genus g = (d−
1)(d − 2)/2.

Proof. We have KX
∼= KP2 ⊗LX = O(d− 3). Any curve Z of degree d− 3

is the zero set of a section of O(d− 3) and hence restricts to the zero set of
a holomorphic 1-form on X. Thus we find 2g − 2 = d(d − 3).

Corollary 11.13 Every smooth quartic plane curve X is a canonical curve.

Proof. We have KX
∼= O(d − 3) = O(1), which is the linear system that

gives the original embedding of X into P2.

Next note that the genus g(X) = (d − 1)(d − 2)/2 coincides with the
dimension of the space of homogeneous polynomials on C3 of degree d− 3.
This shows:

Theorem 11.14 Every effective canonical divisor on X has the form K =
X ∩ Y , where Y is a curve of degree d− 3.

Theorem 11.15 Any n + 1 distinct points in P2 impose independent con-
dition on curves of degree n.

Proof. Choose Y to be the union of n random lines through the first k ≤ n
points. Then Y is an example of a curve through the first k points that
does not pass through the k+1st. This shows that adding the k+1st point
imposes an additional condition on Y .
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Theorem 11.16 A smooth curve X of degree d > 1 admits a nonconstant
map to P1 of degree d− 1, but none of degree d− 2.

Proof. For degree d − 1, simply projection from a point on X. For the
second assertion, suppose f : X → P1 has degree e ≤ d−2. Let E ⊂ X be a
generic fiber of f . Then the d− 2 points E impose independent conditions
on the space of curves Y degree d− 3. Consequently

h0(K − E) = g − degE.

By Riemann-Roch we then have:

h0(E) = 1 − g + deg(E) − h0(K − E) = 1,

so |E| does not provide a map to P1.

Hypersurfaces in products of projective spaces. Here are two further
instances of the adjunction theorem.

Theorem 11.17 Every smooth intersection X of a quadric Q and a cubic
surface C is a canonical curve in P3.

Proof. We have KQ
∼= KP3 ⊗ LQ and thus

KX
∼= KQ ⊗ LC

∼= KP3 ⊗ LQ ⊗ LC
∼= O(−4 + 2 + 3) = O(1).

Theorem 11.18 Every smooth (d, e) curve on Q = P1 × P1 has genus g =
(d− 1)(e − 1).

Proof. It is easy to see that KX×Y = KX ⊗KY . Thus KQ = O(−2,−2).
Therefore 2g− 2 = C ·KC and KC = O(d− 2, e− 2), so 2g− 2 = d(e− 2) +
e(d − 2), which implies the result.

K3 surfaces. Manifolds with trivial canonical bundle are often interesting
— in higher dimensions they are called Calabi-Yau manifolds.

For Riemann surfaces, KX is trivial iff X is a complex torus. For 2-
dimensional manifolds, complex tori also have trivial canonical, but they
are not the only examples. Another class is provided by the K3 surfaces,
which by definition are simply-connected complex surfaces with KX trivial.
Example:
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Theorem 11.19 Every surface of degree (2, 2, 2) in X = P1 × P1 × P1 has
trivial canonical bundle.

Proof. Here KX = O(−2,−2,−2). One can use the Lefschetz hyperplane
theorem to show a hypersurface in a simply-connected complex 3-manifold
is always itself simply-connected.

12 Curves and their Jacobians

We now turn to the important problem of classifying line bundles on a Rie-
mann surface X; equivalently, of classifying divisors modulo linear equiva-
lence.

The Jacobian. Recall that a holomorphic 1-form on X is the same thing
as a holomorphic map f : X → C well-defined up to translation in C. If
the periods of f happen to generate a discrete subgroup Λ of C, then we
can regard f as a map to C/Λ. However the periods are almost always
indiscrete. Nevertheless, we can put all the 1-forms together and obtain a
map to Cg/Λ.

Theorem 12.1 The natural map H1(X,Z) → Ω(X)∗ has as its image a
lattice Λ ∼= Z2g.

Proof. If not, the image lies in a real hyperplane defined, for some nonzero
ω ∈ Ω(X), by the equation Reα(ω) = 0. But then all the periods of Reω
vanish, which implies the harmonic form Reω = 0.

The Jacobian variety is the quotient space Jac(X) = Ω(X)∗/H1(X,Z),
the cycles embedded via periods.

Theorem 12.2 Given any basepoint P ∈ X, there is a natural map φP :
X → Jac(X) given by φP (Q) =

∫ Q
P ω.

We will later show this map is an embedding, and thus Jac(X), roughly
speaking, makes X into a group.

Example: the pentagon. Let X be the hyperelliptic curve defined by
y2 = x5−1. Geometrically, X can be obtained by gluing together two regular
pentagons. Cleary X admits an automorphism T : X → X of order 5. Using
the pentagon picture, one can easily show there is a cycle C ∈ H1(X,Z) such
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that its five images T i(C) spanH1(X,Z) ∼= Z4. This meansH1(X,Z) = A·C
is a free, rank one A-module, where A = Z[T ]/(1 + T + T 2 + T 3 + T 4).

Now T ∗ acts on Ω(X). Since X/〈T 〉 has genus zero, T has no invariant
forms. Thus we can choose a basis (ω1, ω2) for Ω(X) such that

T ∗ωi = ζiωi

where ζi is a primitive 5th root of unity.
Let us scale these ωi so

∫
C ωi = 1. Let

π : H1(X,Z) → Λ ⊂ C2

be the period map, defined by

π(B) =

(∫

B
ω1,

∫

B
ω2

)
.

Since ∫

T (B)
ω =

∫

B
T ∗ω,

we have

π(TB) =

(
ζ1 0

0 ζ2

)
π(B).

Since H1(X,Z) = Z[T ] · C, we find that Λ ⊂ C2 is simply the image of the
ring Z[T ] under the ring homomorphism that sends T to (ζ1, ζ2).

Since Λ is a lattice, we cannot have ζ2 = ζ1 = ζ4
1 , nor can we have

ζ2 = ζ1. Thus ζ2 = ζ2
1 or ζ3

1 . In the latter case we can interchange the
eigenforms to obtain the former case. This finally shows:

Theorem 12.3 The Jacobian of the hyperelliptic curve y2 = x5 − 1 is iso-
morphic to C2/Λ, where Λ is the ring Z[T ]/(1+T +T 2 +T 3 +T 4) embedded
in C2 by

T 7→ (ζ, ζ2),

and ζ is a primitive 5th root of unity.

This is an example of a Jacobian variety with complex multiplication.

The Picard group. Let Pic(X) denote the group of all line bundles on
X. Since every line bundle admits a meromorphic section, there is a natural
isomorphic between Pic(X) and Div(X)/(M∗(X)), where M∗(X) is the
group of nonzero meromorphic functions, mapping to principal divisors in
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Pic(X). Under this isomorphism, the degree and a divisor and of a line
bundle agree.

The Abel-Jacobi map φ : Div0(X) → Jac(X) is defined by

φ
(∑

Qi − Pi

)
(ω) =

∑∫ Qi

Pi

ω.

Because of the choice of path from Pi to Qi, the resulting linear functional
is well-defined only modulo cycles on X.

For example: given any basepoint P ∈ X, we obtain a natural map
f : X → Jac(X) by f(Q) = φ(Q− P ) =

∫ Q
P ω.

One of the most basic results regarding the Jacobian is:

Theorem 12.4 The map φ establishes an isomorphism between Jac(X) and
Pic0(X) = Div0(X)/(principal divisors).

The proof has two parts: Abel’s theorem, which asserts that φ is injective,
and the Jacobi inversion theorem, which asserts that φ is surjective.

Abel’s theorem. We turn to the proof of Abel’s theorem, which states
that a divisor D of degree zero is principal iff φ(D) = 0. In more concrete
terms this means:

Theorem 12.5 (Abel’s theorem) A divisor D is principal iff D =
∑
Qi−

Pi and
∑∫ Qi

Pi

ω = 0

for all ω ∈ Ω(X), for some choice of paths γi joining Pi to Qi.

Proof in one direction. Suppose D = (f). We can assume after multiply-
ing f by a scalar, that none of its critical values are real. Let γ = f−1([0,∞]).
Then we have ∑∫ Qi

Pi

ω =

∫

γ
ω =

∫ ∞

0
f∗(ω) = 0

since f∗(ω) = 0, being a holomorphic 1-form on Ĉ. (To see this, suppose
locally f(z) = zd. Then f∗(z

i dz) = 0 unless zi dz is invariant under rotation
by the dth roots of unity. This first happens when i = d− 1, in which case
zd−1 dz = (1/d)d(zd), so the pushforward is proportional to dz.)
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The curve in its Jacobian. Before proceeding to the proof of Abel’s
theorem, we derive some consequences.

Given P ∈ X, define
φP : X → Jac(X)

by φP (Q) = (Q − P ). Note that with respect to a basis ωi for Ω(X), the
derivative of φP (Q) in local coordinates is given by:

DφP (Q) = (ω1(Q), . . . , ωg(Q)).

This shows:

Theorem 12.6 The canonical map X → PΩ(X)∗ is the Gauss map of φP .

Theorem 12.7 For genus g ≥ 1, the map φP : X → Jac(X) is a smooth
embedding.

Proof. If Q− P = (f), then f : X → P1 has degree 1 so g = 0. Since |K|
is basepoint-free, there is a nonzero-holomorphic 1-form at every point, and
hence DφP 6= 0.

Theorem 12.8 (Jacobi) The map Div0(X) → Jac(X) is surjective. In
fact, given (P1, . . . , Pg) ∈ Xg, the map

φ : Xg → Jac(X)

given by

φ(Q1, . . . , Qg) = φ
(∑

Qi − Pi

)
=

(∫ Qi

Pi

ωj

)

is surjective.

Proof. It suffices to show that detDφ 6= 0 at some point, so the im-
age is open. To this end, just note that dφ/dQi = (ωj(Qi)), and thus
detDφ(Q1, . . . , Qg) = 0 if and only if there is an ω vanishing simultane-
ously at all the Qi, i.e. iff (Qi) lies on a hyperplane under the canonical
embedding. For generic Qi’s this will not be the case, and hence detDφ 6= 0
almost everywhere on Xg.
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Corollary 12.9 We have a natural isomorphism:

Pic0(X) = Div0(X)/(M∗(X)) ∼= Jac(X).

Bergman metric. We remark that the space Ω(X), and hence its dual,
carries a natural norm given by:

‖ω‖2
2 =

∫

X
|ω(z)|2 |dz|2.

This induces a canonical metric on Jac(X), and hence on X itself.
This metric ulimately comes from the intersection pairing or symplectic

form on H1(X,Z), satisfying ai · bj = δij .

Abel’s theorem, proof I: The ∂-equation. (Cf. Forster.) For the
converse, we proceed in two steps. First we will construct a smooth solution
to (f) = D; then we will correct it to become holomorphic.

Smooth solutions. Let us say a smooth map f : X → Ĉ satisfies (f) = D
if near Pi (resp. Qi) we have f(z) = zh(z) (resp. z−1h(z)) where h is a
smooth function with values in C∗, and if f has no other zeros or poles.

Note that for such an f , the distributional logarithmic derivative satisfies

∂ log f =
∂f

f
+
∑

(pi − qi),

where qi and pi are δ functions (in fact currents), locally given by ∂ log z,
and ∂f/f is smooth.

Inspired by the proof in one direction already given, we first construct
a smooth solution of (f) = D which maps a disk neighborhood Ui of γi

diffeomorphically to a neighborhood V of the interval [0,∞].

Lemma 12.10 Given any arc γ joining P to Q on X, there exists a smooth
solution to (f) = Q− P satisfying

1

2πi

∫

X
ω ∧ ∂f

f
=

∫ Q

P
ω

for all ω ∈ Ω(X), where the integral is taken along γ.

Proof. First suppose P and Q are close enough that they belong to a single
chart U , and γ is almost a straight line. Then we can choose the isomorphism
f : U → V ⊂ Ĉ so that f(P ) = 0, f(Q) = ∞ and f(γ) = [0,∞] (altering γ
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by a small homotopy rel endpoints). This f is already holomorphic on U ,
and it sends ∂U to a contractible loop in C∗. Thus we can extend f to a
smooth function sending X − U into C∗, which then satisfies (f) = D.

Now note that z admits a single-valued logarithm on the region Ĉ−[0,∞],
and thus log f(z) has a single-valued branch on Y = X − γ. Thus ∂f/f =
∂ log f is an exact form on Y . However as one approaches γ from different
sides, the two branches of log f differ by 2πi. Applying Stokes’ theorem, we
find: ∫

X
ω ∧ ∂ log f = 2πi

∫

γ
ω.

To hand the case of well-separated P and Q, simply break γ up into
many small segments and take the product of the resulting f ’s.

Taking the product of the solutions for several pairs of points, and using
additivity of the logarithmic derivative, we obtain:

Corollary 12.11 Given arc γi joining Pi to Qi on X, there exists a smooth
solution to (f) =

∑
Qi − Pi satisfying

1

2πi

∫

X
ω ∧ ∂f

f
=
∑∫

γi

ω

for all ω ∈ Ω(X).

From smooth to holomorphic. To complete the solution, it suffices to
find a smooth function g such that feg is meromorphic. Equivalently, it
suffices to solve the equation ∂g = −∂f/f . (Note that ∂f/f is smooth even
at the zeros and poles of f , since near there f = znh where h 6= 0.) Since
H0,1(X) ∼= Ω(X)∗, such a g exists iff

1

2πi

∫
ω ∧ ∂f

f
=
∑∫ Qi

Pi

ω = 0

for all ω ∈ Ω(X). This is exactly the hypothesis of Abel’s theorem.

Abel’s theorem, proof II: Symplectic forms. Our second proof makes
the connection with the Jacobian and the symplectic form onH1(X,C) more
transparent. (Cf. Lang, Algebraic Functions).

To try to construct f with (f) = D, we first construct a candidate for
λ = df/f.
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Theorem 12.12 For any divisor with degD = 0, there exists a meromor-
phic differential λ with only simple poles such that

∑
ResP (λ) · P = D.

Proof. By Riemann-Roch, for any P,Q ∈ X we have dimH0(K+P +Q) >
dimH0(K). Thus there exists a meromorphic 1-form λ with a simple pole
at one of P or Q. By the residue theorem, λ has poles at both points with
opposite residues. Scaling λ proves the Theorem for Q − P , and a general
divisor of degree zero is a sum of divisors of this form.

Alternate proof. By Mittag-Leffler for 1-forms, λ exists because the sum
of its residues is zero.

Now if we can arrange that the periods of λ are all in the group 2πiZ,
then f(z) = exp

∫
λ is a meromorphic function with (f) = D.

(Compare Mittag-Leffler’s proof of Weierstrass’s theorem on functions
with prescribed zeros.)

The case of a torus. We now study the case where X = C/Z⊕τZ, τ ∈ H.
Then Ω(X) = C · ω where ω = dz.

Let F ⊂ C be a fundamental polygon with sides a, b joining 0 to 1
and to τ , and with translates a′, b′ forming the rest of the boundary, so
∂F = a+ b′− a′ − b. The cycles a and b generate H1(X,Z), and the periods
of ω are exactly

(ω(a), ω(b)) = (1, τ).

Thus Jac(X) is isomorphic to X.

Reciprocity on a torus. Assume λ has poles only in the interior of F ,
and let λ(a), λ(b) denote the periods of λ around the loops a and b on X.

Let
∫
ω = z be a primitive for ω on F . Then by the residue theorem we

have
1

2πi

∫

∂F
zλ =

∑
ResP (λ)z(P ) =

∑∫ Qi

Pi

dz = φ(D).

On the other hand, we find
∫

a′−a
zλ = λ(a)ω(b),

since z differs by ω(b) along corresponding points of a and a′. Similarly we
have

∫
b′−b zλ = λ(b)ω(a), and thus

2πiφ(D) =

∫

F
zλ =

∫

a+b′−a′−b
zλ = λ(b)ω(a) − λ(a)ω(b)

= det

(
ω(a) ω(b)

λ(a) λ(b)

)
·
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Conclusion of the proof on a torus. We now finish the proof with
some linear algebra. First, suppose in the above formula the determinant
vanishes. Then the periods of λ are proportional to those of ω. Thus for
some t ∈ C, the form λ+ tω has vanishing periods along a and b; replacing
λ with this form, we obtain a meromorphic function with (f) = D.

Second, suppose we only know φ(D) = 0 in Jac(X). That is, φ(D) =
n1ω(a) + n2ω(b) for some integers (n1, n2). One way this can happen is if
(λ(a), λ(b)) = 2πi(−n2, n1). But after correcting λ by a multiple tω as above,
we can actually assume (λ(a), λ(b)) = 2πi(−n2, n1). Then the periods of λ
lie in 2πiZ, and once again f = exp

∫
λ satisfies (f) = D.

General surfaces: the symplectic form on H1(X, C). To treat the
general case, we recall that a surface of genus g admits a basis for H1(X,Z)
of the form (ai, bi), i = 1, . . . , g, such that ai · bi = 1 and all other products
vanish.

This symplectic form on H1(X,Z) gives rise to one on the space of peri-
ods, H1(X,C), defined by:

[α, β] =
∑

α(ai)β(bi) − α(bi)β(ai).

Theorem 12.13 Under the period isomorphism between H1
DR(X) and H1(X,C),

we have ∫

X
α ∧ β = [α, β].

Proof. As before we cut X along the (ai, bi) curves to obtain a surface F
with boundary, on which we can write α = dA. Then we have

∫
F (dA)∧β =∫

∂F Aβ. As before, ∂F =
∑
ai + b′i − a′i − bi, and thus

∫
α ∧ β =

∑
α(ai)β(bi) − α(bi)β(ai).

General surfaces: Abel’s theorem. With respect to this symplectic
form, Ω(X) ⊂ H1(X,C) is a Lagrangian subspace, and the bracket gives an
isomorphism

Ω(X)∗ ∼= H1(X,C)/Ω(X).

(To see that we have an isomorphism, just note that Ω(X)⊥ ⊃ Ω(X) and
dim Ω(X)⊥ = 2g − dim Ω(X) = dim Ω(X).)

This isomorphism sends H1(X,Z) to the image of H1(X,Z) under the
period mapping.
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Then, in brief, we have

〈2πiφ(D), ω〉 = 2πi
∑∫ Qi

Pi

ω = [λ, ω]

for every ω ∈ Ω(X). Here the integral on the left is defined using paths
between Pi and Qi that lie in F , and the periods of λ on the right are along
the chosen curves ai, bi forming the boundary of F .

The hypothesis of Abel’s theorem is that φ(D) = 0 in Ω(X)∗/H1(X,Z).
This mean there is a cycle C =

∑
niai +mibi such that

∫

C
ω = [(2πi)−1λ, ω]

for all ω ∈ Ω(C). In other words, if we let N be the integral vector (−mi, ni)
in H1(X,C), we have

[N,ω] = [(2πi)−1λ, ω]

for all ω.
But this equality of brackets says exactly that 2πiN − λ is in Ω(X)⊥

with respect to the intersection form. Since Ω(X) is Lagrangian, we find
there is an ω0 ∈ Ω(X) such that 2πiN represents the periods of λ+ ω0.

In other words, after modifying λ by ω0, the function f = exp
∫
λ be-

comes well-defined, and therefore we have solved for a meromorphic function
such that (f) = D.

Letting X(k) = Xk/Sk ⊂ Divk(X), we have:

Theorem 12.14 The fibers of the natural map X(k) → Pick(X) are projec-
tive spaces.

Mordell’s Conjecture.

Theorem 12.15 Suppose X has genus g ≥ 2. Then, given any finitely
generated subgroup A ⊂ Jac(X), the set X ∩A is finite.

This theorem is in fact equivalent to Mordell’s conjecture (Falting’s the-
orem), which states that X(K) is finite for any number field K.

The exponential sequence and the Jacobian. An alternative descrip-
tion of the Jacobian is via the exponential sequence which leads to the exact
sequence

H1(X,Z) → H1(X,O) → H1(X,O∗) → H2(X,Z) → 0.
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Under the isomorphisms H1(X,Z) ∼= H1(X,Z) by cup product, H1(X,O) ∼=
Ω(X)∗ by Serre duality, and H2(X,Z) ∼= Z by degree, we obtain the isomor-
phism

Pic0(X) = Ker(H1(X,O) → H2(X,Z)) ∼= Ω(X)∗/H1(X,Z) = Jac(X).

The Siegel upper half-space. The Siegel upper half-space is the space Hg

of symmetric complex g × g matrices P such that ImP is positive-definite.
The space Hg is the natural space for describing the g-dimensional

complex torus Jac(X), just as H is the natural space for describing the
1-dimensional torus C/Λ.

To describe the Jacobian via Hg, we need to choose a symplectic basis
(ai, bi) for H1(X,Z).

Theorem 12.16 There exists a unique basis ωi of Ω(X) such that ωi(aj) =
δij .

Proof. To see this we just need to show the map from Ω(X) into the space
of a-periods is injective (since both have dimension g. But suppose the
a-periods of ω vanish. Then the same is true for the (0, 1)-form ω, which
implies

∫
|ω(z)|2 dz dz =

∫
ω ∧ ω =

∑
ω(ai)ω(bi) − ω(bi)ω(ai) = 0,

and thus ω = 0.

Definition. The period matrix of X with respect to the symplectic basis
(ai, bi) is given by

Pij =

∫

bj

ωi = ωi(bj).

Theorem 12.17 P is symmetric and ImP is positive-definite.

Proof. To see symmetry we use the fact that for any i, j:

0 =

∫
ωi∧ωj =

∑
ωi(ak)ωj(bk)−ωi(bk)ωj(ak) = δijPjk−Pikδjk = Pji−Pij .

Similarly, we have

− i

2

∫
ω ∧ ω = 2

∫
|ω(z)|2|dz|2 ≥ 0,
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since dz dz = 2i dx dy = 2i |dz|2. Thus the symmetric matrix (i/2)Q is
positive-definite, where

Qij =

∫
ωi ∧ ωj =

∑
ωi(ak)ωj(bk) − ωi(bk)ωj(ak) = δijP jk − Pikδjk

= P ji − Pij = −2i ImPij .

Since (i/2)Q = ImP , we find ImP is positive-definite.

The symplectic group Sp2g(Z) now takes over for SL2(Z), and two com-
plex tori are isomorphic as principally polarized abelian varieties if and only
if there are in the same orbit under Sp2g(Z).

With respect to the basis (b1, . . . , bg, a1, . . . , ag) the symplectic group
acts on the full matrix of a and b periods by

(
A B

C D

)(
P

I

)
=

(
AP +B

CP +D

)
.

We must then change the choice of basis for Ω(X) to make the a-periods,
CP +D into the identity matrix; and we find

g(P ) = (AP +B)(CP +D)−1,

which shows Sp2g(Z) acts on Hg by non-commutative fractional linear trans-
formations.

Theta functions. The theory of θ-functions allows one to canonically
attach a divisor

Θ ⊂ A = Cg/(Zg ⊕ P (Zg))

to the principally polarized Abelian variety A determined by P ∈ Hg. Using
the fact that ImP ≫ 0, we define the entire θ-function θ : Cg → C by

θ(z) =
∑

n∈Zg

exp(2πi〈n, z〉) exp(πi〈n, Pn〉).

The zero-set of θ is Λ-invariant, and descends to a divisor Θ on A.
For example, when g = 1 and P = [τ ], τ ∈ H, we obtain:

θ(z) =
∑

Z

exp(2πinz) exp(πin2τ).

Clearly θ(z + 1) = θ(z), and we have

θ(z + τ) = θ(z) exp(−2πiz − πiτ).
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Theorem 12.18 (Riemann) We have Θ = Wg−1+κ for some κ ∈ Jac(X),
where Wg−1 ⊂ Jac(X) is the image of Xg−1 under the Abel-Jacobi map.

The Torelli theorem.

Theorem 12.19 Suppose (Jac(X), ω) and (Jac(Y ), ω′) are isomorphic as
(principally) polarized complex tori (Abelian varieties). Then X is isomor-
phic to Y .

Sketch of the proof. Using the polarization, we can reconstruct the
divisor Wg−1 ⊂ Jac(X) up to translation, using θ-functions.

Now the tangent space at any point to Jac(X) is canonically identified
with Ω(X)∗, and hence tangent hyperplanes in Jac(X) give hyperplanes in
PΩ(X), the ambient space for the canonical curve. (For convenience we will
assume X is not hyperelliptic.) In particular, the Gauss map on the smooth
points of Wg−1 defines a natural map

γ : Wg−1 → PΩ(X) ∼= Pg−1.

The composition of γ with the natural map Cg−1 →Wg−1 simply sends g−1
points Pi on the canonical curve to the hyperplane H(Pi) they (generically)
span.

Clearly this map is surjective. Since Wg−1 and Pg−1 have the same
dimension, γ is a local diffeomorphism at most points. The branch locus
corresponds to the hyperplanes that are tangent to the canonical curve X ⊂
Pg−1. Thus from (Jac(X), ω) we can recover the collection of hyperplanes
X∗ tangent to X ⊂ Pg−1.

Finally one can show geometrically that X∗ = Y ∗ implies X = Y . The
idea is that, to each point P ∈ X we have a (g − 3) dimensional family of
hyperplanes HP ⊂ X∗ containing the tangent line TP (X). These hyper-
planes must all be tangent to Y as well; but the only reasonable way this
can happen is if TP (X) = TQ(Y ) for some Q on Y .

Now for genus g > 3 one can show a tangent line meets X in exactly one
point; thus Q is unique and we can define an isomorphism f : X → Y by
f(P ) = Q. (For example, in genus 4 the canonical curve is a sextic in P3.
If a tangent line L ⊂ P3 were to meet 2P and 2Q, then the planes through
L would give a complementary linear series of degree 2, so X would be
hyperelliptic.) For g = 3 there are in general a finite number of ‘bitangents’
to the quartic curve X ⊂ P2, and away from these points we can define f ,
then extend. (For details see Griffiths and Harris).

Question. What is the infinitesimal form of the Torelli theorem?
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13 Hyperbolic geometry

(The B-side.)

Elements of hyperbolic geometry in the plane. The hyperbolic metric
is given by ρ = |dz|/y in H and ρ = 2|dz|/(1 − |z|2) in ∆.

Thus d(i, iy) = log y in H, and d(0, x) = log(x + 1)/(x − 1) in ∆. Note
that (x+ 1)/(x− 1) maps (−1, 1) to (0,∞).

An important theorem for later use gives the hyperbolic distance from
the origin to a hyperbolic geodesic γ which is an arc of a circle of radius r:

sinh d(0, γ) =
1

r
·

To see this, let x be the Euclidean distance from 0 to γ. Then we have, by
algebra,

sinh d(0, x) =
2x

1 − x2
· (13.1)

On the other hand, we have by a right triangle with sides 1, r and x + r.
Thus 1 + r2 = (x+ r)2 which implies 2x/(1 − x2) = 1/r.

A more intrinsic statement of this theorem is that for any point p ∈ H

and geodesic γ ∈ H, we have

sinh d(p, γ) = cot(θ/2),

where θ is the visual angle subtended by γ as seen from p.

Area of triangles and polygons. The area of an ideal triangle is π. The
area of a triangle with interior angles (0, 0, α) is π−α. From these facts one
can see the area of a general triangle is given by the angle defect:

T (α, β, γ) = π − α− β − γ.

To see this, one extends the edges of T to rays reaching the vertices of an
ideal triangle I; then we have

T (α, β, γ) = I − T (π − α) − T (π − β) − T (π − γ)

which gives π − α− β − γ for the area.
Another formulation is that the area of a triangle is the sum of its exterior

angles minus 2π. In this form the formula generalizes to polygons.

Right quadrilaterals with an ideal vertex.
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Theorem 13.1 Let Q be a quadrilateral with edges of lengths (a, b,∞,∞)
and interior angles (π/2, π/2, π/2, 0). Then we have

sinh(a) sinh(b) = 1.

Proof. First we make a remark in Euclidean geometry: let Q′ be an ideal
hyperbolic quadrilateral, centered at the origin, with sides coming from cir-
cles of Euclidean radii (r,R, r,R). Then rR = 1.

Indeed, from this picture we can construct a right triangle with right-
angle vertex 0, with hypotenuse of length r+R, and with altitude from the
right-angle vertex of 1. By basic Euclidean geometry of similar triangles, we
find rR = 12 = 1.

Now cut Q′ into 4 triangles of the type Q. Then we have sinh(a) = 1/r
and sinh(b) = 1/R, by (13.1). Therefore sinh(a) sinh(b) = 1.

Right hexagons. For a right-angled hexagon H, the excess angle is
6(π/2) − 2π = π, and thus area(H) = π.

Theorem 13.2 For any a, b, c > 0 there exists a unique right hexagon with
alternating sides of lengths (a, b, c).

Proof. Equivalently, we must show there exist disjoint geodesics α, β, γ in
H with a = d(α, β), b = d(α, γ) and c = d(β, γ). This can be proved by
continuity.

Normalize so that α is the imaginary axis, and choose any geodesic β at
distance a from α. Then draw the ‘parallel’ line L of constant distance b
from α, on the same side as β. This line is just a Euclidean ray in the upper
half-plane. For each point p ∈ Lp there is a unique geodesic γp tangent to
Lp at p, and consequently at distance b from α.

Now consider f(p) = d(γp, β). Then as p moves away from the juncture
of α and L, f(p) decreases from ∞ to 0, with strict monotonicity since γp∪L
separates β from γq. Thus there is a unique p such that f(p) = c.

Doubling H along alternating edges, we obtain a pair of pants P . Thus
area(P ) = 2π.

Corollary 13.3 Given any triple of lengths a, b, c > 0, there exists a pair of
pants, unique up to isometry, with boundary components of lengths (a, b, c).

Pairs of pants decomposition.
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Figure 2. Right hexagons.

Theorem 13.4 Any essential simple loop on a compact hyperbolic surface
X is freely homotopic to a unique simple geodesic. Any two disjoint simple
loops are homotopic to disjoint simple geodesics.

Corollary 13.5 Let X be a compact surface of genus g. Then X can be
cut along 3g − 3 simple geodesics into 2g − 2 pairs of pants. In particular,
we have

area(X) = 2π|χ(X)|.

Parallels of a geodesic. There is a nice parameterization of the geodesic
|z| = 1 in H: namely

δ(t) = tanh t+ i sech t.

We have ‖δ′(t)‖ = 1 in the hyperbolic metric.
Now given a closed simple geodesic γ on X, let C(γ, r) be a parallel

curve at distance r from γ. Then we have:

L(C(γ), r) = L(γ) cosh(r).

Indeed, let γ can be covered by the imaginary axis iR+ in H. Then C(γ, r)
is a ray from 0 to ∞ which passes through δ(r). Thus the Euclidean slope
of C(γ, r) is the same as that of the vector (x, y) = (tanh t, sech t). Thus
projection along Euclidean horizontal lines from C(γ, r) to γ contracts by
a factor of y/

√
x2 + y2 = sech(t). Therefore C(γ, r) is longer than γ by a

factor of cosh(t).

The collar lemma.
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Theorem 13.6 Let α and β be disjoint simple geodesics on a compact Rie-
mann surface, of lengths a and b respectively. Define A and B by sinh(a/2) sinh(A) =
1 and sinh(b/2) sinh(B) = 1. Then the collars of widths A and B about α
and β are disjoint.

Proof. We can assume that α and β are part of a pants decomposition ofX,
which reduces the result to the case where α and β are two cuffs of a pants
P . By the Schwarz lemma, we can assume the lengths of the boundaries of
P are (a, b, 0).

Now cut P along a simple loop γ that begins and ends at its ideal
boundary component, i.e. the cuff of length zero. Then the components of
P = γ are doubles of quadrilaterals with one ideal vertex and the remaining
angles π/2. The quadrilateral meeting α has finite sides of lengths a/2
and A satisfying sinh(a/2) sinh(A) = 1, and similarly for the quadrilateral
containing β. Thus these collars are disjoint.

Boundary of a collar.

Theorem 13.7 The length of each component of the boundary of the stan-
dard collar around α with L(α) = a satisfies

L(C(α, r))2 = a2 cosh2(r) =
a2

1 + sinh−2(a/2)
→ 4

as a→ 0. Thus the length of each component of the collar about α tends to
2 as L(α) → 0.

Proof. Apply the preceding formulas.
Check. The limiting case is the triply-punctured sphere, the double of

an ideal triangle T ⊂ H with vertices (−1, 1,∞). The collars limit to the
horocycles given by the circles of radius 1 resting on ±1 together with the
horizontal line segment H at height 2 running from −1 + 2i to +1 + 2i. We
have L(H) = 1, so upon doubling we obtain a collar boundary of length 2.

Corollary 13.8 The collars about short geodesics on a compact hyperbolic
surface cover the thin part of the surface.

Proof. Suppose x ∈ X lies in the thin part — that is, suppose there is a
short essential loop δ through x. Then δ is homotopic to a closed geodesic γ,
which is necessarily simple. But since δ is short, we see by the result above
that δ must lie in the collar neighborhood of γ.
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Thick-thin decomposition. There is a universal constant r > 0 such that
any compact Riemann surface of genus g can be covered by a collection of
O(g) balls B(xi, r) and O(g) standard collars about short geodesics.

Bers’ constant.

Theorem 13.9 There exists a constant Lg such that X admits a pants
decomposition with no cuff longer than Lg.

Theorem 13.10 We can take Lg = O(g), but there exist examples requiring
at least one curve of length > C

√
g > 0.

A finite-to-one map to Mg.

Theorem 13.11 For each trivalent graph of G with b1(G) = g, there is a
finite-to-one map

φG : ((0, Lg ] × S1)3g−3 → Mg,

sending (ri, θi) to the surface obtained by gluing together pants with cuffs of
lengths ri and twisting by θi, using pants and cuffs corresponding to vertices
and edges of G.

The union of the images of the maps φG is all of Mg.

Corollary 13.12 (Mumford) The function L : Mg → R sending X to
the length L(X) of its shortest geodesic is proper.

The Laplacian. Let M be a Riemannian manifold. The Laplace operator
∆ : C∞

0 (M) → C∞
0 (M) is defined so that

∫

M
|∇f |2 =

∫

M
f∆f,

both integrals taken with respect to the volume element on M .
For example, on R we find ∆f = −d2f/dx2 by integrating by parts.

Similarly on Rn we obtain

∆f = −
∑ d2f

dx2
i

·

Note this is the negative of the ‘traditional’ Laplacian.
In terms of the Hodge star we can write

∫
〈∇f,∇f〉 =

∫
df ∧ ∗df = −

∫
f ∧ d ∗ df =

∫
f(− ∗ d ∗ df) dV,
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and therefore we have
∆f = − ∗ d ∗ df.

For example, on a Riemann surface with a conformal metric ρ(z)|dz|, we
have ∗dx = dy, ∗dy = −dx, and

∆f = −ρ−2(z)

(
d2f

dx2
+
d2f

dy2

)
.

As a particular case, for ρ = |dz|/y on H we see ∆yα = α(1−α)yα, showing
that yα is an eigenfunction of the hyperbolic Laplacian.

The heat kernel. Let X be a compact hyperbolic surface. Enumerat-
ing the eigenvalues and eigenfunctions of the Laplacian, we obtain smooth
functions satisfying

∆φn = λnφn,

λn ≥ 0. The heat kernel Kt(x, y) is defined by

Kt(x, y) =
∑

e−λntφn(x)φn(y),

The heat kernel is the fundamental solution to the heat equation. That
is, for any smooth function f on X, the solution to the heat equation

dft

dt
= −∆ft

with initial data f0 = f is given by ft = Kt∗f . Indeed, if f(x) =
∑
anφn(x)

then
ft(x) = Kt ∗ f =

∑
ane

−λntφn(x)

clearly solves the heat equation and has f0(x) = f(x).
Note also that formally, convolution with Kt is the same as the operator

exp(−∆), which acts by exp(−λn) on the λn-eigenspace.

Brownian motion. The heat kernel can also be interpreted using diffu-
sion; namely, Kt(x, ·) defines a probability measure on X that gives the
distribution of a Brownian particle xt satisfying x0 = x.

For example, on the real line, the heat kernel is given by

Kt(x) =
1√
4πt

exp(−x2/(4t)).

Also we have Ks+t = Ks ∗Kt, as befits a Markov process.
To check this, note that Kt solves the heat equation, and that

∫
Kt = 1

for all t. Thus Kt ∗ f → f as t→ 0, since Kt concentrates at the origin.
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In terms of Brownian motion, the solution to the heat equation is given
by ft(x) = E(f0(xt)), where xt is a random path with x0 = x.

The trace. The trace of the heat kernel is the function

TrKt =

∫

X
Kt(x, x) =

∑
e−λnt.

It is easy to see that the function TrKt determines the set of eigenvalues λn

and their multiplicities.

Length spectrum and eigenvalue spectrum.

Theorem 13.13 The length spectrum and genus of X determine the eigen-
values of the Laplacian on X.

Proof. The proof is based on the trace of the heat kernel. Let kt(x, y)
denote the heat kernel on the hyperbolic plane H; it satisfies kt(x, y) = kt(r)
where r = d(x, y). Then for X = H/Γ we have

Kt(x, y) =
∑

Γ

kt(x, γy),

where we regard Kt as an equivariant kernel on H.
Working more intrinsically on X, we can consider the set of pairs (x, δ)

where δ is a loop in π1(X,x). Let ℓx(δ) denote the length of the geodesic
representative of δ based at x. Then we have:

Kt(x, x) =
∑

δ

kt(ℓx(δ)).

Let L(X) denote the space of nontrivial free homotopy classes of maps
γ : S1 → X. For each γ ∈ L(X) we can build a covering space p : Xγ → X
corresponding to 〈γ〉 ⊂ π1(X).

The points of Xγ correspond naturally to pairs (x, δ) on X with δ freely
homotopic to γ. Indeed, given x′ in Xγ , there is a unique homotopy class
of loop δ′ through x′ that is freely homotopic to γ, and we can set (x, δ) =
(p(x), p(δ′)). Conversely, given (x, δ), from the free homotopy of δ to γ
we obtain a natural homotopy class of path joining x to γ, which uniquely
determines the lift x′ of x to Xγ .

For x′ ∈ Xγ , let r(x′) denote the length of the unique geodesic through
x′ that is freely homotopic to γ. Then we have ℓx(δ) = r(x′). It follows that

TrKt =

∫

X
Kt(x, x) =

∫

X
kt(0) +

∑

L(X)

∫

Xγ

r(x′).
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But
∫
X kt(0) = area(X)kt(0) depends only on the genus of X by Gauss-

Bonnet, and the remaining terms depend only on the geometry of Xγ . Since
the geometry of Xγ is determined by the length of γ, we see the length spec-
trum of X determines the trace of the heat kernel, and hence the spectrum
of the Laplacian on X.

Remark. Almost nothing was used about the heat kernel in the proof.
Indeed, the length spectrum of X determine the trace of any kernel K(x, y)
on X derived from a kernel k(x, y) on H such that k(x, y) depends only on
d(x, y).

Remark. In fact the genus is determined by the length spectrum.

Isospectral Riemann surfaces.

Theorem 13.14 There exist a pair of compact hyperbolic Riemann surfaces
X and Y , such that the length spectrum of X and Y agree (with multiplici-
ties), but X is not isomorphic to Y .

Isospectral subgroups. Here is a related problem in group theory. Let G
be a finite group, and let H1,H2 be two subgroups of G. Suppose |H1∩C| =
|H2 ∩ C for every conjugacy class C in G. Then are H1 and H2 conjugate
in G?

The answer is no in general. A simple example can be given inside
the group G = S6. Consider the following two subgroups inside A6, each
isomorphic to (Z/2)2:

H1 = 〈e, (12)(34), (12)(56), (34)(56)〉,
H2 = 〈e, (12)(34), (13)(24), (14)(23)〉.

Note that the second group actually sits inside A4; it is related to the sym-
metries of a tetrahedron.

Now conjugacy classes in Sn correspond to permutations of n, i.e. cycle
structures of permutations. Clearly |Hi ∩ C| = 3 for the cycle structure
(ab)(cd), and |Hi ∩ C| = 0 for other conjugacy classes (except that of the
identity). Thus H1 and H2 are isospectral. But they are not conjugate
(‘internally isomorphic’), because H1 has no fixed-points while H2 has two.

Construction of isospectral manifolds.

Theorem 13.15 (Sunada) Let X → Z be a finite regular covering of com-
pact Riemannian manifolds with deck group G. Let Yi = X/Hi, where H1

and H2 are isospectral subgroups of G. Then Y1 and Y2 are also isospectral.
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Proof. For simplicity of notation we consider a single manifold Y = X/G
and assume the geodesics on Z are discrete, as is case for a negatively curved
manifold. Every closed geodesic on Y lies over a closed geodesic on Z.

Fixing a closed geodesic α on Y , we will show the set of lengths L of
geodesics on Y lying over α depends only on the numbers nC = H ∩ C for
conjugacy classes C in G.

For simplicity, assume α has length 1. Let α1, . . . , αn denote the com-
ponents of the preimage of α on X. Let Si ⊂ G be the stabilizer of αi. The
subgroups Si fill out a single conjugacy class in G, and we have Si

∼= Z/m
where nm = |G|. Each loop αi has length m.

Let k be the index of H ∩ Si in Si. Then k is the length of αi/H in Y .
Moreover, the number of components αj in the orbit H ·αi is |H|/|H ∩Si| =
|H||Si|/k, and of course all these components descend to a single loop on
X/H. Thus the number of times the integer k occurs in L is exactly

|L(k)| =
kAk

m|H| ,

where
Ak = |{i : [Si : Si ∩H] = k}|.

Thus to determine L, it suffices to determine the integers Ak.
For example, let us compute A1, the number of i such that we have

Si ⊂ H. Now H contains Si if and only if H contains a generator gi of Si.
We can choose the gi’s to fill out a single conjugacy class C, since the groups
Si are all conjugate. Then the proportion of i’s satisfying Si ⊂ H is exactly
|H ∩ C|/|C|, and therefore

A1 =
n|H ∩ C|

|C| ·

An important point here: it can certainly happen that Si = Sj even
when i 6= j. For example if G is abelian, then all the groups Si are the
same. But the number of i such that Si is generated by a given element
g ∈ C is a constant, independent of g. Thus the proportion of Si generated
by an element of H is still |H ∩C|/|C|.

Now for d|m, let Cd be the dth powers of the elements in C. Then the
subgroups of index d in the Si’s are exactly the cyclic subgroups generated
by elements g ∈ Cd. Again, the correspondence is not exact, but constant-
to-one; the number of i such that 〈g〉 ⊂ Si is independent of g ∈ Cd. Thus
the proportion of Si’s such that H ∩ Si contains a subgroup of index d is
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exactly |H ∩ Cd|/|Cd|, which implies:

∑

k|d

Ak =
n|H ∩ Cd|

|Cd|
·

From these equations it is easy to compute Ak.

Cayley graphs. The spaces in Sunada’s construction do not have to be
Riemannian manifolds. For example, we can take Z to be a bouquet of
circles. Then X is the Cayley group of G, and Y1 and Y2 are coset graphs
on which G acts. The coset graphs Y1 and Y2 also have the same length
spectrum!

A small example. Let G = (Z/8)∗ ⋉ Z/8 be the affine group of A = Z/8,
i.e. the group of invertible maps f : A→ A of the form f(x) = ax+ b. Let

H1 = {x, 3x, 5x, 7x},
H2 = {x, 3x + 4, 5x+ 4, 7x}.

Then the subgroups H1 and H2 are isospectral.
In both cases, the coset space Yi = G/Hi can be identified with Z/8;

that is, Z/8 ×Hi = G.
To make associated graphs, Y1 and Y2, we take 〈x+ 1, 3x, 5x〉 as gener-

ators for G. Note that 3x and 5x have order 2. Then the coset graph Y1 is
an octagon, coming from the generator x+ 1, with additional (unoriented,
colored) edges joining x to 3x and 5x. Similarly, Y2 is also an octagon, but
now the colored edges join x to the antipodes of 3x and 5x, namely 3x+ 4
and 5x+ 4.

These graphs are isospectral. In counting the number of loops, it is
important to regard the graphs as covering spaces. For this it is best to
replace each colored edge which is not a loop by a pair of parallel edges with
opposite arrows. Each colored loop should be replaced by a single oriented
edge. Then the graphs become covering spaces of the bouquet of 3 circles,
and the number of loops of length n is the same for both graphs.

Not isometric. Using short geodesics, we can arrange Z such that one
can reconstruct the action of G on G/Hi from the intrinsic geometry of Yi.
Then Y1 and Y2 are isometric iff H1 and H2 are conjugate. So in this way
we obtain isospectral, but non-isometric, Riemann surfaces.
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Figure 3. Isospectral graphs

14 Quasiconformal geometry

The measurable Riemann mapping theorem. For any µ on Ĉ with
‖µ‖∞ < 1, there exists a quasiconformal map f : Ĉ → Ĉ with complex
dilatation µ.

Corollary: Uniformization theorem. Evidentally we can uniformize at
least one Riemann surface Xg of genus g, e.g. using a regular hyperbolic
4g-gon. Now take any other surface Y of the same genus. By topology, there
is a diffeomorphism f : Xg → Y . Pulling back the complex structure to Xg

and lifting to the universal cover, we obtain by qc conjugacy a Fuchsian
group uniformizing Y .
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