The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions

Ko Honda

Univ. of Southern California

June 6, 2011

Joint work with Vincent Colin and Paolo Ghiggini

Main result

Theorem

Let M be a closed, oriented 3-manifold. Then

$$\widehat{HF}(-M)\simeq \widehat{ECH}(M).$$

Here *HF* refers to Heegaard Floer homology, due to Ozsváth-Szabó, and *ECH* refers to embedded contact homology, due to Hutchings.

We work over $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$ -coefficients.

Both HF and ECH are topological invariants of M:

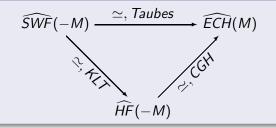
- HF a priori depends on the choice of a Heegaard diagram of M;
- ECH a priori depends on the choice of a contact form α on M.

Main result

Remark

An alternate proof of the same result is due to Kutluhan-Lee-Taubes.

Theorem



Here *SWF* refers to Seiberg-Witten Floer homology, developed by Kronheimer-Mrowka. The top isomorphism is due to Taubes, and is proved using the circle of ideas involved in his proof of the Weinstein conjecture in dimension three.

Ko Honda (USC)

Contact structures

Let *M* be a closed, oriented 3-manifold. A contact form α is a 1-form on *M* which satisfies $\alpha \wedge d\alpha > 0$. The corresponding contact structure is the 2-plane field $\xi = \ker \alpha$.

To any contact 1-form α we can assign its Reeb vector field $R = R_{\alpha}$ defined by:

$$i_R d\alpha = 0,$$

 $i_R \alpha = \alpha(R) = 1.$

Equivalently, a Reeb vector field R is a contact vector field which is everywhere transverse to ξ .

Open book decompositions

Let S be a compact oriented surface with boundary and $h: S \xrightarrow{\sim} S$ be a diffeomorphism satisfying $h|_{\partial S} = id$.

Definition

An open book decomposition (S, h) for M is an identification

 $M \simeq S \times [0,1]/\sim,$

where

• $(x, 1) \sim (h(x), 0)$ for all $x \in S$; and • $(x, t) \sim (x, t')$ for all $x \in \partial S$ and $t, t' \in [0, 1]$.

 $S \times \{t\}$ is called a "page" and ∂S is called the "binding".

Open book decompositions

Definition

An open book decomposition (S,h) is adapted to (M,ξ) if there is a contact form α for ξ such that the Reeb vector field R_{α} is transverse to the interiors of the pages $S \times \{t\}$ and ∂S is a closed orbit of R_{α} .

The starting point of this work is the following fundamental result:

Theorem (Thurston-Winkelnkemper, Torisu,..., Giroux)

There is a one-to-one correspondence between contact structures (M, ξ) up to isomorphism and open book decompositions (S, h) up to "positive stabilization".

Embedded contact homology

ECH, due to Hutchings, is a variant of symplectic field theory, due to Eliashberg-Givental-Hofer.

Let α be a contact form with non-degenerate Reeb vector field R_{α} .

The generators of the ECH chain complex are orbit sets, i.e., finite multisets $\Gamma = \{(\gamma_i, m_i)\}$, where γ_i is a simple (i.e., embedded) orbit of R_{α} and m_i is a positive integer. (We use multiplicative notation $\Gamma = \prod_i \gamma_i^{m_i}$.)

To define the differentials, consider the symplectization $(\mathbb{R} \times M, d(e^s \alpha))$. An adapted almost complex structure J on $\mathbb{R} \times M$ satisfies the following:

- J takes ∂_s to R_{α} ;
- J takes ξ to itself;
- $d\alpha(v, Jv) > 0$ for all nonzero v.

Embedded contact homology

Let $\Gamma = \prod_i \gamma_i^{m_i}$ and $\Gamma' = \prod_j (\gamma'_j)^{m'_j}$ be orbit sets.

The differential $\langle \partial \Gamma, \Gamma' \rangle$ counts "isolated" embedded *J*-holomorphic curves *C* in $\mathbb{R} \times M$ which are asymptotic to cylinders over periodic orbits at both ends. The total multiplicity of γ_i at the positive end is m_i and the total multiplicity of γ'_i at the negative end is m'_i .

The proof of $\partial^2 = 0$ rather intricate and is due to Hutchings-Taubes. $ECH(M, \alpha, J)$ is independent of the choice of α and J by Taubes' isomorphism theorem with *SWF*; in particular there is currently no direct proof.

Reformulation of ECH

Let R_{α} be a Reeb vector field which is adapted to the open book (S, h). Recall that the binding γ_0 is a closed orbit of R_{α} . We want to get rid of the binding and express $\widehat{ECH}(M, \alpha)$ in terms of data on

 $N = (S \times [0,1])/(x,1) \sim (h(x),0).$

Since $h|_{\partial S} = id$, ∂N is foliated by an S^1 -family of closed orbits. This Morse-Bott family can be perturbed into the pair e, h.

Let $ECH_i(S, h)$ be ECH on N whose orbit sets intersect $S \times \{t\}$ exactly *i* times.

Reformulation of ECH

Consider the map induced by inclusion:

```
ECH_i(S,h) \rightarrow ECH_{i+1}(S,h),
```

 $\Gamma \mapsto e\Gamma$.

Remark

We are viewing e as the unit 1. In ECH, the contact invariant for $(M, \ker \alpha)$ is given by the empty set \emptyset , written multiplicatively as 1.

Ideas of proof:

- Effectively eliminate the binding by taking the slopes of Reeb orbits near γ₀ to approach the meridian slope and use a direct limit argument.
- An isolated holomorphic curve in $\mathbb{R} \times M$ which intersects the cylinder $\mathbb{R} \times \gamma_0$ over the binding once is equivalent to a holomorphic curve in $\mathbb{R} \times N$ which has *e* at the negative end.

Reformulation of ECH

Remark

There is a symplectic/holomorphic fibration

$$\pi: \mathbb{R} \times \mathit{N} \to \mathbb{R} \times \mathit{S}^1$$

with fiber S, and we are now counting holomorphic multisections of π .

Heegaard Floer homology (à la Eliashberg-Lipshitz)

Let Σ be a Heegaard surface of M, i.e., Σ splits M into two handlebodies H_{α} and H_{β} of genus k.

Let $\alpha = \{\alpha_1, \ldots, \alpha_k\}$ be a pairwise disjoint collection of embedded curves such that the α_i bound disks in H_{α} and $\Sigma - \bigcup_i \alpha_i$ is connected. Similarly define $\beta = \{\beta_1, \ldots, \beta_k\}$. Also pick a basepoint $z \in \Sigma - \bigcup_i \alpha_i - \bigcup_i \beta_i$.

Consider the 3-manifold $[0,1] \times \Sigma$. The chain complex $\widehat{CF}(\Sigma, \alpha, \beta, z)$ is generated by k-tuples of "Reeb chords" $\{[0,1] \times \{x_i\}, i = 1, ..., k\}$, where $x_i \in \alpha_i \cap \beta_{\sigma(i)}$ for some permutation σ . We will often write $\mathbf{x} = \{x_1, ..., x_k\}$ for a k-tuple of Reeb chords.

Heegaard Floer homology

Remark

There is a symplectic/holomorphic fibration

$$\pi:\mathbb{R}\times [0,1]\times \Sigma \to \mathbb{R}\times [0,1]$$

with fiber Σ .

The differential $\langle \partial \mathbf{x}, \mathbf{y} \rangle$ counts "isolated" embedded degree *k* holomorphic multisections *C* of π which satisfy the following:

- C is asymptotic to $[0,1] \times \mathbf{x}$ at the positive end and to $[0,1] \times \mathbf{y}$ at the negative end;
- ∂C is a subset of $(\mathbb{R} \times \{1\} \times \alpha) \cup (\mathbb{R} \times \{0\} \times \beta)$, and uses each component of $\mathbb{R} \times \{0\} \times \alpha$ and $\mathbb{R} \times \{0\} \times \beta$ exactly once; and
- C does not intersect $\mathbb{R} \times [0,1] \times \{z\}$.

HF and open books à la H.-Kazez-Matić

A compatible Heegaard diagram for an open book is given as follows:

• Let
$$\Sigma = (S \times \{1/2\}) \cup -(S \times \{0\}).$$

- ② Pick a basis $\{a_1, ..., a_{2g}\}$ of properly embedded arcs on *S* such that *S* − $\cup_i a_i$ is a polygon. Here g = g(S).
- So Let b_i be a pushoff of a_i in the direction of ∂S so that a_i ∩ b_i is one point x_i.
- Finally, let

$$\begin{aligned} \alpha_i &= \partial(a_i \times [0, 1/2]), \\ \beta_i &= \partial(b_i \times [1/2, 1]) \\ &= (b_i \times \{1/2\}) \cup (h(b_i) \times \{0\}). \end{aligned}$$

HF and open books

Remark

The 2*g*-tuple $\{x_1, \ldots, x_{2g}\}$ gives rise to the contact invariant

$$c(M,\xi)\in\widehat{HF}(\beta,\alpha)=\widehat{HF}(-M)$$

of the contact structure (M, ξ) corresponding to the open book (S, h), and all of the interesting activity occurs on $S \times \{0\}$.

If we place two copies of x_i on the boundary of $S \times \{0\}$, then:

$$\widehat{CF}(\Sigma,\beta,\alpha)=\widehat{CF}(S\times\{0\},\mathbf{a},h(\mathbf{a})).$$

HF and open books

Remark

On the ECH side, the contact invariant for (M, ξ) is generated by the empty set. This suggests that

$$\mathbf{y} = \{y_1, \dots, y_k, x_{i_1}, \dots, x_{i_{2g-k}}\}$$

corresponds to an orbit set which intersects a page k times.

HF and open books

Remark

We are now counting "isolated" embedded holomorphic degree 2g multisections of $\pi : \mathbb{R} \times [0,1] \times S \to \mathbb{R} \times [0,1]$.

Broken closed strings

As an intermediary between $\mathbf{y} = \{y_1, \dots, y_{2g}\}$ and Γ , we consider a broken closed string $\gamma_{\mathbf{y}}$, i.e., a collection of closed curves in N, obtained by concatenating:

•
$$[0,1] \times y_i, i = 1, ..., 2g$$
, and

• $\{0\} \times c_i, i = 1, ..., 2g$, where c_i is a subarc of $h(a_i)$ which connects $h(x_{\sigma(i)})$ to x_i .

Defining the chain map

We now define a chain map

$$\Phi: \widehat{\mathit{CF}}(S,\mathbf{a},h(\mathbf{a})) o \mathit{ECC}_{2g}(S,h),$$

obtained by counting "isolated" degree 2g holomorphic multisections in a certain symplectic fibration $\pi: W_+ \to B_+$ which approach **y** at the positive end and Γ at the negative end. The chain map is motivated by the work of Seidel and Donaldson-Smith.

Defining the chain map

The fibration $\pi: W_+ \to B_+$ is the restriction of $\pi: \mathbb{R} \times N \to \mathbb{R} \times S^1$ to the base B_+ , given below:

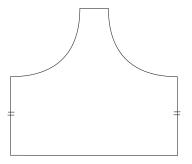


Figure: The base B_+ .

In particular, the fibers are $\simeq S$.

Defining the chain map

Lagrangian boundary condition: Place a copy of a_i on one fiber $\pi^{-1}(p)$, where $p \in \partial B_+$. Apply parallel transport to a_i along ∂B_+ . Then it sweeps out a Lagrangian L_i which restricts to (a subset of) $\mathbb{R} \times \{1\} \times a_i$ and $\mathbb{R} \times \{0\} \times h(a_i)$ at the positive end.

The isomorphism

Theorem

 Φ is a chain map which induces an isomorphism on the level of homology.

Proof.

Define an inverse map

$$\Psi: ECC_{2g}(S,h) \to \widehat{CF}(S,\mathbf{a},h(\mathbf{a})),$$

in a similar manner. Then $\Psi \circ \Phi$ and $\Phi \circ \Psi$ are chain homotopic to the identity by degenerating the base.

Happy Birthday, Mike!