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I will be proposing the use of certain elliptic
differential equations in four and five dimensions for
a new description of the Jones polynomial and
Khovanov homology. The goal is a gauge theory
alternative to a previous physics-based
interpretation of Khovanov homology (Gukov, Vafa,
and Schwarz, hep-th/0412243). So let us begin by
describing the cast of characters.

We start by remembering the relation of the
Chern-Simons function in three dimensions to the
instanton equation in four dimensions.



In this talk, G is a compact simple Lie group and A
is a connection on a G -bundle E → W , where W is
some manifold. We write GC for the
complexification of G , and A for a connection on a
GC bundle, such as the complexification EC of E .
We write U and UC for the spaces of, respectively,
connections on E or on EC. Finally, by an elliptic
equation, we mean an equation that is elliptic
modulo the action of the gauge group.



If W is a three-manifold, then a connection A on
the G -bundle E → W has a Chern-Simons invariant

CS(A) =
1

4π

∫
W

Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
.

To arrive at the instanton equations, we pick a
Riemannian metric on W and then place the
obvious Riemannian metric on the space U of
connections:

ds2 = −
∫

W

Tr δA ∧ ?δA.



Then, viewing −CS(A) as a Morse function on U ,
we write the equation of gradient flow:

dA

ds
= ∇CS(A).



Something nice happens; the equation of gradient
flow turns out to have four-dimensional symmetry.
It is equivalent to the instanton equation on the
four-manifold M = W × R:

F + = 0.

This fact is the starting point for Floer cohomology
of three-manifolds and its relation to Donaldson
theory of four-manifolds.



We want to do the same thing, roughly speaking, for the complex
Lie group GC. To begin with, a connection A on a GC bundle
EC →W has a Chern-Simons function:

CS(A) =
1

4π

∫
W

Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
.

To do Morse theory, we have to make two immediate changes.
First, a Morse function is supposed to be real, but CS(A) is
actually complex-valued. So we pick a complex number e iα of
modulus 1 and define our Morse function to be (provisionally)

h0 = −Re (e iαCS(A)).



Second, there is not any convenient metric on the space UC of
complex connections that has the full GC gauge symmetry. So we
pick a Kahler metric on UC that is invariant only under G , not GC:

ds2 = −
∫

W
Tr δA ∧ ?δA.

Now we can write a gradient flow equation:

dA
ds

= −∇h0.



However, we are really usually interested in a complex connection
A up to complex-valued gauge transformations, but here we have
written an equation that is only invariant under unitary gauge
transformations. To compensate for this, we should set the
moment map to zero and consider the previous equation only in
the space of zeroes of the moment map.



In other words, if we decompose A in real and imaginary parts as
A = A + iφ, where A is a real connection and φ ∈ Ω1(W )⊗ ad(E ),
then the Kahler manifold UC has a Kahler form

ω =

∫
W

Tr δA ∧ ?δφ.

The moment map for the action of G -valued gauge
transformations is

µ = dA ? φ

and we should really consider the previous gradient flow equations
in the space of zeroes of the moment map.



However, it is somewhat better to introduce another field φ0 as a
sort of Lagrange muliplier. φ0 is a section of the real adjoint
bundle ad(E ) and we write an extended Morse function

h = h0 +

∫
W

d3x
√

g Trφ0µ

whose critical points are all at µ = 0. On the space of φ0 fields we
place the obvious metric

ds2 = −
∫

W
d3x
√

g Tr δφ2
0

and now, writing Φ for the pair (A, φ0), we write the gradient flow
equations

dΦ

ds
= −∇h(Φ).



Something nice happens, just like what happened in the real case.
The flow equations in this sense are elliptic partial differential
equations with a full four-dimensional symmetry. They can be
written

(F − φ ∧ φ)+ = t(dAφ)+

(F − φ ∧ φ)− = −t−1(dAφ)−

dA ? φ = 0,

with

t =
1− cosα

sinα
.

These are elliptic differential equations modulo the action of the
gauge group, for each t ∈ RP1 = R ∪∞ (for t → 0 or ∞, multiply
the second equation by t or the first by t−1).



In writing the equations, I combined the imaginary part of the
connection, φ ∈ Ω1(W )⊗ ad(E ), with the Lagrange multiplier
φ0 ∈ ad(E ), to a field (also called φ) that takes values in
Ω1(M)⊗ ad(E ). We are using the fact that for M = W × R, we
have Ω1(M) = Ω1(W )⊕ R.



These equations can be the starting point for developing a
Floer-like theory for the complex Lie group GC. What about other
real forms of G?

If t = 0 or ∞, the equations admit the involution φ→ −φ.
Imposing invariance under this involution combined with an
involution of the compact Lie group G , we get a reduced set of
equations appropriate to constructing a Floer-like theory for any
real form of G , not necessarily compact. (In a sense, the physical
interpretation seems less natural than for other things I am
describing.)



The equations that I have indicated were actually first studied in
another context – by A. Kapustin and me in our work on gauge
theory and geometric Langlands (hep-th/0604151). Roughly
speaking, we considered a family of four-dimensional topological
field theories just like Donaldson theory except based on these
equations instead of the instanton equations, and we showed that
geometric Langlands duality is naturally formulated as an
equivalence between the theories that arise at two different values
of t. From that vantage point, geometric Langlands duality is a
consequence of S-duality of N = 4 super Yang-Mills theory in four
dimensions. (I am leaving out a lot of details, one of which is that
it is natural to consider complex values of t.)



I do not believe that this theory gives interesting four-manifold
invariants (and there may actually be a technical problem in
defining them, analogous to Donaldson theory for b+

2 = 1). In
geometric Langlands duality, four-manifold invariants are not the
point. One is mainly interested not in invariants of four-manifolds
but in the structures that this same topological field theory
attaches to two-manifolds (categories of boundary conditions) and
to three-manifolds (spaces of physical states or “morphisms”).
These are essentially not affected by the technical difficulties that
may affect the four-manifold invariants.



Although this theory probably does not give interesting
four-manifold invariants, the math literature gives a reason to
believe in hindsight, and maybe even in foresight, that it does give
interesting knot invariants. “Quantum” geometric Langlands is
related to quantum groups (D. Gaitsgory, arXiv:0705.4571) which
in turn are related to the Jones polynomial and similar invariants of
knots. So possibly this should have made us think that the
topological field theory related to geometric Langlands can be used
to compute the Jones polynomial. (I should also mention the work
of Cautis and Kamnitzer, interpreting Seidel and Smith, for a
possible clue that Khovanov homology is related to geometric
Langlands.)



Anyway, the picture is like so: Take the four-manifold to be
M = W × R+, where W is a three-manifold and R+ is a half-line
y ≥ 0. For y →∞, require the fields to approach a chosen critical
point of the Morse function. The simplest case is W = S3 (or R3)
where there is only one possible critical point, A = φ = 0 up to a
unitary gauge transformation. The knot K lives instead at y = 0,
that is at the endpoint of R+. The picture is shown in the next
slide.





The boundary condition at y = 0 is an elliptic
boundary condition that is a little involved to
explain, and we will postpone it a bit. But this
boundary condition depends on the knot K , and on
the choice of a representation R of the Langlands or
GNO dual group G∨ of G . In this description, this
is the only way that K (or R) enters.



For the next step, we imitate Donaldson theory. Let an be the
“number” of solutions of our equations, with instanton number n.
Instanton number is defined in the usual way as a multiple of∫

M
TrF ∧ F ,

where F = dA + A ∧ A is the curvature, and is a topological
invariant here even though M = W × R+ has “ends” at y = 0,∞,
because the boundary conditions at y = 0 and y =∞ give
trivializations of the bundle E . Conjecturally, an vanishes for large
enough |n|, but this has not been proved.



Then we introduce a variable q and define the knot invariant

J(q; K ,R) =
∑
n

anq
n.

For G∨ = SU(2) and R the two-dimensional representation, this is
supposed to be the Jones polynomial. In general, we expect to get
the usual knot invariants associated to quantum groups and
Chern-Simons gauge theory.



However, our goal is Khovanov homology, not the
Jones polynomial. This means we are supposed to
“categorify” the situation, and associate to a knot a
vector space rather than a number. A suitable trace
in the vector space will give back the number. In
plain words, this means that the picture just
described has to be derived from a picture in one
more dimension. (An explanation for physicists:
viewing the extra dimension as “time,” quantization
gives a physical “Hilbert” space, which will be the
Khovanov homology, and then if we compactify the
extra dimension on a circle, we get a trace leading
back to the original theory.)



Let us practice by “categorifying” the Casson invariant. The
Casson invariant is an invariant of a three-manifold W . It is
defined by “counting” (up to gauge transformation) the flat
connections A on a G -bundle E →W . A flat connection is a
solution of the equation

F = 0. (∗)

This is not an elliptic equation, but is part of a nonlinear elliptic
complex. Just as for linear elliptic complexes, it is convenient to
“fold” the complex and reduce to the case of an ordinary elliptic
equation, rather than a complex. In the present example, this is
done by introducing a section φ0 of ad(E ) and replacing the
equation (∗) with the Bogomolny equation

F + ?dAφ0 = 0.

The count of solutions is the same, since a simple vanishing
theorem says that (for a smooth solution on a compact manifold
W ) any solution has φ0 = 0. But now the equation is elliptic.



In the present case, categorification just means replacing φ0 by the
covariant derivative with respect to a new coordinate, φ0 → D/Ds.
Thus we replace the three-manifold W by the four-manifold
M = W × R, where R is parametrized by the “time” s, and we
substitute φ0 → D/Ds. This makes sense, in that the substitution
gives a differential equation on M (rather than a differential
operator), because we started with an equation in which φ0 only
appears inside the commutator dAφ0 = [dA, φ0]. This commutator
is now replaced by [dA,D/Ds], which is a component of the
four-dimensional curvature.



Normally, a procedure like this, even if it gives a differential
equation, won’t give an elliptic one, let alone one with
four-dimensional symmetry. In this case, however, we actually get
back the instanton equation F+ = 0, in a slightly different way
from the way we got it before. What follows from this is that the
Casson invariant – a numerical invariant computed by counting
solutions of the original equation F = 0 – can be categorified to
Floer cohomology, in which a more subtle invariant, a vector space,
is constructed starting with a chain complex that has a basis
corresponding to those same solutions.



Now we want to categorify the Jones polynomial, which from the
point of view of the present lecture is the invariant associated to
counting solutions of the equations

(F − φ ∧ φ)+ = t(dAφ)+

(F − φ ∧ φ)− = −t−1(dAφ)−

dA ? φ = 0,

with certain boundary conditions. On a generic four-manifold M,
we would have no way to proceed as there is no candidate for a
field φ0 that will be replaced by D/Ds.



However, if M = W × R+, which is the case if we are studying the
Jones polynomial in the way I suggested, then we have
Ω1(M) = Ω1(W )⊕ Ω1(R+), where the part of φ associated to the
second summand is the field φ0 that we originally introduced as a
Lagrange multiplier. We categorify by introducing a new dimension
and replacing φ0 → D/Ds, as before.



In this way, we get a partial differential equation on the
five-manifold X = R×W ×R+. Moreover, this turns out to be an
elliptic equation. And if we set t = 1, we get a full
four-dimensional symmetry; that is, the five-dimensional equation
(which also was obtained in A. Haydys, arXiv:1010.2353) can be
naturally formulated on X = M∗ × R+ for any four-manifold M∗.



The four-dimensional boundary condition (which I didn’t explain
yet) that we have to use to get the Jones polynomial can be
“lifted” to five dimensions, roughly by φ0 → D/Ds. The boundary
is now a four-manifold M∗ rather than a three-manifold W .
Instead of modifying the boundary condition along a knot K ⊂W ,
we now modify it along a two-manifold Σ ⊂ M∗, as in the next
picture.





To get the candidate for Khovanov homology, we specialize to the
time-independent case M∗ = R×W , Σ = R× K . Then, following
Floer, we define a chain complex which has a basis given by the
time-independent solutions, that is the solutions of the
four-dimensional equations

(F − φ ∧ φ)+ = t(dAφ)+

(F − φ ∧ φ)− = −t−1(dAφ)−

dA ? φ = 0.

The differential in the chain complex is constructed in a standard
fashion by counting certain time-dependent solutions. (Here we
use the fact that the five-dimensional equations can themselves be
interpreted in terms of gradient flow.) The cohomology of this
differential is the candidate for Khovanov homology.



The candidate Khovanov homology is Z× Z-graded, like the real
thing, where one grading is the cohomological grading, and the
second grading, sometimes called the q-grading, is the instanton
number, integrated over W × R+. (Because of the fact that
W × R+ is not compact and has a boundary, the definition of the
q-grading has subtleties that match the framing anomalies of
Chern-Simons theory.)



We are not limited to the time-independent case, and, considering
a more general Σ, we get candidates for the “knot cobordisms” of
Khovanov homology.



Next I would like to describe the boundary conditions at least away
from knots. It is essentially enough to describe the boundary
condition in four dimensions rather than five (once one
understands it, the lift to five dimensions is fairly obvious), and as
the boundary condition is local, we assume initially that the
boundary of the four-manifold is just R3. So we work on
M = R3 × R+. (This special case is anyway the right case for the
Jones polynomial, which concerns knots in R3 or equivalently S3.)



Now I need to tell you about one of the important equations in
gauge theory, which is Nahm’s equations. Nahm’s equation is a
system of ordinary differential equations for a triple X1,X2,X3

valued in g3, where g is the Lie algebra of G . The equations read

dX1

dy
+ [X2,X3] = 0

and cyclic permutations. On a half-line y ≥ 0, Nahm’s equations
have the special solution

Xi =
ti
y
,

where the ti are elements of g that obey the su(2) commutation
relations [t1, t2] = t3, etc. We are mainly interested in the case
that the ti define a “principal su2 subalgebra” of g, in the sense of
Kostant.



This sort of singular solution of Nahm’s equations was important
in the work of Nahm on monopoles, and in later work of
Kronheimer and others. We will use it to define an elliptic
boundary condition for our equations.



In fact, Nahm’s equations can be embedded in our
four-dimensional equations on R3 × R+. If we look for a solution
that is (i) invariant under translations of R3, (ii) has the
connection A = 0, (iii) has φ =

∑3
i=1 φi dxi + 0 · dy (where

x1, x2, x3 are coordinates on R3 and y is the normal coordinate)
then our four-dimensional equations reduce to Nahm’s equations

dφ1

dy
+ [φ2, φ3] = 0,

and cyclic permutations. So the “Nahm pole” gives a special
solution of our equations

φi =
ti
y
.

We define an elliptic boundary condition by declaring that we will
allow only solutions that are asymptotic to this one for y → 0.



This is the boundary condition that we want at y = 0, in the
absence of knots. For the most obvious boundary condition for
getting Khovanov homology, we require that A, φ→ 0 for y →∞.
It is plausible (but unproved) that with these conditions, the
special solution with the Nahm pole is the only one. (This would
correspond to Khovanov homology of the unknot being of rank 1.)



In recent work with D. Gaiotto (to appear soon), we’ve made
considerable progress towards understanding directly – rather than
by invoking the original arguments which involved quantum field
theory – why the counting of four-dimensional solutions gives the
Jones polynomial. (Therefore the five-dimensional equations will
give a categorification of the Jones polynomial. But this remains
to be explored.)



First let us recall that standard approaches to the Jones
polynomial and Khovanov homology often begin by considering a
projection of a knot to two dimensions.



There is a very nice way to incorporate a knot projection by
modifying the boundary conditions at infinity on R3 × R+. Instead
of requiring that A, φ→ 0 for y →∞, we keep that condition on
A, we change the condition on φ. We pick a triple c1, c2, c3 of
commuting elements of t, the Lie algebra of a maximal torus
T ⊂ G , and we ask for

φ→
∑

i

ci · dx i

for y →∞. (x1, x2, x3 are Euclidean coordinates on R3.) We use
the fact that the equations have an exact solution for A = 0 and φ
of the form I indicated.



The counting of solutions of an elliptic equation is constant under
continuous variations (provided certain conditions are obeyed) so
one expects that the Jones polynomial can be computed with this
more general asymptotic condition, for an arbitrary choice of
~c = (c1, c2, c3).



If G = SU(2), then t is one-dimensional. So if ~c is non-zero, it has
the form ~c = c ·~a where c is a fixed (nonzero) element of t and ~a
is a vector in three-space. So picking ~c essentially means picking a
vector ~a pointing in some direction in three-space. The choice of ~a
determines a projection of R3 to a plane, so this is now built into
the construction. For G of higher rank, one could do something
more general, but it seems sufficient to take ~c = c~a with c a
regular element of t.



Taking ~c 6= 0 is described by physicists as “gauge symmetry
breaking” or “moving on the Coulomb branch.” A closely parallel
construction is important in the theory of weak interactions and the
theory of superconductivity. There actually is a somewhat similar
idea in Taubes’s proof that “SW=GW.” Taking ~c sufficiently
generic gives a drastic simplification because the equations become
quasi-abelian in a certain sense. On a length scale large than 1/|~c |,
the solutions can be almost everywhere approximated by solutions
of an abelian version of the same equations. There is an important
locus where this fails, but it can be understood.



We scale up our knot until the quasi-abelian description is
everywhere valid:



To go into more detail, I should explain how the boundary
condition is modified along a knot K . The local model is that the
boundary is R3, and K is a copy of R ⊂ R3. The boundary
condition is described by giving a singular model solution on
R3 × R+ that along the boundary has the now-familiar Nahm pole
away from K , but has some other behavior along K . The model
solution is invariant under translations along K , so it can be
obtained by solving some reduced equations on R2 × R+.





So to explain what is the boundary condition in the presence of a
knot, we need to describe some special solutions of reduced
equations in three dimensions – in fact, we need to give one
solution for each irreducible representation R of the dual group
G∨, since this is the data by which the knots are labeled.



There is another reason that it is important to describe the
reduced equations in three dimensions. To compute the Jones
polynomial, we need to count certain solutions in four dimensions;
knowledge of these solutions is also the first step in constructing
the candidate for Khovanov homology. How are we supposed to
describe four-dimensional solutions? A standard strategy, often
used in Floer theory and its cousins, involves “stretching” the knot
in one direction, in the hope of reducing to a piecewise description
by solutions in one dimension less.





Another way to make the point is as follows. Most mathematical
definitions of Khovanov homology proceed, directly or implicitly, by
defining a category of objects associated to a two-sphere (or in
some versions, a copy of C = R2) with marked points that are
suitably labeled.

In the present approach, this category should be the A-model
category of the moduli space of solutions of the reduced
three-dimensional equations in the appropriate geometry, sketched
in the next picture. (There is also a mirror approach that we
haven’t had time for today that involves a B-model category of
almost the same space rather than an A-model.)





The equations when reduced to three dimensions have a really
simple structure. After getting a simplification via a small
vanishing theorem for some of the fields, the equations can be
schematically described as follows. There are there operators Di

(constructed from A and φ) that commute,

[Di ,Dj ] = 0, i , j = 1, 2, 3.

And they obey a “moment map” constraint

3∑
i=1

[Di ,Di
†] = 0.



The construction of the Di in terms of A and φ depends on t. At
t = 1, the equations that I just described coincide with what
Kapustin and I called the “extended Bogomolny equations.” They
describe the Hecke transformations of the geometric Langlands
correspondence. Khovanov homology has been described in terms
of a B-model category of moduli spaces of geometric Hecke
transformations by Cautis and Kamnitzer, and parts of a
description in terms of an A-model of the same spaces have been
given by Kamnitzer, following Seidel and Smith. The connection
with Hecke transformations enables us to find a modification of the
boundary condition for every representation R∨ of the dual group
G∨.



The reason that Gaiotto and I were able to get a reasonable
understanding of how the Jones polynomial emerges is that a more
transparent structure arises for generic t. In this case the equations
[Di ,Dj ] = 0 =

∑
i [Di ,D†i ] are actually more familiar. They

describe a flat GC bundle E → R3 × R+ endowed with a hermitian
metric that obeys a moment map condition. For a special value of
t, the moment map condition is the one studied long ago by K.
Corlette. As far as we know, the precise moment map isn’t
important.



Since R2 × R+ is simply-connected, how can we get anything
interesting from a flat connection? The answer is that there is
additional structure in the behavior at y = 0 (and ∞).



A flat bundle over R2 × R+ is, of course, the pullback of a flat
bundle on R2, which we will think of as C. The boundary
conditions at y = 0 gives the flat bundle E → C the structure of
an “oper,” in the language of geometric Langlands. At the points
corresponding to the knots, the oper has singularities, but the flat
bundle has no monodromy around these singularities. Such oper
singularities are classified again by representations of the dual
group. See E. Frenkel, arXiv:math/0407524 for a review of these
concepts.



Additionally, if we have taken ~c 6= 0, the flat bundle has an
irregular singularity at infinity (the connection has a pole of order
2). See Feigin, Frenkel, and Rybnikov arXiv:0712.1183.



Opers of this sort are related to a variety of known and solved
systems of mathematical physics, including the Gaudin spin chain
and what are known as degenerate conformal blocks of the
Virasoro algebra. It is known that the Jones polynomial can be
expressed in terms of the monodromies associated to those
conformal blocks. (References for that statement go back to work
in the 1980’s and early 1990’s by, among others, Tsuchiya–Kanie,
Dotsenko-Fateev, Felder, Lawrence, and Schechtman-Varchenko.)



So finally we were able to make contact with a known description
of the Jones polynomial in a “vertex model.” This is a description
of the Jones polynomial via a sort of discrete statistical mechanics
associated to a knot projection. (For example, see L. Kauffman,
Knots and Physics.)



A summary of the vertex model: Given a knot projection with only
simple crossings and only simple maxima and minima of the height



one labels the intervals between crossings, maxima, and minima by
symbols + or −. One sums over all such labelings with a suitable
factor for each crossing
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and for each creation or annihilation event
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