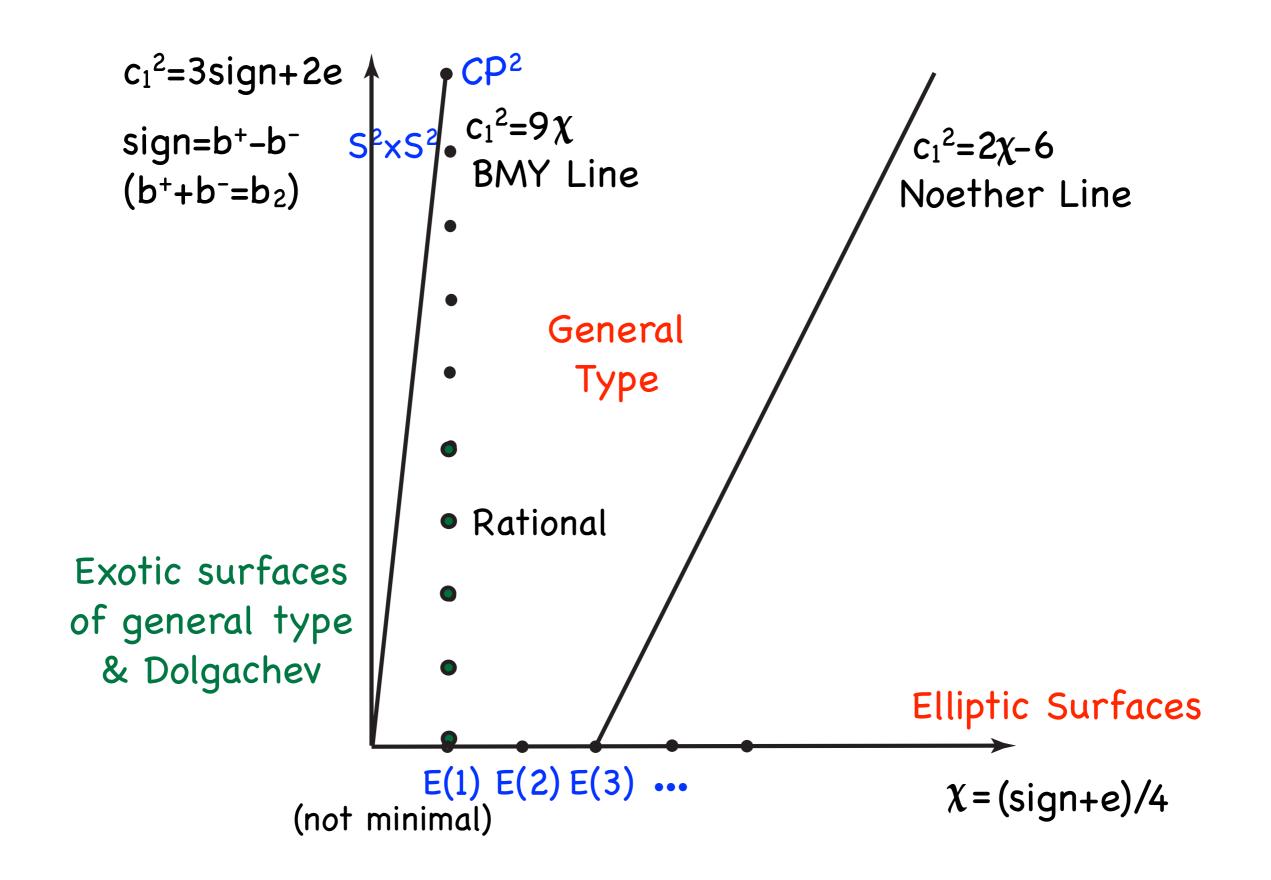


Smooth 4-Manifolds: 2011

Ron Fintushel

Michigan State University

Geography of S.C. Minimal Complex Surfaces



Topological Classification

Smooth simply connected 4-manifolds with b⁺=1 classified up to homeomorphism by Freedman's Th'm:

Odd intersection form: $CP^2#n\overline{CP}^2$ Even intersection form: $S^2 \times S^2$

⇒ Homeo type of s.c. smooth 4-mfd w/ b+=1 determined by Type (even, odd) rank of H₂

Elliptic Surfaces $E(1)=CP^{2}\#9CP^{2}$ $T^2 \rightarrow E(1)$ Elliptic fibration ŢΠ CP^1 Fiber sums: $E(n)=E(1)\#_{F}...\#_{F}E(1)$ $b^{+}=2n-1$ Log transform: Remove nbd $T^2 \times D^2 = N_F$ of generic fiber and reglue Multiplicity = degree of $\partial D^2 \rightarrow \partial N_F$ e.g. $S^{1}x(p/q)$ -Dehn LΠ surgery has mult = p $\pi(\partial N_F) = S^1$

> For elliptic surfaces with cusp fibers the result of a log transform depends only on the multiplicity. True (up to diffeo) if simply connected.

Exotic Complex Surfaces with b⁺=1

b⁻=9 Dolgachev surfaces $E(1)_{p,q}$ = result of mult. p and q log transforms (p,q rel prime and ≥2)

 $E(1)_{p,q}$ s.c., odd & $b_2=10 \Rightarrow$ homeo to E(1)

<u>Thm</u>. (Donaldson, 1985) $E(1)_{2,3}$ not diffeo to E(1). Friedman, Morgan: $E(1)_{p,q} \cong E(1)_{p',q'} \Leftrightarrow \{p,q\}=\{p',q'\}$

b⁻=8 Barlow surface

homeo to CP²#8CP² not diffeo Kotschick, 1989

Seiberg-Witten Invariants

X : s.c. smooth 4-mfd, b⁺≥1, SW_X \in ZH₂(X) diffeo inv't Only characteristic homology classes can have ≠0 coefficients Ex. SW_{E(2)}=1, SW_{E(3)}=t-t⁻¹

• If X admits +'ve scalar curv metric then SW_X=0

 \Rightarrow SW_{CP²#nCP²}=0 and SW_{S²xS²}=0

- <u>Adj</u> If coeff of k in SW_X ≠0 and Σ emb, g(Σ)>0 w/ Σ . $\Sigma \ge 0$, 2g(Σ)-2 $\ge \Sigma$. Σ +|k. Σ |
- For Kahler surfaces (Witten) and symplectic mfds (Taubes) $b^+>1 \Rightarrow SW_X \neq 0$ (canonical class has coeff ±1)

For b⁺=1, minor complications arising from reducible solutions to SW eq'ns for some metrics. Get inv'ts SW[±] and these determine SW.

Seiberg-Witten Invariants

X : s.c. smooth 4-mfd, b⁺>1, SW_X \in ZH₂(X) diffeo inv't Only characteristic homology classes can have \neq 0 coefficients Ex. SW_{E(2)}=1, SW_{E(3)}=t-t⁻¹

•If X admits +'ve scalar curv metric then SW_X=0

 \Rightarrow SW_{CP²#nCP²}=0 and SW_{S²xS²}=0

- <u>Adj</u> If coeff of k in SW_X ≠0 and Σ emb, g(Σ)>0 w/ Σ . $\Sigma \ge 0$, 2g(Σ)-2 $\ge \Sigma$. Σ +|k. Σ |
- For Kahler surfaces (Witten) and symplectic mfds (Taubes) b⁺>1 ⇒ SW_X≠0 (canonical class has coeff ±1)
 Log transform formula: SW_{Xp} = SW_X.(t^{p-1}+t^{p-3}+...+t^{3-p}+t^{1-p}) where t= multiple fiber; so t^p=fiber
 Works for SW[±] when b⁺=1. Can use to compute SW. E.g. SW_{E(1)23} = t⁻¹-t

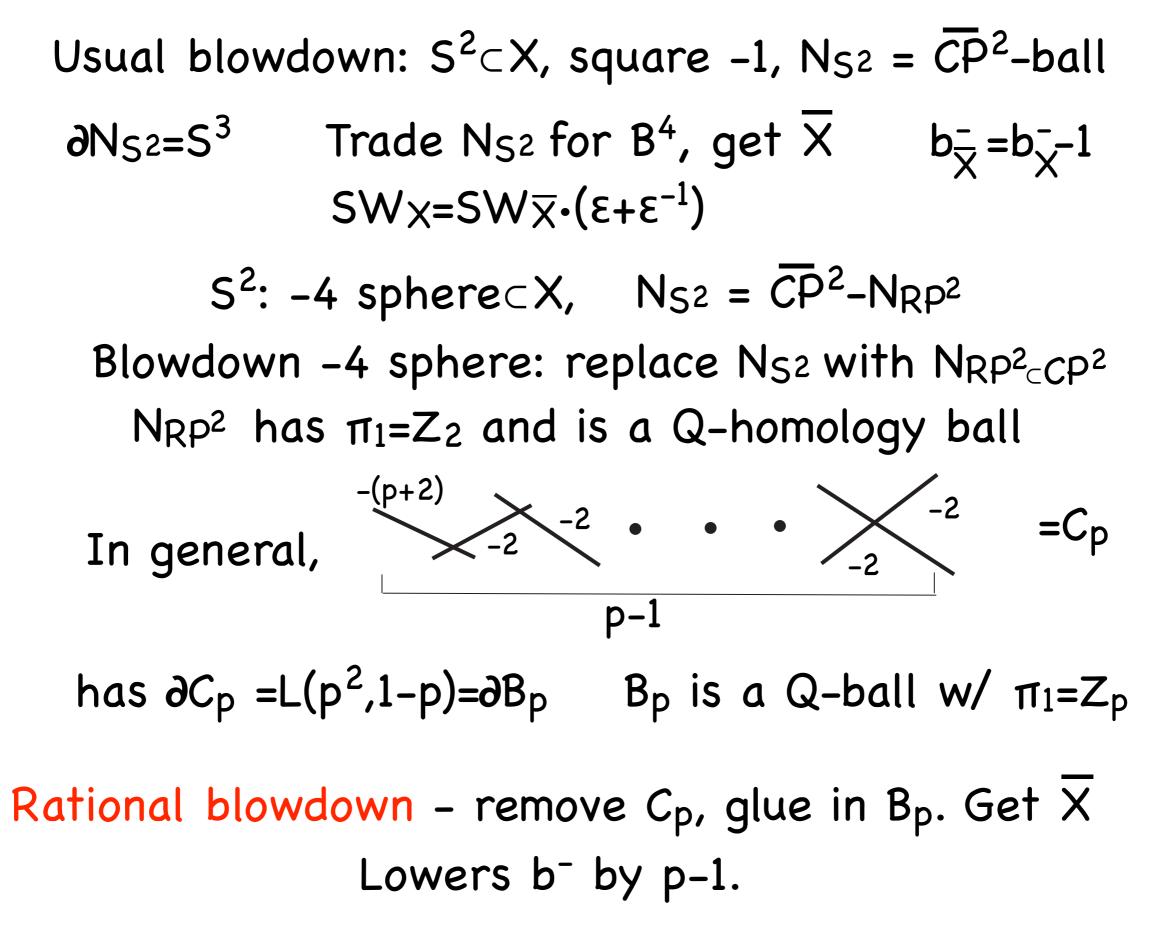
Knot Surgery

T: homologically $\neq 0$, square 0 torus $\subset X$ K: knot in S³ $X_{K}=(X-(TxD^{2}))\cup(S^{1}x(S^{3}-N_{K}))$ glued so that (long. of K) $\leftrightarrow \partial D^{2}$

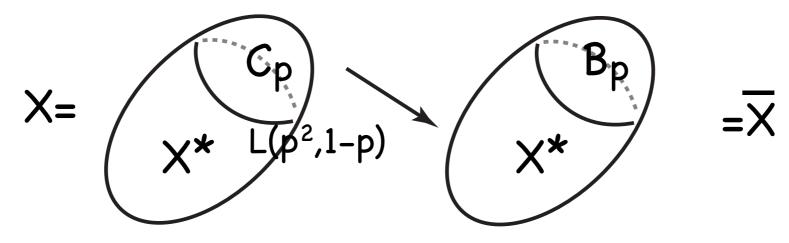
• X_{K:} same int. form as X • $\pi_1(X)=1$ and $\pi_1(X-T)=1 \Rightarrow \pi_1(X_K)=1 \Rightarrow X_K$ homeo to X <u>Knot Surgery Th'm</u> (F-Stern). SW_{XK}=SW_X• $\Delta_K(t^2)$ (b⁺>1) • Works for SW[±] when b⁺=1

Consequence: K=n-twist knot, $SW_{E(1)_{K}}=n(t^{-1}-t)$ \Rightarrow no two diffeo, all homeo to E(1)

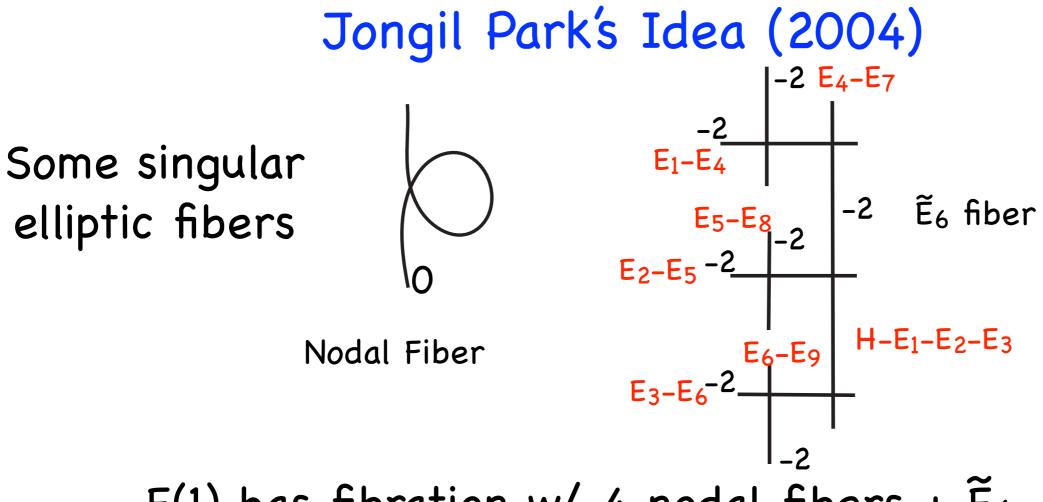
Rational Blowdown



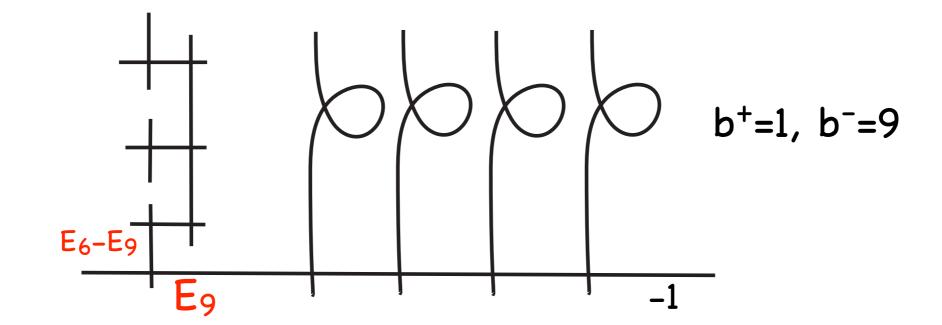
Rational Blowdowns, II

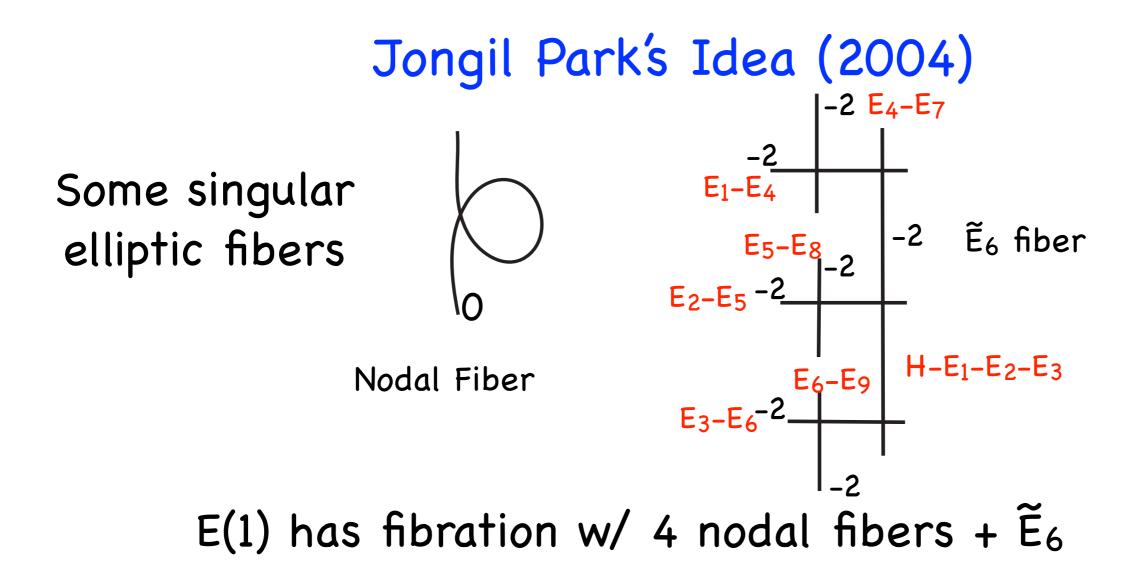


If \overline{k} =char homology class in \overline{X} , \exists lift k in X \ni PD's agree on X* Thm. (F-Stern) Coeff of \overline{k} in SW \overline{X} = Coeff of k in SWX **F-2E**₁ Ex. E_1 Blow $F-2E_1-E_2$ Blow up E(n)#C E(n)#20 Nodal Fiber of E(n) rationally rationally blow down C₂ V blow down C₃ log transform log transform E(n)₃ $E(n)_2$ of mult=3 of mult=2

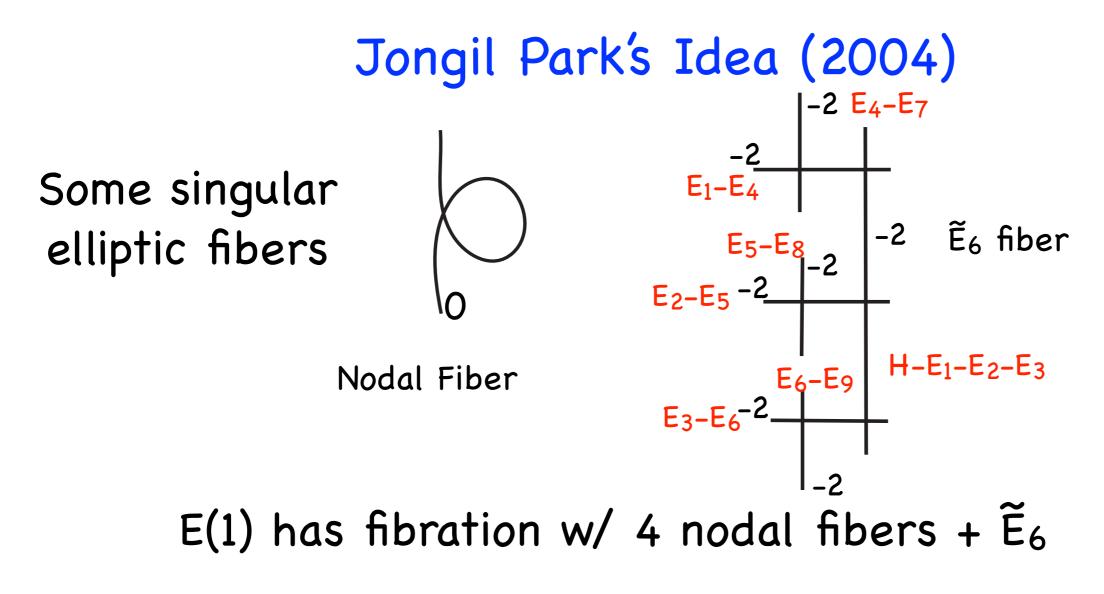


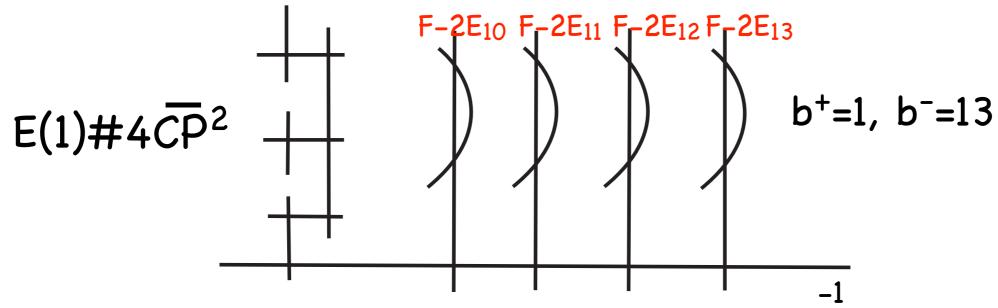
E(1) has fibration w/ 4 nodal fibers + \tilde{E}_6

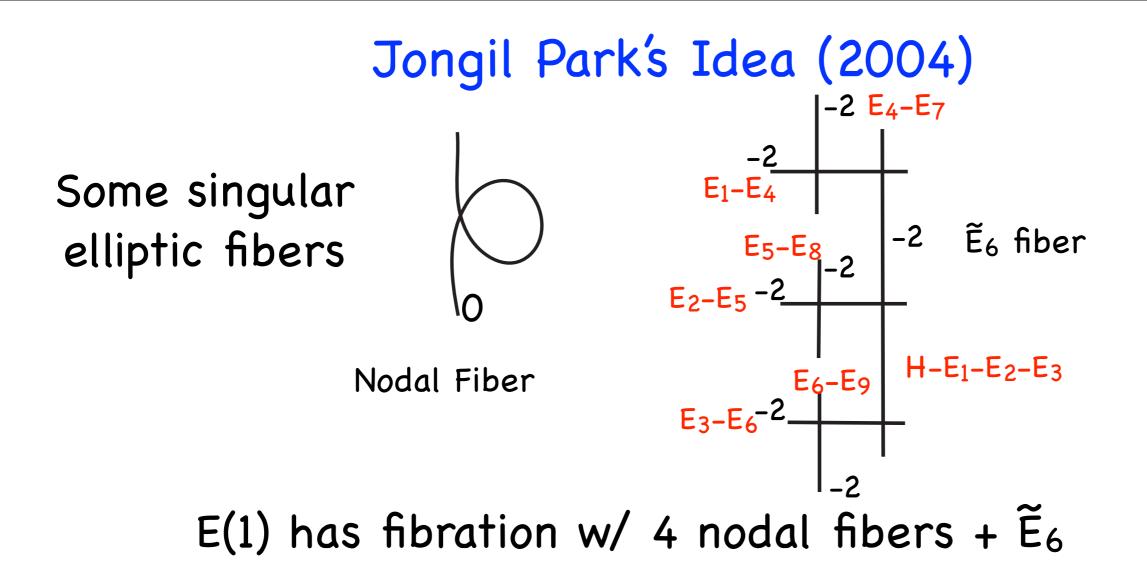




Blow up 4 times

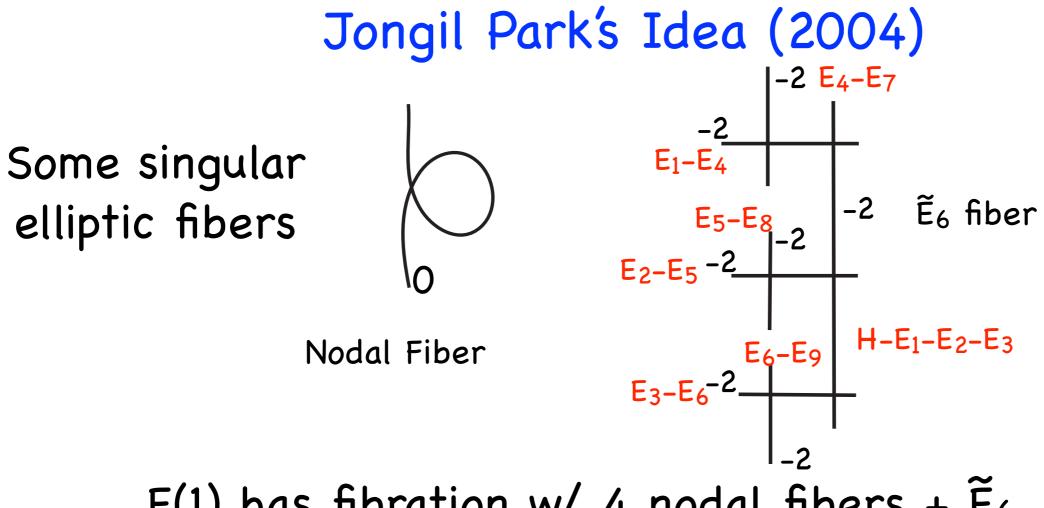






Resolve double points





E(1) has fibration w/ 4 nodal fibers + \tilde{E}_6

Rationally blow down to get Park mfd P b+=1, b-=13-6=7 and simply connected & SW≠0 – an exotic $CP^2 \# 7\overline{CP}^2$

Simply Conn. 4-Mfds w/ $b^+=1 \& b^-=5,6,7$

- P homeo to $CP^2 \# 7\overline{CP}^2$ (& symplectic), $SW_P = t t^{-1}$ (This \Rightarrow minimality by blowup formula)
- (Stipsicz-Szabo) ∃ sympl 4-mfd homeo not diffeo to CP²#6CP² (similar technique)
- (F-Stern) All these examples b⁺=1, b⁻=6,7,8 admit
 ∞'ly many smooth str's
- (J.Park-Stipsicz-Szabo) Same for b⁺=1, b⁻=5
- Cx Surfaces of general type (J. Park & coauthors)
- These techniques do not seem to work for $b^{-}<5$

Simply Conn. 4-Mfds w/ $b^+=1 \& b^- \le 4$

back to surgery on tori, but -

<u>Prop</u>. If $b_X^+=1$, $b_X^-\le 8$, SW_X≠0, \nexists essential torus of square 0 in X.

- If k has a nonzero coeff in SW_X, adjunction ≠ ⇒ k.T=0. But T²=0, k²≥c₁²>0 gives contra. by Cauchy-Schwarz ≠.
- If we could surger an essential torus (log transf or knot surgery)of square 0 in a mfd with b⁺=1 and b⁻≤8 to get SW≠0, we would be in the situation above.

So we need to work with nullhomologous tori.

The Morgan, Mrowka, Szabo Surgery Formula $T \subset X$: torus of square O NT=nbd, $\partial N_T = T^3$ basis $\alpha, \beta, \gamma = \partial D^2$ for H₁(∂N_T) $\begin{aligned} X_{\{p,q,r\}} = & (X-N_T)_{\phi_{pqr}} (T^2 x D^2) \\ & \text{where } (\phi_{pqr})_{*} [\partial D^2] = p \alpha + q \beta + r \gamma \\ & \text{Write } SW_{X_{\{p,q,r\}}}(k_{pqr}) \end{aligned}$ for the coefficient of k_{pqr} in SW $X_{\{p,q,r\}}$ M-M-Sz Formula: $\Sigma SW_{X_{p,q,r}}(k_{pqr}) =$ $p\Sigma SW_{X_{\{1,0,0\}}}(k_{100})+q\Sigma SW_{X_{\{0,1,0\}}}(k_{010})+r\Sigma SW_{X_{\{0,0,1\}}}(k_{001})$ " $SW_{X_{\{p,q,r\}}} = pSW_{X_{\{1,0,0\}}} + qSW_{X_{\{0,1,0\}}} + rSW_{X_{\{0,0,1\}}}$ "

The Morgan, Mrowka, Szabo Surgery Formula $T \subset X$: torus of square O NT=nbd, $\partial N_T = T^3$ basis $\alpha, \beta, \gamma = \partial D^2$ for H₁(∂N_T) $\begin{array}{l} X_{\{p,q,r\}}=(X-N_{T})\cup_{\phi_{pqr}}(T^{2}xD^{2}) \\ & \text{where }(\phi_{pqr})_{*}[\partial D^{2}]=p\alpha+q\beta+r\gamma \\ \text{Write }SW_{X_{\{p,q,r\}}}(k_{pqr}) \end{array}$ for the coefficient of k_{pqr} in SW $X_{\{p,q,r\}}$ M-M-Sz Formula: $\Sigma SW_{X_{p,q,r}}(k_{pqr}) =$ $p\Sigma SW_{X_{\{1,0,0\}}}(k_{100})+q\Sigma SW_{X_{\{0,1,0\}}}(k_{010})+r\Sigma SW_{X_{\{0,0,1\}}}(k_{001})$ " $SW_{X_{\{p,q,r\}}} = pSW_{X_{\{1,0,0\}}} + qSW_{X_{\{0,1,0\}}} + rSW_{X_{\{0,0,1\}}}$ " • $X_{\{0,0,1\}} = X$, and $X_{\{1,0,0\}}$ and $X_{\{0,1,0\}}$ are results of $S^1 \times O$ -surgeries

Using the M-M-Sz Formula

Ex: Want to construct exotic smooth str's on $CP^2 \# n\overline{CP}^2$ Need to find useful nullhomologous torus T in mfd with b⁺=1, b⁻=n, $\pi_1=0$

(0,k,1)-surgery = $S^1x(1/k-Dehn surgery)$ has same homology as X if $\beta=0$ in H₁(X-T), and $SW_{X_{\{0,k,1\}}} \sim kSW_{X_{\{0,1,0\}}} + SW_{X_{\{0,0,1\}}=X}$ O-surgery

⇒ If O-surgery on T wrt correct circle has SW≠O, we get ∞'ly many distinct mfds How to achieve this?

Surgery on Tori **(b) (a)** $T' \subset X' \quad \alpha', \beta', \gamma' = \partial D^2$ $T \subset X \quad \alpha, \beta, \gamma = \partial D^2$ T' primitive T nullhomologous $\gamma'=0$ in $H_1(X'-N_{T'})$ $\gamma \neq 0$ in $H_1(X-N_T)$ $\beta' \neq 0$ in $H_1(X' - N_T')$ $\beta=0$ in $H_1(X-N_T)$ (0,1,1) surgery $\beta' + \gamma' \leftrightarrow \gamma$ $\gamma' \leftrightarrow \beta$ $\beta' \leftrightarrow -\beta + \gamma$ $\gamma' \leftrightarrow \beta$ (0,1,0) surgery $b_1(X)=b_1(X')-1$ $SW_{X_{0,k,1}} = kSW_{X'}+SW_{X}$ Provides ∞-family in case SW_X'≠0

Lagrangian Surgery

X': sympl 4-mfd, T': Lagrangian torus in X' Preferred framing for T': Lagrangian framing

1/k-surgeries w.r.t. this framing are again symplectic. (Auroux, Donaldson, Katzarkov) (Sometimes referred to as "Luttinger surgery")

This is how we can assure $SW_{X'}\neq 0$.

Reverse Engineering

Want to construct exotic smooth str's on \hat{X} .

(1) Find `model mfd' M which is sympl w/ same e and sign as \hat{X} , but with $b_1 \neq 0$.

(2) Find b_1 disjoint Lagrangian tori in M containing gen's of H_1

(3) Perform Luttinger surgeries on these tori, killing these gen's of H1.

(4) Result is sympl. mfd X with same e, sign as M, but
 with b₁ =0, H₂ reduced by b₁ hyp pairs, and
 X contains a useful nullhomologous torus T.

(5) Get lucky, and compute $\pi_1(X)=0$.

Get ∞ family if all 1/k-surgeries are s.c.

$CP^2#3\overline{CP}^2$

Model mfd: $M=Sym^2\Sigma_3$ same e & sign as $CP^2#3\overline{CP}^2$ $\pi_1(M)=H_1(\Sigma_3)$ (b₁=6)

Has disjoint Lagrangian tori carrying basis for H_1

Six Lagr. +1-surgeries give sympl mfd X with $\pi_1(X)=0$ SW_X ≠0 $\Rightarrow X \neq CP^2 \# 3\overline{CP}^2$

> Nullhomologous torus T⊂X & 1/k-surgeries give ∞ family

Baldridge-KirkTheir models constructedAkhmedov-Parkby cut-and-paste

How to find model manifolds

- Find appropriate Kahler surface (as in last example)
- Construct via cut-and-paste.

(Akhmedov and Park do this to construct exotic $CP^2 # 2CP^2$'s)

 Santeria Surgery – Find a useful nullhomologous torus directly in a standard mfd
 (Stern and I have shown how to do this in CP²#nCP² for 2≤n≤7.)

The Canonical Class

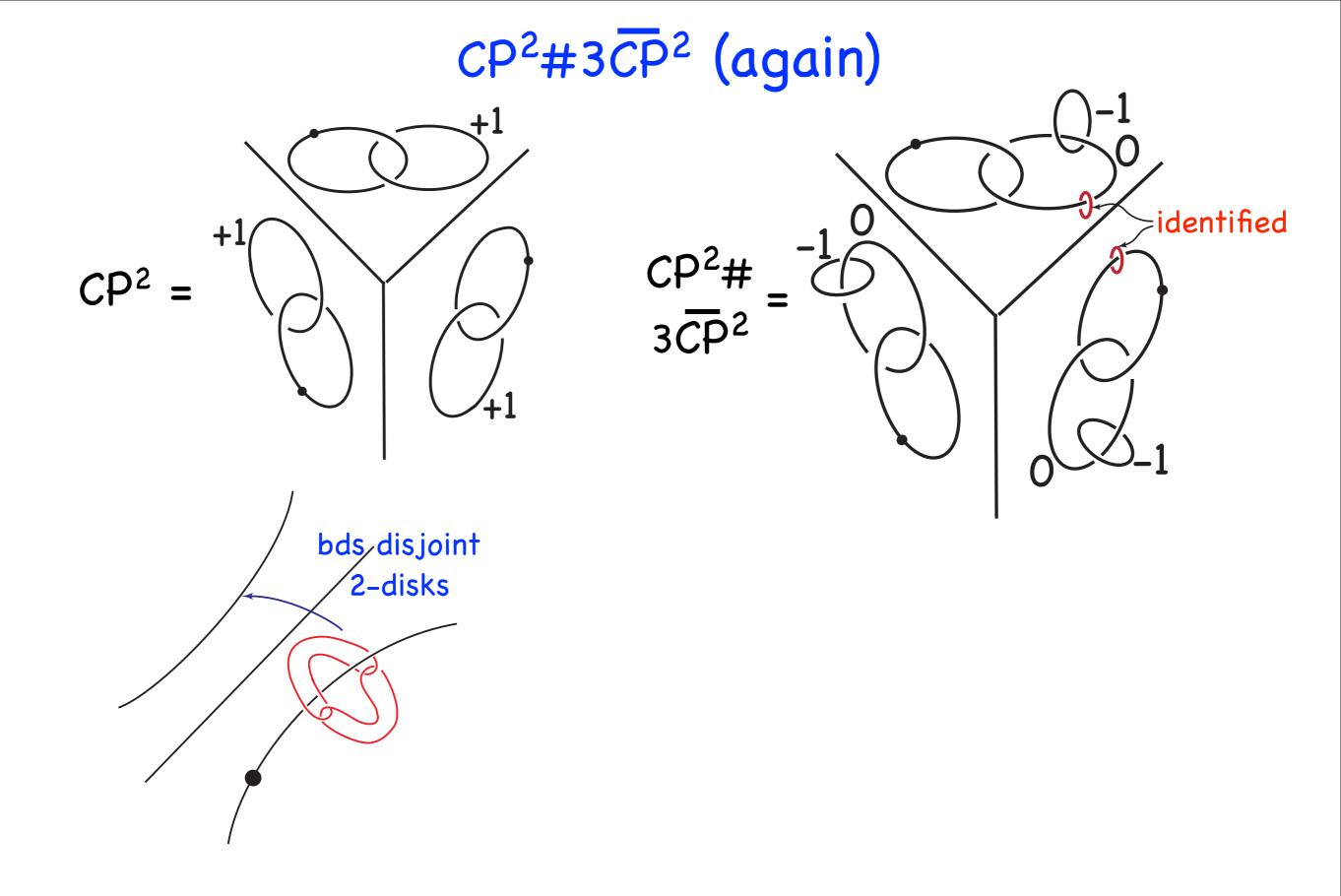
Rational surface: CP²#nCP², K=-3H+E₁+...+E_n say 0≦n<9, so c₁²>0.

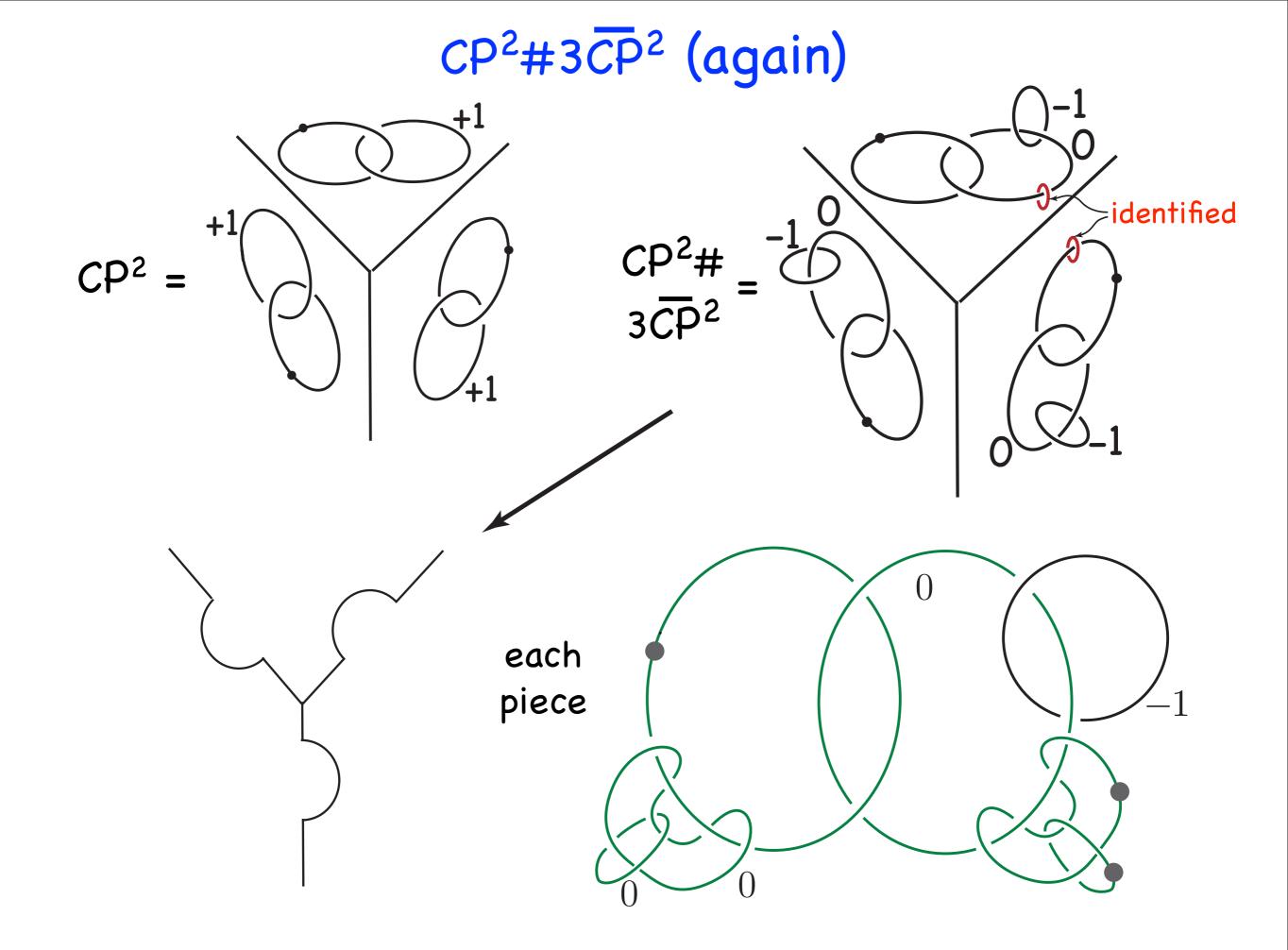
K not holo, <u>-K is</u>. K rep by torus

Seek exotic sympl. mfd X homeo to $CP^2#n\overline{CP}^2$ with K_X pseudoholo.

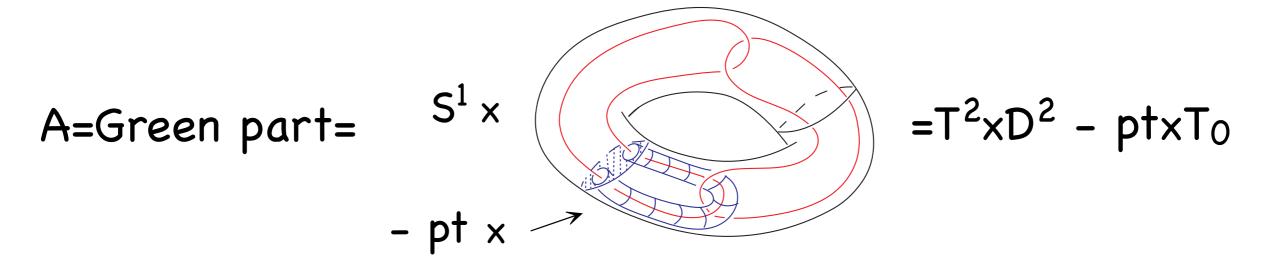
Adj formula would $\Rightarrow K_X$ rep. by surface of genus 10-n (not a torus)

Need to look for tori to surger in $CP^2 # n \overline{CP}^2$ such that genus of K is "forced up"





Bing Tori



contains pair of "Bing tori"

 $K_{CP^2#3CP^2}$ intersects this in pair of normal disks Surgery on both Bing tori forces genus of K up by 2. Do all 6 surgeries to get sympl mfd $\cong CP^2#3CP^2$ and SW $\neq 0$ – and genus(K)=1+6=7

•One surgery will suffice •Similar constr of exotic $CP^2 # 2\overline{CP}^2$

Moral: Look for useful emb's of A.

Current State of Affairs

- \exists exotic smooth str's on $CP^2 \# n\overline{CP}^2$, $2 \le n \le 9$
- ∃ exotic smooth str's on CP²#nCP², n≥10 (but no examples minimal, and c₁²<0 for these)
 Open: CP², CP²#CP², S²xS²
- \exists proposed examples for $S^2 \times S^2$ but π_1 calculation incorrect These use reverse eng. with model $M=\Sigma_2$ bundle over Σ_2 $\Rightarrow M$ aspherical

<u>Conjecture</u>: The result of Lagrangian (i.e. Luttinger) surgery on a symplectically aspherical 4-mfd is again sympl. asph. ($\Rightarrow \pi_1$ infinite).

(Very) Optimistic Conj. Every s.c smooth 4-mfd can be obtained from surgery on tori in a conn. sum of copies of S^4 , CP^2 , \overline{CP}^2 , and S^2xS^2 .