
CONSTRUCTION OF THE RING OF WITT VECTORS

HENDRIK LENSTRA

I will describe a functor A 7→ W (A) from the category of commutative
rings to itself. The ring W (A) of ‘Witt vectors’ over A has many applica-
tions (to algebraic geometry, local rings, etc.), but I won’t discuss those.
Convention: rings have 1’s that are respected by ring homomorphisms. By
A I will always denote a commutative ring.

The literature on the functor W is in a somewhat unsatisfactory state:
nobody seems to have any interest in Witt vectors beyond applying them for
a purpose, and they are often treated in appendices to papers devoting to
something else; also, the construction usually depends on a set of implicit or
unintelligible formulae. Apparently, anybody who wishes to understand Witt
vectors needs to construct them personally. That is what is now happening
to myself.

One may compare the construction of W (A) to the construction of the
polynomial ring A[X]: the ring operations in the latter are also defined by
formulae, but those are both explicit and intelligible. In addition, A[X] can
be thought of in a conceptual way: it is an A-algebra that represents the
forgetful functor from the category of A-algebras to the category of sets. It is
quite possible that W (A) also represents some functor, and that this helps in
constructing W ; but I never saw a satisfactory treatment along these lines.
For W (A), the arrows run in the opposite direction: A is a W (A)-algebra
rather than the other way around, and if W (A) represents a functor then
most likely it is a contravariant one.

If the only available way to construct W is by implicit formulae, then
one is doomed to using those formulae whenever one wishes to prove any
result about Witt vectors. The theory as found in the literature is indeed
formula-ridden.

My treatment depends also on a formula (see (ii) below), but it is both
explicit and intelligible. One may be hopeful that my approach will pass
the test of allowing a smooth development of the entire theory of Witt
vectors. For example, one can use it to construct an important morphism
W →W ◦W that turns each W (A) into a ‘lambda-ring’.

I start by defining a ring Λ(A) that is isomorphic to W (A), the only
difference being notational. Let A[[T ]] be the ring of power series in one
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indeterminate T over A. Let the A-algebra homomorphism A[[T ]]→ A map
T to 0, and hence any power series to its constant coefficient. It induces a
homomorphism A[[T ]]∗ → A∗ on the unit groups, and I define

Λ(A) = ker(A[[T ]]∗ → A∗) = 1 + TA[[T ]].

This is a multiplicative group, and Λ is a functor from the category of
commutative rings to the category of abelian groups. The multiplication on
Λ(A) will serve as the “addition” in a new ring structure to be defined on
Λ(A).
Theorem. There is a unique system of maps

∗ = ∗A : Λ(A)× Λ(A)→ Λ(A),

one for each commutative ring A, such that:
(i) ∗ is left and right distributive with respect to ×;
(ii) for all A and all a, b ∈ A, one has

(1− aT )−1 ∗ (1− bT )−1 = (1− abT )−1;

and
(iii) ∗A is functorial in A; that is, for each homomorphism f : A→ B of

commutative rings, the diagram

Λ(A)× Λ(A)
∗A //

(Λ(f), Λ(f))
��

Λ(A)

Λ(f)
��

Λ(B)× Λ(B)
∗B // Λ(B)

commutes.
For each A, the map ∗A is T -adically continuous and makes Λ(A) into a

commutative ring with addition ×, multiplication ∗ and unit element (1 −
T )−1.

Finally, Λ is a functor from the category of commutative rings to itself.
The elements occurring in (ii) are sums of geometric progressions:

(1− aT )−1 =
∑∞

i=0a
iT i.

Thus, on elements of this form, the operation ∗ is given by coefficientwise
multiplication, the “Hadamard product”.

The unit element (1− T )−1 has all coefficients equal to 1. One finds also
other normalizations in the literature, leading to unit element 1− T (invert
all elements of Λ(A)) or 1 + T (substitute −T for T ). My convention keeps
the formulae simple, and leads for zeta functions of varieties X, Y over a
finite field k to the pleasing formula Z(X ×k Y/k) = Z(X/k) ∗Z Z(Y/k).

I now first prove existence of the operations ∗A. For each n ≥ 0, put

Λn(A) = ker
(
(A[T ]/(Tn+1))∗ → A∗

)
(by the map T 7→ 0), so that one has Λ(A) = lim←−n

Λn(A). Define

Mn(A) ⊂ Λn(A)
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to be the subgroup of Λn(A) generated by {1 − aT : a ∈ A}. The strategy
is to first make each Mn(A) into a ring, next extend the ring structure to
Λn(A) (this will require varying A), and finally pass to Λ(A) by taking the
projective limit.
Lemma 1. For each commutative ring A and non-negative integer n, the
abelian group Mn(A) has a unique composition ∗A satisfying property (ii)
and making Mn(A) into a commutative ring; also, Mn is a functor from the
category of commutative rings to itself, and the natural maps Mn+1 → Mn

are morphisms of functors.
Example. The map A→M1(A) sending a to 1 + aT (mod T 2) is bijective,
and the ring structure on M1(A) makes it into an isomorphism of rings.

Proof. For a ∈ A, the A-algebra endomorphism

A[T ]/(Tn+1)→ A[T ]/(Tn+1)
T 7→ aT

induces an element ϕa of the endomorphism ring End Λn(A) of Λn(A).
Clearly one has ϕaϕb = ϕab for a, b ∈ A. Hence, if E ⊂ EndΛn(A) denotes
the additive subgroup generated by {ϕa : a ∈ A}, then E is a commutative
subring of EndΛn(A). The natural action of E on Λn(A) makes Λn(A) into
an E-module, and I write the action exponentially.

The map

E → Λn(A)

e 7→ (1− T )−e

is an E-module homomorphism that sends ϕa to (1− aT )−1. The image of
this E-module homomorphism is Mn(A), since it is generated by the images
of generators. The kernel is a left ideal I of E, and one obtains a group
isomorphism

E/I 'Mn(A).
Since E is commutative, I is a two-sided ideal of E, so E/I has a ring
structure. One can now transport the ring structure from E/I to Mn(A).
All assertions in the lemma are then straightforward to verify. �

Next I pass from Mn(A) to Λn(A). It would be convenient if every monic
polynomial over A were a product of linear factors, since then one had
identities like

1 + a1T + · · ·+ anTn = (1− α1T )(1− α2T ) . . . (1− αnT ),

showing that Λn(A) = Mn(A). This is true, for example, if A is an alge-
braically closed field. Also for A = R one can show that Λn(A) = Mn(A).
In general one must vary the ring.
Lemma 2. For each A, there is an A-algebra A such that

(i) for all n, one has Λn(A) = Mn(A);
(ii) as an A-module, A has a basis containing the unit element.
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From (ii) one sees that A is free as an A-module, and that the map from
A to A is injective.

The lemma is much stronger than what I need. It would be enough to
show that for each n and for each finite subset F ⊂ Λn(A) there exists a
faithfully flat A-algebra AF,n with F ⊂Mn(AF,n).

Proof. Let
M(A) = {f ∈ A[X] : f monic, deg f > 0}

and put

A′ =
⊗

f∈M(A)

A[X]/(f) = A[Xf : f ∈M(A)]/
(
f(Xf ) : f ∈M(A)

)
.

Every f ∈ M(A) has the linear factor X − αf in A′[X], where αf denotes
the image of Xf in A′. Also, the collection of elements

∏
f∈M(A) α

i(f)
f with

0 ≤ i(f) < deg f for all f and i(f) = 0 for almost all f , is a basis for A′ as
an A-module, so A ⊂ A′. Repeating the construction, write A′′ = (A′)′, and
inductively A(n) = (A(n−1))′ (where A(0) = A). It is now routine to verify
that the A-algebra

A = lim−→
n

A(n)

has the properties stated in the lemma. �

There are many ways of making other rings that do the job just as well,
but the following lemma shows that there is no reason to care about this at
all.
Lemma 3. Let A ⊂ B be commutative rings, n ≥ 0, and let u, v ∈ Λn(A)
be such that u, v ∈ Mn(B). Then u ∗B v and u ∗A v lie in Λn(A) and are
equal.

Proof. If B ⊂ C, then u∗B v = u∗C v since ∗ is functorial. Choose C = B⊗A

A. Since one can write A =
⊕

i∈I Aei with e0 = 1, one has C =
⊕

i∈I Bei.
From this one sees that there are inclusions B,A ⊂ C, and that inside C one
has B ∩A = A (elements of B can only at e0 have a non-zero coefficient).

Therefore one has u ∗B v = u ∗C v = u ∗A v, and this element lies in
Λn(B) ∩ Λn(A) = Λn(A). �

Since a ring B as in the lemma exists for every n, u, v (take for example
B = A), one concludes that Λn(A) is a subring of Λn(A) for every n. This
gives a ring structure on Λn(A). It is functorial in A; that is, if f : A → B
is a homomorphism of commutative rings, then the map Λn(A) → Λn(B)
induced by f is a ring homomorphism. To prove this, let u, v ∈ Λn(A).
Then u, v are in Mn(A), so the images ũ and ṽ of u and v in Λn(B) are in
Mn(B⊗A A). Applying Lemma 3 to the inclusion B ⊂ B⊗A A in the role of
A ⊂ B, one sees that the product ũ ∗B ṽ can be computed in Mn(B ⊗A A);
since Mn is a functor one concludes that this product equals the image of
u ∗A v = u ∗A v in Λn(B), as required.
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Each Λn is a functor from the category of commutative rings to itself,
and the natural maps Λn+1 → Λn are morphisms of functors. Thus Λ(A) =
lim←−n

Λn(A) now gets a ring structure. This proves the existence part of the
theorem, and also shows the additional properties of ∗A. The only thing left
to prove is uniqueness.
Lemma 4. Let I and J be sets, and let

ϑA : AI → AJ

be a map, one for each commutative ring A, functorial in A. Then each ϑA

is continuous (where A has the discrete topology and AI and AJ the product
topologies); more precisely, for each j ∈ J there is a finite subset Ij ⊂ I
such that for all A there exists a commutative diagram

AI
ϑA //

πIj

��

AJ

πj

��
AIj //___ A,

the vertical maps being the obvious projections.

Proof. The functor −I (taking A 7→ AI) from the category of commutative
rings to the category of sets is isomorphic to the functor Rhom(Z[Xi : i ∈
I],−) (taking A to the set of ring homomorphisms Z[Xi : i ∈ I] → A). By
Yoneda’s lemma, the system of maps ϑA corresponds to a ring homomor-
phism Z[Xi : i ∈ I] ← Z[Xj : j ∈ J ]. Lemma 4 now comes down to the
statement that for every j ∈ J there is a finite subset Ij ⊂ I such that the
image of Xj is in the subring Z[Xi : i ∈ Ij ] of Z[Xi : i ∈ I], and this is
clear. �

To prove the uniqueness statement in the theorem, suppose that # = #A :
Λ(A) × Λ(A) → Λ(A) satisfies conditions (i), (ii), and (iii). Applying the
lemma to ϑA = #A, with J = Z>0 and I equal to the disjoint union of two
copies of Z>0, one sees that #A is T -adically continuous. Let M(A) ⊂ Λ(A)
be the subgroup generated by {1 − aT : a ∈ A}. Then # and ∗ agree on
M(A)×M(A) by (ii) and (i), and since Λ(A) is Hausdorff, they also agree
on M(A)×M(A); here M(A) denotes the closure of M(A) in Λ(A), which
equals lim←−n

Mn(A). Applying this result to A one sees that # = ∗ on Λ(A)
and hence on the subring Λ(A). This completes the proof of the theorem.

By way of exercises I list some identities in Λ(A).
(1) For all a ∈ A and u ∈ Λ(A) one has (1− aT )−1 ∗ u = u(aT ); i.e.(∑∞

i=0a
iT i

)
∗

(∑∞
i=0biT

i
)

=
∑∞

i=0a
ibiT

i

(the Hadamard product!). From this one can deduce that the ideal
I occurring in the proof of Lemma 1 is 0.
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(2) For a1, a2, b1, b2 ∈ A one has

(1 + a1T + a2T
2) ∗ (1 + b1T + b2T

2)

= 1 + a1b1T +
(
a2b2 + (a2 − a2

1)(b2 − b2
1)

)
T 2

in Λ2(A). Also, one has Λ2(A) = M2(A).

(3) Let m,n be positive integers, and put l = lcm(m,n), g = gcd(m,n).
Then for a, b ∈ A, one has

(1− aTm)−1 ∗ (1− bTn)−1 =
(
1− al/mbl/nT l

)−g
.

Equivalently: if two collections of α’s and β’s satisfy

Xm − a =
∏

α(X − α), Xn − b =
∏

β(X − β),

then one has∏
α,β(X − αβ) = (X l − al/mbl/n)g.

This is particularly easy to see if A is a field of characteristic 0.

(4) For relatively prime positive integers m, n one has

(1− Tm)n

1− Tmn
∗ (1− Tn)m

1− Tmn
= 1.

This is best understood through an interpretation of Λ(Z) as a Burn-
side ring. Taking m = 14, n = 15 one concludes that Λ(A) is not a
domain for any A.

To conclude, I exhibit the relationship between the given construction of
Witt vectors and the standard one.

Define the maps γn : Λ(A)→ A by

Tu′

u
=

∞∑
n=1

γn(u)Tn

where u′ is the formal derivative of u with respect to T .
Proposition. Each γn is a ring homomorphism, functorial in A. The ring
structure on the set Λ(A) is characterized by being functorial in A and all
γn being ring homomorphisms.

Proof. It is well-known that the logarithmic derivative u 7→ u′/u transforms
multiplication into addition. For u = (1− aT )−1 one has

Tu′

u
=

aT

1− aT
so

γn((1− aT )−1) = an.

This is multiplicative in a, so on elements of the form (1 − aT )−1 each
γn transforms ∗ into multiplication. Using functoriality and continuity one
concludes that it gives a ring homomorphism. As for the last statement,
with Yoneda’s lemma one reduces the proof to the case of polynomial rings
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over Z, and one uses that for those rings the map u 7→ Tu′/u is injective;
the details are left to the reader. �

Lemma 5. For each commutative ring A, the maps
n∏

m=1

A→ Λn(A)

(am)n
m=1 7→

n∏
m=1

(1− amTm)−1

for n = 0, 1, 2, . . . as well as the map

ϕ :
∞∏

m=1

A→ Λ(A)

(am)m≥1 7→
∏
m≥1

(1− amTm)−1

are bijective.
The proof is routine.
I can now relate the standard definition of W (A) to the construction

given.

Definition. The Witt ring W (A) is the set
∏

m≥1 A with ring structure v +
w = ϕ−1(ϕ(v)ϕ(w)), vw = ϕ−1(ϕ(v) ∗ ϕ(w)), where ϕ is as in Lemma 5.

Here is a diagram in the category of commutative rings that is important
in the theory of Witt vectors:

W (A)

��

∼ // Λ(A)

��∏∞
n=1 A

∼ // TA[[T ]].

The top horizontal map is ϕ. The right vertical map sends u to Tu′/u; by
the proposition, it is a ring homomorphism if TA[[T ]] has the usual addition
and Hadamard multiplication. The bottom horizontal map sends (an)n≥1

to
∑∞

n=1 anTn; it is a ring isomorphism if
∏∞

n=1 A has componentwise ring
operations. The left vertical map is defined by the commutativity of the
diagram. By a straightforward computation, it sends (an)∞n=1 to (a(n))∞n=1,
where the “ghost components” a(n) are given by

a(n) =
∑
d|n

da
n/d
d .

By the proposition, the ring structure on W (A) is characterized by functori-
ality and by the ghost components being ring homomorphisms W (A)→ A.
This is often taken as the definition of W (A).


