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Abstract. In this paper profinite integers and profinite Fibonacci numbers are described, and some of their

properties are discussed. In particular, profinite integers s are considered that are equal to the sth Fibonacci
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The nth Fibonacci number is, for n ≥ 0, inductively defined by F0 = 0, F1 = 1 and

(1) Fn = Fn−1 + Fn−2

for n > 1. It is well known that the definition can be extended to negative n by Fn =

(−1)n−1F−n, and that many familiar identities, such as (1) and

(2) FnFm+1 − Fn+1Fm = (−1)m · Fn−m,

then hold for all integers n and m.

The definition of Fn can be extended to an even larger class of numbers, the profinite

integers. To define profinite integers, recall that any positive integer n has a unique

representation as

n = ck · k! + ck−1 · (k − 1)! + . . . + c2 · 2! + c1 · 1!,

where the “digits” ci are integers satisfying ck 6= 0 and 0 ≤ ci ≤ i, for 1 ≤ i ≤ k. In the

factorial number system, the number n is then written as

(3) n = (ckck−1 . . . c2c1)!.
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The exclamation mark distinguishes this representation from the decimal representation.

For example, we have 5 = (21)! and 25 = (1001)!.

If we allow the sequence of digits to extend indefinitely to the left, then we obtain a

profinite integer:

(. . . c5c4c3c2c1)!,

where we still require that 0 ≤ ci ≤ i for each i. Usually, only a few of the digits

are specified, depending on the accuracy that is required. In this paper, most profinite

numbers are given to an accuracy of 24 digits. For example, we shall encounter the following

profinite integer:

(4) l = (. . . 1604161318104768101049000120100)!.

In this number, the 19th digit has the value 18, but this is written 18 in order to make

clear that it is a single digit. Note that by the 19th digit we mean the 19th digit from

behind. Likewise, when we speak about the “first” digits or the “initial” digits of a profinite

number, we always start counting from the right.

Each positive integer n as in (3) can be viewed as a profinite integer, by taking ci = 0

for i > k. Also 0 is a profinite integer, with all digits equal to 0. The negative integers

can be viewed as profinite integers as well, for example

−1 = (. . . 242322212019181716151413121110987654321)!,

with ci = i for all i. In general, negative integers are characterized by the property that

ci = i for all but finitely many i.

The ordinary arithmetic operations can be performed on profinite integers. To add

two profinite integers, one adds them digitwise, proceeding from the right; when the sum

of the ith digits is found to exceed i, one subtracts i + 1 from it and adds a carry of

1 to the sum of the i + 1st digits. The reader can check that in this way one finds that

1+(−1) = 0. Subtraction is performed in a similar manner. Multiplication can be done by

means of a more elaborate scheme, but it is often more practical to compute products using

the following rule: for each k, the first k digits of the product of two profinite numbers s

2



and t depend only on the first k digits of s and of t. (This rule is also valid for addition

and subtraction.) Using this rule, one reduces the problem of computing products to the

case of ordinary positive integers.

These operations make the set of all profinite integers into a commutative ring with

unit element 1. This ring is denoted Ẑ, the ring of profinite integers.

For each profinite integer s, one can in a natural way define the sth Fibonacci number

Fs, which is itself a profinite integer. Namely, given s, one can choose a sequence of positive

integers n1, n2, n3, . . . that have more and more initial digits in common with s, so that

it may be said that ni converges to s for i → ∞. Then also the numbers Fn1 , Fn2 , Fn3 ,

. . . get more and more initial digits in common, and we define Fs to be their “limit” as

i →∞. This does not depend on the choice of the sequence of numbers ni.

For example, we can write s = −1 as the limit of the numbers n1 = (21)! = 5,

n2 = (321)! = 23, n3 = (4321)! = 119, n4 = (54321)! = 719, . . . , so that F−1 is the limit of

F5 = 5 = (21)!,

F23 = 28657 = (5444001)!,

F119 = 3311648143516982017180081

= (58261411810151323418173200001)!,

F719 = (. . . 3161698161251111431149806000001)!,

. . . ,

which is consistent with the true value F−1 = 1 = (. . . 000001)!.

For each k ≥ 3 the first k digits of Fs are determined by the first k digits of s. This

rule makes it possible to compute profinite Fibonacci numbers, as we shall see below.

Many identities such as (1) and (2) are also valid for profinite Fibonacci numbers. In

order to give a meaning to the sign that appears in (2), we call a profinite integer s even or

odd depending on whether its first digit c1 is even or odd, and we define (−1)s = 1 or −1

accordingly. More generally, one defines a profinite integer s to be divisible by a positive

integer b if the factorial number formed by the first b− 1 digits of s is divisible by b. For

many b, it suffices to look at far fewer than b−1 digits. For example, if k is a non-negative

integer, then a profinite integer is divisible by k! if and only if its k − 1 initial digits are
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zero. Two profinite numbers s1 and s2 are called congruent modulo a positive integer b if

their difference is divisible by b, notation: s1 ≡ s2 mod b.

The following method can be used to compute profinite Fibonacci numbers. Let s be

a profinite number, and suppose that one wishes to compute the sth Fibonacci number Fs

to an accuracy of k digits, for some k ≥ 3. Then one first truncates s to k digits, which

gives a non-negative integer n that is usually very large. By the rule mentioned above, Fs

and Fn have at least k initial digits in common, so it suffices to calculate Fn to a precision

of k digits. To this end, let ϑ be a symbol that satisfies the rule ϑ2 = ϑ+1. Then it is well

known that ϑn = Fnϑ + Fn−1. The left hand side can be quickly calculated by induction,

even for very large n, if one uses that ϑ2m = (ϑm)2 and ϑ2m+1 = ϑ2m ·ϑ. All intermediate

results are expressed in the form aϑ+b, where a and b are integers that are only computed

to a precision of k digits in the factorial number system. Then in the end one knows Fn

to a precision of k digits as well, as required.

The Lucas numbers Ln, which are defined by L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2

(n > 1), can be generalized to profinite numbers in a completely similar manner. They can

be expressed in Fibonacci numbers by Ls = Fs+1 + Fs−1. It is also true that FsLs = F2s

for all s ∈ Ẑ; however, it is not necessarily meaningful to write Ls = F2s/Fs, since division

is not always possible in Ẑ.

One of the interesting properties of profinite Fibonacci numbers is that they have

power series expansions. If s0 ∈ Ẑ, then the power series expansion for Fs around s0 takes

the shape

(5)

Fs = Fs0 + lLs0(s− s0) + 5l2Fs0

(s− s0)2

2!

+ 5l3Ls0

(s− s0)3

3!
+ 52l4Fs0

(s− s0)4

4!
+ . . .

=
∞∑

i=0

(
5il2iFs0

(s− s0)2i

(2i)!
+ 5il2i+1Ls0

(s− s0)2i+1

(2i + 1)!

)
,

where l is a certain profinite integer that is given by (4). The number l is divisible by

all prime numbers except 5. From this it follows that 5il2i and 5il2i+1 are divisible by

(2i)! and (2i + 1)!, respectively, so that the coefficients in the power series expansions are

profinite integers.
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No prime number p is known for which l is divisible by p2. In fact, if p is a prime

number, then the number of factors p in l is the same as the number of factors p in

Fp−1Fp+1, and no prime number is known for which Fp−1Fp+1 is divisible by p2. One

may, however, conjecture that there exist infinitely many such primes.

An informal derivation of (5) can be given as follows. Let again ϑ be such that

ϑ2 = ϑ + 1, and put ϑ′ = 1 − ϑ. It is well known that Fn = (ϑn − ϑ′n)/(ϑ − ϑ′) and

Ln = ϑn + ϑ′n for all integers n. This suggests that one also has Fs = (ϑs − ϑ′s)/(ϑ− ϑ′)

and Ls = ϑs + ϑ′s for all s ∈ Ẑ, with a suitable interpretation of the powering operation.

Now consider the Taylor series for Fs around s0:

Fs =
∞∑

j=0

F (j)
s0

(s− s0)j

j!
,

where F
(j)
s = djFs

dsj denotes the jth derivative. To calculate these higher derivatives, one

first notes that from ϑϑ′ = −1 it follows that

2(log ϑ + log ϑ′) = 2 log(−1) = log 1 = 0,

and therefore log ϑ = − log ϑ′. This leads to

dFs

ds
=

d

ds

ϑs − ϑ′s

ϑ− ϑ′
=

log ϑ

ϑ− ϑ′
(
ϑs + ϑ′s

)
=

log ϑ

ϑ− ϑ′
Ls,

dLs

ds
= log ϑ ·

(
ϑs − ϑ′s

)
= log ϑ · (ϑ− ϑ′) · Fs.

Combining this with (ϑ− ϑ′)2 = 5, one finds that

F (2i)
s = 5il2iFs, F (2i+1)

s = 5il2i+1Ls

for each i ≥ 0, where

(6) l =
log ϑ

ϑ− ϑ′
.

This leads immediately to (5).

Making this informal argument rigorous involves, among other things, the development

of an appropriate theory of logarithms, which I do not do here. In the end one finds that
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the precise meaning of (5) is a little more subtle than one might have expected. Namely,

(5) means that for each positive integer b, the following is true for every profinite integer s

that has enough initial digits in common with s0: if k is any positive integer, then all but

finitely many terms of the infinite sum are divisible by bk, and the sum of the remaining

terms is congruent to Fs modulo bk. For example, if b divides 5! = 120 then it suffices that

s has three initial digits in common with s0, and if b divides 36! six.

The power series development can be used to determine l to any desired number

of digits. Namely, put s0 = 0, so that Fs0 = 0 and Ls0 = 2. Then the power series

development reads

(7) Fs = 2ls +
2·5·l3·s3

3!
+

2·52·l5·s5

5!
+ . . . .

Suppose that one wishes to determine the first 35 digits of l, or, equivalently, the residue

class of l modulo 36!. Modulo any power of 36!, the expansion is valid for profinite numbers

s of which the first six digits are zero. Choose

s = 216 · 38 · 54 · 7 = (168133000000000)!.

Using that l is divisible by all prime numbers except 5, one easily sees that in (7) each term

on the right beyond the first term is divisible by 2s · 36!. Calculating Fs modulo 2s · 36!

by means of the technique explained earlier, and dividing by 2s, one finds l modulo 36!:

l = (. . . 263351131711234711604161318104768101049000120100)!.

One can also compute l directly from (6), but this is significantly more laborious, since the

logarithm has a rather circuitous definition.

The power series expansion also comes in when one wishes to determine the fixed

points of the Fibonacci sequence, i. e. the numbers s for which Fs = s. It is very easy to

see that among the ordinary integers the only examples are F0 = 0, F1 = 1, F5 = 5. Using

the power series, one can show that in Ẑ there are exactly eight additional fixed points,
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namely the following profinite numbers:

z1,−5 = (. . . 7115481617861065657871411001)!,

z1,−1 = (. . . 182130081315180733953122001)!,

z1,0 = (. . . 131650716147116811133471411001)!,

z1,5 = (. . . 19214186161161621129010071411001)!,

z5,−5 = (. . . 1214082061771021048800000021)!,

z5,−1 = (. . . 23232131411814151411111124871411021)!,

z5,0 = (. . . 1819041030123128524400000021)!,

z5,1 = (. . . 521831437110133113110916244021)!.

The notation za,b, for a ∈ {1, 5}, b ∈ {−5, −1, 0, 1, 5} is chosen because we have

za,b ≡ a mod 6k, za,b ≡ b mod 5k

for all positive integers k; this uniquely determines za,b as a fixed point of the Fibonacci

sequence. (For a = b ∈ {1, 5} one may take za,b = a.)

The eight fixed points za,b have, imprecisely speaking, the tendency to approximately

inherit properties of a, b. For example, each of a = 1 and b = 0 is equal to its own square,

and, correspondingly, z1,0 is quite close to its own square, in the sense that the nine initial

digits are the same:

z2
1,0 = (. . . 136620407953102255471411001)!.

Each of a = 1, b = −1 has square equal to 1, and this is almost true for z1,−1:

z2
1,−1 = (. . . 2217101000000000000000000001)!.

Looking at z1,5 and z5,1 one sees that for each i with 4 < i ≤ 24 their ith digits add up to

i. This is due to the remarkable relation

z1,5 + z5,1 = (. . . 000000000000000000000100)!,

which reflects that 5 + 1 = 6 = (100)!. Likewise, 5 · 1 = 5 = (21)! is reflected in

z1,5 · z5,1 = (. . . 000000000000000000000021)!.

7



However, if one uses greater precision then one finds that z1,5 + z5,1 6= 6 and z1,5 · z5,1 6= 5:

z1,5 = (. . . 22926262416319214186161161621129010071411001)!,

z5,1 = (. . . 263231022521831437110133113110916244021)!,

z1,5 + z5,1 = (. . . 5500000000000000000000000000100)!,

z1,5 · z5,1 = (. . . 252500000000000000000000000000021)!.

The number z5,−5 has the most astonishing property of all. One would expect that its

square is close to 52 = (−5)2 = 25, and indeed z2
5,−5 does not differ from 25 = (1001)!

until the four hundredth digit:

z2
5,−5 − 25 = (. . .38633118537037000000000 . . . 00000000)!,

with 399 initial zeros!

There are several techniques that can be used to calculate the profinite numbers

za,b to any required precision. The first is to start from any number x0 that satisfies

x0 ≡ a mod 24, x0 ≡ b mod 5k, where k is at least one quarter of the required number of

digits, and k ≥ 2, and next to apply the iteration xi+1 = Fxi
. This converges to za,b in the

required precision, but the convergence is not very fast. This method can be accelerated

by starting from a value x0 for which x0−a has more factors 2 and 3. The second method

is to apply a Newton iteration to find a zero of the function Fs − s:

xi+1 = xi −
Fxi

− xi

lLxi
− 1

.

This requires some care with the division that is involved, and one needs to know l to

the same precision. However, it converges much faster, even if the starting value x0 only

satisfies x0 ≡ a mod 24, x0 ≡ b mod 25.

If one investigates in a similar manner the fixed points of the Lucas sequence, one

finds that there are exactly three of them, namely 1, −1, and a profinite integer that is

divisible by infinitely many factors 3.

Further experimentation is left to the reader, who may also enjoy finding rigorous

formulations and proofs of the statements made in this paper. The bibliography below
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lists two books that are useful in this context. Mahler’s book develops the theory of g-

adic and p-adic numbers, which are closely related to profinite numbers. In the book

by Cassels one can find a treatment of power series and logarithms that are similar to

the power series and logarithms considered above. Cassels’ book also contains numerous

applications to number theory.
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