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Abstract

The words “spectral sequence” strike fear into the hearts of many
hardened mathematicians. These notes will attempt to demonstrate
that spectral sequences are not so scary, and also very powerful.

This is an unfinished handout for my algebraic topology class. In
particular I did not have time to reproduce here the little spectral
sequence diagrams showing where all the arrows go.

For a comprehensive introduction to spectral sequences, see [3]. For
more nice explanations of spectral sequences, see [1] and [2]. Finally,
the original paper [4] is a good read.

A short exact sequence of chain complexes gives rise to a long exact
sequence in homology, which is a fundamental tool for computing homology
in a number of situations. There is a natural generalization of a short exact
sequence of chain complexes, called a “filtered chain complex”. Associated
to a chain complex with a filtration is an algebraic gadget generalizing the
long exact sequence, which is called a spectral sequence, and which can help
compute the homology of the chain complex.

1 The long exact sequence in homology

We begin by reviewing the long exact sequence in homology associated to a
short exact sequence of chain complexes, from a point of view which natu-
rally generalizes to spectral sequences. Consider a chain complex C∗ with a
subcomplex F0C∗. We now have a short exact sequence of chain complexes

0 −→ F0C∗ −→ C∗ −→ C∗/F0C∗ −→ 0.

A fundamental lemma in homological algebra asserts that there is then a
long exact sequence in homology

· · · −→ Hi(F0C∗) −→ Hi(C∗) −→ Hi(C∗/F0C∗)
δ−→ Hi−1(F0C∗) −→ · · · .
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The connecting homomorphism δ is defined as follows: given a homology
class α ∈ Hi(C∗/F0C∗), choose x ∈ Ci representing it; then ∂x ∈ F0Ci−1,
and we define δ(α) = [∂x].

Now suppose that our goal is to compute the homology of the whole
complex C∗, and that it is somehow easier to compute the homologies of
the subcomplex F0C∗ and the quotient complex C∗/F0C∗. The long exact
sequence can be broken into a short exact sequence

0→ Coker
(
δ|Hi+1(C∗/F0C∗)

)
→ Hi(C∗)→ Ker

(
δ|Hi(C∗/F0C∗

)
→ 0.

If we leave the index i implicit, then we can write this more concisely as

0 −→ Coker(δ) −→ H∗(C∗) −→ Ker(δ) −→ 0.

In conclusion, the procedure for computing H∗(C∗) is the following:

1. Compute H∗(F0C∗) and H∗(C∗/F0C∗).

2. Consider the two-term chain complex

H∗(C∗/F0C∗)
δ−→ H∗(F0C∗).

Denote its homology groups by G1H∗ and G0H∗.

3. There is now a short exact sequence

0 −→ G0H∗ −→ H∗(C∗) −→ G1H∗ −→ 0.

Modulo the problem of extensions, this determines H∗(C∗).

2 Filtrations

A filtered R-module is an R-module A with an increasing sequence of sub-
modules FpA ⊂ Fp+1A indexed by p ∈ Z, such that

⋃
p FpA = A and⋂

p FpA = {0}. The filtration is bounded if FpA = {0} for p sufficiently
small and FpA = A for p sufficiently large.

The associated graded module is defined by GpA = FpA/Fp−1A. In
favorable cases, this inductively determines A by means of the short exact
sequences

0 −→ Fp−1A −→ FpA −→ GpA −→ 0.

To give an example having nothing to do with the rest of these notes,
let A be the R-module of differentiable functions f : R→ R, and let FpA be
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the submodule of functions such that the (p+ 1)st derivative at 0 vanishes:
f (p+1)(0) = 0. There is then an isomorphism GpA

'−→ R sending f 7−→
f (p)(0).

A filtered chain complex is a chain complex (C∗, ∂) together with a fil-
tration {FpCi} of each Ci, such that the differential preserves the filtration,
namely ∂(FpCi) ⊂ FpCi−1.

Note that ∂ induces a well-defined differential ∂ : GpCi → GpCi−1. We
thus have an associated graded chain complex GpC∗.

The filtration on C∗ also induces a filtration on the homology of C∗
defined by

FpHi(C∗) = {α ∈ Hi(C∗) | (∃x ∈ FpCi) α = [x].}.

This has associated graded pieces GpHi(C∗), which in favorable cases deter-
mine Hi(C∗).

Now suppose that our goal is to compute the homology of C∗, and that
it is somehow easier to compute the homology of the assocated graded chain
complexes GpC∗. Does H∗(GpC∗) determine GpH∗(C∗)? We saw in the
previous section that if the filtration has only one nontrivial term, i.e. if
F−1C∗ = {0} and F1C∗ = C∗, then GpH∗(C∗) is the homology of the two-
term chain complex

H∗(G1C∗)
δ−→ H∗(G0C∗).

When the filtration has more nontrivial terms, the homology of C∗ can be
computed by “successive approximations”, as we now explain.

3 Computing the homology of a filtered chain com-
plex

Let (FpC∗, ∂) be a filtered chain complex. Let us denote the associated
graded module by

E0
p,q = GpCp+q = FpCp+q/Fp−1Cp+q.

As remarked previously, the differential ∂ induces a differential on the asso-
ciated graded module, which we now denote by

∂0 : E0
p,q −→ E0

p,q−1.

We denote the homology of the associated graded by

E1
p,q = Hp+q(GpC∗).
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This can be regarded as a “first-order approximation” to the homology of
C∗.

To get a “second-order approximation” to the homology of C∗, we define

∂1 : E1
p,q −→ E1

p−1,q

as follows. A homology class α ∈ E1
p,q can be represented by a chain x ∈

FpCp+q such that ∂x ∈ Fp−1Cp+q−1. We now define ∂1(α) = [∂x]. It follows
easily from ∂2 = 0 that ∂1 is well-defined and ∂2

1 = 0. We now consider the
homology

E2
p,q =

Ker(∂1 : E1
p,q → E1

p−1,q)
Im(∂1 : E1

p+1,q → E1
p,q)

.

We saw previously that if the fitration has only one nontrivial term, then
E2
p,q = GpHp+q(C∗). If the filtration has more nontrivial terms, then this

might not be true.
In general, for every nonnegative integer r, we define an “rth-order ap-

proximation” to GpHp+q(C∗) by

Erp,q =
{x ∈ FpCp+q | ∂x ∈ Fp−rCp+q−1}
Fp−1Cp+q + ∂(Fp+r−1Cp+q+1)

. (1)

Here the notation indicates the quotient of the numerator by its intersection
with the denominator. So by contrast with the definition of homology, in-
stead of considering cycles, we just consider chains in Fp whose differential
“vanishes to order r”, i.e. lives in Fp−r; and instead of modding out by the
entire image of ∂, we only mod out by ∂(Fp+r−1).

Lemma 3.1 Let (FpC∗, ∂) be a filtered complex, and define Erp,q by equation
(1). Then:

(a) ∂ induces a well-defined map

∂r : Erp,q −→ Erp−r,q+r−1

satisfying ∂2
r = 0.

(b) Er+1 is the homology of the chain complex (Er, ∂r), i.e.

Er+1
p,q =

Ker(∂r : Erp,q → E1
p−r,q+r−1)

Im(∂r : E1
p+r,q−r+1 → E1

p,q)
.

(c) E1
p,q = Hp+q(GpC∗).
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(d) If the filtration of Ci is bounded for each i, then for every p, q, if r is
sufficiently large then

Erp,q = GpHp+q(C∗).

Proof. As with the fact that a short exact sequence of chain complexes
induces a long exact sequence on homology, which this lemma generalizes,
the proof is a straightforward but notationally messy exercise which you will
only understand if you do it yourself. (The hard part of this lemma is not
the proof, but rather finding the right statement.) 2

Example 3.2 [algebraic example where you have to compute ∂2 by zig-
zagging.]

Example 3.3 Let us re-prove that the singular homology of a CW complex
X agrees with the cellular homology. Let C∗(X) denote the singular chain
complex of X. Define a filtration on C∗(X) by FpC∗(X) = C∗(Xp), where
Xp denotes the p-skeleton of X. The associated graded is

E0
p,q = Cp+q(Xp)/Cp+q(Xp−1).

The homology of this is, by definition, the relative homology

E1
p,q = Hp+q(Xp, Xp−1).

Now recall that

Hp+q(Xp, Xp−1) '
{
Ccell
p (X), q = 0,

0, q 6= 0,

where Ccell
p (X) is a free Z-module with one generator for each p-cell. Fur-

thermore there is a differential ∂ : Ccell
p (X)→ Ccell

p−1(X), which is the map

∂ : Hp(Xp, Xp−1) −→ Hp−1(Xp−1, Xp−2)

induced by the long exact sequence of the triple (Xp, Xp−1, Xp−2), and
which can be explicitly computed in various ways. It is easy to see from the
definitions that this agrees with the map

∂1 : E1
p,0 −→ E1

p−1,0.
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Therefore E2 is given in terms of the cellular homology by

E2
p,q =

{
Hcell
p (X), q = 0,

0, q 6= 0.

Now the key observation is that since the E2 term is all supported in
the row q = 0, the higher differentials ∂r for r ≥ 2 all necessarily vanish,
since for each such arrow, either the domain or the range is zero. Hence
Erp,q = E2

p,q for all r ≥ 2. If X is finite-dimensional, so that the filtration is
bounded, then it follows that Hp(X) = Hcell

p (X). One can drop the finite-
dimensionality assumption in various ways, e.g. by taking a direct limit.

To summarize, we make the following definition.

Definition 3.4 A spectral sequence consists of:

• An R-module Erp,q defined for each p, q ∈ Z and each integer r ≥ r0,
where r0 is some nonnegative integer.

• Differentials ∂r : Erp,q → Erp−r,q+r−1 such that ∂2
r = 0 and Er+1 is the

homology of (Er, ∂r), i.e.

Er+1
p,q =

Ker(∂r : Erp,q → E1
p−r,q+r−1)

Im(∂r : E1
p+r,q−r+1 → E1

p,q)
.

A spectral sequence converges if for every p, q, if r is sufficiently large then
∂r vanishes on Erp,q and Erp+r,q−r+1. In this case, for each p, q, the module
Erp,q is independent of r for r sufficiently large, and we denote this by E∞p,q.

For a given r, the collection of R-modules {Erp,q}, together with the
differential ∂r between them, is called the “Er term” or the “rth page” of
the spectral sequence. One typically draws this as a chart where p is the
horizontal coordinate and q is the vertical coordinate. One can regard a
spectral sequence as a book, with pages indexed by r, in which each page is
the homology of the previous page.

In terms of this definition, we have shown:

Proposition 3.5 Let (FpC∗, ∂) be a filtered complex. Then there is a spec-
tral sequence (Erp,q, ∂r), defined for r ≥ 0, with

E1
p,q = Hp+q(GpC∗).

If the filtration of Ci is bounded for each i, then the spectral sequence con-
verges to

E∞p,q = GpHp+q(C∗).
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[maybe explain how to compare spectral sequences]

Example 3.6 Let us re-compute the homology of the tensor product of two
chain complexes (C∗, ∂) and (C ′∗, ∂

′) over a field K. Assume Ci = C ′i = 0
for i < 0. Recall that the tensor product chain complex is defined by

(C ⊗ C ′)k =
⊕
i+j=k

Ci ⊗ Cj

and the differential is defined, for α ∈ Ci and β ∈ C ′j , by

∂(α⊗ β) = (∂α)⊗ β + (−1)iα⊗ (∂′β).

To compute the homology of C ⊗ C ′, define a filtration on it by

Fp(C ⊗ C ′)k =
⊕
i≤p

Ci ⊗ Ck−i.

The associated graded is then

E0
p,q = Gp(C ⊗ C ′)p+q = Cp ⊗ C ′q.

The differential on this is ∂0 = (−1)p ⊗ ∂′. So by the universal coefficient
theorem,

E1
p,q = Cp ⊗Hq(C ′∗).

Furthermore ∂1 = ∂ ⊗ 1, so, since we are working over a field,

E2
p,q = Hp(C∗ ⊗Hq(C ′∗)) = Hp(C∗)⊗Hq(C ′∗).

Now an element of E2
p,q can be represented by a sum of elements of the form

α ⊗ β where α is a cycle in Cp and β is a cycle in C ′q. This is a cycle in
C ⊗ C ′, hence by definition, all higher differentials in the spectral sequence
vanish. Thus E∞p,q = E2

p,q. It follows readily that the obvious map⊕
i+j=k

Hi(C∗)⊗Hj(C ′∗) −→ Hi+j(C ⊗ C ′)

is an isomorphism.
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4 The Leray-Serre spectral sequence for homology

We now introduce a spectral sequence which relates the homology of a bundle
(or more generally, a Serre fibration) to the homology of the fibers and the
base. In favorable cases, it allows one to compute one of these homologies
if one knows the other two.

Let π : E → B be a Serre fibration. (See handout on homotopy theory.)
Recall that the homology of the fibers forms a local coefficient system on B,
which we denote by {H∗(Ex)}. (See handout on homotopy theory.) Recall
also that if B is simply connected, then every local coefficient system on B
is constant.

Theorem 4.1 Let π : E → B be a Serre fibration. Then there exists a
spectral sequence Erp,q, defined for r ≥ 2, with

E2
p,q = Hp(B; {Hq(Ex)}),

and converging to
E∞p,q = GpHp+q(E)

for some filtration on H∗(E).

We postpone the construction of the spectral sequence, and first consider
some examples and applications.

Example 4.2 [compute homology of SU(4)]

Example 4.3 [discuss homology of S1-bundles over S2, and relate ∂2 to
the Euler number]

Example 4.4 [prove the Hurewicz isomorphism using the path fibration]

Proof of Theorem 4.1. We now sketch two constructions of the Leray-Serre
spectral sequence.

The first construction only works in the special case when B is a CW
complex. Let Bp denote the p skeleton of B, and let C∗(E) denote the
singular chain complex of E. Define a filtration on C∗(E) by setting FpC∗(E)
to be the subcomplex consisting of singular chains supported in π−1(Bp).
This then gives rise to a spectral sequence. By definition, the associated
graded chain complex is GpC∗(E) = C∗(π−1(Bp), π−1(Bp−1)), so the E1

term of the spectral sequence is the relative homology

E1
p,q = Hp+q(π−1(Bp), π−1(Bp−1)).
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We can calculate this relative homology as a direct sum over the p-cells
σ : Dp → B of Hp+q(σ∗E, (σ|Sp−1)∗E) to find that

E1
p,q = Ccellp (B; {Hq(Ex)}).

With some work, generalizing Example 3.3, one can show that the differ-
ential ∂1 on the left hand side corresponds to the cellular differential with
local coefficients on the right hand side, so that

E2
p,q = Hp(B; {Hq(Ex)}).

As in Example 3.3, the spectral sequence converges to GpHp+q(E).
To give a second construction of the Leray-Serre spectral sequence when

B is not necessarily a CW complex, let C∗(E) denote the cubical singular
chain complex of E. (See handout on homotopy theory.) Define a filtration
on C∗(E) by setting FpCp+q(E) to be the span of those singular cubes σ :
Ip+q → E such that the projection π ◦ σ : Ip+q → B is independent of the
last q coordinates on Ip+q. Note that such a cube descends to a “horizontal”
p-cube σh : Ip → B. Also, restricting to the center of Ip defines a “vertical”
q-cube σv : Iq → Ex, where x ∈ B is the center of σh. The horizontal and
vertical cubes define a map

FpCp+q(E) −→
⊕

σh:Ip→B
Cq(Ecenter(σh)).

If we mod out by degenerate1 cubes σh on the right hand side, then we
obtain a well-defined map

Φ0 : E0
p,q = GpCp+q(E) −→

⊕
{σh : Ip → B nondegenerate}

Cq(Ecenter(σh)).

Now the differential ∂0 only considers the “vertical” boundary. That is,
∂0(σ) is a signed sum of those faces of σ in which one omits one of the last
q coordinates. Thus if Φ0(σ) = (σh, σv), then

Φ0(∂0σ) = (−1)q(σh, ∂σv).

Therefore Φ0 induces a map on homology

Φ1 : E1
p,q −→

⊕
{σh : Ip → B nondegenerate}

Hq(Ecenter(σh)) = Cp(B; {Hq(Ex)}).

1For the purposes of this discussion, we will declare a cube to be degenerate if it is
independent of the last coordinate.
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Now one can use the homotopy lifting property for cubes to define a right
inverse to Φ1. That is, given a p-cube σh in B and a q-dimensional cycle
in the fiber over its center, one needs to realize this as a linear combination
of (p+ q)-cubes covering σh. We omit the details. One can further use the
homotopy lifting property to show that the right inverse to Φ1 so constructed
is also a left inverse. Thus Φ1 is an isomorphism.

Now ∂1 is given by the “horizontal” component of the differential, in
which one omits one of the first p coordinates of the cube. It then follows
from the definition of the “parallel transport” in the local coefficient system
{Hq(Ex)} that ∂1 agrees with the differential on Cp(B; {Hq(Ex)}). Therefore

E2
p,q = Hp(B; {Hq(Ex)}).

Since the filtration of Ci(E) is bounded between −1 and i, the spectral
sequence converges to

E∞p,q = GpHp+q(E).

(When B is a CW complex, the second construction gives the same
spectral sequence as the first from the E2 term on. We omit the proof.) 2

Example 4.5 [recover Eilenberg-Zilber theorem]

Example 4.6 [Show from the definition that for a circle bundle over S2, ∂2

agrees with the Euler number.]

Example 4.7 [Explain why an element of E2
p,0 survives to E∞ iff it is in

the image of π∗.]

5 Cohomological spectral sequences and products

A cohomological spectral sequence is defined as above but with the arrows
reversed. Namely we have R-modules Ep,qr defined for r ≥ r0 and differen-
tials

δr : Ep,qr −→ Ep+r,q−r+1
r ,

such that Er+1 is the homology of (Er, δr). A cochain complex (C∗, δ : C∗ →
C∗+1), together with a decreasing filtration FpC∗ ⊃ Fp+1C∗, gives rise to a
spectral sequence

Ep,qr =
{x ∈ FpCp+q | ∂x ∈ Fp+rCp+q+1}
Fp+1Cp+q + ∂(Fp−r+1Cp+q−1)

.
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This spectral sequence has Ep,q1 = Hp+q(GpC∗), and converges toGpHp+q(C∗)
if the filtration of each Ci is bounded.

One advantage of cohomology over homology is that we can consider
products. Suppose our filtered cochain complex is equipped with a product
? : Ci ⊗ Cj → Ci+j such that:

• δ is a derivation with respect to the product, i.e. for α ∈ Ci and β ∈ Ck
we have

δ(α ? β) = (δα) ? β + (−1)iα ? (δβ).

• The product respects the filtration, in that

? : FpC∗ ⊗ Fp′C∗ −→ Fp+p′C
∗.

The above assumption implies that ? induces a well-defined product

?0 :
FpC∗
Fp+1C∗

⊗
Fp′C∗
Fp′+1C∗

−→
Fp+p′C∗
Fp+p′+1C∗

.

More generally, it is easy to see that ? induces a well-defined map

?r : Ep,qr ⊗ Ep
′,q′
r −→ Ep+p

′,q+q′
r

sending [x]⊗ [y] 7−→ [x ? y].

Proposition 5.1 Under the above assumptions, the products ?r have the
following properties:

• δr is a derivation with respect to ?r:

δr(α ?r β) = (δrα) ?r β + (−1)p+qα ?r (δrβ).

• ?r+1 is the product on the homology of (Er, δr) induced by ?r.

• If the filtration of each Ci is bounded, then the limiting product

?∞ : GpH i ⊗Gp′Hj −→ Gp+p′H
i+j

is the top graded piece of the product

? : FpH i ⊗ Fp′Hj −→ Fp+p′H
i+j .

Proof. Exercise. 2
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6 Cohomological Leray-Serre and cup product

If (FpC∗, ∂) is a chain complex with a (bounded) increasing filtration, then
the dual chain complex Hom(C∗, R) has a (bounded) decreasing filtration
defined by setting Fp Hom(C∗, R) to be the annihilator of Fp−1C∗. If Fp−1C∗
is a free summand of FpC∗, then we have

Gp Hom(C∗, R) =
Ann(Fp−1C∗)
Ann(FpC∗)

= Hom(GpC∗, R).

Thus we obtain a cohomological spectral sequence with

Ep,q1 = Hp+q(Hom(GpC∗, R)),

and the differential on E1 is obtained by applying Hom(−, R) to the differ-
ential on the E1 page of the homological spectral sequence for C∗.

If π : E → B is a Serre fibration, then applying the above discussion to
either construction of the homological Leray-Serre spectral sequence gives a
cohomological version of the Leray-Serre spectral sequence, with

Ep,q2 = Hp(B; {Hq(Ex;R)})

which converges to
Ep,q∞ = GpH

p+q(E;R).

We now consider products. It follows immediately from the defini-
tion that the cup product2 on C∗(E;R) respects the second filtration on
C∗(E;R). (One can also check this with a bit more work for the first filtra-
tion on C∗(E;R) when B is a CW complex.) Hence we have products ?r on
Er for which δr is a derivation. We now describe the product

?2 : Hp(B; {Hq(Ex;R)})⊗Hp′(B; {Hq′(Ex;R)}) −→ Hp+p′(B; {Hq+q′(Ex;R)}).

Recall that if G and G ′ are two local coefficient systems on B, then the
definition of cup product generalizes in a straightforward manner to give a
cup product with local coefficients

^: Hp(B; G )⊗Hp′(B; G ′) −→ Hp+p′(B; G ⊗ G ′).
2Recall that the cup product of cubical cochains α ∈ Ci and β ∈ Cj is defined as

follows. Given an (i+ j)-cube σ, we define (α ∪ β)(σ) to be an appropriately signed sum
of all products α(σ0

J)β(σ1
I ). Here J and I are complementary subsets of {1, . . . , i+ j} of

cardinality j and i respectively; the cube σ0
J is obtained by setting all coordinates in J

equal to 0; and the cube σ1
I is obtained by setting all coordinates in I equal to 1.
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Taking G = {Hq(Ex;R)} and G ′ = {Hq′(Ex;R)}, and composing with the
cup product on the fibers, we obtain a cup product

^: Hp(B; {Hq(Ex;R)})⊗Hp′(B; {Hq′(Ex;R)}) −→ Hp+p′(B; {Hq+q′(Ex;R)}).

We claim now that if α ∈ Ep,q2 and α′ ∈ Ep
′,q′

2 , then

α ?2 α
′ = (−1)qp

′
α ^ α′ ∈ Ep+p

′,q+q′

2 .

[Need proof.]

Example 6.1 In some cases, the product structure drastically simplifies
computations using the Leray-Serre spectral sequence.

[compute cohomology ring of SU(n)]

Example 6.2 [Thom isomorphism]

Example 6.3 [sphere bundles]

Example 6.4 [Leray-Hirsch theorem]

7 The universal coefficient spectral sequence
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[4] J-P. Serre, Homologie singuliére des espaces fibrés. Applications, Ann.
of Math. 54 (1951), 425–505.

13


