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Abstract

This is a handout for an algebraic topology course. The goal is
to explain a geometric interpretation of the cup product. Namely,
if X is a closed oriented smooth manifold, if A and B are oriented
submanifolds of X, and if A and B intersect transversely, then the
Poincaré dual of A ∩ B is the cup product of the Poincaré duals of A
and B. As an application, we prove the Lefschetz fixed point formula
on a manifold. As a byproduct of the proof, we explain why the Euler
class of a smooth oriented vector bundle is Poincaré dual to the zero
set of a generic section.

1 Statement of the result

A question frequently asked by algebraic topology students is: “What does
cup product mean?” Theorem 1.1 below gives a partial answer to this
question. The theorem says roughly that on a manifold, cup product is
Poincaré dual to intersection of submanifolds. This is arguably the most
important thing to know about cup product.

To state the theorem precisely, let X be a closed oriented smooth mani-
fold of dimension n. Let A and B be oriented smooth submanifolds of X of
dimensions n−i and n−j respectively. Assume that A and B intersect trans-
versely. This means that for every p ∈ A ∩ B, the map TpA⊕ TpB → TpX
induced by the inclusions is surjective. Then A ∩ B is a submanifold of
dimension n− (i+ j), and there is a short exact sequence

0 −→ Tp(A ∩B) −→ TpA⊕ TpB −→ TpX −→ 0.

This exact sequence determines an orientation of A ∩B. We will adopt the
following convention. We can choose an oriented basis

u1, . . . , un−i−j , v1, . . . , vj , w1, . . . , wi
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for TpX such that u1, . . . , un−i−j , v1, . . . , vj is an oriented basis for TpA and
u1, . . . , un−i−j , w1, . . . , wi is an oriented basis for TpB. We then declare that
u1, . . . , un−i−j is an oriented basis for Tp(A ∩B).

The most important case is when A and B have complementary di-
mension, i.e. i + j = n, so that A ∩ B is a finite set of points. In this
case an intersection p is positively oriented if and only if the isomorphism
TpA⊕ TpB ' TpX is orientation preserving.

Now recall that there is a Poincaré duality isomorphism

H i(M ; Z) '−→ Hn−i(M),
α 7−→ [M ] _ α.

The images of the fundamental classes of A, B, and A ∩B under the inclu-
sions into X define homology classes [A] ∈ Hn−i(X), [B] ∈ Hn−j(X), and
[A ∩ B] ∈ Hn−i−j(X). We denote their Poincaré duals by [A]∗ ∈ H i(X; Z),
[B]∗ ∈ Hj(X; Z), and [A ∩B]∗ ∈ H i+j(X; Z). We now have:

Theorem 1.1. Cup product is Poincaré dual to intersection:

[A]∗ ^ [B]∗ = [A ∩B]∗ ∈ H i+j(X; Z).

This theorem only partially answers the question of what cup product
means, because it only works in a smooth manifold, and moreover not every
homology class in a smooth manifold can be represented by a submanifold
(although counterexamples to this last statement are somewhat hard to come
by). In any case, Theorem 1.1 is very useful. Before proving it, we consider
some examples.

Example 1.2. Consider the complex projective space X = CPn. Recall
that CPn has a cell decomposition with one cell in each of the dimensions
0, 2, . . . , 2n. Thus H∗(CPn; Z) is isomorphic to Z in degrees 0, 2, . . . , 2n,
and 0 in all other degrees. Moreover, H2i(CPn; Z) has a canonical generator
αi, which is the Poincaré dual of a complex (n− i)-plane in CPn, with the
complex orientation. Now a generic (n−i)-plane intersects a generic (n−j)-
plane transversely in an (n− i− j)-plane with the complex orientation (or
the empty set when i+ j > n). So by Theorem 1.1,

αi ^ αj =
{
αi+j , i+ j ≤ n,

0, i+ j > n.

Note that the nondegeneracy of the cup product pairing in Poincaré duality
implies that αi ^ αj = ±αi+j , but the above calculation determines the
signs (or lack thereof).
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Example 1.3. Let X = T 2 = R2/Z2. Then H1(T 2) ' Z2, and we choose
generators [A] and [B] where A and B are circles in the x and y directions
of R2, respectively. Also H0(T 2) = Z has a canonical generator [p], which is
the class of a point p. Let α, β, µ denote the Poincaré duals of [A], [B], [p].
Now A∩B is a positively oriented point, while B∩A is a negatively oriented
point. Thus

α ^ β = µ, β ^ α = −µ.

On the other hand,

α ^ α = β ^ β = 0.

This follows from the sign-commutativity of the cup product. In terms of
Theorem 1.1, to compute α∪α we need to calculate the signed intersection
number of two transversely intersecting submanifolds A1, A2 representing
the class [A]. We cannot take A1 = A2, but we can take A1 and A2 to be
parallel, in which case they do not intersect.

Note that the basis {[A], [B]} of H1(X) has a dual basis {[A]′, [B]′} of
Hom(H1(X),Z) = H1(X; Z) with 〈[A], [A]′〉 = 〈[B], [B]′〉 = 1 and 〈[A], [B]′〉 =
〈[B], [A]′〉 = 0. This dual basis does not consist of the Poincaré duals of [A]
and [B]. Rather, we have [A]′ = β and [B]′ = −α. We can verify these
equations by computing their cup products with α and β. For example, to
check that α ∪ [A]′ = µ, we have

[X] _ (α ∪ [A]′) = ([X] _ α) _ [A]′ = [A] _ [A]′ = 1 = [X] _ µ.

In general, if X is a closed oriented manifold of dimension n, we define
the intersection pairing

· : Hn−i(X)⊗Hn−j(X) −→ Hn−i−j(X)

by applying Poincaré duality, taking the cup product, and then applying
Poincaré duality again:

α · β := [X] _ (α∗ ^ β∗).

Theorem 1.1 then says that if A and B are transversely intersecting oriented
submanifolds representing α and β, then

α · β = [A ∩B].

In particular, if X is connected and if dim(A) + dim(B) = dim(X), then
α · β ∈ H0(X) = Z is simply the signed number of intersection points
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#(A ∩ B). When X is not connected, we usually interpret α · β to be the
image of this element of H0(X) under the augmentation map H0(X) → Z,
i.e. the total signed number of intersection points.

There is also an obvious analogue of Theorem 1.1 for unoriented mani-
folds using Z/2 coefficients.

2 The Lefschetz fixed point theorem

A more interesting application of Theorem 1.1 is given by the following
version of the Lefschetz fixed point theorem.

Let X be a closed smooth manifold and let f : X → X be a smooth
map. A fixed point of f is a point p ∈ X such that f(p) = p. The fixed
point p is nondegenerate if

1− dfp : TpX → TpX

is invertible. If p is nondegenerate, we define the Lefschetz sign ε(p) ∈ {±1}
to be the sign of det(1−dfp). It is a fact, which we will not prove here, that
if f is “generic”, then all the fixed points are nondegenerate, in which case
there are only finitely many of them. In this situation we define the signed
count of fixed points

# Fix(f) :=
∑
f(p)=p

ε(p) ∈ Z.

The Lefschetz theorem then says:

Theorem 2.1. Let X be a closed smooth manifold and let f : X → X be a
smooth map with all fixed points nondegenerate. Then

# Fix(f) =
∑
i

(−1)i Tr (f∗ : Hi(X; Q)→ Hi(X; Q)) .

Note that it follows from the universal coefficient theorem that the above
traces are integers.

Example 2.2. The Poincaré-Hopf index theorem asserts that if X is a
closed smooth manifold and if V is a vector field on X with isolated zeroes,
then ∑

V (p)=0

deg(V, p) = χ(X). (1)
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Here deg(V, p) is an integer defined as follows. Use local coordinates around
p to regard V as a map from Rn to Rn with V (0) = 0. Restricting V to a
small sphere around 0 gives a map Sn−1 → Rn \ {0} ≈ Sn−1, and deg(V, p)
is the degree of this map. This does not depend on the choice of local
coordinates.

We say that the zero p of V is nondegenerate if the derivative ∇Vp :
TpX → TpX is invertible. In this case

deg(V, p) = sign(det(∇Vp)) ∈ {±1}.

If all zeroes of V are nondegenerate, then f = exp(tV ) for t > 0 small
is a diffeomorphism of X with nondegenerate fixed points corresponding to
the zeroes of V . One can check that if p is a fixed point, then the Lefschetz
sign ε(p) = deg(V, p). Consequently,∑

V (p)=0

deg(V, p) = # Fix(f) =
∑
i

dimHi(X; Q) = χ(X).

Here the second equality follows from the Lefschetz fixed point theorem
because f is homotopic to the identity. This proves the Poincaré-Hopf index
theorem in the nondegenerate case. (One can deduce the general case of the
Poincaré-Hopf index theorem by showing that the left hand side of (1) does
not depend on V .)

To prove the Lefschetz theorem, we will do intersection theory in X ×
X. We will assume that X is orientable, although this assumption can be
removed, see below. Define the diagonal

∆ := {(x, x) | x ∈ X} ⊂ X ×X.

Also, define the graph

Γ(f) := {(x, f(x)) | x ∈ X} ⊂ X ×X.

There is an obvious bijection between fixed points of f and intersections
of the graph and the diagonal. More precisely, we have:

Lemma 2.3. f has nondegenerate fixed points if and only if Γ(f) and ∆
intersect transversely in X × X. In that case, for each fixed point p, the
Lefschetz sign ε(p) agrees with the sign of the intersection of Γ(f) and ∆ at
(p, p).

Proof. Exercise.
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It follows from Lemma 2.3 and Theorem 1.1 that if f has nondegenerate
fixed points, then

# Fix(f) = [Γ(f)] · [∆].

To complete the proof of the Lefschetz theorem, we now compute the in-
tersection number [Γ(f)] · [∆]. This requires the following lemmas about
intersection theory in X ×X.

Recall first that for any topological spaces X and Y there is a homology
cross product

× : Hi(X)⊗Hj(Y )→ Hi+j(X × Y ).

If X and Y are smooth manifolds and if A and B are closed oriented sub-
manifolds of X and Y respectively, then [A]× [B] = [A×B].

Returning to the proof of the Lefschetz theorem, write n = dim(X), and
if α ∈ H∗(X) has pure degree, denote this degree by |α|.

Lemma 2.4. Let α, β, γ, δ ∈ H∗(X) with |α|+ |β| = |γ|+ |δ| = n. Then

(α× β) · (γ × δ) =
{

(−1)|β|(α · γ)(β · δ) if |β| = |γ|,
0 otherwise.

Lemma 2.5. If α, β ∈ H∗(X) with |α|+ |β| = n, then

[Γ(f)] · (α× β) = (−1)|α|f∗α · β.

Note that if α, β, δ, γ can be represented by submanifolds, and if one
arranges these submanifolds to intersect transversely, then the above two
lemmas correspond under Theorem 1.1 (up to checking signs) to obvious
set-theoretic facts. In general, these lemmas follow from basic properties of
cap and cross products, and we leave the details as an exercise.

Now let {ek} be a basis for the vector space H∗(X; Q), consisting of
elements of pure degree. Let {e′k} be the dual basis of H∗(X; Q), with
respect to the intersection pairing. That is, if ek ∈ Hm(X; Q), then e′k ∈
Hn−m(X; Q) satisfies ei · e′j = δi,j . This dual basis exists and is unique since
the intersection pairing is a perfect pairing.

Recall that by the Künneth theorem, H∗(X × X; Q) = H∗(X; Q) ⊗
H∗(X; Q), with the isomorphism given by the homology cross product. Then
{ei × e′j} is a basis for H∗(X ×X; Q), and so is {e′i × ej}.

Lemma 2.6. [∆] =
∑

k ek × e′k.
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Proof. Since the intersection pairing is perfect, it is enough to check that
both sides of the equation have the same intersection pairing with e′i × ej
when |e′i|+ |ej | = n. By Lemma 2.4, and Lemma 2.5 with f = idX , we have(∑

k

ek × e′k

)
· (e′i × ej) =

∑
{k:|e′k|=|e

′
i|}

(−1)|e
′
i|(ek · e′i)(e′k · ej)

=
∑
k

(−1)|e
′
i|e′i · ej

= [∆] · (e′i × ej).

Proof of Theorem 2.1. By Lemmas 2.5 and 2.6, we have

[Γ(f)] · [∆] = [Γ(f)] ·
∑
k

ek × e′k

=
∑
k

(−1)|ek|f∗ek · e′k

=
∑
i

(−1)i Tr (f∗ : Hi(X; Q)→ Hi(X; Q)) .

Exercise 2.7. How can one remove the assumption that X is orientable?
(Hint: see handout on homology with local coefficients.)

3 The Thom isomorphism theorem

We now assume some familiarity with vector bundles. Let E be a real vector
bundle over B of rank n. Regard B as a subset of E via the zero section.
The proof of Theorem 1.1 will use part (a) of the following theorem, which
is a version of the Thom isomorphism theorem.

Theorem 3.1. Let π : E → B be an oriented rank n real vector bundle.
Then:

(a) There is a unique cohomology class u ∈ Hn(E,E \ B; Z) such that for
every x ∈ B, the restriction of u to Hn(Ex, Ex \ {0}; Z) ' Z is the
prefered generator determined by the orientation.

7



(b) The map

Hp(B; Z) −→ Hp+n(E,E \B; Z),
α 7−→ π∗α ^ u

is an isomorphism.

The class u is called the Thom class of E.

Proof. There is a relative version of the Leray-Serre spectral sequence1 with

Ep,q2 = Hp(B; {Hq(Ex, Ex \ {0}; Z)})

which converges to H∗(E,E \ B; Z). The orientation of E identifies the
twisted coefficient system {{Hq(Ex, Ex \ {0}; Z)} with Z for q = n and with
0 for q 6= n. Part (a) follows instantly, as well as the fact that Hp(B; Z) '
Hp+n(E,E \B; Z). The fact that the latter isomorphism is given by the cup
product with u requires a bit more work which we omit.

A longer proof of the Thom isomorphism which does not use spectral
sequences may be found in [3].

Remark 3.2. In the Thom isomorphism theorem, one can replace the co-
efficient ring Z by any commutative ring R with unit. If R = Z/2, an
orientation of E is not needed.

When E has a metric, one can give a slightly more intuitive description of
the Thom class as follows. Let D be the unit disk bundle over B, consisting
of vectors of length ≤ 1. Define S to be the unit sphere bundle over B,
consisting of vectors of length equal to 1. By excision there is a canonical
isomorphism H∗(E,E\B; Z) ' H∗(D,D\B; Z), and the latter is isomorphic
to H∗(D,S; Z), by the long exact sequence of the triple (D,D \B,S). Thus
we have a canonical isomorphism

H∗(E,E \B; Z) = H∗(D,S; Z).

The Thom class can then be described as the unique element of Hn(D,S; Z)
which for each x ∈ B restricts to the generator of Hn(Dx, Sx; Z) determined
by the orientation.

Intuitively, the Thom class u, evaluated on an n-chain α, counts the
intersections of α with the zero-section. Lemma 4.1 below is a precise version
of this intuition, as will eventually become clear.

1At this point in the course we have not yet introduced spectral sequences, but we
present this short proof here to demonstrate why they are worth learning.
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4 Proof of the main theorem

We now prove Theorem 1.1. The proof here is based on material in [2, 3],
with some modifications. Below, if A is a subspace of X, let ıXA : A → X
denote the inclusion.

Recall that if M is a closed oriented n-manifold with boundary, then
there is a relative fundamental class [M ] ∈ Hn(M,∂M), and a Poincaré
duality isomorphism

H i(M,∂M ; Z) '−→ Hn−i(M ; Z),
α 7−→ [M ] _ α.

The following lemma says that in the smooth case, the Thom class is just
the Poincaré dual of the zero section.

Lemma 4.1. Let B be a closed smooth oriented k-manifold, and let E be a
smooth rank n oriented real vector bundle over B, with unit disk bundle D.
Then (

ıDB
)
∗ [B] = [D] _ u ∈ Hk(D).

Here E is given any metric; we know that a metric exists. Also B is regarded
as a submanifold of D via the zero section. Finally, the orientation on D
is determined by the orientations of the fibers and the base, in that order.
(It would perhaps be more usual to use the other order, but then we would
have more minus signs in our formulas.)

Proof. Without loss of generality, B is connected. We now have isomor-
phisms

Z = H0(B; Z)
π∗(·)^u−→ Hn(D, ∂D; Z)

[D]_−→ Hk(D) π∗−→ Hk(B) = Z.

The generator 1 ∈ H0(B; Z) maps to [D] _ u ∈ Hk(D), and this must map
to a generator of Hk(B). Since π∗ is an isomorphism on homology, it follows
that [D] _ u = ±

(
ıDB
)
∗ [B].

Unfortunately, I do not know a very satisfactory way to nail down the
sign from this point of view, since the details of the definition of the cap/cup
product have been abstracted away. One approach is to pass to real coeffi-
cients and use de Rham cohomology, where the cup product is just wedge
product of differential forms, and so the sign is easily understood in terms
of the orientations. See for instance [1].
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Returning to the setting of the main theorem, let NX
A = N be a tubular

neighborhood of A, which we can regard as an oriented rank i vector bundle
over A, using the orientation convention in Lemma 4.1. The Thom class of
A can be regarded as an element

uA ∈ H i(N,N \A; Z).

Let uX,X\AA denote the inverse of uA under the excision isomorphism

H i(X,X \A; Z)→ H i(N,N \A; Z).

Let uXA denote the image of uX,X\AA under the “restriction”

H i(X,X \A;Z) −→ H i(X; Z).

Lemma 4.2. [A]∗ = uXA ∈ H i(X; Z).

Proof. Since Poincaré duality is an isomorphism, we can equivalently prove(
ıXA
)
∗ [A] = [X] _ uXA ∈ Hn−i(X). (2)

To do so, consider the commutative diagram

Hn(X)⊗Hi(X, X \A) −−−−−→ Hn(X, X \A)⊗Hi(X, X \A) −−−−−→ Hn(N, N \A)⊗Hi(N, N \A)??y ??y_

??y_

Hn(X)⊗Hi(X)
_−−−−−→ Hn−i(X) ←−−−−− Hn−i(N)

where all cohomology is with integer coefficients, and the upper right arrow
is the tensor product with an inverse excision isomorphism and an excision
isomorphism. The diagram commutes by the naturality of the cap product.
Now start with [X]⊗ uXA in the lower left. By definition, this lifts to [X]⊗
u
X,X\A
A in the upper left. The top row maps this to [N ] ⊗ uA in the upper

right (because it follows from the defining property of the fundamental class
that the composition

Hn(X) −→ Hn(X,X \A) '←− Hn(N,N \A)

maps [X] to [N ]). By Lemma 4.1, we know that [N ]⊗uA in the upper right
maps down to

(
ıNA
)
∗ [A] ∈ Hn−i(N), and the lower right arrow then sends

this to
(
ıXA
)
∗ [A] ∈ Hn−i(X). By commutativity of the diagram, this equals

the image of [X]⊗ uXA under the lower left arrow, namely [X] _ uXA .
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Proof of Theorem 1.1. To start, recall that we are given orientations of X,
A, and B, and then A ∩ B is oriented according to the convention in The-
orem 1.1. Using these orientations, orient the normal bundles NX

A , NX
B ,

NX
A∩B, and NA

A∩B according to the “fiber first” convention in Lemma 4.1, so
that Lemma 4.2 holds for their Thom classes without any sign.

Observe that there is a canonical isomorphism of vector bundles

NA
A∩B =

(
NX
B

)
|A∩B.

Moreover, with the above orientation conventions, this is an isomorphism of
oriented vector bundles. It then follows from the characterizing property of
the Thom class that

uAA∩B =
(
ıXA
)∗
uXB . (3)

Now to prove Theorem 1.1, by Lemma 4.2 it is enough to show that
uXA∩B = uXA ^ uXB . Equivalently, since Poincaré duality is an isomorphism,
it is enough to show that

[X] _ uXA∩B = [X] _ (uXA ^ uXB ).

Using equations (2) and (3), we compute

[X] _ uXA∩B =
(
ıXA∩B

)
∗ [A ∩B]

=
(
ıXA
)
∗
(
ıAA∩B

)
∗ [A ∩B]

=
(
ıXA
)
∗
(
[A] _ uAA∩B

)
=
(
ıXA
)
∗

(
[A] _

(
ıXA
)∗
uXB

)
=
((
ıXA
)
∗ [A]

)
_ uXB

=
(
[X] _ uXA

)
_ uXB

= [X] _
(
uXA ^ uXB

)
.

5 The Euler class and the zero section

Definition 5.1. If E → B is an oriented rank n real vector bundle, define
the Euler class

e(E) ∈ Hn(B; Z)

to be the image of the Thom class u under the composition

Hn(E,E \B; Z) −→ Hn(E; Z) π∗←− Hn(B; Z).
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It follows directly from the definition that e is natural, and that e(E) = 0
if E has a nonvanishing section. If B is a CW complex, then it can be shown
using naturality that e(E) is the primary obstruction to the existence of a
nonvanishing section.

A related fact is that the Euler class of a smooth vector bundle over a
closed oriented manifold is Poincaré dual to the zero set of a generic section.
We can now prove this using the machinery introduced above. Let ψ be a
section of E, let Γ = {ψ(x) | x ∈ B} ⊂ E denote the image of ψ (which
we will call the “graph”), and let Z = ψ−1(0) = Γ ∩ B denote the zero set
of ψ. Standard transversality arguments show that for a generic section ψ,
the graph Γ is transverse to the zero section B ⊂ E. It then follows that
the zero set Z is a submanifold of B, and the derivative of ψ along the zero
section defines an isomorphism of vector bundles

NB
Z ' E|Z . (4)

We use this isomorphism to orient NZB, and then by the convention in
Lemma 4.1 this orients Z.

Theorem 5.2. Let E → B be a smooth oriented rank n real vector bun-
dle over a closed oriented manifold B. Let ψ be a section whose graph is
transverse to the zero section and let Z = ψ−1(0), oriented as above. Then

e(E) = [Z]∗ ∈ Hn(B; Z).

Proof. Let u ∈ Hn(E,E \ B; Z) denote the Thom class of E, and let u|E
denote its image under the map Hn(E,E \ B; Z) → Hn(E; Z). Identify
the normal bundle NB

Z with an open tubular neighborhood N of Z in B,
such that the zero section is identified with Z and the derivative of the
identification along the zero section is the identity. Let uZ ∈ Hn(N,N\Z; Z)
denote the Thom class of NB

Z .
Observe that the map of pairs ψ|N : (N,N\Z)→ (E,E\B) is homotopic

through maps of pairs to the map (N,N \ Z)→ (E|Z , E|Z \ Z) induced by
the oriented bundle isomorphism (4). It then follows from the characterizing
property of the Thom class that

ψ|∗Nu = uZ ∈ Hn(N,N \ Z; Z).

Applying the excision isomorphism to Hn(B,B \Z; Z) to this equation and
then applying the natural map to Hn(B; Z), we obtain, in the notation of
Lemma 4.2, the identity

ψ∗(u|E) = uBZ ∈ Hn(B; Z).
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In this equation, the left hand side is e(E) by definition, while the right
hand side is [Z]∗ by Lemma 4.2.

Example 5.3. If M is a closed oriented connected smooth manifold, then
it follows from Theorem 5.2 and Example 2.2 that

e(TM) = χ(M)[pt]∗ ∈ Hn(M ; Z).
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