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Abstract. The Alexander polynomial is the very first polynomial
knot invariant discovered. In this expository paper, we will discuss
what they are, how to compute them, and their properties.

1. Introduction

First discovered by J.W. Alexander in 1928, the Alexander polyno-
mial was the only known polynomial invariant of knot types for over
50 years, until Jones polynomial was discovered by Vaughan Jones in
1984.

We will first give the classical definition of Alexander polynomials.
We will then show how to compute them using skein relations, and
finally we will discuss the properties of the Alexander polynomial and
its meaning in algebraic topology. We will omit most proofs for interest
of time and space.

This paper is organized as followed. In section 2, we will give a
classical definition of the Alexander polynomial as in [3, 4]. In section 3,
we will see how to compute them combinatorially using skein diagrams.
In section 4, we will discuss how the Alexander polynomial relates to
homology, and finally in section 5, we will state some properties of the
Alexander polynomials.

2. Classical Definition

There are several different (but equivalent) ways to define the Alexan-
der polynomial. In this section, we will give one such definition used
in [3, 4]. Alexander’s original definition in [2] is similar.

Definition 2.1. A subset K in a space A is called a knot if it is home-
omorphic to a sphere Sn.
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Let K1 and K2 be knots in A. If there is a homeomorphism f from
A into itself such that f(K1) = K2, then the knots K1 and K2 are said
to be of the same type. The main problem is to classify such types.

In this paper, we are only concerned with 1-dimensional knots in
3-space, i.e., subsets of R

3 or S3 that are homeomorphic to S1. A knot
is called tame if it has a polygonal representative. The existence of
Alexander polynomials is guaranteed only for tame knots, so we will
assume that all knots we discuss in this paper are tame.

The knot complement R3\K or S3\K is obviously a knot invariant.
By the Alexander duality, H̃∗(S

3\K) ∼= H̃∗(S1) for any knot K, so
the homology of a knot complement is useless as a knot invariant.
However, the homotopy groups of the knot complements are useful
knot invariants.

2.1. Wirtinger Presentation of a Knot Group. We will describe a
method for finding a presentation of the knot group π1(R

3\K) of a knot
K from a knot diagram. Without loss of generality, we may assume
that the knot diagram we see is the projection of K to R

2, and there
are only finitely many double points (where two points are mapped to
the same point under the projection), and no more than two points are
mapped to any single point. Let (0, 0, z0) be a point lying ”above” the
knot K, i.e., the third coordinates of the points in K are all smaller
than z0. For any arc a in the diagram, define a loop xa in R

3 with
base-point (0, 0, z0) which goes around the arc a and back. We can put
an orientation on K, so we get a compatible orientation on the arcs,
and we can choose the loops xa to have compatible orientation. See
figure 1 .

a

(0,0,z )0

arc  a

loop x

Figure 1. Loops around every arc

At every crossing, we must have the relations among xa’s as shown
in figure 2.

Let n be the number of arcs in a diagram of K. Then that diagram
also contains exactly n crossings. The n loops x1, . . . , xn represent some
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Figure 2. Relations in the Wirtinger Presentation

homotopy classes in π1(X), where X = R
3\K, and we have n relations

r1, . . . , rn, one at every crossing, as in the figure 2. It turns out that
these are the only generators and relations needed for a presentation
of the knot group.

Proposition 2.2.

π1(X) = (x1, . . . , xn; r1, . . . , rn).

In fact, the set of relations r1, · · · , rn contains redundancy. We can

remove a single ri and the above statement still holds.

A proof that uses Van Kampen’s Theorem can be found in [7, pages
57–60]. Next, we will show how this presentation can be used to com-
pute the Alexander polynomial.

2.2. Derivatives and Jacobian. This is the method used in [3, 4].

Definition 2.3. The free derivative ∂
∂xi

on a free group F = (x1, . . . , xn)
is defined recursively by:

∂

∂xi
1 = 0,

∂

∂xi
xj = δij,

∂

∂xi
x−1

j = −δijx
−1
j ,

and for any word w = uxj ∈ F ,

∂

∂xi
w =

∂

∂xi
u+ u

∂

∂xi
xj

The free derivative is a map from a free group F to the corresponding
group ring Z[F ].

Let G = π1(X). There is a group homomorphism

φ : F = (x1, . . . , xn) −→ G = (x1, . . . , xn; r1, . . . , rn−1).
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The map φ can be extended to a map φ : Z[F ] → Z[G] whose kernel is
generated by r1, . . . , rn−1 in F . Define

ψ : Z[G] → Λ = Z[t, t−1]

xi 7→ t for each i = 1, · · · , n

In fact, ψ is the abelianization of Z[G], and ψ(G) is an infinite cyclic
group. We can then associate to any presentation (x1, . . . , xn; r1, . . . , rn−1)
of G an (n−1)×n matrix J (called Jacobian in [3, 4]) whose ij th entry

is ψφ
(

∂ri

∂xj

)

.

Then the ideal in Λ generated by (n−1)×(n−1) minors of J is called
the Alexander ideal. It can be shown using the Tietze theorem ([3,
pages 43–46] and [4, pages 126–127]) that the Alexander ideal is a knot
invariant and that it does not depend on the presentation of the knot
group. As noted earlier, by the Alexander duality, the first homology
group of the knot complement of a tame knot is the infinite cyclic
group Z, so is the abelianization of the knot group. Therefore, the
corresponding Alexander ideal is a principal ideal, and any generator
is called an Alexander polynomial of the knot, denoted ∆. It is defined
up to multiplication by units of Λ, i.e., elements of the form ±ti for
some integer i.

Example:

c a

b

Figure 3. A Trefoil

A presentation for the knot group of a trefoil knot is: (compare
Figure 3 and Figure 2)

(a, b, c; aba−1c−1, bcb−1a−1, cacb−1),

so the Jacobian matrix is:




ψ(1− aba−1) ψ(a) ψ(−aba−1c−1)
ψ(−bcb−1a−1) ψ(1 − bcb−1) ψ(b)

ψ(c) ψ(−cac−1b−1) ψ(1− cac−1)



 =





1 − t t −1
−1 1 − t t
t −1 1 − t



 .

Thus, the 2 × 2 minors of the matrix generate the ideal (1 − t+ t2),
and an Alexander polynomial is ∆ = 1 − t+ t2.
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3. A Combinatorial Definition

In 1969, Jonh Conway found a way to calculate the Alexander poly-
nomial of a knot or a link using skein relation, a relation between the
polynomial of a link and the polynomial of other links obtained by
changing the crossings in a projection of the original link.

+ L 0L L−

Figure 4. A skein triple

An Alexander polynomial ∆K of a tame knot K can be defined by
the following two equations:
(1) ∆trivial knot = 1.
(2) ∆L+

−∆L
−

+(t1/2−t−1/2)∆L0
= 0, where L+, L−, L0 are three links

which differ only at one crossing, as shown in figure 4.
The fact that this polynomial is a knot/link invariant can be shown

easily by verifying that it is invariant under Reidemeister moves.
Example: The Alexander polynomial of a splittable link (a link

whose components lie in the interiors of disjoint 3-balls) is 0. We can
consider a splittable link with two components as L0 in figure 4. Then
we have two knots K+ and K− corresponding to L+ and L−. These two
knots K+ and K− are of the same type, hence have the same Alexander
polynomial. Then

∆K+
− ∆K

−

+ (t1/2 − t−1/2)∆splittable = 0 =⇒ ∆splittable = 0.

Similarly, we can see inductively that a splittable link with any num-
ber of components have Alexander polynomial 0.

Example: Trefoil knot. From figure 5 and the example above, we
get:

∆trefoil = ∆K1
− (t1/2 − t−1/2)∆K2

= 1 − (t1/2 − t−1/2)(∆K3
+ (t1/2 − t−1/2)∆K4

)

= 1 − (t1/2 − t−1/2)(0 + (t1/2 − t−1/2))1

= t−1 − 1 + t.
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1K 2K
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Figure 5. Trefoil knot

4. Alexander Polynomial and Homology

In this section, we will discuss about a covering space X̃ of the knot
complementX = R

3\K whose homologyH∗(X̃) turns out to be related
to the Alexander polynomial.

Lemma 4.1. Every knot complement X has an infinite cyclic cover

p : X̃ −→ X. Moreover, X̃ is also the universal abelian cover of X.

That is, the group of covering automorphisms Aut(X̃, p) of (X̃, p) is
isomorphic to the infinite cyclic group Z. Moreover, the fundamental
group π1(X̃) is isomorphic to commutator subgroup [π1(X), π1(X)].
One can find a construction involving Seifert surfaces in [7, pages 128–
131].

4.1. Alexander Invariant and Alexander Matrix.

Definition 4.2. The Alexander invariant of a knot is the homology
H∗(X̃) of the infinite cyclic cover X̃ of the knot complement X.

Let Λ = Z[t, t−1] as before. Then the homology group Hi(X̃) has a

Λ-module structure as follows. Choose a generator τ : X̃ −→ X̃ of the
group of covering translations. There are two choices here since there
are two generators for Z. Then τ induces an isomorphism

τ∗ : Hi(X̃) −→ Hi(X̃)
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on the homology. Let f(t) = a−mt
−m+· · ·+a−1t

−1+a0+a1t+· · ·+ant
−n

be an element of Λ. Then f acts on an element α of Hi(X̃) by

f(t)α = a−mτ
−m
∗

(α)+ · · ·+a−1τ
−1
∗

(α)+a0α+a1τ∗(α)+ · · ·+anτ
−n
∗

(α).

The projection p : X̃ → X induces an injective homomorphism

p∗ : π1(X̃) −→ π1(X),

and p∗π(X̃) = [π(X), π(X)].
Denote the commutator subgroup [π(X), π(X)] by C, so

C = [π(X), π(X)] = p∗π(X̃) ∼= π(X̃).

Then p∗ induces an isomorphism

p̄∗ :
π(X̃)

[π(X̃), π(X̃)]
−̃→

C

[C,C]
,

so

p̄∗ : H1(X̃)−̃→
C

[C,C]
.

We can put a Λ-module structure on C
[C,C]

so that we can calculate

H1(X̃) from the knot group [7, pages 174–178].

4.1.1. Presentation matrices.

Let R be a unital commutative ring and let M be a finitely-presented
R−module. Then M ∼= (x1, . . . , xn|r1, . . . , rm), where each relation ri

is a linear combination of the generators xj’s: ri = ai1x1+· · ·+ainxn. In
other words, M is generated as an Rmodule by the elements x1, . . . , xn,
and the r1 = 0, . . . , rm = 0 are relations among the xi’s. We can then
define a presentation matrix to be an m×n matrix with entries aij for
1 ≤ i ≤ m, 1 ≤ j ≤ n.

An Alexander matrix is a presentation matrix for H1(X̃) as a Λ-
module. If the Alexander matrix has size m×n, the ideal generated by
all n× n minors of the matrix is the Alexander ideal of the knot. The
Alexander matrix of a tame knot is a square matrix [7, page 207], so
the Alexander ideal is principal. Any generator of this principal ideal
is the Alexander polynomial ∆.

In other words, ∆ is an element of Λ such that H1(X̃) = Λ/(∆). The
only interesting Alexander invariant for classical knots is in dimension
1. That is, if X is a knot complement in S3, and X̃ is its infinite
cyclic cover, then Hi(X̃) = 0 for all i ≥ 2, and H0(X̃) = Λ/(t − 1) [,
page 171]. Hence an Alexander polynomial encodes all the information
about H∗(X̃) in a polynomial.
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5. Some Properties of Alexander Polynomials

Proposition 5.1. For any knot K, its Alexander polynomial ∆ sat-

isfies the following properties after being normailzed so that the lowest

degree term is a constant:

(1) ∆(1) = ±1
(2) ∆(t) = ∆(t−1).

For a proof using Seifert matrices, see [7, pages 207–208]
The converse is also true:

Proposition 5.2. For every Laurent polynomial p(t) such that p(1) =
±1 and p(t) = p(t−1), there is a tame knot K in S3 whose Alexander

Polynomial is p.

An explicit construction of such knots can be found in [7, pages
171–172]

Theorem 5.3. Let K = K1#K2 be a composite knot in S3, and

let X,X1,X2 denote their respective knot complements. Then their

Alexander invariants are connected by the Λ isomorphisms:

Hi(X̃) ∼= Hi(X̃1) ⊕Hi(X̃2)for all i > 0.

assuming appropriate choices of generators τ : X̃i −→ X̃i of the cover-

ing translation group, determining the Λ-action.

One can prove this using Mayer-Vietoris sequence [7, page 179].
Alexander polynomials are very successful in distinguishing knot

types. They completely classify all knots with 8 or fewer crossings.
However, the Alexander polynomials cannot distinguish a knot from
its mirror image. Moreover, there are some, in fact infinitely many,
non-trivial knots whose Alexander polynomial is 1. In particular, any
”double knot with twisting number 0” has a trivial Alexander polyno-
mial. A double knot lies along a boundary of an annulus embedded in
S3, except that it hooks itself and double back. The twisting number
is the linking number of the two boundary curves of the annulus. This
result can be proven using Seifert surfaces [7, page 167]. Figure 6 shows
such a knot.
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Figure 6. Knot with trivial Alexander polynomial
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