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Abstract. In two previous papers with Yi-Jen Lee, we de®ned and computed a notion of
Reidemeister torsion for the Morse theory of closed 1-forms on a ®nite dimensional manifold.
The present paper gives an a priori proof that this Morse theory invariant is a topological in-
variant. It is hoped that this will provide a model for possible generalizations to Floer theory.
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In two papers with Yi-Jen Lee [HL1, HL2], we de®ned a notion of Reidemeister
torsion for the Morse theory of closed 1-forms on a ®nite dimensional manifold. We
consider the ¯ow dual to the 1-form via an auxiliary metric. Our invariant, which we
call I, multiplies the algebraic Reidemeister torsion of the Novikov complex, which
counts ¯ow lines between critical points, by a zeta function which counts closed
orbits of the ¯ow. For a closed 1-form in a real multiple of an integral cohomology
class, i.e. d of a circle-valued function, we proved in the above papers that I equals a
form of topological Reidemeister torsion due to Turaev. This implies a posteriori that
I is invariant under homotopy of the circle-valued function and the auxiliary metric.

In this paper we reprove these results using an opposite approach: we ®rst prove a

priori that I is a topological invariant, depending only on the cohomology class of the
closed 1-form. We then deduce that I agrees with Turaev torsion, by using invariance
to reduce to the easier case of an exact 1-form. This approach has two advantages.
First, it works for closed 1-forms in an arbitrary cohomology class, thus extending
the results of our previous papers. Second, and perhaps more importantly, the proof
of invariance here should provide a model for the possible construction of torsion in
Floer theory.

The contents of this paper are as follows. In §1 we review the de®nition of the in-
variant I, state the main results, and outline the proofs. In §2 and §3 we prove that I

is invariant. The strategy is to study how I varies in a generic one parameter family of
1-forms and metrics. In §2, we prepare for this analysis by classifying the bifurcations
that generically occur, and we also deal with the complication that in®nitely many
bifurcations may occur in a ®nite time. The heart of the paper is in §3, where we an-
alyze what happens in each individual bifurcation. While the torsion of the Novikov



complex and the zeta function can change, we will see that their product I does not.
In §4 we use topological invariance to give a quick proof that I agrees with Turaev
torsion. In §5 we discuss open questions and possible generalizations. Appendix A
reviews algebraic aspects of Reidemeister torsion that are used throughout the paper.
Appendix B reviews how to remove a certain ambiguity in Reidemeister torsion using
Turaev's Euler structures.

1 The invariant I

We begin by reviewing the de®nition of the invariant I from [HL2]. We will empha-
size geometric aspects which are important for the present paper, and we generalize
[HL2] slightly by allowing di¨erent abelian covers in Choice 1.2. After de®ning I, we
will state the main results and outline the proofs.

1.1 Setup and geometric de®nitions

Let X be a smooth, ®nite dimensional, closed (connected) manifold with w�X � � 0.
We consider a closed 1-form a and a Riemannian metric g on X. Let V :� gÿ1a de-
note the vector ®eld dual to a via g. We wish to count closed orbits and ¯ow lines of
V, which are de®ned as follows.

A closed orbit is a nonconstant map g : S1 ! X such that g 0�t� � ÿlV�g�t�� for
some l > 0. There is a minus sign because we work with the ``downward'' ¯ow as
in classical Morse theory. We consider two closed orbits to be equivalent if they di¨er
by a rotation of S1. The period p�g� is the largest integer k such that g factors through
a k-fold covering S1 ! S1.

For counting purposes, we can attach a sign to a generic closed orbit as follows.
For q A g�S1�, let U HX be a hypersurface intersecting g transversely near q, and let
fq : U ! U be the return map (de®ned near q) which follows the ¯ow ÿV a total of

p�g� times around the image g�S1�. The linearized return map induces a map

dfq : TqX=Tqg�S1� ! TqX=Tqg�S1�

which does not depend on U. The eigenvalues of dfq do not depend on q. We say
that g is nondegenerate if 1ÿ dfq is invertible. In this case we de®ne the Lefschetz sign

�ÿ1�m�g� to be the sign of det�1ÿ dfq�.
A critical point is a zero of a. A critical point p A X is nondegenerate if the graph of

a in the cotangent bundle T �X intersects the zero section transversely at p. In this
case the derivative `V : TpX ! TpX is invertible and self-adjoint; the index of p,
denoted by ind�p�, is the number of negative eigenvalues of `V . The descending

manifold D�p� is the set of all x A X such that the trajectory of the ¯ow �V starting
at x converges to p. Similarly, the ascending manifold A�p� is the set of all x A X

from which the trajectory of ÿV converges to p. If p is nondegenerate, then D�p�
and A�p� are embedded open balls of dimension ind�p� and dim�X� ÿ ind�p�,
respectively.
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If p and q are critical points, a ¯ow line (of ÿV ) from p to q is a map f : R! X

such that f 0�t� � ÿV� f �t�� and limt!ÿy f �t� � p and limt!�y f �t� � q. We con-
sider two ¯ow lines to be equivalent if they di¨er by a translation of R. The space of
¯ow lines from p to q is naturally identi®ed with �D�p�XA�q��=R, where R acts by
the ¯ow. Thus, if p and q are nondegenerate, the expected dimension of the space of
¯ow lines from p to q is ind�p� ÿ ind�q� ÿ 1.

We will impose the following transversality conditions.

De®nition 1.1. The pair �a; g� is admissible if:

(a) All critical points of V are nondegenerate.

(b) The ascending and descending manifolds of critical points of V intersect trans-
versely.

(c) All closed orbits of V are nondegenerate.

A straightforward transversality calculation (cf. [AB, Sc, H]) shows that for a ®xed
cohomology class �a� A H 1�X ; R�, these conditions hold for generic pairs �a; g�.

1.2 Coverings and Novikov rings

In the Morse theory of nonexact closed 1-forms, there may be in®nitely many closed
orbits and ¯ow lines between critical points of index di¨erence one. To enable ®nite
counting, we consider a covering of X.

Choice 1.2. We choose a connected abelian covering p : ~X ! X such that p�a is exact.

Let H denote the group of covering transformations. There is a surjection H1�X � !
H, whose kernel consists of homology classes of loops in X that lift to ~X .

Our counting will take place in the Novikov ring L :� Nov�H; �ÿa��. The meaning
of this notation is that if G is an abelian group and N : G ! R is a homomorphism,
then Nov�G; N� consists of formal sums

P
g AG ag � g, with ag A Z, such that for each

R A R, there are only ®nitely many nonzero coe½cients ag with N�g� < R. This ring
has the obvious addition, and the convolution product [N, HS]. There is a natural
inclusion of the group ring Z�G� into the Novikov ring Nov�G; N�, which is the
identity if and only if N 1 0.

Example 1.3. Suppose a � df , where f : X ! S1 is not nullhomotopic. The simplest
choice is to take the covering ~X to be a component of the ®ber product of X and R
over S1. Then H FZ, and the Novikov ring is LFZ��t�� � fPy

k�m aktkjm; ak A Zg,
the ring of integer Laurent series.

This is essentially the setup of [HL1]. (In [HL1], ~X was the entire ®ber product of X

and R over S1. As a result, t here equals tN in that paper, where N is the number of
components of the ®ber product, or equivalently the divisibility of �a� A H 1�X ; Z�.)
For more re®ned invariants, one can take ~X to be the universal abelian cover, as in
[HL2].
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1.3 Counting closed orbits

If �a; g� is admissible, we count closed orbits using the zeta function

�1:1� z :� exp
P
g AO

�ÿ1�m�g�
p�g� �g� A L:

(Cf. [Fr1, Pa3].) Here O denotes the set of closed orbits, and �g� A H denotes the
image of the homology class g��S1� under the projection H1�X� ! H.

Let us review why z is a well de®ned element of L, as the ideas in this argument
will be important later. First, we claim that for each R A R, there are only ®nitely
many closed orbits g with �ÿa��g� < R. The length of such an orbit away from the
critical points is bounded above by some multiple of R. An elementary compactness
argument [H, Sa1] then shows that an in®nite sequence of such orbits would accu-
mulate to either (i) a degenerate closed orbit, or (ii) a ``broken'' closed orbit with
stopovers at one or more critical points. Situation (i) would violate admissibility
condition (c). In situation (ii), there would necessarily be a ¯ow line from a critical
point of index i to a critical point of indexV i. This would violate admissibility con-
dition (b), since the expected dimension of the space of such ¯ow lines is negative.

Let L� denote the set of sums
P

h AH ah � h A L such that ah � 0 whenever
�ÿa��h�U 0. Let L�Q :� L�nQ. The above paragraph shows that

P
g AO

�ÿ1�m�g�
p�g� �g� A L�Q:

Now exp : L�Q ! 1�L�Q is well de®ned by the usual power series. Therefore
z A LnQ.

But in fact z has integer coe½cients, because there is a product formula

�1:2� z � Q
g AI
�1G �g��G1:

Here I denotes the set of irreducible (period 1) closed orbits, and the two signs
associated to each irreducible orbit are determined by the eigenvalues of the return
map. The formula is proved by taking the logarithm of both sides, cf. [Fr2, HL1, IP,
Sm].

Remark 1.4. The inverse of exp above is also well de®ned via the usual power series

log�1� x� �Py
k�1

�ÿ1�k�1
xk

k
. We will use this fact in §3.4.

1.4 Counting ¯ow lines

We count ¯ow lines using the Novikov complex �CN�; q�, which is de®ned as follows.
Let ~Ci denote the set of index i critical points of p�V in ~X . Choose f : ~X ! R with
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df � p�a. We de®ne CNi to be the set of formal sums
P

~p A ~Ci
a~p � ~p with a~p A Z, such

that for each R A R, there are only ®nitely many nonzero coe½cients a~p with
f �~p� > R. The action of H on ~Ci by covering transformations makes CNi into a
module over the Novikov ring L. This module is free; one can obtain a basis by
choosing a lift of each critical point in X to ~X .

We de®ne the boundary operator q : CNi ! CNiÿ1 by

�1:3� q~p :� P
~q A ~Ciÿ1

hq~p; ~qi � ~q

for ~p A ~Ci. Here hq~p; ~qi denotes the signed number of ¯ow lines of ÿp�V from ~p to ~q.
The signs are determined as follows [Sa2]. We choose orientations of the descend-

ing manifolds of the critical points in X, and lift them to orient the descending
manifolds in ~X . Given a nondegenerate ¯ow line from ~p to ~q, let v A T~pD�~p� be an
outward tangent vector of the ¯ow line. The ¯ow near the ¯ow line determines an
isomorphism T~pD�~p�=v! T~qD�~q�. We declare the ¯ow line to have positive sign
if the orientations on T~pD�~p� and RvlT~qD�~q� agree. (We do not need to assume
that X is oriented.)

A compactness argument as in §1.3 and [Sa1, Po, H], using the fact that p�a is
exact, shows that q is well de®ned if �a; g� is admissible. A standard argument [Po,
Sc] then shows that q2 � 0.

The homology of the Novikov complex depends only on the cohomology class �a�
and the covering ~X . To describe it topologically, choose a smooth triangulation of X,
and lift the simplices to obtain an equivariant triangulation of ~X . We denote the
corresponding chain complex by C�� ~X�; this is a module over the group ring Z�H �.
There is then a natural isomorphism

�1:4� Hi�CN��FHi�C�� ~X�nZ�H �L�:

This was stated by Novikov [N], and proofs may be found in [Pa1, Po, HL1]. (Any
cell decomposition would su½ce here, but we will shortly need to restrict to triangu-
lations, in order to de®ne Reidemeister torsion re®ned by an Euler structure.)

1.5 Reidemeister torsion and the invariant I

The Novikov homology (1.4) often vanishes, at least after tensoring with a ®eld, and
it is then interesting to consider the Reidemeister torsion of the complexes CN� and
C�� ~X�.

For certain rings R, including Z�H � and L, if C� is a ®nite free chain complex over
R with a chosen basis b, then we can de®ne the Reidemeister torsion t�C���b� A Q�R�,
see Appendix A. The Novikov complex CN� and equivariant cell-chain complex
C�� ~X� have natural bases consisting of lifts of the critical points or simplices of the
triangulation from X to ~X . We denote the resulting torsion invariants by

Tm A Q�L�=GH; T� ~X � A Q�Z�H ��=GH:
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We have to mod out byGH because of the ambiguity in choosing lifts and ordering
the bases. It turns out that one can resolve the former ambiguity by choosing an
Euler structure, see Appendix B. The space E�X � of Euler structures is a natural
a½ne space over H1�X� de®ned by Turaev. We thus obtain re®ned torsion invariants,
which are H1�X�-equivariant maps

Tm : E�X � ! Q�L�=G1;

T� ~X� : E�X � ! Q�Z�H ��=G1:

Results in [Tu2] show that the re®ned topological torsion T� ~X� depends only on
the covering ~X ! X , and not on the choice of triangulation. For example, when X is
the 3-manifold obtained from 0-surgery on a knot K, the invariant T� ~X� is related to
the Alexander polynomial of K, see e.g. [Tu1, HL1]. By contrast, the Morse-theoretic
torsion Tm depends on the admissible pair �a; g�, if �a� is ®xed and nonzero. (See Ex-
ample 1.7.) To get a topological invariant, we must multiply by the zeta function.

De®nition 1.5. [HL2] We de®ne I :� Tm � z A Q�L�=GH, and

I :� Tm � z : E�X� ! Q�L�=G1:

Remark 1.6. In the rest of this paper, in any equation involving the Reidemeister
torsions T� ~X � and Tm or the invariant I, it is to be understood that there is an
implicit G̀' sign. One can use a homology orientation of X to remove the sign am-
biguity in the topological torsion T� ~X� (see [Tu1]), and presumably in the Morse-
theoretic torsion Tm as well, but we will not go into that here.

1.6 The main results and basic examples

Our main results are Theorems A and B below. These were proved in [HL2] (gen-
eralizing [HL1]) when the cohomology class of a is a real multiple of an integral
class. A related result was proved by Pajitnov [Pa3] at about the same time as [HL2];
the connection of this result with our work is discussed in §5.

Theorem A. For �a; g� admissible, the Morse theory invariant I depends only on the

cohomology class �a� A H 1�X ; R� and the choice of covering ~X .

(If we change the cohomology class �a�, aside from multiplying it by a positive real
number, then the Novikov ring L changes, and also the choice of covering ~X may no
longer be valid, so we generally cannot directly compare the invariants I. See §4 for
an exception.)

We can identify the invariant I as follows. The natural inclusion Z�H � ! L in-
duces an inclusion of quotient rings { : Q�Z�H �� ! Q�L�. (To see this, one must
check that the inclusion Z�H � ! L sends nonzerodivisors to nonzerodivisors. This
follows from a ``leading coe½cients'' argument or from Lemma A.4.) We then have:
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Theorem B. If �a; g� is admissible, then the Morse theory invariant I agrees with the

topological Reidemeister torsion:

I � {�T� ~X�� A Q�L�=GH:

We will also sketch a proof that the re®ned invariants agree, i.e. that

�1:5� I � { � T� ~X� : E�X� ! Q�L�=G1:

Of course (1.5) implies Theorem A, since T� ~X� is a topological invariant. However
our strategy will be to prove Theorem A ®rst, and then deduce Theorem B and (1.5).

Example 1.7. Suppose X � S1 and �a�0 0. We take ~X � R, so that LFZ��t��. It
is then not hard to check the following: If a has no critical points, then Tm � 1 and
z � �1ÿ t�ÿ1. If a has critical points, then Tm � �1ÿ t�ÿ1 and z � 1. In any case,

T� ~X� � �1ÿ t�ÿ1.

Example 1.8. Suppose a � df with f : X ! R a Morse function. Then there are no

closed orbits, so z � 1. In this case it is classical that Tm � T� ~X �, cf. [Mi1]. (Note
that { is the identity map in this case.)

Here is a sketch of a proof that in fact Tm � T� ~X� (cf. [HL2]). Choose a triangu-
lation T and let vT be the associated vector ®eld as in Appendix B. One can appar-
ently ®nd a Morse function fT and a metric gT such that the gradient gÿ1

T dfT is
a perturbation of vT, so that we have a natural isomorphism of chain complexes
CN�FC�� ~X �, respecting the bases determined by an Euler structure. Then (1.5)
holds for �dfT; gT�, and by Theorem A it holds for all exact 1-forms.

Example 1.9. Suppose a � df where f : X n ! S1 is a ®ber bundle with connected
®bers. In particular, there are no critical points. Let ~X be the in®nite cyclic cover as
in Example 1.3, so that LFZ��t��. Let S be a ®ber, and let f : S! S be the return
map obtained by following the ¯ow ÿV from S through X and back to S. In this case
the zeta function counts ®xed points of f and its iterates with their Lefschetz signs:

�1:6� z � exp
Py
k�1

aFix�fk� t
k

k
:

There is a canonical Euler structure x0 � iÿ1
V �0� (see Appendix B), and Tm�x0� � 1.

One can also show (cf. [Fr2, HL2]) that

T� ~X ��x0� �
Qnÿ1

i�0

det�1ÿ tHi�f���ÿ1� i�1

where Hi�f� is the induced map on Hi�S; Q�. So (1.5) gives here
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exp
Py
k�1

aFix�fk� t
k

k
� Qnÿ1

i�0

det�1ÿ tHi�f���ÿ1� i�1

:

This is equivalent to the Lefschetz theorem for fk, as one can see by taking the
logarithmic derivative of both sides. If we choose a larger covering ~X , we obtain an
equivariant version of the Lefschetz theorem [Fr2, H].

Remark 1.10. The relation between torsion and the zeta function in this example goes
back to Milnor [Mi2], and was extended to count closed orbits of certain nonsingular
¯ows by Fried [Fr1]. The version of the zeta function in equation (1.6) goes back to
Weil [We].

Example 1.11. When X is an oriented 3-manifold with b1�X� > 0, we conjectured in
[HL1], based on Taubes' work [Ta1, Ta2, Ta3], that the invariant I equals a certain
reparametrization of the Seiberg-Witten invariant of X. In [HL2], we combined this
conjecture with Theorem B to derive a formula for the Seiberg-Witten invariant of X

in terms of topological torsion, which had been conjectured by Turaev [Tu3]. This
result was later independently proved by Turaev [Tu4], re®ning a result of Meng and
Taubes [MT], and indirectly verifying the conjecture in [HL1]. For additional details
and references see [HL1, HL2].

More recently, using ideas from TQFT, a paper by Donaldson [D] has appeared
giving an alternate approach to the Meng-Taubes formula, and T. Mark [Ma] has
given a more direct proof of most of the conjecture in [HL1].

1.7 Ideas of the proofs

The strategy for the proof of Theorem A is to analyze the e¨ect on Tm and z as
we deform the pair �a; g�, ®xing the cohomology class �a�. As long as the pair �a; g�
remains admissible, the Novikov complex and zeta function do not change. But in
a generic 1-parameter family, the following types of bifurcations (failures of admis-
sibility) may occur:

(1) A degenerate ¯ow line from ~p A ~Ci to ~q A ~Ciÿ1,

(2) A degenerate closed orbit,

(3) A ¯ow line from ~p A ~Ci to ~q A ~Ci, where p�~p�0 p�~q�,
(4) A ¯ow line from ~p to h~p, where h A H,

(5) Birth or death of two critical points at a degenerate critical point.

The ®rst two bifurcations change neither the Novikov complex nor the zeta function.
This follows from compactness arguments for the moduli spaces of closed orbits
and ¯ow lines. Actually bifurcation (2) includes not only simple cancellation of closed
orbits of opposite sign, but also period-doubling bifurcations. Thus it is impor-
tant that the closed orbits are ``counted correctly'' by the zeta function (1.1), see
Remark 3.3.
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The third bifurcation does not a¨ect the zeta function, but it does change the
Novikov complex, e¨ectively performing a change of basis in which ~p is replaced
by ~pG ~q. This does not change Tm because the change of basis matrix has determi-
nant one, cf. Proposition A.5.

In the last two bifurcations, z and Tm both change, due to the interaction of closed
orbits with critical points. In bifurcation (4), a closed orbit homologous to h is cre-
ated or destroyed, intuitively because the ¯ow line from ~p to h~p is a ``broken closed
orbit'', which should constitute a boundary point in the one-dimensional moduli
space of closed orbits as time varies. As a result, the zeta function is multiplied by a
power series 1G h�O�h2�. At the same time, our understanding of bifurcation (3)
suggests that a change of basis occurs in the Novikov complex in which ~p is multi-
plied by a power series 1G h�O�h2�. Consequently the torsion Tm is multiplied
by this power series or its inverse. We ®nd in this way that I is unchanged ``to ®rst
order''.

The higher order terms are more di½cult to understand, essentially because the
deformation upstairs in ~X is not generic, due to its H-equivariance, so that there are
multiply broken closed orbits and ¯ow lines at the time of bifurcation. It appears that
z and Tm are simply multiplied by series of the form �1G h�G1. But instead of
trying to prove this, we consider a non-equivariant perturbation of the deformation
in a ®nite cyclic cover X̂ ! X . The idea is that invariance to ®rst order in X̂ implies
invariance to higher order in X, which we prove after working out the behavior of
the invariant I with respect to ®nite cyclic covers. In this way we show that I is
unchanged by a bifurcation of type (4).

Bifurcation (5) also has the subtlety of multiply broken ¯ow lines and closed orbits,
arising from concatenations of ¯ow lines from the degenerate critical point to itself.
Here we use direct ®nite dimensional analysis to show that every multiply broken
closed orbit or ¯ow line leads to an unbroken closed orbit or ¯ow line on the side of
the bifurcation time where the two critical points die, but not on the other side. Some
miraculous algebra then yields that I is invariant.

A small complication in the argument outlined above is that the times at which
bifurcations occur might not be isolated. But bifurcations involving ``short'' closed
orbits or ¯ow lines are isolated, and the long bifurcations change only ``higher order''
terms in I. Taking a limit in which we consider successively longer bifurcations, we
conclude that I is invariant.

With Theorem A established, Theorem B can be deduced rather easily. We
already saw in Example 1.8 that Theorem B holds when a is exact. For general a, we
use a trick of F. Latour which allows us to ``approximate'' a by an exact 1-form (!).
Namely, we let f : X ! R be a Morse function and we replace a with the cohomol-
ogous form

b � a� C df

for C A R large. The Novikov complex and zeta function of b are the same as those
of the rescaled form
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Cÿ1b � df � Cÿ1a:

For C large, there are no closed orbits, and the Novikov complex of b coincides
with that of df (under an inclusion of Novikov rings). So by Example 1.8, Theorem B
holds for b, and by invariance (Theorem A) it holds for a as well.

2 Proof of invariance I: setup

In this section we make some general preparations for the proof of Theorem A by
bifurcation analysis. In §3 we will undertake the analysis of speci®c bifurcations and
complete the proof of Theorem A.

2.1 Semi-isolated bifurcations

Consider a 1-parameter family f�at; gt�g of 1-forms and metrics, parametrized by
t A �0; 1�. A generic family may have a countably in®nite set of bifurcations. In this
section we set up a framework in which we only need to consider one bifurcation at
a time. More precisely, Lemma 2.7 makes sense of the change in I caused by a single
bifurcation, and Lemma 2.9 shows that if all these individual changes are zero,
then I is invariant. Note that we always assume that the cohomology class �at� is
independent of t.

De®nition 2.1. A ¯ow line between two critical points is degenerate if it corresponds
to a nontransverse intersection of ascending and descending manifolds. A (k times)
broken ¯ow line from ~p to ~q is a concatenation of ¯ow lines from ~p to ~r1 to ~r2 to . . .
to ~rk to ~q, where ~r1; . . . ; ~rk are critical points and k V 1. A broken closed orbit in
the homology class h is a (possibly broken) ¯ow line from ~p to h~p for some critical
point ~p.

Let Mt�~p; ~q� denote the space of (unbroken) ¯ow lines from ~p to ~q at time t. Let
Ot�h� denote the space of (unbroken) closed orbits homologous to h at time t. If
the zeroes of at are nondegenerate for all t A �t1; t2�, then there is a canonical identi-
®cation of critical points ~C�t� � ~C�t 0� for any t; t 0 A �t1; t2�, which we make implicitly
below.

The following lemma implies that our invariant does not change if there are no
bifurcations, as a result of suitable compactness.

Lemma 2.2. Let t1 < t2. Suppose �at; gt� is admissible at t1 and t2.

(a) Suppose there are no degenerate critical points for t A �t1; t2�. Let ~p A ~Ci and
~q A ~Ciÿ1. Suppose there are no degenerate or broken ¯ow lines from ~p to ~q for

t A �t1; t2�. Then

Mt1
�~p; ~q� �Mt2

�~p; ~q�:
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(b) Let h A H. Suppose there are no degenerate or broken closed orbits homologous to

h for t A �t1; t2�. Then

Ot1
�h� � Ot2

�h�:

Moreover, the above bijections are orientation preserving.

Proof. (a) We ®rst claim that
S

t A �t1; t2�Mt�~p; ~q� is compact. To see this, let S�~p� be a

small sphere in the descending manifold around ~p, and let S�~q� be a small sphere in
the ascending manifold around ~q. A ¯ow line corresponds to a triple �x; y; s� A S�~p��
S�~q� �R such that downward ¯ow from x for time s hits y. Compactness will follow
from an upper bound on s. If s is unbounded, then one can show as in §1.3 that there
is a broken ¯ow line from ~p to ~q at some time t A �t1; t2�, contradicting our hypothesis.

Now (possibly after a perturbation as in §2.2),
S

t A �t1; t2�Mt�~p; ~q� is a compact one-
manifold with boundary Mt2

�~p; ~q� ÿMt1
�~p; ~q�. Moreover there are no cancellations,

since there are no degenerate ¯ow lines from ~p to ~q for t A �t1; t2�.
For part (b), we get a similar compactness for

S
t A �t1; t2� Ot�h�, as in §1.3, since there

are no broken closed orbits. Since the orbits remain nondegenerate, none are created
or destroyed, and the Lefschetz signs cannot change. r

De®nition 2.3. A bifurcation of the family f�at; gt�g is a time t0 A R such that the pair
�at0

; gt0
� fails to be admissible.

For nonexact closed 1-forms, a generic one-parameter family may contain in®nitely
many bifurcations (for basically the same reason that a generic nonexact closed 1-
form may have in®nitely many closed orbits and ¯ow lines between critical points
of index di¨erence one). However a generic one-parameter family will only contain
®nitely many bifurcations with a given upper bound on the ``length''.

De®nition 2.4. The length of a bifurcation t0 is the smallest of the following numbers:

(a) 0, if at0
has a degenerate zero.

(b) �ÿat0
��h�, where h is the homology class of a degenerate or broken closed orbit.

(c)
�

gÿat0
, where g is a degenerate (downward) ¯ow line.

Lemma 2.5. For any family f�at; gt�g and any R A R, the set of bifurcations t A �0; 1� of

lengthUR is closed.

Proof. Let ftng be a sequence of bifurcations converging to t0. After passing to a
subsequence, we may assume that each of the bifurcations tn includes the same
type of degenerate object (a critical point, a closed orbit, or a ¯ow line between two
given critical points in X ) with lengthUR. By a compactness argument as in §1.3,
these objects accumulate to an object of the same type (possibly broken) at time t0

with lengthUR. Since transversality is an open condition, this object at time t0 is
also degenerate (or broken), so t0 is a bifurcation of lengthUR. r
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We now digress to introduce the notion of limits in Novikov rings. Given x �P
g ag � g A Nov�G;N� and R A R, we write ``x � O�R�'' if ag � 0 whenever

N�g� < R. Given a sequence fxng in Nov�G; N� and x A Nov�G; N�, we write
``limn!y xn � x'' if for every R A R there exists n0 such that xÿ xn � O�R� for all
n > n0.

We can extend these de®nitions to the quotient ring Q�L� as follows. If G is
a ®nitely generated abelian group, then by Lemma A.4 we have a decomposi-
tion Q�Nov�G; N�� �LFj into a sum of ®elds. By (A.3), each ®eld Fj can be
identi®ed with the tensor product of Nov�G=Ker�N�; N� with a certain ®eld. The
notion of ``O�R�'' is then well de®ned for elements of Fj . We say that an element of
Q�Nov�G; N�� is ``O�R�'' if its projection to each sub®eld Fj is O�R�, and we de®ne
limits accordingly.

De®nition 2.6. A time t0 is good if:

(a) t0 is not a limit of bifurcations of bounded length.

(b) For each e > 0, the intervals �t0 ÿ e; t0� and �t0; t0 � e� both contain some times t

which are not bifurcations.

Lemma 2.7. If t0 is good, then the limits as t% t0 and t& t0 of z and �CN�; q� are

well de®ned. If moreover t0 is not a bifurcation, then the left and right limits of z (resp.

CN�) are both equal to z�t0� (resp. CN��t0�).

Proof. Consider the limit as t% t0. There exists e > 0 such that all critical points of
at are nondegenerate for t A �tÿ e; t0�, so that ~C�t� � ~C�t 0� for t; t 0 A �t0 ÿ e; t0�. For
convergence of q, we must show that for ~p A ~Ci and ~q A ~Ciÿ1, there exists x A L such
that

lim
t%t0

P
h AH

h~p; h~qi � h � x;

where t ranges over any sequence of non-bifurcation values converging to t0 from
below. We use Lemma 2.2(a). For any path g from ~p to h~q, we have

�
g

ÿa � C � �ÿa��h�

where C is a constant which is independent of h and varies continuously with t. Thus
if g is a downward gradient ¯ow line and �ÿa��h� is bounded from above then

�
g
ÿa

is also bounded from above. So if we are su½ciently close to t0 then there are no
degenerate or broken ¯ow lines from ~p to h~q by de®nition of semi-isolated, so h~p; h~qi
cannot change by Lemma 2.2(a).

Similary, Lemma 2.2(b) implies that the zeta functions converge.
The last sentence of the lemma follows from Lemma 2.2. r
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Let z�, zÿ, �CN�� ; q
��, �CNÿ� ; q

ÿ� denote these limits. An Euler structure gives a
basis for the limiting complexes CN�� and CNÿ� ; let T�m , Tÿm denote their Reidemeister
torsion, and let IG :� TG

m � zG.

Lemma 2.8. If t0 is good, then for any Euler structure x,

lim
t%t0

I�t��x� � Iÿ�t0��x�; lim
t&t0

I�t��x� � I��t0��x�;

where t ranges over non-bifurcations.

Proof. Consider the limit as t% t0. By de®nition we have limt%t0
z�t� � zÿ�t0�. So

we have to prove that limt%t0
Tm�t��x� � Tÿm �t0��x�.

For e su½ciently small we can identify the critical points for di¨erent t A �t0 ÿ e; t0�.
Fix a basis for CN� consisting of a lift of each critical point to ~X , in the equivalence
class determined by x.

For a non-bifurcation t, recall that Tm is the sum of the torsions of CN�nFj. The
torsion of CN�nFj is zero if CN�nFj is not acyclic; this criterion is independent
of t, by the Novikov isomorphism (1.4). Moreover, even if t0 is a bifurcation, the
limiting complex CNÿ� nFj is acyclic if and only if CN�nFj is acyclic for all non-
bifurcations t, because the Novikov isomorphism (1.4), as constructed in [HL1], can
be extended by a limiting argument to CNÿ� .

When CN�nFj is acyclic, we compute its torsion using Proposition A.2. Choose
subbases Di and Ei as in Proposition A.2 for CNÿ� nFj. We can use these same
subbases in the interval �t0 ÿ d; t0� for some d, because if the determinants in Propo-
sition A.2 are nonzero in the limiting complex, then they are nonzero near t0. The
reason is that each determinant for the limiting complex has a nonzero ``leading
term'' involving ¯ow lines of length < R for some R, which will be unchanged near t0

by Lemma 2.2(a).
For a; b A Fj we have

1

a
ÿ 1

b
� O�R� when the leading order of aÿ b exceeds the

leading order of a and b by at least R. This means that a high order change in the
denominator of Tm�x�, as computed above, will change Tm�x� by high order terms.
We are now done by condition 2.6(a) and Lemma 2.2(a). r

Lemma 2.9. Let f�at; gt�g be a family parametrized by t A �0; 1�, with at in a ®xed

cohomology class and �a0; g0� and �a1; g1� admissible. Suppose that every bifurcation

t0 A �0; 1� is good and satis®es I��t0� � Iÿ�t0�. Then I�0� � I�1�.

Proof. We ®rst observe that every t0 A �0; 1� is good. If t0 fails to satisfy condition
2.6(a), then t0 is a bifurcation by Lemma 2.5, contradicting our hypothesis that all
bifurcations are good. Since we also assumed that every bifurcation satis®es condi-
tion 2.6(b), it follows that the non-bifurcations are dense in �0; 1�, so every t0 A �0; 1�
satis®es condition 2.6(b).

Next, by the assumptions and Lemma 2.7, we have I��t0� � Iÿ�t0� for each
t0 A �0; 1�. It follows from Lemma 2.8 that if we ®x an Euler structure x and R > 0,
then for all t0 A �0; 1�, there exists e > 0 such that
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I�t��x� � I�t 0��x� �O�R�

for all non-bifurcations t; t 0 A �t0 ÿ e; t0 � e�. Since �0; 1� is compact and the non-
bifurcations are dense, it follows that I�0��x� ÿ I�1��x� � O�R�. Taking R!y,
while keeping x ®xed, completes the proof. r

To reduce complications, we will consider good bifurcations which satisfy an
additional condition.

De®nition 2.10. A bifurcation t0 is semi-isolated if t0 is good, and:

(*) The pair �at0
; gt0
� violates only one of the admissibility conditions in De®nition

1.1, and at only one degenerate object.

2.2 Generic one-parameter families

The following lemma implies that in a generic one-parameter family, only the ®ve
types of bifurcations listed in §1.7 may occur, and are semi-isolated.

Lemma 2.11. Let f�at; gt�; t A �0; 1�g be a 1-parameter family with at in a ®xed coho-

mology class and �a0; g0� and �a1; g1� admissible. Then after a perturbation ®xing the

endpoints, we may arrange that:

(a) Near a degenerate critical point at time t0, there are local coordinates x1; . . . ; xn in

which

�2:1� gÿ1
t at � �x2

1 G �tÿ t0�;ÿx2; . . . ;ÿxi; xi�1; . . . ; xn�:

(b) Suppose that for t A �t1; t2�, we have critical points ~p�t�; ~q�t� A ~C�at� which depend

continuously on t. Then
S

t D�~p�t�� and
S

t A�~q�t�� intersect transversely in
~X � �t1; t2�, and the projection of the intersection to �t1; t2� is a Morse function.

(c) All bifurcations are semi-isolated.

If there are no degenerate critical points in the original family �at; gt�, then we may

choose this perturbation to be C k small for any k.

Proof. We will work with C k families so that we can use the Sard-Smale theorem.
After arranging (a), we will show that in the space of C k families, there is a countable
intersection of open dense sets, whose elements are families with the desired proper-
ties (b) and (c). As in [MS, Ta2], we then obtain a dense set in Cy.

We begin by making the graph of
S

t at transverse to the 0-section of T �X � �0; 1�.
Then

S
t aÿ1

t �0� is a smooth 1-dimensional submanifold of X � �0; 1�. We can further
arrange that t is a Morse function on

S
t aÿ1

t �0� such that all critical points have dis-
tinct values. A critical point of t on

S
t aÿ1

t �0� is a pair �x; t� where at has a degenerate
zero at x. By a lemma of Cerf [Ce] we can choose (possibly time dependent) local
coordinates x1; . . . ; xn near such a point so that
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at � x3
1

3
G �tÿ t0�x1 �

ÿx2
2 ÿ � � � ÿ x2

i � x2
i�1 � � � � � x2

n

2
:

We now ®x the metric gt on X to be Euclidean near the origin in these coordinates.
This gives (a).

By a standard transversality argument, we can obtain (b) in a countable intersec-
tion of open dense sets. Fixing the metric near the degenerate critical points does not
interfere with the transversality argument because no ¯ow line or closed orbit is
completely supported near a degenerate critical point.

To obtain (c), we ®rst arrange for the space of irreducible closed orbits in X � �0; 1�
to be cut out transversely (regarded as the zero set of a section of a vector bundle as in
Remark 3.3), for the projection from this space to �0; 1� to be a Morse function, and for
the degenerate covers with a given multiplicity of a given connected family of orbits to
be isolated. We then use a compactness argument as in Lemma 2.5 to show that (i) for
each R, only ®nitely many degenerate objects of length < R occur. We can arrange
that these degenerate objects occur at distinct times, by intersecting with an open dense
set of deformations. So in a countable intersection of open dense sets, we can arrange
that (ii) all degenerate objects occur at distinct times. Now (i) and (ii) imply (c). r

3 Proof of invariance II: bifurcation analysis

In a generic one-parameter deformation given by Lemma 2.11, only the ®ve types
of bifurcations listed in §1.7 may occur, and all bifurcations are semi-isolated. In this
section we will show that I� � Iÿ for each such bifurcation. By Lemma 2.9, this will
complete the proof of Theorem A.

3.1 Cancellation of ¯ow lines

Lemma 3.1. Suppose t0 is a semi-isolated bifurcation at which there is a degenerate

¯ow line from ~p A ~Ci to ~q A ~Ciÿ1. Then z��t0� � zÿ�t0� and �CN�� ; q
�� � �CNÿ� ; q

ÿ�.

Proof. By the de®nition of semi-isolated, we may choose e > 0 such that for all t with
0 < jtÿ t0jU e, there are no degenerate or broken ¯ow lines from ~p to ~q. As in the
proof of Lemma 2.2(a), the moduli space of ¯ow lines from ~p to ~q for jtÿ t0jU e is
compact, so hqÿ~p; ~qi � hq�~p; ~qi, since the signed number of boundary points of a
compact 1-manifold is zero.

For every R > 0, for every other pair of critical points ~r; ~s with index di¨erence 1 and� ~r
~s a < R, the coe½cient hq~r; ~si likewise does not change for t su½ciently close to t0.

For every R > 0, the coe½cients in the zeta function of h with �ÿa��h� < R do
not change for t su½cently close to t0, by Lemma 2.2(b). r

3.2 Cancellation of closed orbits

Lemma 3.2. Suppose t0 is a semi-isolated bifurcation at which there exists a degenerate

closed orbit. Then �CN�� ; q
�� � �CNÿ� ; q

ÿ� and z� � zÿ.
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Proof. The Novikov complex is unchanged as in the proof of Lemma 3.1. To show
that the zeta function does not change, the idea is that locally the zeta function looks
like (1.6), and this is invariant because the signed number of ®xed points of a map is
invariant, assuming suitable compactness.

More precisely, at time t0 there is an isolated irreducible closed orbit g, with
�g� � h, such that g or some multiple cover of it is degenerate. Choose x A g�S1�HX ,
and let Dd HX be a disc of radius d transverse to g and centered at x. Let fd; t :
Dd ! Dd be the (partially de®ned) ®rst return map for the ¯ow gÿ1

t at. We restrict the
domain of fd; t to a maximal connected neighborhood of x on which it is continuous.
De®ne

zd; t :� exp
Py
k�1

hk

k
aFix�fk

d; t�

for non-bifurcations t. We claim that

�3:1� z�

zÿ
� lim

d!0

limt&t0
zd; t

limt%t0
zd; t

:

To prove this, given R > 0, we must ®nd d > 0 such that
z�

zÿ
� limt&t0

zd; t

limt%t0
zd; t

�O�R�. By

the de®nition of semi-isolated, there exists e > 0 so that for jtÿ t0j < e, all closed
orbits g 0 with �ÿa���g 0�� < R are nondegenerate, except for covers of g at time t � t0.
By compactness as in Lemma 2.2(b), we can choose d su½ciently small that no
such closed orbit (other than covers of g) intersects D2d at time t0. Then for jtÿ t0j
su½ciently small, the contribution to log z from closed orbits g 0 avoiding Dd with
�ÿa���g 0�� < R does not change, and when moreover t is not a bifurcation, the con-
tribution to log z from all other closed orbits g 0 with �ÿa���g 0�� < R is counted by the
order < R terms of log zd; t, as in (1.6). This proves (3.1).

Given any positive integer k, as above we can choose d such that at time t0, no
closed orbit g 0 with �ÿa���g 0��U k�a��h� (other than covers of g) intersects D2d. In
particular, for k 0U k, the boundary of the graph of fk 0

d; t0
does not intersect the

diagonal in Dd �Dd. (Here we are compactifying the graph as in the proof of
Lemma 3.8(b), see also [HL1].) It follows that aFix�fk 0

d; t� is independent of t for non-
bifurcations t close to t0. This implies that

lim
d!0

limt&t0
zd; t

limt%t0
zd; t

� 1:

Together with (3.1), this proves the lemma. r

Remark 3.3. Here are two alternate approaches to proving this lemma, which add
some insight and might generalize to Floer theory.

First, one might show that generically there is either a simple cancellation of two
orbits, or a period doubling bifurcation corresponding to �1� h� � �1ÿ h2��1ÿ h�ÿ1
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in the product formula (1.2). Related analysis appears in [Ta2] for the more compli-
cated problem of counting pseudoholomorphic tori in symplectic 4-manifolds.

Second, one might make the following formal argument rigorous. For nonzero
h A H, let L�h� denote the space of loops g : S1 ! X homologous to h, modulo
rotations of S1. There is a vector bundle E over L�h� �R� given by

E�g;l� � G�g�TX�:

De®ne a section s of E by

s�g; l��t� � g 0�t� � lV�g�t��:

By de®nition g is a closed orbit if and only if s�g; l� � 0 for some (unique) l > 0. So
the coe½cient of h in log z, namely

�3:2� P
g AO; �g��h

�ÿ1�m�g�
p�g� A Q;

is formally the degree of the section s. We divide by p�g� because L�h� is an orbifold
with Z=p symmetry around loops with period p. As long as there is no interaction
between closed orbits and critical points, so that l stays bounded and the zero set of s

remains compact, the coe½cients (3.2) of log z, and hence z, should not change.

3.3 The slide bifurcation

A slide bifurcation is a semi-isolated bifurcation t0 at which there is a downward ¯ow
line from ~p A ~Ci to ~q A ~Ci. (For real-valued Morse functions, this bifurcation acts on
the corresponding handle decomposition of X by sliding one handle over another.)
By Lemma 2.11, we can (and will) assume that the ¯ow line from ~p to ~q is a trans-
verse intersection of

S
t D�~p��t� and

S
t A�~q��t�.

Lemma 3.4. For a slide bifurcation such that p�~p�0 p�~q� in X, we have

(a) z� � zÿ and q� � Aÿ1 � qÿ � A, where A : CN� ! CN� sends ~p 7! ~pG ~q and ®xes

all other critical points ~s with p�~s�0 p�~p�.
(b) In particular I� � Iÿ.

Proof. Since the bifurcation is semi-isolated, if ~r is a critical point with ind�~r�0 i � 1
and p�~r�0 p�~p�, then

�3:3� q��~r� � qÿ�~r�:

Let us denote this common value by q0�~r�. We now claim that

�3:4� q��~p� � qÿ�~p�G q0�~q�:
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To see this, let ~s be a critical point of index i ÿ 1. We need to show that

�3:5� hq�~p; ~si � hqÿ~p; ~siGhq~q; ~si;

with theG sign independent of ~s. (This formula makes sense because hq~q; ~si is inde-
pendent of t near the bifurcation time t0.)

One way to prove equation (3.5) (from [Lau]) is as follows. Choose f : ~X ! R
with df � p�a, and let S be a level set of f just below ~q. Consider the ``descending
slices'' D�~p� � D�~p�XS and D�~q� � D�~q�XS, which depend on t near t0. These
can be given the structure of chains [HL1] or currents [Lau]. Let D��~p� and Dÿ�~p�
denote the limits of D�~p� as t approaches t0 from above and below, and let D0�~q� �
D�~q��t0�. We then have, as chains,

�3:6� D��~p� � Dÿ�~p�GD0�~q�;

see [Lau]. Taking the intersection number with A�~s�, we obtain (3.5).
Another approach to proving (3.5), which generalizes to in®nite dimensions, is to

use a gluing argument as in [Fl] to show that for e small, we have a one-dimensional
cobordism

q
S

t A �t0ÿe; t0�e�
Mt�~p; ~s�

 !
�Mt0�e�~p; ~s� ÿMt0ÿe�~p; ~s�HMt0

�~p; ~q� �Mt0
�~q; ~s�:

(The orientations are more subtle in this approach. Related gluing arguments can
also be used to prove (3.6), cf. [HL1].)

Similarly to (3.4), for each critical point ~s of index i � 1, we have

�3:7� q��~s� � qÿ�~s�Hhq~s; ~pi~q:

Equations (3.3), (3.4) and (3.7) imply (a).
Part (b) follows by Proposition A.5, since det�Ai� � 1. r

3.4 Torsion and zeta function of a ®nite cyclic cover

We now digress to work out the behavior of the invariant I with respect to ®nite
cyclic covers. The answer is given in terms of the Norm map from Galois theory.
This result will be needed when we use nonequivariant perturbations in the next sec-
tion, and may also be of independent interest.

Suppose we have a short exact sequence of abelian groups

0! K !{ H !m Z=k ! 0:

Let r : X̂ ! X be the k-fold cyclic covering whose monodromy is the composi-
tion p1�X � ! H !m Z=k. The covering ~X ! X factors through r, and the covering
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~X ! X̂ has automorphism group K. We now want to relate the invariants of X and
X̂ , choosing the covering ~X for both in Choice 1.2.

We need the following algebraic notation. Let L̂ :� Nov�K ; {��ÿa��. The map
{ induces a pushforward of Novikov rings {� : L̂! L sending

P
k AK ak � k 7!P

k AK ak � {�k�. Since { has ®nite kernel, there is also a pullback {� : L! L̂ sendingP
h AH ah � h 7!

P
k AK a{�k� � k. The pushforward {� makes L into a free module of

rank k over L̂. If y A L, then multiplication by y is an endomorphism of this module,
whose determinant and trace we denote by Norm�y� and Tr�y� respectively.

It will sometimes be convenient to assume that:

�3:8� m annihilates the torsion subgroup of H:

In general, the map {� sends nonzerodivisors to nonzerodivisors and hence induces
a map on quotient rings Q�L̂� ! Q�L�. Recall from Lemma A.4(a) that we have
decompositions of Q�L̂� and Q�L� into sums of ®elds. Assumption (3.8) implies that
{� respects these decompositions. We then see from (A.3) that Q�L� is a free module
of rank k over Q�L̂�, so Norm extends to a multiplicative map Q�L� ! Q�L̂�.

Lemma 3.5. (a) If y A L then Tr�y� � k � {�y.

(b) If x A L�, then log Norm�1� x� � Tr log�1� x�.
(c) Assuming (3.8), if y A Q�L� and y0 0, then Norm�y�0 0.

Proof. Let y be a primitive kth root of 1. For 0U i < k, de®ne a ring homomor-
phism si : LnZ�y� ! LnZ�y� by si�hn 1� � hn y i�m�h� for h A H. By [Lan, §6.5],
we have

�3:9� Tr�y� � Pkÿ1

i�0

si�y�; Norm�y� � Qkÿ1

i�0

si�y�:

The ®rst of these identities implies that for h A H,

Tr�h� � kh if m�h� � 0

0 if m�h�0 0

�
(which can also be seen more directly). This proves (a). To prove (b), we use (3.9) to
compute that

log Norm�1� x� � Pkÿ1

i�0

log si�1� x� � Pkÿ1

i�0

si log�1� x� � Tr log�1� x�:

Here the middle equality holds because log is de®ned using a power series (see
Remark 1.4) and si is a ring homomorphism. To prove (c), observe that assump-
tion (3.8) implies that si respects the ®eld decomposition of Q�L�. Assertion (c) now
follows from (3.9) and the injectivity of si. r
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If V is a vector ®eld on X with nondegenerate zeroes, then the inverse image map
H1�X ;V� ! H1�X̂ ; r�V� induces a natural pullback of Euler structures r� : E�X � !
E�X̂ �. It is clear that if �a; g� is admissible on X, then �r�a; r�g� is admissible on X̂ .
With respect to these pullbacks, the invariant I behaves as follows.

Proposition 3.6. (a) z�X̂ � � Norm�z�X��.
(b) Under the assumption (3.8), the following diagram commutes:

E�X̂� ���!Tm�X̂ �
Q�L̂�=G1

r �

x??? x???Norm

E�X� ���!Tm�X �
Q�L�=G1:

Proof. (a) Every closed orbit ĝ in X̂ is a lift of a unique closed orbit g in X, with
�g� A K . Conversely, if g A O�X� and �g� A K , let g1 denote the period one orbit
underlying g, and let l be the order of m��g1�� in the group Z=k. Then g lifts to k=l

distinct closed orbits ĝ, each of which has period p�ĝ� � p�g�=l and Lefschetz sign
�ÿ1�m�ĝ� � �ÿ1�m�g�. Therefore

log z�X̂ � � P
ĝ AO�X̂�

�ÿ1�m�ĝ�
p�ĝ� �ĝ� �

P
g AO�X�; �g� AK

k�ÿ1�m�g�
p�g� �g� � k{� log z�X�:

By Lemma 3.5,

k{� log z�X� � Tr log z�X� � log Norm z�X�:

Combining the above equations and applying exp proves (a).
(b) A ®nite free complex C� over L can be regarded as a complex Ĉ� over L̂ with k

times as many generators. Moreover, a basis fl1; . . . ; lkg for L over L̂ determines a
map f : B�C�� ! B�Ĉ��, and if w�C�� � 0 then the map f is independent of the
choice of fl1; . . . ; lkg. Now we observe that if x A E�X �, then the Novikov complex
CN��X̂�, with the basis determined by r�x, is obtained from CN��X� and x by this

construction. So we need to show that t�Ĉ���f�b�� � Norm�t�C���b��. The assump-
tion (3.8) implies that {� and Norm are compatible with the decompositions of
Q�L̂� and Q�L� into sums of ®elds. So we can restrict attention to a complex C�nF

where F HQ�L� is a ®eld; let F̂ denote the corresponding ®eld in Q�L̂�. If C�nF is
not acyclic, then Ĉ�n F̂ is not acyclic either, so both torsions are zero. If C�nF

is acyclic, we can decompose it into a direct sum of 2-term acyclic complexes. Our
claim then reduces to the fact that if q is a square matrix over F and q̂ is the cor-
responding matrix over F̂ , then det�q̂� � Norm�det�q��. This follows from the
de®nition of Norm, after putting q into Jordan canonical form over an algebraic
closure of F. r
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3.5 Sliding a critical point over itself

We now analyze bifurcation (4), in which a critical point slides over itself, following
the strategy described in §1.7.

If p A C and x A L, let Ap�x� : CN� ! CN� denote the L-module endomorphism
which sends ~p 7! x~p for every lift ~p of p and ®xes all other critical points ~s with
p�~s�0 p�~p�.

Lemma 3.7. Suppose ~p A ~Ci slides over h~p for some h A H, and let p � p�~p�. Then

(a) There is a power series x � 1�Py
n�1 anhn, with an A Z, such that

�3:10� q� � Ap�x�ÿ1 � qÿ � Ap�x�:

(b) In particular T�m � x�ÿ1� i � Tÿm .

(c) The coe½cient a1 �G1.

Proof. (a) Let d denote the divisibility of h in H. (This is de®ned because h is not
a torsion class.) Let k be a positive integer relatively prime to d, and let m : H ! Z=k

be a homomorphism sending h 7! 1. Let r : X̂ ! X be the k-fold cyclic cover with
monodromy m. Then the critical points ~p; h~p; . . . ; hkÿ1~p project to distinct points
in X̂ .

Let R � �ÿa��kh�. By semi-isolatedness, we can ®nd e > 0 such that no bifurcation
of length < R occurs between time t0 ÿ e and t0 � e, other than the slide of ~p over
h~p. Choose a smaller e if necessary so that the pairs �at0Ge; gt0Ge� are admissible.
Perturb the pulled back family fr��at; gt�jt A �t0 ÿ e; t0 � e�g, ®xing the endpoints, to
satisfy the genericity conditions of Lemma 2.11.

By a compactness argument (as in the proof of Lemma 2.5), we can choose the
perturbation small enough that no bifurcations of length < R occur other than slides
of hi~p over h j~p. Then iterating Lemma 3.4(a) and using Lemma 2.2(a), we ®nd a
power series xk � 1�Pkÿ1

n�1 an;khn such that

�3:11� q� � A�xk�ÿ1 � qÿ � A�xk� �O�R�:

(Here ``O�R�'' indicates a term involving ¯ow lines g with
�

g
ÿaVR.)

Without loss of generality, qÿ~p0 0 or hqÿ~s; ~pi0 0 for some s (since otherwise
equation (3.10) is vacuously true for any x). Then equation (3.11) implies that for n

®xed, an;k is constant for large k. If we de®ne an � limk!y an;k, then equation (3.10)
follows.

Assertion (b) follows from (a) and Proposition A.5.
Now recall that the slide of ~p over h~p comes from a single transverse crossing of

ascending and descending manifolds. Under a su½ciently small perturbation of the
deformation in X̂ , this crossing will persist, and no other such crossing will appear,
by a compactness argument. So for a su½ciently small perturbation, a1;k �G1, and
hence a1 �G1. This proves (c). r
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Lemma 3.8. Suppose ~p A ~Ci slides over h~p. Then

(a) There is a power series y � 1�Py
n�1 bnhn such that z� � y � zÿ.

(b) b1 � �ÿ1� i�1a1. (See Lemma 3.7.)

Proof. (a) By Lemma 2.2(b), a closed orbit can be created or destroyed in the bifur-
cation only if it is homologous to kh for some k. So log�z�� ÿ log�zÿ� is a power
series in h. Thus z�=zÿ is a power series in h. (A priori the coe½cients bn are
rational; it's not important here, but we actually know that bn A Z, due to the product
formula (1.2) for the zeta function.)

(b) Let Z HX be a compact tubular neighborhood of the ¯ow line g from p to
itself at t0. There is a function f : Z ! R=Z such that ajZ � l df for some l A R.
Let SHZ be a level set for f away from p. The ¯ow ÿV induces a partially de®ned
return map f : S! S. Closed orbits homologous to h near g are in one to one cor-
respondence with ®xed points of f. A ®xed point of f is an intersection of the diag-
onal DHS� S with the graph G�f�, and the Lefschetz sign of the closed orbit equals
the sign of the intersection. The graph G�f� has a natural compacti®cation (see
[HL1]) to a manifold with corners G whose codimension one stratum is

qG � �A�p� �D�p��WY :

Here D�p� and A�p� are the ``®rst'' intersections of the descending and ascending
manifolds of p with S, and Y is a component arising from trajectories that escape the
neighborhood Z. The number of closed orbits near g changes whenever D�p� � A�p�
crosses D. This is happening at time t0 at a single point, transversely, and an orien-
tation check shows that the sign is �ÿ1� i�1a1. No other closed orbits homologous to h

can be created or destroyed, as in Lemma 2.2(b). r

Remark 3.9. It should also be possible to prove (b) using a Floer-theoretic gluing
argument to show that in the homology class h, a single closed orbit is created or
destroyed.

Lemma 3.10. Suppose ~p slides over h~p. Then I� � Iÿ.

Proof. By Lemmas 3.7 and 3.8, we can write

�3:12� I� � exp
Py
n�2

cnhn

� �
Iÿ:

for some c2; c3; . . . A Q. We need to show that each coe½cient ck vanishes.
Let d denote the divisibility of h in H. Let m : H ! Z=dk be a homomorphism

which sends h 7! d and annihilates the torsion subgroup of H. Let r : X̂ ! X be the
corresponding ®nite cyclic cover. By Proposition 3.6 and Lemma 3.5,
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I��X̂� � Norm exp
Py
n�2

cnhn

� �
Iÿ�X̂�

� exp dk
Py
n�1

cknhkn

� �
Iÿ�X̂�:

As in Lemma 2.8, we can choose R su½ciently large that a bifurcation of length > R

in X̂ near t0 will not a¨ect terms of order �ÿa��dkh� in Tm�X̂ � or z�X̂ �. Now perturb
the deformation in X̂ as in the proof of Lemma 3.7, so that modulo bifurcations of
length > R, there are only slides of hi~p over h j~p. When k does not divide j ÿ i, we
know by Lemma 3.4 that the torsion and zeta function in X̂ do not change in such
a slide. When j ÿ i divides k, we apply the analogue of (3.12) in the covering X̂ , to
conclude that I�X̂� gets multiplied by 1�O�h2k�.

It follows that ck � 0, as long as we know that Iÿ�X̂ �0 0. If CN�nF is acyclic
for at least one of the sub®elds F of L, then IG�X �0 0, and it follows from Lemma
3.5(c) and Proposition 3.6(b) that IG�X̂�0 0, completing the proof. If CN�nF is
not acyclic for any F, then IG�X � � 0 and we have nothing to prove. r

Remark 3.11. The last paragraph of the above proof could be avoided by working
with the relative torsion of the chain homotopy equivalence between CNÿ� and CN�� ,
cf. §5.

Remark 3.12. A theorem of Shil'nikov [A] asserts that in a generic bifurcation of
this type, a unique irreducible closed orbit is created or destroyed. By the product
formula (1.2), z gets multiplied by �1G h�G1. By Lemma 3.10, we see a posteriori

that Tm is also multiplied by such an expression. A possible direct explanation for
this is that a ¯ow line from ~p to hn~p is either created for all n or destroyed for all n.

3.6 Death of two critical points

We now analyze a semi-isolated death bifurcation given by the local model

�3:13� V � �x2
1 � tÿ t0;ÿx2; . . . ;ÿxi; xi�1; . . . ; xn�

in some neighborhood U of the origin in Rn. (Birth is obtained from death by re-
versing time. Hence there is no loss of generality in restricting attention to death.
However we will see below in Proposition 3.13 that out of the death of two critical
points comes an abundance of new life.)

At time t0 there is a single degenerate critical point r. At time t0 � e, there are no
critical points in U. At time t0 ÿ e, there are two critical points p � �ÿ ��

e
p
; 0; . . . ; 0�

and q � � ��ep ; 0; . . . ; 0� of indices i and i ÿ 1 respectively. Also there is a single
downward gradient ¯ow line in U from p to q in the positive x1 direction, whose sign
we denote by �ÿ1�m.

If x; y A X are critical points of index di¨erence one, let Mÿ�x; y� denote the
moduli space of ¯ow lines from x to y immediately before the bifurcation. If in
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addition x; y are disjoint from p; q, let M��x; y� denote the moduli space of ¯ow lines
from x to y immediately after the bifurcation. These moduli spaces are well de®ned
by the arguments in §2.1. Let M0�r� denote the moduli space of ¯ow lines from r to
itself at the time of the bifurcation. Let Oÿ and O� denote the moduli spaces of closed
orbits before and after the bifurcation.

The following proposition says that for every (possibly multiply) broken ¯ow line
or closed orbit at time t0, a new ¯ow line or closed orbit is created after the two
critical points die.

Proposition 3.13. (a) There is an orientation preserving bijection

O� � Oÿ
S Sy

k�1

�ÿ1�mk�k�i�1�M0�r���k=�Z=k�
� �

;

which preserves total homology classes of orbits. Here Z=k acts by cyclic permu-

tations.

(b) If x; y are critical points of index di¨erence one which are disjoint from p; q, then

there is an orientation preserving bijection

M��x; y� �Mÿ�x; y�WMÿ�x; q� � Sy
k�0

�ÿ1��m�1��k�1��M0�r���k �Mÿ�p; y�

which preserves homology classes of ¯ow lines.

Proof. In the calculations below, we will omit all orientations.
We ®rst note that if x; y are disjoint from p; q, then no ¯ow lines from x to y are

destroyed, i.e. there is a natural inclusion Mÿ�x; y� !M��x; y�. To see this, suppose
to the contrary that a ¯ow line is destroyed. Then by compactness as in Lemma
2.2(a), there is a sequence of ¯ow lines from x to y before the bifurcation converging
to a broken or degenerate ¯ow line from x to y at time t0. There are no degenerate
¯ow lines at t0 (by the de®nition of semi-isolated), so the limit ¯ow line is broken, and
the only place it can be broken is at r. In the neighborhood U, the broken ¯ow line
approaches r in the half space �x1 > 0� and leaves r in the half space �x1 < 0�. But
such a broken ¯ow cannot be the limit as e! 0 of unbroken ¯ow lines at time t0 ÿ e,
because there is a ``barrier'': At time t0 ÿ e, a downward ¯ow line cannot cross from
�x1 >

��
e
p � to �x1 <

��
e
p � within the neighborhood U, since the downward gradient

¯ow is in the positive x1 direction for jx1j <
��
e
p

.
Likewise, there is a natural inclusion Oÿ ! O�.
To analyze what gets created, choose a small d > 0 and let SG :� �x1 �Gd�HU .

Let D :� SÿXD�r� and A :� S�XA�r�. For e small, let f e : S� ! Sÿ denote the
partially de®ned map given by downward gradient ¯ow at time t0 � e.

Consider a broken closed orbit obtained by concatenating ¯ow lines g1; . . . ; gk

(in downward order) from r to itself. Choose d small enough so that each gi crosses
Sÿ immediately after leaving r and crosses S� immediately before returning. Let
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yi A DHSÿ and xi A AHS� denote the corresponding intersections of gi with SG.
The downward ¯ow de®nes a return map ri from a neighborhood of yi in Sÿ to a
neighborhood of xi in S�.

A new closed orbit approximating the broken one gets created for each ®xed point
of the partially de®ned map

�3:14� rk � fe � � � � � r1 � fe : S� ! S�

near xk. We will prove below that the graph of (3.14) satis®es

�3:15� lim
e!0

G�rk � fe � � � � � r1 � fe� � A� rk�D�:

It follows that for e small, the graph of (3.14) intersects the diagonal once near
xk � xk transversely, because A intersects rk�D� once transversely at xk. This proves
(a). (Note that no additional closed orbits can be created, because by compactness as
in Lemma 2.2(b), a closed orbit can be created only out of a broken closed orbit as
above.)

To prove (b), suppose we have a broken ¯ow line from x to y at time t0 consisting
of a ¯ow line g0 from x to r, followed by the concatenation of ¯ow lines g1; . . . ; gk

from r to itself as above, and ®nally a ¯ow line gk�1 from r to y. Let D 0HS�
and A 0HSÿ denote the corresponding intersections with S� and Sÿ of the de-
scending manifold of x and the ascending manifold of y. Let fx0g :� g0 XD 0 and
fyk�1g :� gk�1 XA 0. A new ¯ow line is created for each intersection of the graph of
the partially de®ned map

�3:16� fe � rk � fe � � � � � r1 � fe : S� ! Sÿ

with D 0 � A 0 near x0 � yk�1. We will prove below that

�3:17� lim
e!0

G� fe � rk � fe � � � � � r1 � fe� � A�D:

It follows that for e small, the graph of (3.16) intersects D 0 � A 0 once transversely
near x0 � yk�1, because A intersects D 0 transversely at x0, and D intersects A 0 trans-
versely at yk�1. This proves (b).

We now prove equations (3.15) and (3.17). We ®rst note that by the local model
(3.13), we have

�3:18� lim
e!0

G� fe� � A�DHS� � Sÿ:

In general, if Y1;Y2;Y3 are manifolds and f1 : Y1 ! Y2 and f2 : Y2 ! Y3 are any
smooth maps, then G�f1� � Y3 intersects Y1 � G�f2� transversely in Y1 � Y2 � Y3

and

�3:19� G�f2 � f1� � p1;3��G�f1� � Y3�X �Y1 � G�f2���;
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where p1;3 : Y1 � Y2 � Y3 ! Y1 � Y3 is the projection. Using (3.18) and (3.19) one
proves (3.15) and (3.17) together by induction on k. r

Let us now work out the algebraic consequences of the above lemma. Choose lifts
~p and ~q of p and q which coalesce at time t0. Choose a basis for CNÿ� so that ~p and
~q are two of the basis elements. For CN�� , we can use the same basis with ~p and ~q
deleted. Note that these bases correspond to the same Euler structure, by De®nition
B.1.

In the former basis, we can write the matrix for qÿi : CNÿi ! CNÿiÿ1 in block form as

�3:20� qÿi �
�ÿ1�m � h v

w N

� �
:

Here w is a column vector corresponding to ~p, and v is a row vector corresponding
to ~q. The power series h counts the ¯ow lines in M0�r� with their homology classes.
Note that h A L�, so �ÿ1�m � h is invertible.

We then have:

Corollary 3.14. (a) Tÿm � ��ÿ1�m � h��ÿ1� i

T�m .

(b) z�=zÿ � �1� �ÿ1�mh��ÿ1� i

.

Proof. By Proposition 3.13(b), we have q�j � qÿj for j 0 i, and

q�i � N � Py
k�0

�ÿ1��m�1��k�1�whkv:

We can rewrite this as

�3:21� q�i � N ÿ w��ÿ1�m � h�ÿ1v:

Now let F be a sub®eld of Q�L�, as in Lemma A.4. Choose decompositions
CN�� nF � D�� lE�� as in Proposition A.2. We can then get subbases for CNÿ� nF

satisfying the conditions of Proposition A.2 by taking Dÿi � D�i lh~pi and
Eÿiÿ1 � E�iÿ1 lh~qi, and keeping the other subbases ®xed. Let Ns; vs;ws; q

G
s denote

the restrictions and/or projections of the F components of N; v;w; qG
i to the

appropriate subbases. Using (3.20) and (3.21), we compute

det�qÿs : Dÿi ! Eÿiÿ1� � det
�ÿ1�m � h vs

ws Ns

 !

� ��ÿ1�m � h� det�Ns ÿ ws��ÿ1�m � h�ÿ1vs�

� ��ÿ1�m � h� det�q�s : D�i ! E�iÿ1�:
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Putting this into Proposition A.2 and summing over sub®elds F, we obtain (a). To
prove (b), let us write

h � Py
m�1

xm A L�

where there is one xm AGH for each ¯ow line from ~r to h~r at time t0. Then

z�

zÿ
� exp

Py
k�1

Py
m1;...;mk�1

�ÿ1�mk�k�i�1

k
xm1
� � � xmk

� 1� �ÿ1�mP
m

xm

� ��ÿ1� i

:

The ®rst equality is a consequence of Proposition 3.13(a); the denominator k arises
because summing over k-cycles and dividing by the period is equivalent to summing
over k-tuples and dividing by k. The second equality can be veri®ed by taking the
logarithm of both sides. This proves (b). r

Remark 3.15. In the above calculation, we used the fact that the determinant of a
2� 2 block matrix is given by

det
a b

g d

� �
� det�a� det�dÿ gaÿ1b�;

provided that a is invertible. This identity played a key role in [HL2], in a di¨erent
argument.

It follows from Corollary 3.14 that I is unchanged under the death bifurcation, and
this completes the proof of Theorem A.

4 Proof of Theorem B (comparison)

Let �a; g� be admissible. We will now prove Theorem B, identifying our invariant
I�a; g� with topological Reidemeister torsion.

We can reduce to the easier case of an exact one-form using the following trick,
which we learned from a paper of Pajitnov [Pa1], who attributes it to F. Latour and
J. Sikorav. Choose f : X ! R such that �df ; g� is admissible, let C A R, and de®ne

b :� a� C df :

Lemma 4.1. If C is su½ciently large, then �b; g� is admissible, gÿ1b has no closed

orbits, and there is a canonical isomorphism of chain complexes
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�4:1� CN��b� � CN��df �nL

respecting the bases determined by an Euler structure.

Proof. Since the Novikov complex is invariant under scaling, it makes no di¨erence if
we take b � df � ea where e is small.

Suppose g is a closed orbit of gÿ1b. The homology class of g must be nonzero, since
the cohomology class �a� pairs nontrivially with it. We can then put a lower bound on
the length of g away from the critical points. Since there is a positive lower bound on
jdf j away from the critical points, we deduce a lower bound on

�
g�df � ea�. If e is

su½ciently small, then the closed orbit g cannot exist, or else we would get a positive
lower bound on

�
g df , contradicting the fact that

�
g df � 0.

Transversality and intersection number are invariant under small perturbations,
so if e is su½ciently small, then the critical points of b will be small perturbations of
the critical points of f and remain nondegenerate, and the ascending and descending
manifolds will still intersect transversely with the same intersection numbers. This
implies admissibility and (4.1). r

To prove Theorem B, choose a constant C su½ciently large for the conclusions of
Lemma 4.1 to hold. By Theorem A and Lemma 4.1,

�4:2� I�a; g� � I�b; g� � Tm�b; g�:

We now use (4.1) to relate Tm�b; g� to Tm�df ; g�. Note that the Novikov ring for df is
the group ring Z�H �. By Lemma A.4 we have decompositions

Q�Z�H �� �Lm
j�1

Fj;

Q�L� �Lm
j�1

F 0j

into sums of ®elds such that {�Fj�HF 0j , where { : Q�Z�H �� ! Q�L� is the natural
inclusion. By Proposition A.2 we see that CN��df �nFj is acyclic if and only if
CN��df �nF 0j is, and by (4.1),

�4:3� Tm�b; g� � { � Tm�df ; g� : E�X� ! Q�L�
G1

:

By Example 1.8,

�4:4� Tm�df ; g� � T� ~X �:

Equations (4.2), (4.3), and (4.4) prove Theorem B.
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Remark 4.2. D. Salamon points out that instead of Lemma 4.1, one can use a lemma
of Pozniak [Po] asserting that for any cohomology class a A H 1�X ; R�, there are
admissible pairs �g1; a� and �g2; df �, where �a� � a, with identical vector ®elds
gÿ1

1 a � gÿ1
2 df .

Remark 4.3. A rigorous justi®cation of the sketch in Example 1.8 would allow us to
remove the bars from (4.4), in which case the above argument implies the re®nement
of Theorem B using Euler structures (1.5).

5 Conclusion

There are several directions in which the results of this paper might be generalized.

Algebraic re®nements. There are sharper notions of torsion which are de®ned less
often. The sharpest is Whitehead torsion [Co, Mi1], which is only de®ned for an
acyclic complex over a ring R, and lives in the ring K1�R�. One can also de®ne the
relative Whitehead torsion of a chain homotopy equivalence between two complexes
which need not be acyclic. A homotopy f�at; gt�g between admissible pairs �a0; g0�
and �a1; g1�, with the cohomology class �at� ®xed, induces a chain homotopy equi-
valence between the two Novikov complexes, via ``continuation'' (cf. [Po, Sc]). It
should be possible to upgrade the algebra in Theorem A to show that the Whitehead

torsion of the continuation map equals the ratio of the two zeta functions. Modulo
Euler structures, and under slightly stronger genericity assumptions, this follows a

posteriori from the paper of Pajitnov [Pa3], if one can show that the chain homotopy
equivalence in [Pa3] commutes with continuation.

One might also generalize our results to nonabelian covers. We believe that if such
a generalization exists, then the bifurcation analysis in this paper should su½ce to
prove it. The di½culty seems to be to formulate a result. In this direction, several
earlier works, including [Si, Lat, Pa1, Pa2], investigated the Novikov complex for the
universal cover and its Whitehead torsion; zeta functions for the universal cover were
introduced in [GN].

In®nite dimensions. Floer theory considers ®nite dimensional moduli spaces of ¯ow
lines of closed 1-forms on certain in®nite dimensional manifolds. Several people have
suggested to us that for any such setup, one can at least formally de®ne an analogue
of our invariant I. Theorem A might generalize to prove that such a construct is
invariant under exact deformations. (Whitehead torsion in Floer theory, without the
zeta function, is studied in [Fu, Su].)

To give one example, consider the Floer theory of a symplectomorphism
f : X ! X of a symplectic manifold X. Let Mf :� X � �0; 1�=�x; 1�@ � f �x�; 0�
denote the mapping torus of f. One de®nes a complex CF��X ; f � whose chains are
®xed points of f and whose boundary operator counts pseudoholomorphic cylinders
in Mf �R which converge at either end to loops coming from ®xed points. One can
de®ne the algebraic Reidemeister torsion of this complex just as in the ®nite dimen-
sional case. Furthermore the analogue of the zeta function should count certain
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pseudoholomorphic tori in Mf � S1�l�, where S1�l� is the circle of radius l. The
signs of the tori can be de®ned using spectral ¯ow, cf. [Ta2]. Due to the S1 action,
to get a moduli space of expected dimension zero, we must allow l to vary. During
a deformation, tori may disappear if l!y. However the energy of a long torus will
be small on most of it, so part of the torus should be approaching a critical point,
in which case we expect the loss of the torus to be re¯ected in a change in torsion as
in bifurcations (4) and (5) on the list in §1.7.

We have tried to write the proof of Theorem A in such a way that it can be easily
generalized to Floer theory. However a better understanding is needed of the gluing
of multiply broken ¯ow lines, which arises in bifurcations (4) and (5). The ``non-
equivariant perturbation'' trick, which we used to evade this issue in bifurcation (4),
does not appear to work for bifurcation (5), where we resorted in this paper to purely
®nite-dimensional methods.

We remark that Floer proved invariance of Floer homology by directly constru-
cting a chain homotopy equivalence, without using bifurcation analysis. It seems
however that bifurcation analysis is necessary to prove the invariance of torsion;
roughly, one needs to see that the chain homotopy equivalence is composed out of
a restricted set of matrix operations.

Other vector ®elds. The fact that our vector ®eld V is dual to a closed 1-form is used
mainly to give uniform bounds on the numbers of closed orbits and ¯ow lines in a
given homology class, so that ®nite counting is possible. Fried [Fr1] relates zeta
functions to Reidemeister torsion for a rather di¨erent kind of vector ®eld, assuming
that there are no critical points. We do not know to what class of vector ®elds our
results can be generalized. In the setting of combinatorial Morse theory, a statement
resembling Theorem B was recently proved by Forman [Fo].
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A The algebra of Reidemeister torsion

In this appendix we review the algebra that underlies the de®nitions of topological
and Morse-theoretic Reidemeister torsion, and which is needed starting in §1.5.

We call a complex �Ci; q� over a ring R free if each Ci is a free R-module, and ®nite
if
P

i rk�Ci� <y. A basis b of a ®nite free complex consists of an ordered basis bi for
each Ci. We declare two bases b; b 0 to be equivalent if
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Q
i

�b2i; b
0
2i� �

Q
i

�b2i�1; b
0
2i�1� A R;

where �bi; b
0
i � A R denotes the determinant of the change of basis matrix from bi to

b 0i . (We assume that the bases bi and b 0i have the same cardinality, which could fail for
pathological rings R.) We denote the set of equivalence classes by B�C��.

If �C�; q� is a ®nite complex over a ®eld F, we de®ne the Reidemeister torsion

t�C�; q� : B�C�� ! F

as follows. The standard short exact sequences 0! Zi ! Ci !q Biÿ1 ! 0 and
0! Bi ! Zi ! Hi ! 0 give rise to isomorphisms

det�Ci� ! det�Zi�n det�Biÿ1�;

det�Zi� ! det�Bi�n det�Hi�;

where `det' denotes top exterior power. Putting the second isomorphism into the ®rst
gives an isomorphism

det�Ci� ! det�Hi�n det�Bi�n det�Biÿ1�:

When we take the alternating product of these isomorphisms over i, the B's cancel
and we obtain an isomorphism

�A:1� B�C�� �
N

i

det�Ci�n�ÿ1� i !N
i

det�Hi�n�ÿ1� i

:

De®nition A.1. If �C�; q� is acyclic, then
N

i det�Hi�n�ÿ1� i � F , and we de®ne the
Reidemeister torsion t�C�; q� to be the map (A.1). If �C�; q� is not acyclic, we de®ne
t�C�; q� :� 0.

In practice, one can compute torsion as an alternating product of determinants of
square submatrices of q. More precisely:

Proposition A.2. Let �Ci; q� be a ®nite acyclic complex over a ®eld F with a ®xed

basis b. We can ®nd decompositions Ci � Di lEi such that:

(i) Di and Ei are spanned by subbases of bi, and

(ii) The map qs :� pEiÿ1
� qjDi

: Di ! Eiÿ1 is an isomorphism.

We then have

t�C�; q��b� �G
Q

i

det�qs : Di ! Eiÿ1��ÿ1� i

where the determinants are computed using the subbases of b. r
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Suppose now that C� is a ®nite free complex over a ring R, such that the total
quotient ring Q�R� is a ®nite direct sum of ®elds,

�A:2� Q�R� �L
j

Fj:

De®nition A.3. [Tu3] Under the above assumption, we de®ne

t�C�; q� : B�C�� ! Q�R�;

b 7!P
j

t�C�nR Fj; qn 1��bn 1�:

This depends only on R, i.e. the decomposition (A.2) is unique, because the ®elds
Fj are characterized as the minimal ideals in Q�R�.

This de®nition applies to the complexes of interest in this paper, by:

Lemma A.4. Let G be a ®nitely generated abelian group. Then:

(a) The total quotient rings of Z�G� and Nov�G; N� are ®nite sums of ®elds.

(b) These decompositions are compatible with the inclusion Z�G � ! Nov�G; N�.

Proof. (cf. [Tu3]) Choose a splitting G � K lF where K is ®nite and F is free. Then
Z�G� � Z�K �nZ�F � and Nov�G; N� � Z�K �nNov�F ; N�. The total quotient ring
of Z�K � is a ®nite sum of (cyclotomic) ®elds, Q�Z�K �� �Lj Lj. We then have

�A:3�
Q�Z�G�� �L

j

Lj nQ�Z�F ��;

Q�Nov�G; N�� �L
j

Lj nQ�Nov�F ; N��:

A ``leading coe½cients'' argument shows that Z�F � and Nov�F ; N� are integral
domains, so Lj nQ�Z�F �� and Lj nQ�Nov�F ; N�� are ®elds. Thus equation (A.3)
proves (a) and (b). r

The following ``change of basis'' formula is important in §3.

Proposition A.5. Let �C�; q� be a ®nite free complex over R, where Q�R� is a ®nite sum

of ®elds. If A� A Aut�C�� preserves the grading, then

t�C�;Aÿ1qA� � t�C�; q� �
Q

i

det�Ai��ÿ1� i

: r
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B Euler structures

In this appendix we explain how to resolve the H ambiguity in topological and
Morse-theoretic Reidemeister torsion (cf. §1.5), using Turaev's Euler structures.

We begin with a de®nition of Euler structures which is slightly di¨erent from
Turaev's. If v is a smooth vector ®eld on X with nondegenerate zeroes, let E�X ; v�
denote the set of homology classes of 1-chains g with qg � vÿ1�0�, where vÿ1�0� is
oriented in the standard way. The set E�X ; v� is a subset of the relative homology
H1�X ; vÿ1�0��, and it is an a½ne space modelled on H1�X �. The set E�X ; v� is non-
empty because we are assuming w�X� � 0.

If v0; v1 are two such vector ®elds, de®ne

fv1; v0
: E�X ; v0� ! E�X ; v1�

as follows. Let w be a section of TX ! X � �0; 1� such that vi � wjX�fig and wÿ1�0� is
cut out transversely. The orientation convention gives qwÿ1�0� � vÿ1

1 �0� ÿ vÿ1
0 �0�.

Suppose g A E�X ; v0�. Since H1�X � �0; 1�;X � f1g� � 0, there is a 2-chain SHX �
�0; 1� with qS � ÿwÿ1�0� ÿ g �rel X � f1g�. We de®ne fv1; v0

�g� :� qS� wÿ1�0� � g.

De®nition B.1. One can check that (a) fv1; v0
is independent of w and S, (b) fv; v � id,

and (c) fv2; v0
� fv2; v1

fv1; v0
. This implies that all the spaces E�X ; v� are canonically

isomorphic to a single a½ne space over H1�X �. We denote this space by E�X� and
call an element of it an Euler structure. We let iv : E�X� ! E�X ; v� denote the
canonical isomorphism.

It should be emphasized that the a½ne space E�X� is not canonically isomorphic to
H1�X �. For example, when v0; v1 have no zeroes, the map fv1; v0

does not necessarily
respect the identi®cations E�X ; vi�FH1�X�.

Remark B.2. When dim�X� > 1, Turaev [Tu2] de®nes a (smooth) Euler structure to
be a nonsingular continuous vector ®eld, modulo homotopy through vector ®elds
which remain nonsingular in the complement of a ball during the homotopy. To go
from our de®nition to Turaev's, represent g A E�X ; v� by disjoint paths connecting the
zeroes of v, and cancel the zeroes of v in a neighborhood of g.

We now explain how Euler structures determine (equivalence classes of ) bases for the
Novikov complex.

De®nition B.3. We de®ne a map

�B:1� E�X� ! B�CN��=G1

as follows. If there are no critical points, then CNi � f0g, so B�CN�� � H1�X�. In
this case we de®ne the map (B.1) to be the composition E�X � !iV E�X ;V� � H1�X�.

If Vÿ1�0�0j, then given x A E�X �, we can represent iV �x� A E�X ;V� by a chain
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g consisting only of paths connecting the zeroes of V, such that each critical point is
in one component of g. Choose a lift ~g of g to ~X . The induced lifts of the zeroes of V
to the endpoints of ~g determine a basis for CN�.

The equivalence class of this basis does not depend on the choice of lift ~g, because the
boundary of each component of g consists of two critical points whose indices have
opposite sign. It is also independent of g.

Given a one-parameter family f�at; gt�g, if there are no degenerate critical points
for t A �t1; t2�, then the canonical identi®cation of critical points ~C�t1� � ~C�t2� respects
the bases determined by an Euler structure.

We now consider bases of the equivariant cell complex, along the lines of [Tu2].
There is a standard vector ®eld vi on the standard i-simplex with a sink at the
center of the simplex, with no other zeroes in the interior, which restricts to vj on each
j-dimensional face, and which points inward near the boundary [Tu2]. Putting the
vector ®elds vi onto the simplices of our triangulation T, we obtain a continuous
vector ®eld vT on X. We can perturb this to a smooth vector ®eld v with a non-
degenerate zero of sign �ÿ1� i in the center of each i-simplex.

De®nition B.4. We de®ne a map

E�X� ! B�C�� ~X��=G1

as follows. Given x A E�X �, represent iv�x� A E�X ; v� by a chain g consisting only of
paths connecting the centers of the simplices in pairs. Choose a lift ~g of g to ~X . Each
simplex s in X now has a unique lift in ~X such that the center of s is lifted to one of
the points of q~g. These simplices in ~X give a basis for C�� ~X �.

The equivalence class of this basis does not depend on the perturbation v, the path
g, or the lift ~g.
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