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Abstract

These notes give an introduction to embedded contact homology
(ECH) of contact three-manifolds, gathering together many basic no-
tions which are scattered across a number of papers. We also discuss the
origins of ECH, including various remarks and examples which have not
been previously published. Finally, we review the recent application to
four-dimensional symplectic embedding problems. This article is based
on lectures given in Budapest and Munich in the summer of 2012, a se-
ries of accompanying blog postings at floerhomology.wordpress.com,
and related lectures at UC Berkeley in Fall 2012. There is already a
brief introduction to ECH in the article [23], but the present notes give
much more background and detail.
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1 Introduction

We begin by describing an application of ECH to four-dimensional symplec-
tic embedding problems. We will then give an overview of the basic structure
of ECH and how it leads to the application.

1.1 Symplectic embeddings in four dimensions

Let (X0, ω0) and (X1, ω1) be symplectic four-manifolds, possibly with bound-
ary or corners. A symplectic embedding of (X0, ω0) into (X1, ω1) is a smooth
embedding ϕ : X0 → X1 such that ϕ∗ω1 = ω0. It is interesting to ask when
such a symplectic embedding exists.

This is a nontrivial question already for domains in R4. For example,
given a, b > 0, define the ellipsoid

E(a, b) =
{

(z1, z2) ∈ C2

∣∣∣∣ π|z1|2

a
+
π|z2|2

b
≤ 1
}
. (1.1)
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Here we identify C2 = R4 with coordinates zk = xk + yk for k = 1, 2, with
the standard symplectic form ω =

∑2
k=1 dxkdyk. In particular, define the

ball B(a) = E(a, a). Also, define the polydisk

P (a, b) =
{

(z1, z2) ∈ C2
∣∣ π|z1|2 ≤ a, π|z2|2 ≤ b

}
. (1.2)

We can now ask, when does one ellipsoid or polydisk symplectically embed
into another?

A landmark in the theory of symplectic embeddings is Gromov’s non-
squeezing theorem from 1985. The four-dimensional case of this theorem
asserts that B(r) symplectically embeds into P (R,∞) if and only if r ≤ R.

The question of when one four-dimensional ellipsoid symplectically em-
beds into another was answered only in 2010, by McDuff. To state the
embedding criterion, let N(a, b) denote the sequence of all nonnegative in-
teger linear combinations of a and b, arranged in nondecreasing order, and
indexed starting at 0. For example,

N(1, 1) = (0, 1, 1, 2, 2, 2, . . .) (1.3)

and
N(1, 2) = (0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, . . .). (1.4)

Theorem 1.1 (McDuff [42]). There is a symplectic embedding int(E(a, b))→
E(c, d) if and only if N(a, b) ≤ N(c, d), i.e. N(a, b)k ≤ N(c, d)k for each
k ≥ 0.

For example, it is not hard to deduce from Theorem 1.1, together with
(1.3) and (1.4), that int(E(1, 2)) symplectically embeds into B(c) if and only
if c ≥ 2.

Given more general a, b, c, d, it can be nontrivial to decide whetherN(a, b) ≤
N(c, d). For example, consider the problem of an embedding an ellipsoid into
a ball, i.e. the case c = d. By scaling, we can encode this problem into a
single function f : [1,∞)→ [1,∞), where f(a) is defined to be the infimum
over c such that E(1, a) symplectically embeds into B(c) = E(c, c).

In general, if there is a symplectic embedding of (X0, ω0) into (X1, ω1),
then necessarily

vol(X0, ω0) ≤ vol(X1, ω1), (1.5)

where in four dimensions

vol(X,ω) =
1
2

∫
X
ω ∧ ω.

In particular, the ellipsoid has volume vol(E(a, b)) = ab/2, cf. equation
(4.12), so it follows from the volume constraint (1.5) that f(a) ≥

√
a.
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McDuff-Schlenk computed the function f explicitly and found that the
volume constraint is the only constraint if a is sufficiently large, while for
smaller a the situation is more interesting. In particular, their calculation
implies the following1:

Theorem 1.2 (McDuff-Schlenk [44]). • On the interval
[
1,
(
1 +
√

5/2
)4)

,
the function f is piecewise linear, given by a “Fibonacci staircase”.

• The interval
[(

1 +
√

5/2
)4
, (17/6)2

]
is divided into finitely many in-

tervals, on each of which either f is linear or f(a) =
√
a.

• On the interval
[
(17/6)2,∞

)
, we have f(a) =

√
a.

Note that Theorems 1.1 and 1.2 were proved by different methods. It
is a subtle number-theoretic problem to deduce Theorem 1.2 directly from
Theorem 1.1.

1.2 Properties of ECH capacities

Embedded contact homology can be used to prove the obstruction half of
Theorem 1.1, namely the fact that if int(E(a, b)) symplectically embeds into
E(c, d) then N(a, b) ≤ N(c, d). This follows from the more general theory of
“ECH capacities”. Here are some of the key properties of ECH capacities;
the definition of ECH capacities will be given in §1.5.

Theorem 1.3. [24] For each symplectic four-manifold (X,ω) (not necessar-
ily connected, possibly with boundary or corners), there is a sequence of real
numbers

0 = c0(X,ω) ≤ c1(X,ω) ≤ · · · ≤ ∞,

called ECH capacities, with the following properties:

(Monotonicity) If (X0, ω0) symplectically embeds into (X1, ω1), then

ck(X0, ω0) ≤ ck(X1, ω1) (1.6)

for all k ≥ 0.

(Conformality) If r is a nonzero real number, then

ck(X, rω) = |r|ck(X,ω).
1An analogue of Theorem 1.2 for symplectically embedding int(E(1, a)) into P (c, c) was

recently worked out in [17]. This is equivalent to symplectically embedding int(E(1, a))
into E(c, 2c), by Remark 1.5(b) and equation (1.10) below.
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(Ellipsoid)
ck(E(a, b)) = N(a, b)k. (1.7)

(Polydisk)

ck(P (a, b)) = min
{
am+ bn

∣∣ m,n ∈ N, (m+ 1)(n+ 1) ≥ k + 1
}
.

(1.8)

(Disjoint union)

ck

(
n∐
i=1

(Xi, ωi)

)
= max

k1+···+kn=k

n∑
i=1

cki(Xi, ωi).

(Volume) [10] If (X,ω) is a Liouville domain (see Definition 1.12) with all
ECH capacities finite (for example a star-shaped domain in R4), then

lim
k→∞

ck(X,ω)2

k
= 4 vol(X,ω). (1.9)

In particular, the Monotonicity and Ellipsoid properties immediately im-
ply the obstruction half of Theorem 1.1. Theorem 1.3 does not say anything
about the other half of Theorem 1.1, namely the existence of symplectic
embeddings.

The Volume property says that for a Liouville domain with all ECH
capacities finite, the asymptotic behavior of the Monotonicity property (1.6)
as k →∞ recovers the volume constraint (1.5).

Exercise 1.4. Check the volume property (1.9) when (X,ω) is an ellipsoid
E(a, b). (See answer in §A.)

Remark 1.5. Here is what we know about the sharpness of the ECH ob-
struction for some other symplectic embedding problems.

(a) ECH capacities give a sharp obstruction to symplectically embedding
a disjoint union of balls of possibly different sizes into a ball. This
follows by comparison with work of McDuff [41] and Biran [1] from the
1990’s which solved this embedding problem. See [26] for details.

(b) It follows from work of Müller that ECH capacities give a sharp ob-
struction to embedding an ellipsoid into a polydisk, see [26] and [17].

(c) ECH capacities do not give a sharp obstruction to symplectically em-
bedding a polydisk into an ellipsoid. For example, one can check that

ck(P (1, 1)) = ck(E(1, 2)) (1.10)
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for all k, so ECH capacities give no obstruction to symplectically em-
bedding P (1, 1) into E(a, 2a) when a > 1. However the Ekeland-
Hofer capacities imply that P (1, 1) does not symplectically embed
into E(a, 2a) when a < 3/2; these capacities are (1, 2, 3, . . .) and
(a, 2a, 2a, 3a, 4a, 4a, . . .) respectively [14, 5]. The Ekeland-Hofer ob-
struction is sharp, because it follows from (1.1) and (1.2) that P (1, 1),
as defined, is a subset of E(3/2, 3).

(d) We know very little about when one polydisk can be symplectically
embedded into another or how good the ECH obstruction to this is.

In §4.3 we will compute the ECH capacities of a larger family of examples,
namely “toric domains” in C2.

1.3 Overview of ECH

We now outline the definition of embedded contact homology; details will
be given in §3.

Let Y be a closed oriented three-manifold. Recall that a contact form
on Y is a 1-form λ on Y such that λ ∧ dλ > 0 everywhere. The contact
form λ determines the contact structure ξ = Kerλ, which is an oriented
two-plane field, and the Reeb vector field R characterized by dλ(R, ·) = 0
and λ(R) = 1.

A Reeb orbit is a closed orbit of R, i.e. a map γ : R/TZ → Y for some
T > 0, modulo reparametrization, such that γ′(t) = R(γ(t)). A Reeb orbit
is either embedded in Y , or an m-fold cover of an embedded Reeb orbit for
some integer m > 1.

We often want to assume that the Reeb orbits are “cut out transversely”
in the following sense. Given a Reeb orbit γ as above, the linearized re-
turn map is a symplectic automorphism Pγ of the symplectic vector space
(ξγ(0), dλ), which is defined as the derivative of the time T flow of R. The
Reeb orbit γ is called nondegenerate if 1 is not an eigenvalue of Pγ . The
contact form λ is called nondegenerate if all Reeb orbits are nondegenerate.
This holds for generic contact forms.

A nondegenerate Reeb orbit γ is called elliptic if the eigenvalues of Pγ
are on the unit circle, so that Pγ is conjugate to a rotation. Otherwise γ is
hyperbolic, meaning that the eigenvalues of Pγ are real. There are two kinds
of hyperbolic orbits: positive hyperbolic orbits for which the eigenvalues of
Pγ are positive, and negative hyperbolic orbits for which the eigenvalues of
Pγ are negative.

Assume now that λ is nondegenerate, and fix a homology class Γ ∈
H1(Y ). One can then define the embedded contact homology ECH∗(Y, ξ,Γ)
as follows. This is the homology of a chain complex ECC(Y, λ,Γ, J). The
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chain complex is freely generated over Z/2 by finite sets of pairs α =
{(αi,mi)} where:

• The αi are distinct embedded Reeb orbits.

• The mi are positive integers.

• The total homology class
∑

imi[αi] = Γ.

• mi = 1 whenever αi is hyperbolic.

It is a frequently asked question why the last condition is necessary; we will
give one answer in §2.6–2.7 and another answer in §5.4. Note also that ECH
can be defined with integer coefficients, see [31, §9]; however the details of the
signs are beyond the scope of these notes, and Z/2 coefficients are sufficient
for all the applications we will consider here.

The chain complex differential is defined roughly as follows. We call an
almost complex structure J on the “symplectization” R×Y symplectization-
admissible if J is R-invariant, J(∂s) = R where s denotes the R coordinate
on R × Y , and J sends the contact structure ξ to itself, rotating positively
with respect to dλ. These are the standard conditions on J for defining
various flavors of contact homology. In the notation for the chain complex,
J is a generic symplectization-admissible almost complex structure on R×Y .

If α = {(αi,mi)} and β = {(βj , nj)} are chain complex generators, then
the differential coefficient 〈∂α, β〉 ∈ Z/2 is a mod 2 count of J-holomorphic
curves C in R × Y , modulo R translation and equivalence of currents, sat-
isfying two conditions. The first condition is that, roughly speaking, C
converges as a current to

∑
imiαi as s→ +∞, and to

∑
j njβj as s→ −∞.

The second condition is that C has “ECH index” equal to 1. The definition
of the ECH index is the key nontrivial part of the definition of ECH; the
original references are [21, 22], and we will spend considerable time explain-
ing this in §3. We will see in Proposition 3.7 that our assumption that J is
generic implies every ECH index 1 curve is embedded, except possibly for
multiple covers of “trivial cylinders” R × γ where γ is a Reeb orbit; hence
the name “embedded contact homology”. We will explain in §5.3 why ∂ is
well-defined. It is shown in [30, §7] that ∂2 = 0; we will introduce some of
what is involved in the proof in §5.4.

Let ECH∗(Y, λ,Γ, J) denote the homology of the chain complex ECC∗(Y, λ,Γ, J).
It turns out that this homology does not depend on the almost complex
structure J or on the contact form λ for ξ, and so defines a well-defined
Z/2-module ECH∗(Y, ξ,Γ). In principle one should be able to prove this
by counting holomorphic curves with ECH index zero, but there are un-
solved technical problems with this approach which we will describe in §5.5.
Currently the only way to prove the above invariance is using:
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Theorem 1.6 (Taubes [59]). If Y is connected, then there is a canonical
isomorphism of relatively graded modules (with Z/2 or Z coefficients)

ECH∗(Y, λ,Γ, J) = ĤM
−∗

(Y, sξ + PD(Γ)). (1.11)

Here ĤM
∗

notes the “from” version of Seiberg-Witten Floer cohomology
defined by Kronheimer-Mrowka [35], and sξ denotes a spin-c structure de-
termined by the oriented 2-plane field ξ, see §2.8. The relative grading is
explained in §3.5. Kutluhan-Lee-Taubes [36] and Colin-Ghiggini-Honda [6]
also showed that both sides of (1.11) are isomorphic to the Heegaard Floer
homology HF+(−Y, sξ + PD(Γ)) defined in [47]. The upshot is that ECH is
a topological invariant of Y , except that one needs to shift Γ if one changes
the contact structure.

Remark 1.7. In fact, both Seiberg-Witten Floer cohomology and ECH have
absolute gradings by homotopy classes of oriented two-plane fields [35, 22],
and Taubes’s isomorphism (1.11) respects these absolute gradings [9]. Thus
one can write the isomorphism (1.11) as ECHp(Y, λ, J) = ĤM

p
(Y ) where

p denotes a homotopy class of oriented two-plane fields on Y .

Although ECH does not depend on the contact form, because it is defined
using the contact form it has applications to contact geometry. For exam-
ple, Theorem 1.6, together with known properties of Seiberg-Witten Floer
cohomology, implies the three-dimensional Weinstein conjecture: every con-
tact form on a closed connected three-manifold has at least one Reeb orbit.
Indeed, Taubes’s proof of the Weinstein conjecture in [58] can be regarded
as a first step towards proving Theorem 1.6.

The reason that Theorem 1.6 implies the Weinstein conjecture is that if
there is no closed orbit, then λ is nondegenerate and

ECH∗(Y, ξ,Γ) =
{

Z/2, Γ = 0,
0, Γ 6= 0.

Here the Z/2 comes from the empty set of Reeb orbits, which is a legiti-
mate chain complex generator when Γ = 0. However results of Kronheimer-
Mrowka [35] imply that if c1(ξ) + 2 PD(Γ) ∈ H2(Y ; Z) is torsion (and by
a little algebraic topology one can always find a class Γ ∈ H1(Y ) with this
property), then ĤM

∗
(Y, sξ + Γ) is infinitely generated, which is a contradic-

tion.
Note that although ECH(Y, ξ,Γ) is infinitely generated for Γ as above,

there might not exist infinitely many embedded Reeb orbits. To give a coun-
terexample, first recall that in any symplectic manifold (M,ω), a Liouville
vector field is a vector field ρ such that Lρω = ω. A hypersurface Y ⊂M is
of contact type if there exists a Liouville vector field ρ transverse to Y defined
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in a neighborhood of Y . In this case the “Liouville form” ıρω restricts to
a contact form on Y , whose Reeb vector field is parallel to the Hamilonian
vector field XH where H : M → R is any smooth function having Y as a
regular level set.

For example, the radial vector field

ρ =
1
2

2∑
k=1

(
xk

∂

∂xj
+ yk

∂

∂yk

)
is a Liouville vector field defined on all of R4. It follows that if Y is a
hypersurface in R4 which is “star-shaped”, meaning transverse to the radial
vector field ρ, then the Liouville form

λ =
1
2

2∑
k=1

(xkdyk − ykdxk) (1.12)

restricts to a contact form on Y , with Reeb vector field determined as above.

Example 1.8. If Y = ∂E(a, b) is the boundary of an ellipsoid, then it follows
from the above discussion that the Liouville form λ in (1.12) restricts to a
contact form on Y , whose Reeb vector field is given in polar coordinates by

R =
2π
a

∂

∂θ1
+

2π
b

∂

∂θ2
.

If a/b is irrational, then there are just two embedded Reeb orbits, which we
denote by γ1 = (z2 = 0) and γ2 = (z1 = 0). The linearized return map Pγ1 is
rotation by 2πa/b, and the linearized return map Pγ2 is rotation by 2πb/a, so
both of these Reeb orbits are elliptic. A generator of the ECH chain complex
then has the form γm1

1 γm2
2 , where this notation indicates the set consisting of

the pair (γ1,m1) (if m1 6= 0) and the pair (γ2,m2) (if m2 6= 0). For grading
reasons to be explained in §3.7, the differential ∂ is identically zero. Thus
ECH(∂E(a, b), λ, 0) has one generator for each pair of nonnegative integers.

By making stronger use of the isomorphism (1.11), one can prove some
slight refinements of the Weinstein conjecture. For example, there are always
at least two embedded Reeb orbits [11]; and if λ is nondegenerate and Y is
not a sphere or a lens space then there at least three embedded Reeb orbits
[32]. To put this in perspective, Colin-Honda [8] used linearized contact
homology to show that for many contact structures, every contact form has
infinitely many embedded Reeb orbits. The only examples of closed contact
three-manifolds we know of with only finitely many embedded Reeb orbits
are the ellipsoid examples in Example 1.8, and quotients of these on lens
spaces, with exactly two embedded Reeb orbits.
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Historical note. The original motivation for the definition of ECH was to
find a symplectic model for Seiberg-Witten Floer homology, so that an iso-
morphism of the form (1.11) would hold2, analogously to Taubes’s Seiberg-
Witten = Gromov theorem for closed symplectic four-manifolds. We will
explain this motivation in detail in §2–3.

1.4 Additional structure on ECH

The definition of ECH capacities uses four additional structures on ECH,
which we now briefly describe.

1. The U map. Assuming that Y is connected, there is a degree −2 map

U : ECH∗(Y, ξ,Γ) −→ ECH∗−2(Y, ξ,Γ). (1.13)

This is induced by a chain map which is defined similarly to the differential,
except that instead of counting ECH index 1 curves modulo R translation,
it counts ECH index 2 curves that pass through a base point (0, z) ∈ R×Y .
Since Y is connected, the induced map on homology

U : ECH∗(Y, λ,Γ, J) −→ ECH∗−2(Y, λ,Γ, J) (1.14)

does not depend on the choice of base point z, see §3.8 for details. Taubes
[63] showed that (1.14) agrees with an analogous U map on Seiberg-Witten
Floer cohomology, and in particular it gives a well-defined map (1.13). Thus
the U map, like ECH, is in fact a topological invariant of Y .

If Y is disconnected, then there is a different U map for each component
of Y . More precisely, suppose that (Y, λ) =

∐n
i=1(Yi, λi) with Yi connected,

and let Γ = (Γ1, . . . ,Γn) ∈ H1(Y ). It follows from the definitions, and
the fact that we are using coefficients in a field, that there is a canonical
isomorphism

ECH(Y, ξ,Γ) =
n⊗
i=1

ECH(Yi, ξi,Γi).

The U map on the left hand side determined by the component Yi is the
tensor product on the right hand side of the U map on ECH(Yi, ξi,Γi) with
the identity on the other factors.

2More precisely, we first defined an analogous theory for mapping tori of symplec-
tomorphisms of surfaces, called periodic Floer homology , and conjectured that this was
isomorphic to Seiberg-Witten Floer homology, see [21, §1.1]. This conjecture was later
proved by Lee and Taubes [39]. Initially it was not clear if ECH would also be isomorphic
to Seiberg-Witten Floer homology because the geometry of contact manifolds is slightly
different than that of mapping tori. However the calculation of the ECH of T 3 then
provided nontrivial evidence that this is the case, see [29, §1.1].
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2. The ECH contact invariant. ECH contains a canonical class de-
fined as follows. Observe that for any nondegenerate contact three-manifold
(Y, λ), the empty set of Reeb orbits is a generator of the chain complex
ECC(Y, λ, 0, J). It follows from (1.15) below that this chain complex gen-
erator is actually a cycle, i.e.

∂∅ = 0.

(In this equation, the empty set is not the same as zero!) ECH cobordism
maps, described below, can be used to show that the homology class of this
cycle does not depend on J or λ, and thus represents a well-defined class

c(ξ) ∈ ECH∗(Y, ξ, 0),

which we call the ECH contact invariant . Taubes [63] showed that under the
isomorphism (1.11), this agrees with a related contact invariant in Seiberg-
Witten Floer cohomology.

Although ECH and the U map on it are topological invariants of the
three-manifold Y , the contact invariant can distinguish some contact struc-
tures. For example, if ξ is overtwisted then c(ξ) = 0. This holds because, as
shown in the appendix to [67], if ξ is overtwisted then one can find a contact
form such that the shortest Reeb orbit γ bounds a unique holomorphic curve
(which is a holomorphic plane) in R× Y ; the latter turns out to have ECH
index 1, so ∂γ = ∅. On the other hand, it follows using the ECH cobordism
maps defined in [27] that c(ξ) 6= 0 whenever (Y, ξ) is strongly symplectically
fillable; a special case of this is proved in Example 1.10 below.

3. Filtered ECH. There is a refinement of ECH which sees not just the
contact structure but also the contact form. To describe this, recall that if
γ is a Reeb orbit, its symplectic action is defined by

A(γ) =
∫
γ
λ.

If α = {(αi,mi)} is an ECH generator, define its symplectic action by

A(α) =
∑
i

miA(αi).

It follows from the conditions on the almost complex structure J that the
restriction of dλ to any J-holomorphic curve in R × Y is pointwise non-
negative. Consequently, by Stokes’s theorem, the differential decreases3 the
symplectic action, i.e.

〈∂α, β〉 6= 0 =⇒ A(α) ≥ A(β). (1.15)
3In fact the inequality on the right side of (1.15) is strict, but we do not need this.
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Given L ∈ R, define ECCL(Y, λ,Γ, J) to be the span of those genera-
tors α with A(α) < L. It follows from (1.15) that this is a subcomplex of
ECC(Y, λ,Γ, J). The homology of this subcomplex is called filtered ECH
and denoted by ECHL(Y, λ,Γ). It is shown in [33, Thm. 1.3] that filtered
ECH does not depend on J . There is also a U map (or U maps when Y is
disconnected) defined on filtered ECH, which we continue to denote by U .

Unlike the usual ECH, filtered ECH depends heavily on the contact form
λ. For example, if Y = ∂E(a, b) with the standard contact form as in
Example 1.8, then the symplectic action of a chain complex generator is
given by

A(γm1
1 γm2

2 ) = am1 + bm2. (1.16)

Thus the rank of ECHL(∂E(a, b)) is the number of nonnegative integer
linear combinations of a and b that are less than L. Obviously this depends
on a and b; but the ellipsoids for different a and b with their contact forms all
determine the unique tight contact structure on S3. There is also a general
scaling property: if r > 0 is a positive constant, then there is a canonical
isomorphism

ECHL(Y, λ,Γ) = ECHrL(Y, rλ,Γ). (1.17)

4. Cobordism maps. We now consider maps on ECH induced by cobor-
disms. For this purpose there are various kinds of cobordisms that one can
consider. To describe these, let (Y+, λ+) and (Y−, λ−) be closed contact
three-manifolds.

A strong symplectic cobordism from4 (Y+, λ+) to (Y−, λ−) is a compact
symplectic four-manifold (X,ω) with boundary

∂X = Y+ − Y−, (1.18)

such that ω|Y± = dλ±. Note that the signs in (1.18) are important; here
X has an orientation determined by the symplectic structure, while Y+ and
Y− have orientations determined by the contact structures. In particular,
there is a distinction between the positive (or “convex”) boundary Y+ and
the negative (or “concave”) boundary Y−.

An exact symplectic cobordism is a strong symplectic cobordism as above
such that there is a 1-form λ on X with dλ = ω and λ|Y± = λ±.

A strong (resp. exact) symplectic filling of (Y, λ) is a strong (resp. exact)
symplectic cobordism from (Y, λ) to the empty set.

4Our use of the words “from” and “to” in this connection is controversial. In the usual
TQFT language, one would say that X is a cobordism from Y− to Y+. However cobordism
maps on ECH and other kinds of contact homology naturally go from the invariant of Y+

to the invariant of Y−. We apologize for any confusion.
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For example, if X is a compact star-shaped domain in R4 with boundary
Y , if ω is the standard symplectic form on R4, and if λ is the Liouville form
(1.12), then (X,ω) is an exact symplectic filling of (Y, λ|Y ).

Maps on ECH induced by exact symplectic cobordisms were constructed
in [33], where they were used to prove the Arnold chord conjecture in three
dimensions. More generally, maps on ECH induced by arbitrary strong
symplectic cobordisms are constructed in [27].

To set up the theory of ECH capacities, we need a notion in between
exact and strong symplectic cobordisms. Define a weakly exact symplectic
cobordism to be a strong symplectic cobordism as above such that ω is exact
(but ω need not have a primitive on X which restricts to the contact forms
on the boundary).

Theorem 1.9 ([24, Thm. 2.3]). Let (X,ω) be a weakly exact symplectic
cobordism from (Y+, λ+) to (Y−, λ−), and assume that the contact forms λ±
are nondegenerate. Then for each L > 0 there are maps

ΦL(X,ω) : ECHL(Y+, λ+, 0) −→ ECHL(Y−, λ−, 0)

with the following properties:

(a) φL(X,ω)[∅] = [∅].

(b) If U+ and U− are U maps on ECHL(Y±, λ±, 0) corresponding to com-
ponents of Y± that are contained in the same component of X, then

φL(X,ω) ◦ U+ = U− ◦ φL(X,ω).

Example 1.10. If Y− = ∅, i.e. if (X,ω) is a weakly exact symplectic filling
of (Y+, λ+), then the content of the theorem is that there are maps

ΦL(X,ω) : ECHL(Y+, λ+, 0) −→ Z/2

with ΦL(X,ω)[∅] = 1. In particular, it follows that c(ξ+) 6= 0 ∈ ECH(Y+, ξ+, 0).

Theorem 1.9 is proved using Seiberg-Witten theory, as we describe in
§5.5. For now let us see how the above structure can be used to define ECH
capacities.

1.5 Definition of ECH capacities

Before defining ECH capacities of symplectic four-manifolds, we first need
another three-dimensional definition.

13



ECH spectrum. Let (Y, λ) be a closed contact three-manifold, write ξ =
Ker(λ) as usual, and assume that c(ξ) 6= 0 ∈ ECH(Y, ξ, 0). We define a
sequence of real numbers

0 = c0(Y, λ) < c1(Y, λ) ≤ c2(Y, λ) ≤ · · · ≤ ∞,

called the ECH spectrum of (Y, λ), as follows.
Suppose first that λ is nondegenerate and Y is connected. Then ck(Y, λ)

is the infimum of L such that there is a class η ∈ ECHL(Y, λ, 0) with Ukη =
[∅]. If no such class exists then ck(Y, λ) =∞. In particular, ck(Y, λ) <∞ if
and only if c(ξ) is in the image of Uk on ECH(Y, ξ, 0).

Example 1.11. Suppose Y = ∂E(a, b) with a/b irrational. Denote the chain
complex generators in order of increasing symplectic action by ζ0, ζ1, . . .. We
will see in §4.1 that Uζk = ζk−1 for k > 0. It follows from this and (1.16)
that

ck(∂E(a, b)) = N(a, b)k. (1.19)

Continuing the definition of the ECH spectrum, if (Y, λ) =
∐n
i=1(Yi, λi)

with Yi connected and λi nondegenerate, let Ui denote the U map corre-
sponding to the ith component. Then ck(Y, λ) is the infimum of L such that
there exists a class η ∈ ECHL(Y, λ, 0) with

Uk1
1 ◦ · · · ◦ U

kn
n η = [∅] (1.20)

whenever k1 + · · ·+ kn = k. It follows from some algebra in [24, §5] that

ck

(
n∐
i=1

(Yi, λi)

)
= max

k1+···+kn=k

n∑
i=1

cki(Yi, λi). (1.21)

Finally, if (Y, λ) is a closed contact three-manifold with λ possibly de-
generate, define ck(Y, λ) = limn→∞ ck(Y, fnλ), where fn : Y → R>0 are
functions on Y with fnλ nondegenerate and limn→∞ fn = 1 in the C0 topol-
ogy. It can be shown using Theorem 1.9 that this is well-defined and still
satisfies (1.21). For example, equation (1.19) also holds when a/b is rational.

ECH capacities. We are now ready to define ECH capacities.

Definition 1.12. A (four-dimensional) Liouville domain is a weakly5 exact
symplectic filling (X,ω) of a contact three-manifold (Y, λ).

5Our definition of “Liouville domain” is more general than the usual definition, and
perhaps should be called a “weak Liouville domain”. Ordinarily a “Liouville domain” is
an exact symplectic filling.
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Definition 1.13. If (X,ω) is a four-dimensional Liouville domain with
boundary (Y, λ), define the ECH capacities of (X,ω) by

ck(X,ω) = ck(Y, λ) ∈ [0,∞].

To see why this definition makes sense, first note that c(ξ) 6= 0 ∈
ECH(Y, ξ, 0) by Example 1.10, so ck(Y, λ) is defined. We also need to ex-
plain why ck(X,ω) does not depend on the choice of contact form λ on Y
with dλ = ω|Y . Let λ′ be another such contact form. Assume that λ and λ′

are nondegenerate (one can handle the degenerate case by taking a limit of
nondegenerate forms). Since dλ = dλ′, the Reeb vector fields R and R′ for
λ and λ′ are related by R′ = fR where f : Y → R>0. Let J be an almost
complex structure on R × Y as needed to define the ECH of λ. Let J ′ be
the almost complex structure on R× Y which agrees with J on the contact
planes ξ but sends ∂s 7→ R′. There is then a canonical isomorphism of chain
complexes

ECCL(Y, λ, 0, J) = ECCL(Y, λ′, 0, J ′) (1.22)

which preserves the U maps and the empty set. The reason is that the chain
complexes ECC(Y, λ,Γ, J) and ECC(Y, λ′,Γ, J ′) have the same generators,
and when Γ = 0 the symplectic actions as defined using λ or λ′ agree by
Stokes’s theorem because dλ = dλ′. Furthermore the J-holomorphic curves
in R× Y agree with the J ′-holomorphic curves after rescaling the R coordi-
nate on R× Y using the function f . And it follows immediately from (1.22)
that ck(Y, λ) = ck(Y, λ′).

For example, the Ellipsoid property of ECH capacities now follows from
(1.19).

Monotonicity for Liouville domains. We now explain why the Mono-
tonicity property holds when (X0, ω0) and (X1, ω1) are Liouville domains.
By a limiting argument, one can assume that (X0, ω0) symplectically embeds
into the interior of (X1, ω1). For i = 0, 1, let Yi = ∂Xi, and let λi be a con-
tact form on Yi with ∂λi = ω|Yi . Then (X \ϕ(int(X0)), ω1) is a weakly exact
symplectic cobordism from (Y1, λ1) to (Y0, λ0). The Monotonicity property
in this case now follows from:

Lemma 1.14. Let (X,ω) be a weakly exact symplectic cobordism from (Y+, λ+)
to (Y−, λ−). Then

ck(Y−, λ−) ≤ ck(Y+, λ+)

for each k ≥ 0.

This lemma follows almost immediately from the fact that ck is defined
solely in terms of the filtration, the U maps, and the contact invariant, and
these structures are preserved by the cobordism map. Here are the details.
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Proof. By a limiting argument we may assume that the contact forms λ±
are nondegenerate. Let U+

1 , . . . , U
+
m denote the U maps on ECH(Y+, λ+, 0)

associated to the components of Y+, and let U−1 , . . . , U
−
n denote the U maps

on ECH(Y−, λ−, 0) associated to the components of Y−. Let L > 0 and
suppose that ck(Y+, λ) < L; it is enough to show that ck(Y−, λ−) ≤ L. Since
ck(Y+, λ) < L, there exists a class η+ ∈ ECHL(Y+, λ+, 0) such that

(U+
1 )k1 · · · (U+

m)kmη+ = [∅] (1.23)

whenever k1 + · · ·+ km = k.
Let

η− = ΦL(X,ω)η+ ∈ ECHL(Y−, λ−, 0).

We claim that
(U−1 )k1 · · · (U−n )knη− = [∅] (1.24)

whenever k1 + · · ·+kn = k, so that ck(Y−, λ−) ≤ L. To prove this, first note
that by Exercise 1.15 below, each component of Y− is contained in the same
component of X as some component of Y+. Equation (1.24) then follows
from equation (1.23) together with Theorem 1.9.

Exercise 1.15. Show that if (X,ω) is a weakly exact symplectic cobordism
from (Y+, λ+) to (Y−, λ−), then Y+ 6= ∅. (See answer in §A.)

Non-Liouville domains. We extend the definition of ECH capacities to
symplectic four-manifolds which are not Liouville domains by a simple trick:
If (X,ω) is any symplectic four-manifold, define

ck(X,ω) = sup{ck(X ′, ω′)},

where the supremum is over Liouville domains (X ′, ω′) that can be symplec-
tically embedded into X. It is a tautology that this new definition of ck is
monotone with respect to symplectic embeddings. And this new definition
agrees with the old one when (X,ω) is already a Liouville domain, by the
Monotonicity property for the old definition of ck with respect to symplectic
embeddings of Liouville domains.

Properties of ECH capacities. The remaining properties of ECH ca-
pacities in Theorem 1.3 are proved as follows. The Disjoint Union property
follows from (1.21). The Conformality property follows from the definitions
and the scaling property (1.17) when r > 0, and a similar argument6 when

6In particular, there is a canonical isomorphism of chain complexes (with Z/2 coeffi-
cients)

ECCL(Y, λ,Γ, J) = ECCL(Y,−λ,−Γ,−J).

Note that the resulting isomorphism ECH(Y, ξ,Γ) = ECH(Y,−ξ,−Γ) corresponds, under
Taubes’s isomorphism (1.11), to “charge conjugation invariance” of Seiberg-Witten Floer
cohomology (with Z/2 coefficients).
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r < 0. We will prove the Polydisk property at the end of §4.3. The proof of
the Volume property is beyond the scope of these notes; it is given in [10],
using ingredients from Taubes’s proof of the Weinstein conjecture [58].

2 Origins of ECH

One of the main goals of these notes is to explain something about where
ECH comes from. The starting point for the definition of ECH is Taubes’s
“SW=Gr” theorem [56] asserting that the Seiberg-Witten invariants of a
symplectic four-manifold agree with a “Gromov invariant” counting holo-
morphic curves. The basic idea of ECH is that it is a three-dimensional
analogue of Taubes’s Gromov invariant. So we will now review Taubes’s
Gromov invariant in such a way as to make the definition of ECH appear
as natural as possible. The impatient reader may wish to skip ahead to the
definition of ECH in §3, and refer back to this section when more motivation
is needed.

2.1 Taubes’s “SW=Gr” theorem

We first briefly recall the statement of Taubes’s “SW=Gr” theorem. Let X
be a closed connected oriented four-manifold. (All manifolds in these notes
are smooth.) Let b+2 (X) denote the dimension of a maximal positive definite
subspace H+

2 (X; R) of H2(X; R) with respect to the intersection pairing. Let
Spinc(X) denote the set of spin-c structures7 on X; this is an affine space
over H2(X; Z). If b+2 (X) > 1, one can define the Seiberg-Witten invariant

SW (X) : Spinc(X)→ Z (2.1)

by counting solutions to the Seiberg-Witten equations, see e.g. [46]. More
precisely, the Seiberg-Witten invariant depends on a choice of “homology ori-
entation” of X, namely an orientation of H0(X; R)⊕H1(X; R)⊕H+

2 (X; R)
where H+

2 (X; R). Switching the homology orientation will multiply the
Seiberg-Witten invariant by −1. If b+2 (X) = 1, the Seiberg-Witten invari-
ant (2.1) is still defined, but depends on an additional choice of one of two
possible “chambers”; one can identify a chamber with an orientation of the
line H+

2 (X; R).
While the Seiberg-Witten invariants are very powerful for distinguishing

smooth four-manifolds, it is also nearly impossible to compute them di-
rectly except in very special cases (although there are axiomatic properties

7A spin-c struture on an oriented n-manifold is a lift of the frame bundle from a principal
SO(n) bundle to a principal Spinc(n) = Spin(n) ×Z/2 U(1) bundle. However we will not
need this here.
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which one can use to compute the invariants for more interesting exam-
ples). However, Taubes showed that if X has a symplectic form ω, then the
Seiberg-Witten invariants of X are equal to a certain count of holomorphic
curves, which are much easier to understand than solutions to the Seiberg-
Witten equations. Namely, for each A ∈ H2(X), Taubes defines a “Gromov
invariant”

Gr(X,ω,A) ∈ Z,

which is a certain count of holomorphic curves in the homology class A,
which we will review in §2.5 below. Further, the symplectic structure ω
determines a distinguished spin-c structure sω, so that we can identify

H2(X) = Spinc(X),
A↔ sω + PD(A).

(2.2)

We can now state:

Theorem 2.1 (Taubes). Let (X,ω) be a closed connected symplectic four-
manifold with b+2 (X) > 1. Then X has a homology orientation such that
under the identification (2.2),

SW (X) = Gr(X,ω, ·).

Remark 2.2. A version of this theorem also holds when b+2 (X) = 1. Here
one needs to compute the Seiberg-Witten invariant using the chamber de-
termined by the cohomology class of ω. Also, in this case the definition of
the Gromov invariant needs to be modified in the presence of symplectic
embedded spheres of square −1, see [40].

2.2 Holomorphic curves in symplectic manifolds

We now briefly review what we will need to know about holomorphic curves
in order to define Taubes’s Gromov invariant. Proofs of the facts recalled
here may be found for example in [43].

Let (X2n, ω) be a closed symplectic manifold. An ω-compatible almost
complex structure is a bundle map J : TX → TX such that J2 = −1
and g(v, w) = 〈Jv,w〉 defines a Riemannian metric on X. Given ω, the
space of compatible almost complex structures J is contractible. Fix an
ω-compatible8 almost complex structure J .

A J-holomorphic curve in (X,ω) is a holomorphic map u : (Σ, j) →
(X, J) where (Σ, j) is a compact Riemann surface (i.e. Σ is a compact surface
and j is an almost complex structure on Σ), u : Σ → X is a smooth map,

8Taubes’s theorem presumably still works if one generalizes from compatible to tame
almost complex structures.
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and J ◦ du = du ◦ j. The curve u is considered equivalent to u′ : (Σ′, j′) →
(X, J) if there exists a holomorphic bijection φ : (Σ, j) → (Σ′, j′) such that
u′ ◦ φ = u. Thus a J-holomorphic curve is formally an equivalence class of
triples (Σ, j, u) satisfying the above conditions.

We call a J-holomorphic curve irreducible if its domain is connected.
If u : (Σ, j)→ (X, J) is an embedding, then the equivalence class of the

J-holomorphic curve u is determined by its image C = u(Σ) in X. Indeed,
an embedded J-holomorphic curve is equivalent to a closed two-dimensional
submanifold C ⊂ X such that J(TC) = TC.

More generally, a holomorphic curve u : Σ → X is called somewhere
injective if there exists z ∈ Σ such that u−1(u(z)) = {z} and duz : TzΣ →
Tu(z)X is injective. One can show that in this case u is an embedding on
the complement of a countable subset of Σ (which is finite in the case of
interest where n = 2), and the equivalence class of u is still determined by
its image in X. On the other hand, u is called multiply covered if there exists
a branched cover φ : (Σ, j) → (Σ′, j′) of degree d > 1 and a holomorphic
map u′ : (Σ′, j′)→ (X, J) such that u = u′ ◦ φ.

It is a basic fact that every irreducible holomorphic curve is either some-
where injective or multiply covered. In particular, every irreducible holomor-
phic curve is the composition of a somewhere injective holomorphic curve
with a branched cover of degree d ≥ 1. When d > 1, the holomorphic curve
is not determined just by its image in X; it depends also on the degree d, the
images of the branch points in X, and the monodromy around the branch
points.

Define the Fredholm index of a holomorphic curve u : (Σ, j)→ (X, J) by

ind(u) = (n− 3)χ(Σ) + 2〈c1(TX), u∗[Σ]〉. (2.3)

Here c1(TX) denotes the first Chern class of TX, regarded as a complex
vector bundle using the almost complex structure J . This complex vector
bundle depends only on the symplectic structure and not on the compatible
almost complex structure.

A transversality argument shows that if J is generic, then for each some-
where injective holomorphic curve u, the moduli space of holomorphic curves
near u is a smooth manifold of dimension ind(u), cut out transversely in a
sense to be described below. Unfortunately, this usually does not hold for
multiply covered curves. Even if all somewhere injective holomorphic curves
are cut out transversely, there can still be multiply covered holomorphic
curves u such that ind(u) is less than the dimension of the moduli space
near u, or even negative. This is a major technical problem in defining
holomorphic curve counting invariants in general, and it also causes some
complications for ECH, as we will see in the proof that ∂2 = 0 in §5.4 and
especially in the construction of cobordism maps in §5.5.
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2.3 Deformations of holomorphic curves

We now clarify what it means for a holomorphic curve to be “cut out trans-
versely”. To simplify the discussion we restrict attention to immersed curves,
which are all we need to consider to define Taubes’s Gromov invariant.

Let u : C → X be an immersed J-holomorphic curve, which by abuse
of notation we will usually denote by C. Then C has a well defined normal
bundle NC , which is a complex vector bundle of rank n − 1 over C. The
derivative of the equation for C to be J-holomorphic defines a first-order
elliptic differential operator

DC : Γ(NC) −→ Γ(T 0,1C ⊗NC),

which we call the deformation operator of C. Here Γ denotes the space of
smooth sections.

To explain this operator in more detail, we first recall some general for-
malism. Suppose E → B is a smooth vector bundle and ψ : B → E is a
smooth section. Let x ∈ B be a zero of ψ. Then the derivative of the section
ψ at x defines a canonical map

∇ψ : TxB → Ex. (2.4)

Namely, the derivative of ψ, regarded as a smooth map B → E, has a
differential dψx : TxB → T(x,0)E, and the map (2.4) is obtained by composing
this with the projection T(x,0)E = TxB ⊕ Ex → Ex.

To put holomorphic curves into the above framework, let B be the infinite
dimensional (Frechet) manifold of immersed compact surfaces in X. Given
an immersed surface u : C → X, let NC = u∗TX/TC denote the normal
bundle to C, which is a rank 2n − 2 real vector bundle over C, and let
πNC : u∗TX → NC denote the quotient map. We can identify TCB = Γ(NC).
There is an infinite dimensional vector bundle E → B whose fiber over C is
the space of smooth bundle maps TC → NC . We define a smooth section
∂ : B → E by defining ∂(C) : TC → NC to be the map sending v 7→ πNC (Jv).
Then C is J-holomorphic if and only if ∂(C) = 0. In this case the derivative
of ∂ defines a map Γ(NC) → Γ(T ∗C ⊗ NC). Furthermore, since C is J-
holomorphic, the values of this map anticommute with J , so it is actually an
operator Γ(NC)→ Γ(T 0,1C ⊗NC). This is the deformation operator DC .

One can write the operator DC in local coordinates as follows. Let z =
s + it be a local coordinate on C, use idz to locally trivialize T 0,1C, and
choose a local trivialization of NC over this coordinate neighborhood. With
respect to these coordinates and trivializations, the operator DC locally has
the form

DC = ∂s + J∂t +M(s, t).
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Here M(s, t) is a real matrix of size 2n− 2 determined by the derivatives of
J in the normal directions to C.

We say that C is regular , or “cut out transversely”, if the operator DC is
surjective. In this case the moduli space of holomorphic curves is a manifold
near C, and its tangent space at C is the kernel of DC .

In the analysis one often needs to extend the operator DC to suitable
Banach space completions of the spaces of smooth sections, for example to
extend it to an operator

DC : L2
1(C,NC) −→ L2(C, T 0,1C ⊗NC). (2.5)

Since DC is elliptic, the extended operator is Fredholm, and its kernel con-
sists of smooth sections. It follows from the Riemann-Roch theorem that
the index of this Fredholm operator is the Fredholm index ind(C) defined
in (2.3). This is why the moduli space of holomorphic curves near a reg-
ular curve C, under our simplifying assumption that C is immersed, has
dimension ind(C).

2.4 Special properties in four dimensions

In four dimensions, holomorphic curves enjoy three additional special prop-
erties which are important for our story. To state the first special prop-
erty, if p is an isolated intersection point of surfaces S1 and S2 in X, let
mp(S1 ∩ S2) ∈ Z denote the intersection multiplicity at p.

Intersection Positivity. Let C1 and C2 be distinct irreducible somewhere
injective J-holomorphic curves in a symplectic four-manifold. Then C1 and
C2 have only finitely many intersection points; and for each p ∈ C1 ∩ C2,
the intersection multiplicity mp(C1∩C2) > 0. Moreover, mp(C1∩C2) = 1 if
and only if C1 and C2 are embedded near p and intersect transversely at p.

It is easy to see that if C1 and C2 are embedded near p and intersect
transversely at p, so that mp(C1∩C2) = ±1, then in fact mp(C1∩C2) = +1,
esentially because a complex vector space has a canonical orientation. The
hard part of the theorem is to deal with the cases where C1 and C2 are not
embedded near p or do not intersect transversely at p.

In particular, intersection positivity implies that the homological inter-
section number

[C1] · [C2] =
∑

p∈C1∩C2

mp(C1 ∩ C2) ≥ 0,

with equality if and only if C1 and C2 are disjoint. Note that the assumption
that C1 and C2 are distinct is crucial. A single holomorphic curve C can
have [C] · [C] < 0; for example, the exceptional divisor in a blowup is a
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holomorphic sphere C of square −1. What intersection positivity implies in
this case is that the exceptional divisor is the unique holomorphic curve in
its homology class.

The second special property of holomorphic curves in four dimensions
is the adjunction formula. To state it, define a singularity of a somewhere
injective J-holomorphic curve C in a symplectic four-manifold X to be a
point in X where C is not locally an embedding. A node is a singularity
given by a transverse self-intersection whose inverse image in the domain of
C consists of two points (where C is an immersion). Let χ(C) denote the
Euler characteristic of the domain of C (which may be larger than the Euler
characteristic of the image of C in X if there are singularities).

Adjunction Formula. Let C be a somewhere injective J-holomorphic curve
in a symplectic four-manifold (X,ω). Then

〈c1(TX), [C]〉 = χ(C) + [C] · [C]− 2δ(C) (2.6)

where δ(C) is a count of the singularities of C with positive integer weights.
Moreover, a singularity has weight 1 if and only if it is a node.

In particular, we have

χ(C) + [C] · [C]− 〈c1(TX), [C]〉 ≥ 0, (2.7)

with equality if and only if C is embedded.

Exercise 2.3. Prove the adjunction formula in the special case when C is
immersed and the only singularities of C are nodes.

The third special property of holomorphic curves in four dimensions is
a version of Gromov compactness using currents, which does not require
any genus bound. The usual version of Gromov compactness asserts that a
sequence of holomorphic curves of fixed genus with an upper bound on the
symplectic area has a subsequence which converges in an appropriate sense to
a holomorphic curve. In the connection with Seiberg-Witten theory, multiply
covered holomorphic curves naturally arise, but the information about the
branch points, and hence about the genus of their domains, is not relevant.
To keep track of the relevant information, define a holomorphic current in X
to be a finite set of pairs C = {(Ci, di)} where the Ci are distinct irreducible
somewhere injective J-holomorphic curves, and the di are positive integers.

Gromov Compactness via Currents. (Taubes, [55, Prop. 3.3]) Let (X,ω)
be a compact symplectic four-manifold, possibly with boundary, and let J be
an ω-compatible almost complex structure. Let {Cn}n≥1 be a sequence of J-
holomorphic currents (possibly with boundary in ∂X) such that

∫
Cn ω has an

n-independent upper bound. Then there is a subsequence which converges as
a current and as a point set to a J-holomorphic current C ⊂ X (possibly
with boundary in ∂X).
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Here “convergence as a current” means that if σ is any 2-form then
limn→∞

∫
Cn σ =

∫
C σ. “Convergence as a point set” means that the corre-

sponding subsets of X converge with respect to the metric on compact sets
defined by

d(K1,K2) = sup
x1∈K1

inf
x2∈K2

d(x1, x2) + sup
x2∈K2

inf
x1∈K1

d(x2, x1).

2.5 Taubes’s Gromov invariant

We now have enough background in place to define Taubes’s Gromov invari-
ant. While the definition is a bit complicated, we will be able to compute
examples in §2.6, and this is a useful warmup for the definition of ECH.

What to count. Let (X4, ω) be a closed connected symplectic four-manifold,
and let A ∈ H2(X). We define the Gromov invariant Gr(X,ω,A) ∈ Z as
follows. Fix a generic ω-compatible almost complex structure J . The rough
idea is to count J-holomorphic currents representing the homology class A
in “maximum dimensional moduli spaces”.

To explain the latter notion, define an integer

I(A) = 〈c1(TX), A〉+A ·A. (2.8)

In fact one can show that I(A) is always even. The integer I(A) is the
closed four-manifold version of the ECH index, a crucial notion which we
will introduce in §3.4. For now, the significance of the integer I(A) is the
following. Let C be a somewhere injective J-holomorphic curve. By (2.3),
the Fredholm index of C is given by

ind(C) = −χ(C) + 2〈c1(TX), [C]〉. (2.9)

It follows from this equation and the adjunction formula (2.6) that

ind(C) = I([C])− 2δ(C). (2.10)

That is, the maximum possible value of ind(C) for a somewhere injective
holomorphic curve C with homology class [C] = A is I(A), which is attained
exactly when C is embedded.

The Gromov invariant Gr(X,ω,A) ∈ Z is now a count of “admissible”
holomorphic currents in the homology clas A. Here the homology class of a
holomorphic current C = {(Ci, di)} is defined by

[C] =
∑
i

di[Ci] ∈ H2(X).
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Furthermore, the current C is called “admissible” if di = 1 whenever Ci is a
sphere with [Ci] · [Ci] < 0.

If I(A) < 0, then there are no admissible holomorphic currents in the
homology class A as we will show in a moment, and we define Gr(X,ω,A) =
0.

The most important case for our story is when I(A) = 0. The admissible
holomorphic currents in this case are described by the following lemma.

Lemma 2.4. Let C = {(Ci, di)} be an admissible holomorphic current with
homology class [C] = A. Then I(A) ≥ 0. Moreover, if I(A) = 0, then the
following hold:

(a) The holomorphic curves Ci are embedded and disjoint.

(b) di = 1 unless Ci is a torus with [Ci] · [Ci] = 0.

(c) ind(Ci) = I([Ci]) = 0 for each i.

Proof. It follows directly from the definition of I that if B1, B2 ∈ H2(X)
then

I(B1 +B2) = I(B1) + I(B2) + 2B1 ·B2. (2.11)

Applying this to A =
∑

i di[Ci] gives

I(A) =
∑
i

diI([Ci]) +
∑
i

(d2
i − di)[Ci] · [Ci] +

∑
i 6=j

[Ci] · [Cj ]. (2.12)

Now the terms on the right hand side are all nonnegative. To see this, first
note that ind(Ci) ≥ 0, since we are assuming that J is generic so that Ci
is regular. So by (2.10) we have I([Ci]) ≥ 0, with equality only if Ci is
embedded. In addition, if we combine the inequality ind(Ci) ≥ 0 with the
adjunction formula (2.7) for Ci, we find that

χ(Ci) + 2[Ci] · [Ci] ≥ 0 (2.13)

with equality only if Ci is embedded. In particular, the only way that [Ci] ·
[Ci] can be negative is if Ci is an embedded sphere with square −1; and in
this case admissibility forces di = 1, so that the corresponding term in (2.12)
is zero. Finally, we know by intersection positivity that [Ci] · [Cj ] ≥ 0 with
equality if and only if Ci and Cj are disjoint. We conclude that I(A) ≥ 0,
and if I(A) = 0 then the curves Ci are embedded and disjoint, ind(Ci) =
I([Ci]) = 0, and di > 1 only if Ci is a torus with square zero. (The inequality
(2.13) also allows [Ci] · [Ci] = 0 when Ci is a sphere, but this would require
I([Ci]) = 2 and so cannot happen here.)

One consequence of this lemma is that when I(A) = 0, we have a finite
set of holomorphic currents to count:
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Lemma 2.5. If I(A) = 0, then the set of admissible holomorphic currrents
C with homology class [C] = A is finite.

Proof. Suppose {Ck}k=1,2,... is an infinite sequence of distinct such currents.
By Gromov compactness with currents, the sequence converges as a current
and a point set to a holomorphic current C∞. Convergence as a current
implies that [C∞] = A. An argument using the Fredholm index which we
omit shows that C∞ is also admissible. Then by Lemma 2.4, C∞ = {(Ci, di)}
where ind(Ci) = 0 for each i and di = 1 unless Ci is a torus of square zero.
We are assuming that J is generic, so each Ci is isolated in the moduli space
of holomorphic curves. If any di = 1, one can use convergence as a current
and a point set to show that possibly after passing to a subsequence, each
Ck has an embedded component such that the sequence of these embedded
components converges in the smooth topology to Ci, which is a contradiction.
If all di > 1, one needs an additional lemma from [54] asserting that if J is
generic, then the unbranched multiple covers of the tori of square zero are
also regular.

How to count. When I(A) = 0, we define Gr(X,ω,A) ∈ Z to be the sum,
over all admissible holomorphic currents C = {(Ci, di)} with homology class
[C] = A, of a weight w(C) ∈ Z which we now define. The weight is given by
a product of weights associated to the irreducible components,

w(C) =
∏
i

w(Ci, di).

To complete the definition, we need to define the integer w(C, d) when C is
an irreducible embedded holomorphic curve with ind = 0, and d is a positive
integer (which is 1 unless C is a torus with square 0).

If d = 1, then W (C, 1) = ε(C) ∈ {±1} is defined as follows. Roughly
speaking, ε(C) is the sign of the determinant of the operator DC , which is
the sign of the spectral flow from DC (extended as in (2.5)) to a complex
linear operator. What this means is the following: one can show that there
exists a differentiable 1-parameter family of operators {Dt}t∈[0,1] between the
same spaces such that D0 = DC ; the operator D1 is complex linear; there
are only finitely many t such that Dt is not invertible; and for each such t,
the operator Dt has one-dimensional kernel, and the derivative of Dt defines
an isomorphism from the kernel of Dt to the cokernel of Dt. Then ε(C) is
simply −1 to the number of such t. One can show that this is well-defined,
and we will compute some examples in §2.6.

It remains to define the weights w(C, d) when d > 1 and C is a torus
of square zero. The torus C has three connected unbranched double covers,
classified by nonzero elements of H1(C; Z/2). By [54], if J is generic then
the corresponding doubly covered holomorphic curves are regular. Each of
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these double covers then has a sign ε defined above. The weight w(C, d)
depends only on d, the sign of C, and the number of double covers with each
sign. We denote this number by f±,k(d), where ± indicates the sign ε(C),
and k ∈ {0, 1, 2, 3} is the number of double covers whose sign disagrees with
that of C. To define the numbers f±,k(d), combine them into a generating
function f±,k = 1 +

∑
d≥1 f±,k(d)td. Then

f+,0 =
1

1− t
,

f+,1 = 1 + t,

f+,2 =
1 + t

1 + t2
,

f+,3 =
(1 + t)(1− t2)

1 + t2
,

f−,k =
1
f+,k

.

(2.14)

Where do these generating functions come from? It is shown in [54] that
Gr(X,ω,A) is independent of the choice of J and invariant under deforma-
tion of the symplectic form ω; another proof is given in [34]. This invariance
requires the generating functions f±,k to satisfy certain relations, because of
bifurcations of holomorphic curves that can occur as one deforms J or ω. For
example, it is possible for a pair of cancelling tori with opposite signs to be
created or destroyed, and this forces the relation f+,kf−,k = 1. We will see
another relation in the example in §2.6. One still has some leeway in choosing
the generating functions to obtain an invariant of symplectic four-manifolds;
however the choice above is the one that agrees with Seiberg-Witten theory,
for reasons we will explain in §2.7.

The case I(A) > 0. To define the Gromov invariant Gr(X,ω,A) when
I(A) ≥ 0, choose I(A)/2 generic points x1, . . . , xI(A)/2 ∈ X. Then Gr(X,A)
is a count of admissible holomorphic currents C in the homology class A that
pass through all of the points x1, . . . , xI(A)/2. We omit the details as this
case is less important for motivating the definition of ECH, although it is
related to the U map introduced in §1.4. The Gromov invariants for classes
A with I(A) > 0 are interesting when b+2 (X) = 1. However the “simple
type conjecture” for Seiberg-Witten invariants implies that if b+2 (X) > 1
and b1(X) = 0, then Gr(X,ω,A) = 0 for all classes A with I(A) > 0.

2.6 The mapping torus example

We now compute Taubes’s Gromov invariant for an interesting family of
examples, namely mapping tori cross S1, for S1-invariant homology classes.
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This example will indicate what the generators of the ECH chain complex
should be.

Mapping tori. Let (Σ, ω) be a closed connected symplectic two-manifold
and let φ be a symplectomorphism from (Σ, ω) to itself. The mapping torus
of φ is the three-manifold

Yφ = [0, 1]× Σ/ ∼,
(1, x) ∼ (0, φ(x)).

The three-manifold Yφ fibers over S1 = R/Z with fiber Σ, and ω defines a
symplectic form on each fiber. We denote the [0, 1] coordinate on [0, 1]× Σ
by t. The vector field ∂t on [0, 1]×Σ descends to a vector field on Yφ, which
we also denote by ∂t. A fixed point of the map φp determines a periodic
orbit of the vector field ∂t of period p, and conversely a simple periodic orbit
of ∂t of period p determines p fixed points of φp.

The fiberwise symplectic form ω extends to a closed 2-form on Yφ which
annihilates ∂t, and which we still denote by ω. We then define a symplectic
form Ω on S1 × Yφ by

Ω = ds ∧ dt+ ω (2.15)

where s denotes the S1 coordinate.
We will now calculate the Gromov invariant Gr(S1 × Yφ,Ω, A), where

A = [S1]× Γ ∈ H2(S1 × Yφ)

for some Γ ∈ H1(Yφ). Observe to start that I(A) = 0, so we just need to
count holomorphic currents of the type described in Lemma 2.4.

Almost complex structure. Choose a fiberwise ω-compatible almost
complex structure J on the fibers of Yφ → S1. That is, for each t ∈ S1 =
R/Z, choose an almost complex structure Jt on the fiber over t, such that
Jt varies smoothly with t. Note that compatibility here just means that Jt
rotates positively with respect to the orientation on Σ.

The fiberwise almost complex structure extends to a unique almost com-
plex structure J on S1 × Yφ such that

J∂s = ∂t. (2.16)

It is an exercise to check that J is Ω-compatible.

Holomorphic curves. If γ ⊂ Yφ is an embedded periodic orbit of ∂t, then
it follows from (2.16) that S1 × γ ⊂ S1 × Y is an embedded J-holomorphic
torus. These are all the holomorphic curves we need to consider, because of
the following lemma.
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Lemma 2.6. If C = {(Ci, di)} is a J-holomorphic current in S1 × Yφ with
homology class A = [S1]×Γ, then each Ci is a torus S1×γ with γ a periodic
orbit of ∂t.

Proof. We have 〈A, [ω]〉 = 0, because the class A is S1-invariant while ω is
pulled back via the projection to Yφ. On the other hand, by the construc-
tion of J , the restriction of ω to any J-holomorphic curve C is pointwise
nonnegative, with equality only where C is tangent to the span of ∂s and
∂t (or singular). Thus

∫
Ci
ω = 0 for each i, and then each Ci is everywhere

tangent to ∂s and ∂t.

Transversality and nondegeneracy. We now determine when the holo-
morphic tori S1 × γ are regular.

Let γ be a periodic orbit of period p, and let x ∈ Σ be one of the corre-
sponding fixed points of φp. The fixed point x of φp is called nondegenerate
if the differential dφpx : TxΣ→ TxΣ does not have 1 as an eigenvalue. In this
case, the Lefschetz sign is the sign of det(1−dφpx). Also, since the linear map
dφpx is symplectic, we can classify the fixed point x as elliptic, positive hy-
perbolic, or negative hyperbolic according to the eigenvalues of det(1− φpx),
just as we did for Reeb orbits in §1.3. In particular, the Lefschetz sign is +1
if the fixed point is elliptic or negative hyperbolic, and −1 if the fixed point
is positive hyperbolic. We say that the periodic orbit γ is nondegenerate if
the fixed point x is nondegenerate. All of the above conditions depend only
on γ and not on the choice of corresponding fixed point x.

The following lemma tells us that if all periodic orbits γ are nondegen-
erate (which will be the case if φ is generic), then for any S1-invariant J , all
the J-holomorphic tori that we need to count are regular9.

Lemma 2.7. The J-holomorphic torus C = S1 × γ is regular if and only if
the periodic orbit γ is nondegenerate. In this case, the sign ε(C) agrees with
the Lefschetz sign.

Proof. Since the deformation operator

DC : Γ(NC) −→ Γ(T 0,1C ⊗NC)

has index zero, C is regular if and only if Ker(DC) = {0}.
To determine Ker(DC), we need to understand the deformation operator

DC more explicitly. To start, identify NC with the pullback of the normal
bundle to γ in Yφ. The latter can be identified with T vertYφ|γ , where T vertYφ
denotes the vertical tangent bundle of the fiber bundle Yφ → S1. The

9This is very lucky; in other S1-invariant situations, obtaining transversality for S1-
invariant J may not be possible. See e.g. [15, 16] for examples of this difficulty and ways
to deal with it.
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linearization of the flow ∂t along γ defines a connection ∇ on the bundle
T vertYφ|γ .

Exercise 2.8. With the above identifications, if we use i(ds− idt) to trivi-
alize T 0,1C, then

DC = ∂s + J∇t.

Exercise 2.9. (See answer in §A.) Every element of Ker(DC) is S1-invariant,
so Ker(DC) is identified with the kernel of the operator

∇t : Γ(T vertYφ|γ) −→ Γ(T vertYφ|γ).

Exercise 2.10. Let p denote the period of γ and let x be a fixed point of
φp corresponding to γ. Then there is a canonical identification

Ker(∇t) = Ker(1− dφpx).

The above three exercises imply that C is regular if and only if γ is
nondegenerate.

To prove that ε(C) agrees with the Lefschetz sign when γ is nondegen-
erate, suppose first that γ is elliptic. Then one can choose a basis for TxΣ
in which dφpx is a rotation. It follows that one can choose a trivialization of
T vertYφ|γ in which the parallel transport of the connection ∇ between any
two points is a rotation. One can now choose J to be the standard almost
complex structure in this trivialization. With these choices, the operator DC

is complex linear, so ε(C) = 1. The same will be true for any other choice of
J , because one can find a path between any two almost complex structures
J , and by the exercises above the operator DC will never have a nontrivial
kernel. On the other hand, the Lefschetz sign is +1 in this case because the
eigenvalues of dφpx are complex conjugates of each other.

To prove that ε(C) agrees with the Lefschetz sign when γ is not elliptic,
one deforms the operator DC in an S1 equivariant fashion to look like the
elliptic case and uses the above exercises to show that the spectral flow
changes by ±1 whenever one switches between the elliptic case and the
positive hyperbolic case, cf. [49, Lem. 2.6].

How to count multiple covers. Assume now that φ is generic so that all
periodic orbits γ are nondegenerate. Then by the above lemmas, the Gromov
invariant Gr(S1×Yφ,Ω, [S1]×Γ) counts unions of (possibly multiply covered)
periodic orbits of ∂t in Yφ with total homology class Γ. We now determine
the weight with which each union of periodic orbits is counted.

For each embedded torus C = S1×γ, there is a generating function fγ(t)
from (2.14) encoding how its multiple covers are counted; the coefficient of
td is the number of times we count the current given by the d-fold cover of
C.
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Lemma 2.11.

fγ(t) =


(1− t)−1 = 1 + t+ t2 + · · · , γ elliptic,
1− t, γ positive hyperbolic,
1 + t, γ negative hyperbolic.

Proof. To compute the generating function fγ(t), we need to compute the
sign of C (which we have already done in Lemma 2.7) as well as the signs
of the three connected double covers of C. Let Cs denote the double cover
obtained by doubling in the s direction, let Ct denote the double cover ob-
tained by doubling in the t direction, and let Cs,t denote the third connected
double cover. We have ε(Cs) = ε(C), because one can compute the kernels
of the operators DCs and DC in the same way. After a change of coordi-
nates, one can similarly show that ε(Cs,t) = ε(C). Finally ε(Ct) is the sign
corresponding to the double cover of γ, which is positive if γ is elliptic, and
negative if γ is positive or negative hyperbolic. So the signs are as shown in
the following table:

γ ε(C) ε(Cs) ε(Cs,t) ε(Ct)
elliptic +1 +1 +1 +1

positive hyperbolic −1 −1 −1 −1
negative hyperbolic +1 +1 +1 −1

The lemma now follows from these sign calculations and (2.14).

Conclusion. The above calculation shows the following:

Proposition 2.12. Let φ be a symplectomorphism of a closed connected
surface (Σ, ω) such that all periodic orbits of φ are nondegenerate. Then
Gr(S1 × Yφ,Ω, [S1] × Γ) is a signed count of finite sets of pairs {(γi, di)}
where:

(i) the γi are distinct embedded periodic orbits of φt,

(ii) the di are positive integers,

(iii)
∑

i di[γi] = Γ ∈ H1(Y ), and

(iv) di = 1 whenever γi is hyperbolic.

The sign associated to a set {(γi, di)} is −1 to the number of i such that γi
is positive hyperbolic.

Proof. It follows from Lemma 2.6 that Gr(S1 × Yφ,Ω, [S1] × Γ) is a count,
with appropriate weights, of finite sets {(γi, di)} satisfying conditions (i)–
(iii). The weight associated to a set {(γi, di)} is the product over i of the
coefficient of tdi in the generating function fγi(t). By Lemma 2.11, this
weight is zero unless condition (iv) holds, in which case it is ±1 and given
as claimed.
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2.7 Two remarks on the generating functions

We now attempt to motivate the generating functions (2.14) a bit more, by
explaining why they are what they are in the mapping torus example.

1. One could try to define an invariant of the isotopy class of φ by counting
multiple covers of tori S1 × γ using other generating funtions. For example,
suppose we choose generating functions e(t), h+(t), and h−(t), and replace
the generating functions in Lemma 2.11 by

fγ(t) =


e(t), γ elliptic,
h+(t), γ positive hyperbolic,
h−(t), γ negative hyperbolic.

These generating functions must satisfy certain relations in order to give
an isotopy invariant of φ. First, as one isotopes φ, it is possible for a bifurca-
tion to occur in which an elliptic orbit cancels a positive hyperbolic orbit of
the same period. To obtain invariance under this bifurcation, we must have

e(t)h+(t) = 1. (2.17)

Second, a “period-doubling” bifurcation can occur in which an elliptic orbit
turns into a negative hyperbolic orbit of the same period and an elliptic orbit
of twice the period. For invariance under this bifurcation we need

e(t) = h−(t)e(t2). (2.18)

In fact, any triple of generating functions e(t), h+(t), and h−(t) satisfying
the relations (2.17) and (2.18) will give rise to an invariant of the isotopy
class of φ.

The generating functions in Lemma 2.11 are e(t) = (1−t)−1 and h±(t) =
1 ∓ t, which of course satisfy the relations (2.17) and (2.18). If we al-
lowed multiply covered hyperbolic orbits also and counted them with their
Lefschetz signs, then the generating functions would be e(t) = (1 − t)−1,
h+(t) = 1 − t − t2 − · · · , and h−(t) = 1 + t − t2 + · · · , which do not
satisfy the above relations. Throwing out all multiple covers and defining
e(t) = h−(t) = 1 + t and h+(t) = 1− t would not work either10.

10There are of course other triples of generating functions which satisfy the above rela-
tions. For example, the Euler characteristic of the mapping torus analogue of symplectic
field theory [13] (just using the q variables) is computed by the generating functions

e(t) = (1− t)−1(1− t2)−1 · · · ,

h+(t) = (1− t)(1− t2) · · · ,

h−(t) = (1− t)−1(1− t)−3 · · ·

Here the omission of even powers of (1 − t)−1 in h−(t) corresponds to the omission of
“bad” orbits, without which we would not have invariance under period doubling.
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2. Given that there are different triples of generating functions that satisfy
the relations (2.17) and (2.18), why is the triple in Lemma 2.11 the right one
for determining the Seiberg-Witten invariant of S1×Yφ? Here is one answer:
Let [Σ] ∈ H2(S1×Yφ) denote the homology class of a fiber of Yφ → S1. One
can use Proposition 2.12 and the Lefschetz fixed point theorem to show that
for each nonnegative integer d, we have∑

Γ·[Σ]=d

Gr(S1 × Yφ,Ω, [S1]× Γ) = L(Symd φ),

where Symd φ denotes the homeomorphism from the dth symmetric prod-
uct of Σ to itself determined by φ, and L denotes the Lefschetz number.
This is what we are supposed to get, because Salamon [50] showed that
the corresponding Seiberg-Witten invariant is a signed count of fixed points
of a smooth perturbation of Symd φ. (Similar considerations locally in a
neighborhood of a holomorphic torus arise in Taubes’s work in [56] which
originally led to the generating functions.)

2.8 Three dimensional Seiberg-Witten theory

We now briefly review two basic ways to use the Seiberg-Witten equations
on four-manifolds to define invariants of three-manifolds.

Let Y be a closed oriented connected three-manifold. A spin-c structure
on Y can be regarded as an equivalence class of oriented two-plane fields
(two-dimensional subbundles of TY ), where two oriented two-plane fields
are considered equivalent if they are homotopic on the complement of a ball
in Y . The set of spin-c structures on Y is an affine space over H2(Y ; Z). A
spin-c structure s has a first Chern class c1(s) ∈ H2(Y ; Z), and s is called
“torsion” when c1(s) is torsion. A spin-c structure on Y is equivalent to an
S1-invariant spin-c structure on S1 × Y , or an R-invariant spin-c structure
on R× Y .

The first way to define invariants of Y is to consider the Seiberg-Witten
invariants of the four-manifold S1 × Y for S1-invariant spin-c structures.
These invariants are the “Seiberg-Witten invariants” of Y , which we denote
by SW (Y, s) ∈ Z, and it turns out that they count S1-invariant solutions to
the Seiberg-Witten equations. Since b+2 (S1×Y ) = b1(Y ), these invariants are
well-defined11 when b1(Y ) > 0, up to a choice of chamber when b1(Y ) = 1.
There is also a distinguished “zero” chamber to use when b1(Y ) = 1 and s is
not torsion. Proposition 2.12 computed this invariant when Y is a mapping

11S1 × Y has a canonical homology orientation, so there is no sign ambiguity in the
definition.
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torus12. Indeed, we saw that the invariant counts S1-invariant holomorphic
curves.

In general, however, the Seiberg-Witten invariants of three-manifolds are
not very interesting, because it was shown by Meng-Taubes [45] and Turaev
[64] that they agree with a kind of Reidemeister torsion of Y .

The second, more interesting way to define invariants of Y , constructed
by Kronheimer-Mrowka [35], is to “categorify” the previous invariant by
defining a chain complex (over Z) whose generators are R-invariant solu-
tions to the Seiberg-Witten equations on R×Y , and whose differential counts
non-R-invariant solutions to the Seiberg-Witten equations on R × Y which
converge to two different R-invariant solutions as the R-coordinate converges
to ±∞. If the spin-c structure s is non-torsion, then the homology of this
chan complex is a well-defined invariant HM∗(Y, s), called “Seiberg-Witten
Floer homology” or “monopole Floer homology”. This is a relatively Z/d-
graded Z-module, where d denotes the divisibility of c1(s) in H2(Y ; Z) mod
torsion (which turns out to always be an even integer). This means that
it splits into d summands, and there is a well-defined grading difference in
Z/d between any two of them, which is additive for the pairwise differences
between any three summands. Each summand is finitely generated. There
is also a canonical Z/2-grading, with respect to which the Euler characteris-
tic of the Seiberg-Witten Floer homology HM∗(Y, s) is the Seiberg-Witten
invariant SW (Y, s).

If s is torsion, then there is a difficulty in defining Seiberg-Witten Floer
homology caused by “reducible” solutions to the Seiberg-Witten equations.
There are two ways to resolve this difficulty, which lead to two versions
of Seiberg-Witten Floer homology, which are denoted by ĤM∗(Y, s) and

ˇHM∗(Y, s). These are relatively Z-graded; the former is zero in sufficiently
negative grading, and the latter is zero in sufficiently positive grading. They
fit into an exact triangle

HM∗(Y, s)→ ˇHM∗(Y, s)→ ĤM∗(Y, s)→ HM∗−1(Y, s))→ · · ·

where HM∗(Y, s) is a third invariant which is computable in terms of the
triple cup product on Y . In particular, HM∗(Y, s) is two-periodic, i.e.
HM∗(Y, s) = HM∗+2(Y, s), and nonzero in at least half of the gradings.
In conjunction with the above exact triangle, this implies that ĤM∗ (resp.

ˇHM∗) is likewise 2-periodic and nontrivial when the grading is sufficiently
positive (resp. negative). This fact is the key input from Seiberg-Witten
theory to the proof of the Weinstein conjecture, see §1.3.

12When b1(Y ) = 1, we used the “symplectic” chamber, which disagrees with the “zero”
chamber for spin-c structures corresponding to Γ ∈ H1(Yφ) with Γ · [Σ] > g(Σ) − 1. If
Γ ∈ H1(Y ) corresponds to a torsion spin-s structure then Γ · [Σ] = g(Σ)− 1.
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If s is not torsion, then both ĤM∗(Y, s) and ˇHM∗(Y, s) are equal to the
invariant HM∗(Y, s) discussed previously.

2.9 Towards ECH

The original motivation for defining ECH was to find an analogue of Taubes’s
SW = Gr theorem for a three-manifold. That is, we would like to identify
Seiberg-Witten Floer homology with an appropriate analogue of Taubes’s
Gromov invariant for a three-manifold Y . The latter should be the homology
of a chain complex which is generated by R-invariant holomorphic curves in
R× Y , and whose differential counts non-R-invariant holomorphic curves in
R× Y .

For holomorphic curve counts to make sense, R× Y should have a sym-
plectic structure. This is the case for example when Y is the mapping
torus of a symplectomorphism φ; the symplectic form (2.15) on S1 × Yφ
also makes sense on R × Yφ. The analogue of Taubes’s Gromov invariant
in this case is the “periodic Floer homology” of φ; it is the homology of a
chain complex which is generated by the unions of periodic orbits counted
in Proposition 2.12, and its differential counts certain holomorphic curves in
R× Y . The definition of PFH is given in [21, 28], and it shown in [39] that
PFH agrees with Seiberg-Witten Floer homology.

Which holomorphic curves to count in the PFH differential is a subtle
matter which we will explain below. However, since not every three-manifold
is a mapping torus, we will instead carry out the analogous construction
of ECH for contact three-manifolds13, which is more general since every
oriented three-manifold admits a contact structure. Finding the appropriate
definition of the ECH chain complex is not obvious, but Taubes’s SW = Gr
theorem and the computation of Gr for mapping tori give us a lot of hints.

3 The definition of ECH

Guided by the discussion in §2, we now define the embedded contact homol-
ogy of a contact three-manifold (Y, λ), using Z/2 coefficients for simplicity.

Assume that λ is nondegenerate and fix Γ ∈ H1(Y ). We wish to define
13To spell out the analogy here, both mapping tori and contact structures are examples of

the more general notion of “stable Hamiltonian structure”. A stable Hamiltonian structure
on an oriented 3-manifold consists of a 1-form λ and a closed 2-form ω such that λ∧ω > 0
and dλ = fω with f : Y → R. These data determine an oriented 2-plane field ξ = Ker(λ)
and a “Reeb vector field” R characterized by ω(R, ·) = 0 and λ(R) = 1. For a mapping
torus, λ = dt, ω ≡ 0, f ≡ 0, and R = ∂t. For a contact structure, ω = dλ, f ≡ 1, and
R is the usual Reeb vector field. A version of ECH for somewhat more general stable
Hamiltonian structures with f ≥ 0 appears in the work of Kutluhan-Lee-Taubes [37].
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the chain complex ECC∗(Y, λ,Γ, J), where J is a generic symplectization-
admissible almost complex structure on R× Y , see §1.3.

Define an orbit set in the homology class Γ to be a finite set of pairs
{(αi,mi)} where the αi are distinct embedded Reeb orbits, the mi are pos-
itive integers, and

∑
imi[αi] = Γ ∈ H1(Y ). Motivated by Proposition 2.12,

we define the the chain complex to be generated by orbit sets as above such
that mi = 1 whenever αi is hyperbolic. (We also need to study orbit sets
not satisfying this last condition in order to develop the theory.) Proposi-
tion 2.12 also suggests that there should be a canonical Z/2-grading by the
parity of the number of i such that αi is positive hyperbolic, and we will see
in §3.5 that this is the case.

The differential should count J-holomorphic currents in R×Y by analogy
with the Gromov invariant. The three key formulas that entered into the
definition of the Gromov invariant were the Fredholm index formula (2.9),
the adjunction formula (2.6), and the definition of I in (2.8). To define the
ECH differential we need analogues of these three formulas for holomorphic
curves in R × Y , plus one additional ingredient, the “writhe bound”. We
now explain these.

3.1 Holomorphic curves and holomorphic currents

We consider J-holomorphic curves of the form u : (Σ, j)→ (R×Y, J) where
the domain (Σ, j) is a punctured compact Riemann surface. If γ is a (possibly
multiply covered) Reeb orbit, a positive end of u at γ is a puncture near which
u is asymptotic to R× γ as s→∞. This means that a neighborhood of the
puncture can be given coordinates (σ, τ) ∈ (R/TZ)× [0,∞) with j(∂σ) = ∂τ
such that limσ→∞ πR(u(σ, τ)) =∞ and limσ→∞ πY (u(s, ·)) = γ. A negative
end is defined analogously with σ ∈ (−∞, 0] and s→ −∞. We assume that
all punctures are positive ends or negative ends as above. We mod out by
the usual equivalence relation on holomorphic curves, namely composition
with biholomorphic maps between domains.

Let α = {(αi,mi)} and β = {(βj , nj)} be orbit sets in the class Γ. Define
a J-holomorphic current from α to β to be a finite set of pairs C = {(Ck, dk)}
where the Ck are distinct irreducible somewhere injective J-holomorphic
curves in R×Y , the dk are positive integers, C is asymptotic to α as a current
as the R coordinate goes to +∞, and C is asymptotic to β as a current as
the R coordinate goes to −∞. This last condition means that the positive
ends of the curves Ck are at covers of the Reeb orbits αi, the sum over k of
dk times the total covering multiplicity of all ends of Ck at covers of αi is
mi, and analogously for the negative ends. Let M(α, β) denote the set of
J-holomorphic currents from α to β. A holomorphic current C = {(Ck, dk)}
is “somewhere injective” if dk = 1 for each k, in which case it is “embedded”
if furthermore each Ck is embedded and the Ck are pairwise disjoint.
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Let H2(Y, α, β) denote the set of 2-chains Σ in Y with

∂Σ =
∑
i

mi[αi]−
∑
j

nj [βj ],

modulo boundaries of 3-chains. Then H2(Y, α, β) is an affine space over
H2(Y ), and every J-holomorphic current C ∈ M(α, β) defines a class [C] ∈
H2(Y, α, β).

3.2 The Fredholm index in symplectizations

We now state a symplectization analogue of the index formula (2.3).

Proposition 3.1. If J is generic, then every somewhere injective J-holomorphic
curve C in R×Y is regular (i.e. an appropriate deformation operator is sur-
jective), so the moduli space of J-holomorphic curves as above near C is a
manifold. Its dimension is the Fredholm index given by equation (3.1) below.

If C has k positive ends at Reeb orbits γ+
1 , . . . , γ

+
k and l negative ends

at Reeb orbits γ−1 , . . . , γ
−
l , the Fredholm index of C is defined by

ind(C) = −χ(C) + 2cτ (C) +
k∑
i=1

CZτ (γ+
i )−

l∑
i=1

CZτ (γ−i ), (3.1)

where the terms on the right hand side are defined as follows. First, τ is a
trivialization of ξ over the Reeb orbits γ±i , which is symplectic with respect
to dλ. Second, χ(C) denotes the Euler characteristic of the domain of C as
usual. Third,

cτ (C) = c1(ξ|C , τ) ∈ Z

is the relative first Chern class of the complex line bundle ξ|C with respect to
the trivialization τ . To define this, note that the trivialization τ determines
a trivialization of ξ|C over the ends of C, up to homotopy. One chooses a
generic section ψ of ξ|C which on each end is nonvanishing and constant
with respect to the trivialization on the ends. One then defines c1(ξ|C , τ) to
be the algebraic count of zeroes of ψ.

To say more about what the relative first Chern class depends on, note
that C ∈ M(α, β) for some orbit sets α = {(αi,mi)} and β = {(βj , nj)}
in the same homology class. Write Z = [C] ∈ H2(Y, α, β). Then in fact
c1(ξ|C , τ) depends only on α, β, τ , and Z. To see this, let S be a compact
oriented surface with boundary, and let f : S → [−1, 1] × Y be a smooth
map, such that f |∂S consists of positively oriented covers of {1} × αi with
total multiplicity mi and negatively oriented covers of {−1} × βj with total
multiplicity nj , and the projection of f to Y represents the relative homology
class Z. Then c1(f∗ξ, τ) ∈ Z is defined as before.
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Exercise 3.2. (a) The relative first Chern class c1(f∗ξ, τ) above depends
only on α, β, τ , and Z, and so can be denoted by cτ (Z).

(b) If Z ′ ∈ H2(Y, α, β) is another relative homology class, then

cτ (Z)− cτ (Z ′) = 〈c1(ξ), Z − Z ′〉,

where on the right hand side, c1(ξ) ∈ H2(Y ; Z) denotes the usual first
Chern class of the complex line bundle ξ → Y .

Continuing with the explanation of the index formula (3.1), CZτ (γ) ∈ Z
denotes the Conley-Zehnder index of γ with respect to the trivialization τ .
To define this, pick a parametrization γ : R/TZ → Y . Let {ψt}t∈R denote
the one-parameter group of diffeomorphisms of Y given by the flow of R.
Then dψt : Tγ(0)Y → Tγ(t)Y induces a symplectic linear map φt : ξγ(0) →
ξγ(t), which using our trivialization τ we can regard as a 2 × 2 symplectic
matrix. In particular, φ0 = 1, and φT is the linearized return map (in
our trivialization), which does not have 1 as an eigenvalue. We now define
CZτ (γ) ∈ Z to be the Conley-Zehnder index of the family of symplectic
matrices {φt}t∈[0,T ], which is given explicitly as follows. (See e.g. [49, §2.4]
for the general definition of the Conley-Zehnder index for paths of symplectic
matrices in any dimension.)

If γ is hyperbolic, let v ∈ R2 be an eigenvector of φT ; then the family of
vectors {φt(v)}t∈[0,T ] rotates by angle πk for some integer k (which is even
in the positive hyperbolic case and odd in the negative hyperbolic case), and

CZτ (γ) = k.

If γ is elliptic, then we can change the trivialization so that each φt is rotation
by angle 2πθt ∈ R where θt is a continuous function of t ∈ [0, T ] and θ0 = 0.
The number θ = θT ∈ R \ Z is called the “rotation angle” of γ with respect
to τ , and

CZτ (γ) = 2bθc+ 1. (3.2)

Exercise 3.3. The right hand side of the index formula (3.1) does not
depend on τ , even though the individual terms in it do. (See hint in §A.)

The proof of Proposition 3.1 consists of a tranversality argument in [12]
and an index calculation in [51]. As usual, the somewhere injective assump-
tion is necessary; there is no J for which transversality holds for all multiply
covered curves. For example, transversality fails for some branched covers
of trivial cylinders, see Exercise 3.14 below.
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3.3 The relative adjunction formula

Our next goal is to obtain an analogue of the adjunction formula (2.6) for
a somewhere injective holomorphic curve in R × Y . To do so we need to
re-interpret each term in the formula (2.6) in the symplectization context;
and there is also a new term arising from the asymptotic behavior of the
holomorphic curve.

Relative Adjunction Formula. [21, Rmk. 3.2] Let C ∈M(α, β) be some-
where injective. Then

cτ (C) = χ(C) +Qτ (C) + wτ (C)− 2δ(C). (3.3)

Here τ is a trivialization of ξ over the Reeb orbits αi and βj ; the left
hand side is the relative first Chern class defined in §3.2; χ(C) is the Euler
characteristic of the domain as usual; and δ(C) is an algebraic count of
singularities as in §2.4. There are still only finitely many singularities in the
symplectization case, for reasons we will explain below. The term Qτ (C)
is the “relative intersection pairing”, which is a symplectization analogue of
the intersection number [C] · [C] in the closed case. The new term wτ (C) is
the “asymptotic writhe”. Let us now explain both of these.

The relative intersection pairing. Given a class Z ∈ H2(Y, α, β), we
want to define the relative intersection pairing Qτ (Z) ∈ Z.

To warm up to this, recall that given a closed oriented 4-manifold X,
and given a class A ∈ H2(X), to compute A · A one can choose two em-
bedded oriented surfaces S, S′ ⊂ X representing the class A that intersect
transversely, and count the intersections of S and S′ with signs.

In the symplectization case, we could try to choose two embedded (except
at the boundary) oriented surfaces S, S′ ⊂ [−1, 1]×Y representing the class
Z such that

∂S = ∂S′ =
∑
i

mi{1} × αi −
∑
j

nj{−1} × βj ,

and S and S′ intersect transversely (except at the boundary), and alge-
braically count intersections of the interior of S with the interior of S′.
Unfortunately this count of intersections is not a well-defined function of
Z, because if one deforms S or S′, then intersection points can appear or
disappear at the boundary.

To get a well-defined count of intersections, we need to specify something
about the boundary behavior. The choice of trivialization τ allows us to do
this. We require that the projections to Y of the intersections of S and S′

with (1−ε, 1]×Y are embeddings, and their images in a transverse slice to αi
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are unions of rays which do not intersect and which do not rotate with respect
to the trivialization τ as one goes around αi. Likewise, the projections to
Y of the intersections of S and S′ with [−1,−1 + ε) × Y are embeddings,
and their images in a transverse slice to βj are unions of rays which do not
intersect and which do not rotate with respect to the trivialization τ as one
goes around βj . If we count the interior intersections of two such surfaces S
and S′, then we get an integer which depends only on α, β, Z, and τ , and we
denote this integer by Qτ (Z). For more details see [21, §2.4] and [22, §2.7].

If C ∈ M(α, β) is a J-holomorphic current, write Qτ (C) = Qτ ([C]).

The asymptotic writhe. Given a somewhere injective J-holomorphic
curve C ∈ M(α, β), consider the slice C ∩ ({s} × Y ). If s >> 0, then
the slice C ∩ ({s} × Y ) is an embedded curve which is the union, over i,
of a braid ζ+

i around the Reeb orbit αi with mi strands. This fact, due
to Siefring [52], is shown along the way to proving the writhe bound (3.9)
below, see Lemma 5.5. This, together with an analogous statement for the
negative ends, implies the previously quoted fact that C has only finitely
many singularities. Since the braid ζ+

i is embedded for all s >> 0, its
isotopy class does not depend on s >> 0.

We can use the trivialization τ to identify the braid ζ+
i with a link in

S1 × D2. The writhe of this link, which we denote by wτ (ζ+
i ) ∈ Z, is

defined by identifying S1×D2 with an annulus cross an interval, projecting
ζ+
i to the annulus, and counting crossings with signs. We use the sign

convention in which counterclockwise rotations in the D2 direction as one
goes counterclockwise around S1 contribute positively to the writhe; this is
opposite the usual convention in knot theory, but makes sense in the present
context.

Likewise, the slice C ∩ ({s}×Y ) for s << 0 is the union over j of a braid
ζ−j around the Reeb orbit βj with nj strands, and this braid has a writhe
wτ (ζ−j ) ∈ Z.

We now define the asymptotic writhe of C by

wτ (C) =
∑
i

wτ (ζ+
i )−

∑
j

wτ (ζ−j ).

This completes the definition of all of the terms in the relative adjunction
formula (3.3).

Exercise 3.4. Show that the two sides of the relative adjunction formula
(3.3) change the same way if one changes the trivialization τ . (See hint in
§A.)

Here is an outline of the proof of the relative adjunction formula (3.3)
in the special case where C is immersed and the only singularities of C are
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nodes. Let NC denote the normal bundle of C, which can be identified with
ξ|C near the ends of C. We compute c1(NC , τ) in two ways. First, the
decomposition (C⊕ ξ)|C = T (R× Y )|C = TC ⊕NC implies that

cτ (C) = χ(C) + c1(NC , τ),

see [21, Prop. 3.1(a)]. Second, one can count the intersections of C with a
nearby surface and compare with the definition of Qτ to show that

c1(NC , τ) = Qτ (C) + wτ (C)− 2δ(C),

cf. [21, Prop. 3.1(b)].

3.4 The ECH index

We come now to the key nontrivial part of the definition in ECH, which is
to define an analogue of the quantity I in (2.8) for relative homology classes
in symplectizations.

Let C ∈ M(α, β) be somewhere injective. By (3.1), we can write the
Fredholm index of C as

ind(C) = −χ(C) + 2cτ (C) + CZindτ (C),

where CZindτ (C) is shorthand for the Conley-Zehnder term that appears in
ind, namely the sum over all positive ends of C at a Reeb orbit γ of CZτ (γ)
(these Reeb orbits are covers of the Reeb orbits αi), minus the corresponding
sum for the negative ends of C. We know that if J is generic then M(α, β)
is a manifold near C of dimension ind(C). We would like to bound this
dimension in terms of the relative homology class [C].

If γ is an embedded Reeb orbit and k is a positive integer, let γk denote
the k-fold iterate of γ.

Definition 3.5. If Z ∈ H2(Y, α, β), define the ECH index

I(α, β, Z) = cτ (Z) +Qτ (Z) + CZIτ (α, β), (3.4)

where CZIτ is the Conley-Zehnder term that appears in I, namely

CZIτ (α, β) =
∑
i

mi∑
k=1

CZτ (αki )−
∑
j

nj∑
k=1

CZτ (βkj ). (3.5)

If C ∈M(α, β), define I(C) = I(α, β, [C]).

Note that the Conley-Zehnder terms CZindτ (C) and CZIτ (α, β) are quite
different. The former just involves the Conley-Zehnder indices of orbits
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corresponding to ends of C; while the latter sums up the Conley-Zehnder
indices of all iterates of αi up to multiplicity mi, minus the Conley-Zehnder
indices of all iterates of βj up to multiplicity nj . For example, if C has
positive ends at α3

i and α5
i (and no other positive ends at covers of αi), then

the corresponding contribution to CZindτ (C) is CZτ (α3
i ) + CZτ (α5

i ), while
the contribution to CZIτ (α, β) is

∑8
k=1CZτ (αki ).

Basic Properties of the ECH Index. (Well Defined) The ECH index
I(Z) does not depend on the choice of trivialization τ .

(Index Ambiguity Formula) If Z ′ ∈ H2(α, β) is another relative homology
class, then

I(Z)− I(Z ′) = 〈Z − Z ′, c1(ξ) + 2 PD(Γ)〉. (3.6)

(Additivity) If δ is another orbit set in the homology class Γ, and if W ∈
H2(Y, β, δ), then Z +W ∈ H2(Y, α, δ) is defined and

I(Z +W ) = I(Z) + I(W ).

(Index Parity) If α and and β are generators of the ECH chain complex
(i.e. all hyperbolic orbits have multiplicity 1), then

(−1)I(Z) = ε(α)ε(β), (3.7)

where ε(α) denotes −1 to the number of positive hyperbolic orbits in
α.

Exercise 3.6. Prove the above basic properties. (See [21, §3.3].)

We now have the following analogue of (2.10), which is the key result
that gets ECH off the ground.

Index Inequality. If C ∈M(α, β) is somewhere injective, then

ind(C) ≤ I(C)− 2δ(C). (3.8)

In particular, ind(C) ≤ I(C), with equality only if C is embedded.
The index inequality follows immediately by combining the definition of

the ECH index in (3.4), the formula for the Fredholm index in (3.1), the
relative adjunction formula (3.3), and the following inequality:

Writhe Bound. If C ∈M(α, β) is somewhere injective, then

wτ (C) ≤ CZIτ (α, β)− CZindτ (C). (3.9)

The proof of the writhe bound will be outlined in §5.1.
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Holomorphic curves with low ECH index The index inequality (3.8)
is most of what is needed to prove the following analogue of Lemma 2.4.
Below, a trivial cylinder means a cylinder R × γ ⊂ R × Y where γ is an
embedded Reeb orbit.

Proposition 3.7. Suppose J is generic. Let α and β be orbit sets and
let C ∈ M(α, β) be any J-holomorphic current in R × Y , not necessarily
somewhere injective. Then:

0. I(C) ≥ 0, with equality if and only if C is a union of trivial cylinders
with multiplicities.

1. If I(C) = 1, then C = C0 tC1, where I(C0) = 0, and C1 is embedded and
has ind(C1) = I(C1) = 1.

2. If I(C) = 2, and if α and β are generators of the chain complex
ECC∗(Y, λ,Γ, J), then C = C0 t C2, where I(C0) = 0, and C2 is em-
bedded and has ind(C2) = I(C2) = 2.

Proof. Let C = {(Ck, dk)} be a holomorphic current in M(α, β). We first
consider the special case in which dk = 1 whenever Ck is a trivial cylinder.

Since J is R-invariant, any J-holomorphic curve can be translated in the
R-direction to make a new J-holomorphic curve. Let C ′ be the union over k
of the union of dk different translates of Ck. Then C ′ is somewhere injective,
thanks to our simplifying assumption that dk = 1 whenever Ck is a trivial
cylinder. So the index inequality applies to C ′ to give

ind(C ′) ≤ I(C ′)− 2δ(C ′).

Now because the Fredholm index ind is additive under taking unions of
holomorphic curves, and because the ECH index I depends only on the
relative homology class, this gives∑

k

dk ind(Ck) ≤ I(C)− 2δ(C ′). (3.10)

Since J is generic, we must have ind(Ck) ≥ 0, with equality if and only if
Ck is a trivial cylinder. Parts (0) and (1) of the Proposition can now be
immediately read off from the inequality (3.10).

To prove part (2), we just need to rule out the case where there is one
nontrivial Ck with dk = 2. In this case, since α and β are ECH generators, all
ends of Ck must be at elliptic Reeb orbits. It then follows from the Fredholm
index formula (3.1) that ind(Ck) is even. Thus ind(Ck) ≥ 2, contradicting
the inequality (3.10).
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To remove the simplifying assumption, one can show that if C contains
no trivial cylinders and if T is a union of trivial cylinders, then

I(C ∪ T ) ≥ I(C) + 2#(C ∩ T ),

compare (2.11). This is proved in [21, Prop. 7.1], and a more general state-
ment bounding the ECH index of any union of holomorphic currents is proved
in [22, Thm. 5.1]. Now by intersection positivity, #(C∩T ) ≥ 0, with equality
if and only if C and T are disjoint. The proposition for C ∪ T then follows
from the proposition for C.

3.5 The ECH differential

We can now define the differential ∂ on the chain complex ECC∗(Y, λ,Γ, J).
If α and β are orbit sets and k is an integer, define

Mk(α, β) = {C ∈ M(α, β) | I(C) = k}.

If α is a chain complex generator, we define

∂α =
∑
β

#(M1(α, β)/R)β,

where the sum is over chain complex generators β, and ‘#’ denotes the mod
2 count. Here R acts on M1(α, β) by translation of the R coordinate on
R×Y ; and by Proposition 3.7 the quotient is a discrete set. We will show in
§5.3, analogously to Lemma 2.5, thatM1(α, β)/R is finite so that the count
#(M1(α, β)/R) is well defined. Next, it follows from the inequality (1.15)
and Exercise 3.8 below that for any α, there are only finitely many β with
M(α, β) nonempty, so ∂α is well defined.

Exercise 3.8. If λ is a nondegenerate contact form on Y and if L is a real
number, then λ has only finitely many Reeb orbits with symplectic action
less than L.

The proof that ∂2 = 0 is much more difficult, and we will give an intro-
duction to this in §5.4. Modulo this and the other facts we have not proved,
we have now defined ECH∗(Y, λ,Γ, J), and as reviewed in the introduction
this is an invariant ECH∗(Y, ξ,Γ).

3.6 The grading

The chain complex ECC∗(Y, λ,Γ, J), and hence its homology, is relatively
Z/d graded, where d denotes the divisibility of c1(ξ) + 2 PD(Γ) in H2(Y ; Z)
mod torsion. That is, if α and β are two chain complex generators, we
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can define their “index difference” I(α, β) by choosing an arbitrary Z ∈
H2(Y, α, β) and setting

I(α, β) = [I(α, β, Z)] ∈ Z/d.

This is well defined by the index ambiguity formula (3.6). When the chain
complex is nonzero, we can further define an absolute Z/d grading by picking
some generator β and declaring its grading to be zero, so that the grading
of any other generator is α is

|α| = I(α, β).

By the Additivity property of the ECH index, the differential decreases this
absolute grading by 1.

Remarks 3.9. (1) In particular, if Γ = 0, then the empty set of Reeb
orbits is a generator of the chain complex, which represents a homology class
depending only on Y and ξ, see §1.4. Thus ECH∗(Y, ξ, 0) has a canonical
absolute Z/d grading in which the empty set has grading zero.

(2) It follows from the Index Parity property (3.7) that for every Γ there
is a canonical absolute Z/2 grading on ECH∗(Y, ξ,Γ) by the parity of the
number of positive hyperbolic Reeb orbits.

3.7 Example: the ECH of an ellipsoid

To illustrate the above definitions, we now compute ECH∗(Y, λ, 0, J), where
Y is the three-dimensional ellipsoid Y = ∂E(a, b) with a/b irrational, and
λ is the contact form given by the restriction of the Liouville form (1.12).
We already saw in Example 1.8 that the chain complex generators have the
form γm1

1 γm2
2 with m1,m2 ≥ 0. Since the Reeb orbits γ1 and γ2 are elliptic,

it follows from the Index Parity property (3.7) that the grading difference
between any two generators is even, so the differential vanishes identically
for any J .

The grading. To finish the computation of the homology, we just need to
compute the grading of each generator. We know from §3.6 that the chain
complex has a canonical Z-grading, where the empty set (corresponding to
m1 = m2 = 0) has grading zero. The grading of α = γm1

1 γm2
2 can then be

written as
|α| = I(α, ∅) = cτ (α) +Qτ (α) + CZIτ (α). (3.11)

Here cτ (α) is shorthand for cτ (Z), and Qτ (α) is shorthand for Qτ (Z),
where Z is the unique element of H2(Y, α, ∅); and CZIτ (α) is shorthand
for CZIτ (α, ∅).
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To calculate the terms on the right hand side of (3.11), we first need
to choose a trivialization τ of ξ over γ1 and γ2. Under the identification
TR4 = C⊕C, the restriction of ξ to γ1 agrees with the second C summand,
and the restriction of ξ to γ2 agrees with the first C summand. We use these
identifications to define the trivialization τ that we will use.

The calculations in Example 1.8 imply that with respect to this trivial-
ization τ , the rotation angle (see §3.2) of γ1 is a/b, and the rotation angle
of γ2 is b/a. So by the formula (3.2) for the Conley-Zehnder index, we have

CZIτ (α) =
m1∑
k=1

(2bka/bc+ 1) +
m2∑
k=1

(2bkb/ac+ 1) .

The remaining terms in (3.11) are given as follows:

Exercise 3.10. cτ (α) = m1 +m2, and Qτ (α) = 2m1m2.

Putting the above together, we get that

I(α) = 2
(

(m1 + 1)(m2 + 1)− 1 +
m1∑
k=1

bka/bc+
m2∑
k=1

bkb/ac
)
. (3.12)

In particular, this is a nonnegative even integer.
How many generators are there of each grading? By Taubes’s isomor-

phism (1.11), together with the calculation of the Seiberg-Witten Floer ho-
mology of S3 in [35], we should get

ECH∗(∂E(a, b), λ, 0, J) =
{

Z/2, ∗ = 0, 2, 4, . . . ,
0, otherwise.

(3.13)

Exercise 3.11. Deduce (3.13) from (3.12). That is, show that (3.12) defines
a bijection from the set of pairs of nonnegative integers (m1,m2) to the set
of nonnegative even integers. (See hint in §A.)

3.8 The U map

We now explain some more details of the U map which was introduced in
§1.4, following [32, §2.5].

Suppose Y is connected, and choose a point z ∈ Y which is not on any
Reeb orbit. Let α and β be generators of the chain complex ECC∗(Y, λ,Γ, J),
and let C ∈ M2(α, β) be a holomorphic current with (0, z) ∈ C. By Propo-
sition 3.7, we have C = C0 t C2 where I(C0) = 0, and C2 is embedded and
ind(C2) = 2. Since C0 is a union of trivial cylinders and z is not on any Reeb
orbit, it follows that (0, z) ∈ C2. Let N(0,z)C2 denote the normal bundle to
C2 at (0, z). There is then a natural map

TCM2(α, β)→ N(0,z)C2. (3.14)
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Transversality arguments as in Proposition 3.1 can be used to show that
if J is generic then the map (3.14) is an isomorphism for all holomorphic
currents C as above. In particular, this implies that the set of holomorphic
currents C as above is discrete. For J with this property, we define a chain
map

Uz : ECC∗(Y, λ,Γ, J) −→ ECC∗−2(Y, λ,Γ, J)

by
Uzα =

∑
β

#{C ∈ M2(α, β) | (0, z) ∈ C}β,

where # denotes the mod 2 count as usual.
A compactness argument similar to the proof that ∂ is defined in §5.3

shows that Uz is defined. Likewise, the proof that ∂2 = 0 introduced in §5.4
can be modified to show that ∂Uz = Uz∂.

To show that the map (1.14) on ECH induced by Uz does not depend
on z, suppose z′ ∈ Y is another point which is not on any Reeb orbit. Since
there are only countably many Reeb orbits, we can choose an embedded
path η from z to z′ which does not intersect any Reeb orbit. Define a map

Kη : ECC∗(Y, λ,Γ, J) −→ ECC∗−1(Y, λ,Γ, J)

by
Kηα =

∑
β

#{(C, y) ∈M1(α, β)× Y | (0, y) ∈ C}β.

Similarly to the proof that ∂ is well-defined, Kη is well-defined if J is generic.
Similarly to the proof that ∂2 = 0, one proves the chain homotopy equation

∂Kη +Kη∂ = Uz − Uz′ . (3.15)

Remark 3.12. If z = z′, then it follows from (3.15) that Kη induces a map
on ECH of degree −1. In fact this map depends only on the homology class
of the loop η, and thus defines an action of H1(Y ) on ECH∗(Y, ξ,Γ). See [29,
§12.1] for more about this action and an example where it is nontrivial, and
[63] for the proof that it agrees with an analogous map on Seiberg-Witten
Floer cohomology.

3.9 Partition conditions

The definitions of the ECH differential and the U map do not directly specify
the topological type of the holomorphic currents to be counted. However it
turns out that most of this information is determined indirectly. We now
explain how the covering multiplicities of the Reeb orbits at the ends of the
nontrivial component of such a holomorphic current are uniquely determined.
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(We will further see in §5.2 that the genus of the nontrivial part of the
holomorphic current is mostly determined by its its relative homology class.)

Let α = {(αi,mi)} and β = {(βj , nj)} be orbit sets, and let C ∈M(α, β)
be somewhere injective. For each i, the curve C has ends at covers of αi
whose total covering multiplicity is mi. The multiplicities of these covers
are a partition of the positive integer mi which we denote by p+

i (C). For
example, if C has two positive ends at αi, and one positive end at the triple
cover of αi, then mi = 5 and p+

i (C) = (3, 1, 1). Likewise, the covering
multiplicities of the negative ends of C at covers of βj determine a partition
of nj , which we denote by p−j (C).

For each embedded Reeb orbit γ and each positive integer m, we will
shortly define two partitions of m, the “positive partition” p+

γ (m) and the
“negative partition14” p−γ (m). We then have:

Partition Conditions. Suppose equality holds in the Writhe Bound (3.9)
for C. (This holds for example if C is the nontrivial component of a holo-
morphic current that contributes to the ECH differential or the U map.)
Then p+

i (C) = p+
αi(mi) and p−j (C) = p−βj (nj).

The partitions p±γ (m) are defined as follows. If γ is positive hyperbolic,
then

p+
γ (m) = p−γ (m) = (1, . . . , 1).

Thus, if equality holds in the writhe bound for C, then C can never have an
end at a multiple cover of a positive hyperbolic Reeb orbit. If γ is negative
hyperbolic, then

p+
γ (m) = p−γ (m) =

{
(2, . . . , 2), m even,

(2, . . . , 2, 1), m odd.

Suppose now that γ is elliptic with rotation angle θ with respect to some
trivialization τ of ξ|γ , see §3.2. Then p±γ (m) = p±θ (m), where the partitions
p±θ (m) are defined as follows.

To define p+
θ (m), let Λ+

θ (m) be the maximal concave polygonal path in
the plane (i.e. graph of a concave function) with vertices at lattice points
which starts at the origin, ends at (m, bmθc), and lies below the line y = θx.
That is, Λ+

θ (m) is the non-vertical part of the boundary of the convex hull
of the set of lattice points (x, y) with 0 ≤ x ≤ m and y ≤ θx. Then p+

θ (m)
consists of the horizontal displacements of the segments of Λ+

θ (m) connecting
consecutive lattice points.

14In [21, 22], p+
γ (m) is called the “outgoing partition” and denoted by pout

γ (m), while
p−γ (m) is called the “incoming partition” and denoted by pin

γ (m). It is never too late to
change your terminology to make it clearer.
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The partition p−θ (m) is defined analogously from the path Λ−θ (m), which
is the minimal convex polygonal path with vertices at lattice points which
starts at the origin, ends at (m, dmθe), and lies above the line y = θx. An
equivalent definition is p−θ (m) = p+

−θ(m).
The partition p±θ (m) depends only on the class of θ in R/Z, and so p±γ (m)

does not depend on the choice of trivialization τ .
The simplest example, which we will need for the computations in §4, is

that if θ ∈ (0, 1/m), then

p+
θ (m) = (1, . . . , 1),
p−θ (m) = (m).

(3.16)

The partitions are more complicated for other θ, see Figure 1.
If m > 1, then p+

θ (m) and p−θ (m) are disjoint. (This makes the gluing
theory to prove ∂2 = 0 nontrivial, see §5.4.) This is a consequence of the
following exercise, which may help in understanding the partitions.

Exercise 3.13. (See answer in §A.) Write p+
θ (m) = (q1, . . . , qk) and p−θ (m) =

(r1, . . . , rl).

(a) Show that if (a, b) is an edge vector of the path Λ+
θ (m), then b = baθc.

(b) Show that
∑

i∈I bqiθc =
⌊∑

i∈I qiθ
⌋

for each subset I ⊂ {1, . . . , k}.

(c) Show that there do not exist proper subsets I ⊂ {1, . . . , k} and J ⊂
{1, . . . , l} such that

∑
i∈I qi =

∑
j∈J rj .

Here is a related combinatorial exercise, some of which is needed for the
proofs that ∂ is well-defined and ∂2 = 0 in §5.3 and §5.4.

Exercise 3.14. (See answer in §A.) Fix an irrational number θ and a pos-
itive integer m. Suppose γ is an embedded elliptic Reeb orbit with rotation
angle θ.

(a) Show that if u : C → R× γ is a degree m branched cover, regarded as
a holomorphic curve in R× Y , then the Fredholm index15 ind(u) ≥ 0.

(b) If (a1, . . . , ak) and (b1, . . . , bl) are partitions of m, define (a1, . . . , ak) ≥
(b1, . . . , bl) if there is a branched cover u of R × γ with positive ends
at γai , negative ends at γbj , and ind(u) = 0. Show that ≥ is a partial
order on the set of partitions of m.

(c) Show that p−θ (m) ≥ p+
θ (m).

15The Fredholm index of a possibly multiply covered curve u : Σ→ R× Y is defined as
in (3.1) but with χ(C) replaced by χ(Σ), and with cτ (C) replaced by c1(u∗ξ, τ).
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2 3 4 5 6 7 8
7/8, 1 8

6/7, 7/8 6
7

7, 1
5/6, 6/7 4

5
6, 1 6, 2

4/5, 5/6 3 5, 1 5, 2 5, 3
3/4, 4/5 4, 1 4, 2 4, 3 4, 4
5/7, 3/4 2 7 7, 1
2/3, 5/7

3,1 3,2 3,3
3, 3, 1 3, 3, 2

5/8, 2/3 8
3/5, 5/8

5 5,1 5,2
5, 2, 1

4/7, 3/5
2,1 2,2

7 7, 1
1/2, 4/7

2,2,1 2,2,2
2, 2, 2, 1 2, 2, 2, 2

3/7, 1/2 7 7, 1
2/5, 3/7

5 5,1
5, 1, 1 5, 3

3/8, 2/5
3 3,1

8
1/3, 3/8

3,1,1 3,3 3,3,1
3, 3, 1, 1

2/7, 1/3 7 7, 1
1/4, 2/7 1, 1

4 4,1 4,1,1
4, 1, 1, 1 4, 4

1/5, 1/4 5 5, 1 5, 1, 1 5, 1, 1, 1
1/6, 1/5 1, 1, 1 6 6, 1 6, 1, 1
1/7, 1/6 1, 1, 1, 1 7 7, 1
1/8, 1/7

1,. . . ,1
1, . . . , 1 8

0, 1/8
1,. . . ,1

1, . . . , 1

Figure 1: The positive partitions p+
θ (m) for 2 ≤ m ≤ 8 and all θ. The left

column shows the interval in which θ mod 1 lies, and the top row indicates
m. (Borrowed from [21])
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(d) Show that there does not exist any partition q with q > p−θ (m) or
p+
θ (m) > q.

Remark 3.15. If C ∈ M(α, β) contributes to the differential or the U map,
and if C contains trivial cylinders, then additional partition conditions must
hold; see [21, Prop. 7.1] for the conditions, and [30, Lem. 7.28] for equivalent
versions of these conditions for elliptic orbits.

4 More examples of ECH

The calculation of the ECH of an ellipsoid in §3.7 was fairly simple because
we just had to determine the grading of each generator. We now outline some
more complicated calculations which require counting holomorphic curves.
These are useful for further understanding the machinery, and relevant to
the symplectic embedding obstructions described in §1.2.

4.1 The U map on the ECH of an ellipsoid

We first return to the ellipsoid example from §3.7. Recall from (3.13) that
ECH∗(∂E(a, b), λ, 0) has one generator of grading 2k for each k = 0, 1, . . .;
denote this generator by ζk. To calculate the ECH capacities of E(a, b) in
§1.5, we needed:

Proposition 4.1. For any J , the U map on ECH∗(∂E(a, b), λ, 0, J) is given
by

Uζk = ζk−1, k > 0. (4.1)

As mentioned in Example 1.11, this follows from the isomorphism with
Seiberg-Witten theory. However it is instructive to try to prove Proposi-
tion 4.1 directly in ECH, without using Seiberg-Witten theory.

First of all, we can see directly in this case that the U map does not
depend on the almost complex structure J . The idea is that if we generically
deform J , then similarly to the compactness part of the proof that ∂2 = 0,
see Lemma 5.12, the chain map Uz can change only if at some time there
is a broken holomorphic curve containing a level with I = 1. But there are
no I = 1 curves by the Index Parity property (3.7) since all Reeb orbits are
elliptic.

We now sketch a direct proof of Proposition 4.1 in the special case when
a = 1 − ε and b = 1 + ε where ε > 0 is sufficiently small with respect to k.
(One can probably prove the general case similarly with more work.)

If ε is sufficiently small with respect to k, then ζk is the kth generator in
the sequence

1, γ1, γ2, γ
2
1 , γ1γ2, γ

2
2 , γ

3
1 , γ

2
1γ2, γ1γ

2
2 , γ

3
2 , . . .
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(indexed starting at k = 0). So to prove Proposition 4.1 in our special case,
it is enough to show the following:

Lemma 4.2. If a = 1−ε and b = 1+ε, then the U map on ECH∗(∂E(a, b), λ, 0, J)
is given by:

(a) U(γi1γ
j
2) = γi+1

1 γj−1
2 if j > 0 and ε > 0 is sufficiently small with respect

to i+ j.

(b) U(γi1) = γi−1
2 if i > 0 and ε > 0 is sufficiently small with respect to i.

Proof. The proof has three steps.
Step 1. We first determine the types of holomorphic curves we need to

count.
Let C be a holomorphic current that contributes to Uz(γi1γ

j
2) where i+j >

0. Write C = C0 t C2 as in Proposition 3.7. It follows from the partition
conditions (3.16) that C2 has at most one positive end at a cover of γ1, all
positive ends of C2 at covers of γ2 have multiplicity 1, all negative ends of
C2 at covers of γ1 have multiplicity 1, and C2 has at most one negative end
at a cover of γ2.

Exercise 4.3. Deduce from this and the equation ind(C2) = 2 that if j = 0,
then C2 is a cylinder if i > 1, and a plane if i = 1, assuming that ε > 0 is
sufficiently small with respect to i. (See answer in §A.)

Exercise 4.4. Similarly show that if j > 0, then C2 is a cylinder with a
positive end at γ2 and a negative end at γ1, assuming that ε > 0 is sufficiently
small with respect to i+ j. (See answer in §A.)

Step 2. We now observe that the transversality conditions needed to
define Uz, see §3.8, hold automatically for any symplectization-admissible J .
This follows from two general facts. First, if C is an immersed irreducible
J-holomorphic curve such that

2g(C)− 2 + h+(C) < ind(C), (4.2)

then C is automatically regular. Here g(C) denotes the genus of the domain
of C, and h+(C) denotes the number of ends of C at positive hyperbolic
orbits, including even covers of negative hyperbolic orbits. This and much
more general automatic transversality results are proved in [66]. Second, if

2g(C)− 2 + ind(C) + h+(C) = 0, (4.3)

then every nonzero element of the kernel of the deformation operator of C
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is nonvanishing16. If C = C2 where C2 is one of the holomorphic curves
described in Step 1, then C2 has genus zero, Fredholm index 2, and all ends
at elliptic orbits, so both conditions (4.2) and (4.3) hold, and we conclude
that C2 is regular and the map (3.14) has no kernel, which is exactly the
transversality needed to define Uz.

Step 3. We now count the holomorphic curves C2 described in Step
1. To do so, consider the case a = b = 1. Here the contact form is not
nondegenerate, as every point on Y = S3 is on a Reeb orbit. Indeed, the
set of embedded Reeb orbits can be identified with CP 1, so that the map
S3 → CP 1 sending a point to the Reeb orbit on which it lies is the Hopf
fibration. This is an example of a “Morse-Bott” contact form.

It is explained by Bourgeois [2] how one can understand holomorphic
curves for a nondegenerate perturbation of a Morse-Bott contact form in
terms of holomorphic curves for the Morse-Bott contact form itself. In the
present case, this means that we can understand holomorphic curves for the
ellipsoid with a = 1 − ε, b = 1 + ε, in terms of holomorphic curves for
the sphere with a = b = 1. Specifically, let pi ∈ CP 1 denote the point
corresponding to the Reeb orbit γi for i = 1, 2. Choose a Morse function
f : CP 1 → R with an index 2 critical point at γ2 and and index 0 critical
point at γ1. Then [2] tells us the following.

First, a holomorphic cylinder for the perturbed contact form with a pos-
itive end at γ2 and a negative end at γ1 (modulo R translation) corresponds
to a negative gradient flow line of f from p2 to p1. If we choose a base point
z ∈ CP 1\{p1, p2}, then there is exactly one such flow line passing through z.
One can deduce from this that if we choose a base point z ∈ Y which is not
on γ1 or γ2, then there is exactly one holomorphic cylinder with a positive
end at γ2 and a negative end at γ1 passing through (0, z). This proves part
(a) of Lemma 4.2.

Second, to prove part (b) of Lemma 4.2, we need to count holomorphic
cylinders (or planes when i = 1) C for the Morse-Bott contact form with
a positive end at γi1, and a negative end at γi−1

2 when i > 0, which pass
through a base point. To count these, let L denote the tautological line
bundle over CP 1. Let J denote the canonical complex structure on L, and
let Z ⊂ L denote the zero section.

Exercise 4.5. One can identify L \ Z ' R × S3 so that J corresponds
to a symplectization-admissible almost complex structure. A meromorphic

16The left side of (4.3) is called the “normal Chern number” by Wendl [65]. Any
holomorphic curve u in R × Y has normal Chern number ≥ 0, with equality only if the
projection of u to Y is an immersion. In favorable cases one can further show that the
projection of u to Y is an embedding. One such favorable case is described in [32, Prop.
3.4], which is used to characterize contact three-manifolds in which all Reeb orbits are
elliptic.
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section ψ of L determines a holomorphic curve in R× S3 with positive ends
corresponding to the zeroes of ψ, and negative ends corresponding to the
poles of ψ. Conversely, a holomorphic curve in R×S3 which intersects each
fiber of L\Z → CP 1, except for the fibers over the Reeb orbits at the positive
and negative ends, transversely in a single point, comes from a meromorphic
section of L.

If C is a holomorphic curve as in the paragraph preceding the above
exercise, then by the definition of linking number in S3, the curve C has
algebraic intersection number 1 with each fiber of L \Z over CP 1 \ {p1, p2}.
By intersection positivity, C intersects each such fiber transversely in a single
point. It follows then from Exercise 4.5 that to compute Uγi1, we need to
count meromorphic sections of L with a zero of order i at p1, a pole of order
i− 1 at p2, and no other zeroes or poles, which pass through a base point in
L \ Z. There is exactly one such meromorphic section, and this completes
the proof of Lemma 4.2.

4.2 The ECH of T 3

Our next example of ECH is more complicated, but will ultimately be useful
in computing many examples of ECH capacities. We consider

Y = T 3 = (R/2πZ)× (R/Z)2.

Let θ denote the R/2πZ coordinate and let x, y denote the two R/Z coordi-
nates. We start with the contact form

λ1 = cos θ dx+ sin θ dy. (4.4)

Let ξ1 = Ker(λ1); we now describe how to compute ECH∗(T 3, ξ1, 0), follow-
ing [29].

Perturbing the contact form. The Reeb vector field associated to λ1 is

R1 = cos θ
∂

∂x
+ sin θ

∂

∂y
.

If tan θ ∈ Q∪{∞}, so that the vector (cos θ, sin θ) is a positive real multiple
of a vector (a, b) where a, b are relatively prime integers, then every point
on {θ} × (R/Z)2 is on an embedded Reeb orbit γ in the homology class
(0, a, b) ∈ H1(T 3). The symplectic action of the Reeb orbit γ is

A(γ) =
√
a2 + b2.

In particular, there is a circle Sa,b of such Reeb orbits. Thus the contact
form λ1 is not nondegenerate; again it is Morse-Bott.
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To compute the ECH of ξ1, we will perturb λ1 to a nondegenerate contact
form. Given a, b, one can perturb the contact form λ1 near Sa,b so that,
modulo longer Reeb orbits, the circle of Reeb orbits Sa,b becomes just two
embedded Reeb orbits, one elliptic with rotation angle slightly positive, and
one positive hyperbolic. We denote these by ea,b and ha,b. The orbits ea,b and
ha,b are still in the homology class (0, a, b), and have symplectic action close
to
√
a2 + b2, with the action of ea,b slightly greater than that of ha,b. For

any given L > 0, one can perform such a perturbation for all of the finitely
many pairs of relatively prime integers (a, b) with

√
a2 + b2 < L, to obtain a

contact form λ for which the embedded Reeb orbits with symplectic action
less than L are the elliptic orbits ea,b and the hyperbolic orbits ha,b where
(a, b) ranges over all pairs of relatively prime integers with

√
a2 + b2 < L.

It is probably not possible to do this for L = ∞, i.e. to find a contact
form such that the embedded Reeb orbits of all actions are the orbits ea,b and
ha,b where (a, b) ranges over all pairs of relatively prime integers. Rather,
to calculate ECH of ξ1, we can perturb as above for a given L, compute the
filtered ECH in symplectic action less than L, and take the direct limit as
L→∞. In the calculations below, we only consider generators of symplectic
action less than L, and we omit L from the notation.

The generators. A generator of the chain complex ECC∗(Y, λ, 0, J) now
consists of a finite set of Reeb orbits ea,b and ha,b with positive integer mul-
tiplicities, where each ha,b has multiplicity 1, and the sum with multiplicities
of all the vectors (a, b) is (0, 0). To describe this more simply, if (a, b) are
relatively prime integers and if m is a positive integer, let ema,mb denote the
elliptic orbit ea,b with multiplicity m; and let hma,mb denote the hyperbolic
orbit ha,b, together with the elliptic orbit ea,b with multiplicity m− 1 when
m > 1. A chain complex generator then consists of a finite set of symbols
ea,b and ha,b, where each (a, b) is a pair of (not necessarily relatively prime)
integers which are not both zero, no pair (a, b) appears more than once, and
the sum of the vectors (a, b) that appear is zero. If we arrange the vectors
(a, b) head to tail in order of increasing slope, we obtain a convex polygon in
the plane. Thus, a generator of the chain complex ECC∗(Y, λ, 0, J) can be
represented as convex polygon Λ in the plane, modulo translation, with ver-
tices at lattice points, with each edge labeled either ‘e’ or ‘h’. The polygon
can be a 2-gon (for a generator such as ea,be−a,−b) or a point (for the empty
set of Reeb orbits). The symplectic action of the generator is approximately
the Euclidean length of the polygon Λ.

The grading. The two-plane field ξ1 is trivial; indeed ∂θ defines a global
trivialization τ . Thus c1(ξ1) = 0, and the chain complex ECC∗(T 3, λ, 0, J)
has a canonical Z-grading, in which the empty set has grading zero.
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Lemma 4.6. The canonical Z-grading of a generator Λ is given by

|Λ| = 2(L(Λ)− 1)− h(Λ), (4.5)

where L(Λ) denotes the number of lattice points enclosed by Λ (including
lattice points on the edges), and h(Λ) denotes the number of edges of Λ that
are labeled ‘h’.

Proof. As in (3.11), we can write the grading of a generator Λ as

|Λ| = cτ (Λ) +Qτ (Λ) + CZIτ (Λ).

Since τ is a global trivialization, cτ (Λ) = 0. We also have CZτ (ea,b) = 1 and
CZτ (ha,b) = 0; consequently,

CZIτ (Λ) = m(Λ)− h(Λ),

where m(Λ) denotes the total divisibility of all edges of Λ. Finally, it is a
somewhat challenging exercise (which can be solved by the argument in [28,
Lem. 3.7]) to show that

Qτ (Λ) = 2 Area(Λ)

where Area(Λ) denotes the area enclosed by Λ. Now Pick’s formula for the
area of a lattice polygon asserts that

2 Area(Λ) = 2L(Λ)−m(Λ)− 2.

The grading formula (4.5) follows from the above four equations.

Combinatorial formula for the differential. Define a combinatorial
differential

δ : ECC∗(T 3, λ, 0, J) −→ ECC∗−1(T 3, λ, 0, J)

as follows. If Λ is a generator, then δΛ is the sum over all labeled polygons Λ′

that are obtained from Λ by “rounding a corner” and “locally losing one ‘h’”.
Here “rounding a corner” means replacing the polygon Λ by the boundary of
the convex hull of the set of enclosed lattice points with one corner removed.
“Locally losing one ‘h’ ” means that of the two edges adjacent to the corner
that is rounded, at least one must be labeled ‘h’; if only one is labeled ‘h’,
then all edges created or shortened by the rounding are labeled ‘e’; otherwise
exactly one of the edges created or shortened by the rounding is labeled
‘h’. All edges not created or shortened by the rounding keep their previous
labels. It follows from (4.5) that the combinatorial differential δ decreases
the grading by 1, since L(Λ′) = L(Λ)−1 and h(Λ′) = h(Λ)−1. A less trivial
combinatorial fact, proved in [29, Cor. 3.13], is that δ2 = 0.
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Proposition 4.7. [29, §11.3] For every L > 0, the perturbed contact form
λ and almost complex structure J can be chosen so that up to symplectic
action L, the ECH differential ∂ agrees with the combinatorial differential δ.

We will describe some of the proof of Proposition 4.7 at the end of this
subsection.

The homology of the combinatorial differential δ is computed in [29]
(there with Z coefficients), and the conclusion (with Z/2 coefficients) is that

ECH∗(T 3, ξ1, 0) '
{

(Z/2)3, ∗ ≥ 0,
0, ∗ < 0.

(4.6)

Exercise 4.8. Prove that the homology of the combinatorial differential δ
in degree 0 is isomorphic to (Z/2)3.

The U map. To compute ECH capacities, we do not need to know the
homology (4.6), but rather the following combinatorial formula for the U
map. Pick θ ∈ R/2πZ with tan θ irrational. Define a combinatorial map

Uθ : ECC∗(T 3, λ, 0, J) −→ ECC∗−2(T 3, λ, 0, J)

as follows. If Λ is a generator, then it has a distinguished corner cθ such that
the oriented line T through cθ with direction vector (cos θ, sin θ) intersects Λ
only at cθ, with the rest of Λ lying to the left of T . Then Uθ is the sum over
all generators Λ′ obtained from Λ by rounding the distinguished corner cθ
and “conserving the h labels”. To explain what this last condition means,
note that Λ′ also has a distinguished corner c′θ. If the edge of Λ preceding cθ
is labeled ‘h’, then exactly one of the new or shortened edges of Λ′ preceding
c′θ is labeled ‘h’; otherwise all new or shortened edges of Λ′ preceding c′θ are
labeled ‘e’. Likewise for the edge of Λ following cθ and the new or shortened
edges of Λ′ following c′θ. All other edge labels are unchanged.

To connect this with the U map on ECH, let z = (θ, x, y) ∈ T 3 where
x, y ∈ R/Z are arbitrary.

Proposition 4.9. [29, §12.1.4] For any L > 0, one can choose λ and J
as in Proposition 4.7 so that up to symplectic action L, we have Uz = Uθ,
modulo terms that decrease the number of ‘h’ labels.

In particular, if all edges of Λ are labeled ‘e’, then UzΛ is the generator
Λ′ obtained from Λ by rounding the distinguished corner cθ and keeping all
edges labeled ‘e’. (If Λ is a point then UzΛ = 0.)

ECH spectrum. We now use the above facts to compute the ECH spec-
trum of (T 3, λ1) in terms of a discrete isoperimetric problem.
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Proposition 4.10. The ECH spectrum of (T 3, λ1) is given by

ck(T 3, λ1) = min {`(Λ) | L(Λ) = k + 1} , (4.7)

where the minimum is over closed convex polygonal paths Λ with vertices at
lattice points, ` denotes the Euclidean length, and L(Λ) denotes the number
of lattice points enclosed by Λ, including lattice points on the edges.

Proof. Fix a nonnegative integer k. Let Λk be a length-minimizing closed
convex polygon with vertices at lattice points subject to the constraint
L(Λk) = k + 1. We need to show that ck(T 3, λ1) = `(Λk).

Fix z ∈ T 3 for use in definining the chain map Uz. Choose L > `(Λk),
and let λ and J be a perturbed contact form and almost complex structure
supplied by Propositions 4.7 and 4.9. Label all edges of Λk by ‘e’ in order
to regard Λk as a generator of the chain complex ECC(T 3, λ, 0, J). Then
Λk is a cycle by Proposition 4.7, and Ukz Λk = ∅ by Proposition 4.9. Thus
ck(T 3, λ) is less than or equal to the the symplectic action of Λk, which
is approximately `(Λk). It follows from the limiting definition of the ECH
spectrum for degenerate contact forms in §1.5 that ck(T 3, λ1) ≤ `(Λk).

To complete the proof, we now show that ck(T 3, λ1) ≥ `(Λk). It is
enough to show that if Λ is any other generator with 〈Ukz Λ, ∅〉 6= 0, then
`(Λ) ≥ `(Λk). Since |Λ| = 2k, it follows from the grading formula (4.5) that

L(Λ) = k + 1 +
h(Λ)

2
.

We then have
`(Λ) ≥ `(Λk+h(Λ)/2) ≥ `(Λk)

where the first inequality holds by definition, and the second inequality holds
because rounding corners of polygons decreases length17.

Computing the differential. We now indicate a bit of what is involved
in the proof of Proposition 4.7; similar arguments prove Proposition 4.9. For
the application to ECH capacities, one may skip ahead to §4.3.

The easier half of the proof of Proposition 4.7 is to show that λ and J
can be chosen so that

〈∂Λ,Λ′〉 6= 0 =⇒ 〈δΛ,Λ′〉 6= 0. (4.8)

The following lemma is a first step towards proving (4.8).

Lemma 4.11. Let C ∈ M(Λ,Λ′) be a holomorphic current that contributes
to the differential ∂, and write C = C0 t C1 as in Proposition 3.7. Then C1

has genus zero, and one of the following three alternatives holds:
17It is a combinatorial exercise to prove that rounding corners of polygons decreases

length, see [29, Lem. 2.14].
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(i) C1 is a cylinder with positive end at an embedded elliptic orbit ea,b and
negative end at ha,b.

(ii) C1 has two positive ends, and the number of positive ends at hyperbolic
orbits is one more than the number of negative ends at hyperbolic orbits.

(iii) C1 has three positive ends, all at hyperbolic orbits; and all negative
ends of C1 are at elliptic orbits.

Proof. Let us first see what the Fredholm index formula (3.1) tells us about
C1. Let g denote the genus of C1, let e+ denote the number of positive ends
of C1 at elliptic orbits, let h+ denote the number of positive ends of C1 at
hyperbolic orbits, and let e− and h− denote the number of negative ends of
C1 at elliptic and hyperbolic orbits respectively. Then

χ(C1) = 2− 2g − e+ − h+ − e− − h−

and
CZ ind

τ (C) = e+ − e−,

so by the Fredholm index formula (3.1) we have

ind(C1) = 2g − 2 + 2e+ + h+ + h−.

Since ind(C1) = 1, we obtain

2g + 2e+ + h+ + h− = 3. (4.9)

Since the differential ∂ decreases symplectic action, C1 has at least one
positive end.

Exercise 4.12. Further use the fact that the differential ∂ decreases sym-
plectic action to show that g = 0. (See answer in §A.)

If C1 has exactly one positive end, then similarly to the solution to Exer-
cise 4.12, this positive end is at an elliptic orbit. By the partition conditions
(3.16), this positive end is at an embedded elliptic orbit ea,b. Then, similarly
to the solution to Exercise 4.12, C1 has exactly one negative end, which is
at ha,b, so alternative (i) holds.

If C1 has more than one positive end, then it follows from equation (4.9)
that alternative (ii) or (iii) holds.

Now 〈δΛ,Λ′〉 6= 0 is only possible in case (ii). So to prove (4.8) we would
like to rule out alternatives (i) and (iii). In fact alternative (i) cannot be
ruled out; there are two holomorphic cylinders from ea,b to ha,b for each pair
of relatively prime integers (a, b). These arise in the Morse-Bott picture from
the two flow gradient flow lines of the Morse function on the circle of Reeb
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orbits Sa,b that we used to perturb the Morse-Bott contact form λ1, similarly
to the proof of Proposition 4.1(a). However these cylinders cancel18 in the
ECH differential ∂. Alternative (iii) may occur depending on how exactly
one perturbs the Morse-Bott contact form λ1. However it is shown in [29,
§11.3, Step 5] that the perturbation λ and almost complex structure J can
be chosen so that alternative (iii) does not happen.

The main remaining step in the proof of (4.8) is to show that λ and J
above can be chosen so that if 〈∂Λ,Λ′〉 6= 0, then the polygons Λ and Λ′

can be translated so that Λ′ is nested inside Λ. The proof uses intersection
positivity, see [29, §10.3].

To complete the proof of Proposition 4.7, we need to prove the converse
of (4.8), namely that λ and J above can be chosen so that if 〈δΛ,Λ′〉 6=
0 then 〈∂Λ,Λ′〉 6= 0. One can calculate 〈∂Λ,Λ′〉 by counting appropriate
holomorphic curves for the Morse-Bott contact form λ1. Work of Taubes [57]
and Parker [48] determines the latter curves in terms of tropical geometry.
Unfortunately it would take us too far afield to explain this story here.

4.3 ECH capacities of convex toric domains

We now use the results of §4.2 to compute the ECH capacities of a large
family of examples. Let Ω be a compact domain in [0,∞)2 with piecewise
smooth boundary. Define a “toric domain” or “Reinhardt domain”

XΩ =
{

(z1, z2) ∈ C2
∣∣ (π|z1|2, π|z2|2

)
∈ Ω

}
.

For example, if Ω is the triangle with vertices (0, 0), (a, 0), and (0, b), then
XΩ is the ellipsoid E(a, b). If Ω is the rectangle with vertices (0, 0), (a, 0),
(0, b), and (a, b), then XΩ is the polydisk P (a, b).

Assume now that Ω is convex and does not touch the axes. We can then
state a formula for the ECH capacities of XΩ, similar to Proposition 4.10.
Let Ω′ ⊂ R2 be a translate of Ω that contains the origin in its interior. Let
‖ · ‖ denote the (not necessarily symmetric) norm on R2 that has Ω′ as its
unit ball. Let ‖ · ‖∗ denote the dual norm on (R2)∗, which we identify with
R2 via the Euclidean inner product 〈·, ·〉. That is, if v ∈ R2, then

‖v‖∗ = max
{
〈v, w〉 | w ∈ ∂Ω′

}
.

If Λ is a polygonal path in R2, let `Ω(Λ) denote the length of the path Λ as
measured using the dual norm ‖ · ‖∗, i.e. the sum of the ‖ · ‖∗-norms of the
edge vectors of Λ.

Exercise 4.13. If Λ is a loop, then `Ω(Λ) does not depend on the choice of
translate Ω′ of Ω. (See answer in §A.)

18There is also a “twisted” version of ECH in which these cylinders do not cancel in the
differential, see [29, §12.1.1].
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Theorem 4.14. [24, Thm. 1.11]19 If Ω is convex and does not intersect the
axes, then

ck(XΩ) = min {`Ω(Λ) | L(Λ) = k + 1} , (4.10)

where the minimum is over closed convex polygonal paths Λ with vertices at
lattice points, and L(Λ) denotes the number of lattice points enclosed by Λ,
including lattice points on the edges.

Remark 4.15. It should be possible to drop or weaken the assumption that
Ω does not intersect the axes. For example, the formula (4.10) is still correct
when Ω is a triangle or rectangle with two sides on the axes, so that XΩ

is an ellipsoid or polydisk. This is a consequence of the following exercise,
which should help with understanding the combinatorial formula (4.10).

Exercise 4.16. (a) Suppose that Ω is a convex polygon. Show that the
minimum on the right hand side of (4.10) is the same if it is taken over
closed convex polygonal paths Λ with arbitrary vertices whose edges
are parallel to the edges of Ω.

(b) Use part (a), together with the formulas (1.7) and (1.8) for the ECH
capacities of ellipsoids and polydisks, to verify that equation (4.10) is
correct when XΩ is an ellipsoid or a polydisk.

Proof of Theorem 4.14. We first need to understand a bit about the sym-
plectic geometry of the domains XΩ. Define coordinates µ1, µ2 ∈ (0,∞) and
θ1, θ2 ∈ R/2πZ on (C∗)2 by writing zk =

√
µ/πeiθk for k = 1, 2. In these

coordinates, the standard symplectic form on C2 restricts to

ω =
1

2π

2∑
k=1

dµk dθk. (4.11)

A useful corollary of this is that

vol(XΩ) = area(Ω). (4.12)

Exercise 4.17. Use (4.11) to show that if Ω1 and Ω2 do not intersect the
axes, and if Ω2 can be obtained from Ω1 by the action of SL2Z and transla-
tion, then XΩ1 is symplectomorphic to XΩ2 .

Now suppose that Ω has smooth boundary, does not intersect the axes,
and is star-shaped with respect to some origin (η1, η2) ∈ int(Ω). This last
condition means that each ray starting at (η1, η2) intersects ∂Ω transversely.

19The definition of XΩ in [24] is different, but symplectomorphic to the one given here.
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We claim then that ∂XΩ is contact type, so that Ω is a Liouville domain.
Indeed,

ρ =
2∑

k=1

(µk − ηk)
∂

∂µk

is a Liouville vector field transverse to ∂XΩ, see §1.3.
To describe the resulting contact form λ = ıρω on ∂XΩ, suppose further

that Ω is strictly convex. Then ∂XΩ is diffeomorphic to T 3 with coordinates
θ1, θ2, φ, where θ1, θ2 were defined above, and (cosφ, sinφ) is the unit tangent
vector to ∂Ω, oriented counterclockwise. The contact form is now

λ =
1

2π

2∑
k=1

(µk − ηk)dθk, (4.13)

and the Reeb vector field is

R =
2π

‖(sinφ,− cosφ)‖∗

(
sinφ

∂

∂θ1
− cosφ

∂

∂θ2

)
. (4.14)

Here ‖ · ‖∗ denotes the dual norm as above, defined using the translate of Ω
by −η. This means that λ has a circle of Reeb orbits for each φ for which
(sinφ,− cosφ) is a positive multiple of a vector (a, b) where a, b are relatively
prime integers, and the symplectic action of each such Reeb orbit is the dual
norm ‖(a, b)‖∗.

For example, if Ω is a disk of radius 1 centered at η, then the contact form
(4.13) agrees with the standard contact form (4.4) on T 3 (via the coordinate
change θ1 = x, θ2 = y, φ = θ+π/2), and the norm ‖·‖∗ is the Euclidean norm.
So in this case, Theorem 4.14 follows from Proposition 4.10. In the general
case, by the arguments in [29, Prop. 10.15], the calculations in §4.2 work just
as well for the contact form (4.13), except that symplectic action is computed
using the dual norm ‖ · ‖∗ instead of the Euclidean norm. This proves
Theorem 4.14 whenever the boundary of Ω is smooth and strictly convex.
The general case of Theorem 4.14 follows by a limiting argument.

The key property of the contact form (4.13) that makes the above cal-
culation work is that the direction of the Reeb vector field (4.14) rotates
monotonically with φ. It is an interesting open problem to compute the
ECH capacities of XΩ when Ω is star-shaped with respect to some origin
but not convex. In this case the direction of the Reeb vector field no longer
increases monotonically as one moves along ∂Ω, so the calculations in §4.2
do not apply, as there can be more than one circle of Reeb orbits in the same
homology class.

61



Polydisks. We now prove the formula (1.8) for the ECH capacities of a
polydisk P (a, b). Let Ω be a rectangle with sides of length a and b parallel
to the axes which does not intersect the axes. It follows from Theorem 4.14
and Exercise 4.16(b) that

ck(XΩ) = min
{
am+ bn

∣∣ m,n ∈ N, (m+ 1)(n+ 1) ≥ k + 1
}
.

So to prove equation (1.8) for the ECH capacities of a polydisk, it is enough
to show that

ck(P (a, b)) = ck(XΩ). (4.15)

Observe that XΩ is symplectomorphic to the product of two annuli of
area a and b. Also, an annulus can be symplectically embedded into a
disk of slightly larger area, and a disk can be symplectically embedded into
an annulus of slightly larger area. Consequently, for any ε > 0, there are
symplectic embeddings

P ((1− ε)a, (1− ε)b) ⊂ XΩ ⊂ P ((1 + ε)a, (1 + ε)b).

It follows from this and the Monotonicity and Conformality properties of
ECH capacities that (4.15) holds. Indeed, any symplectic capacity satisfying
the Monotonicity and Conformality properties must agree on P (a, b) andXΩ.

5 Foundations of ECH

We now give an introduction to some of the foundational matters which were
skipped over in §3. The subsections below introduce foundational issues in
the logical order in which they arise in developing the theory, but for the
most part can be read in any order.

Below, fix a closed oriented three-manifold Y , a nondegenerate contact
form λ on Y , and a generic symplectization-admissible almost complex struc-
ture J on R× Y .

5.1 Proof of the writhe bound and the partition conditions

We now outline the proof of the writhe bound (3.9) and the partition con-
ditions in §3.9. One can prove this one Reeb orbit at a time. That is, let C
be a somewhere injective J-holomorphic curve, let γ be an embedded Reeb
orbit, and suppose that C has positive ends at covers of γ with multiplicities
a1, . . . , ak satisfying

∑k
i=1 ai = m. Let N be a tubular neighborhood of γ

and let ζ = C ∩ ({s}×N) where s >> 0. Let τ be a trivialization of ξ|γ . We
then need to prove the following lemma (together with an analogus lemma
for the negative ends which will follow by symmetry):
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Lemma 5.1. If s >> 0, then ζ is a braid whose writhe satisfies

wτ (ζ) ≤
m∑
i=1

CZτ (γi)−
k∑
i=1

CZτ (γai),

with equality only if (a1, . . . , ak) = p+
γ (m).

To prove Lemma 5.1, we need to recall some facts about the asymptotics
of holomorphic curves. To set this up, identify N ' (R/Z) ×D2 so that γ
corresponds to (R/Z)× {0}, and the derivative of the identification along γ
sends ξ|γ to {0}⊕C in agreement with the trivialization τ . It turns out that
a nontrivial positive end of C at the d-fold cover of γ can be written using
this identification as the image of a map

u : [s0,∞)× (R/dZ) −→ R× (R/Z)×D2,

(s, t) 7−→ (s, π(t), η(s, t))

where s0 >> 0 and π : R/dZ→ R/Z denotes the projection.
We now want to describe the asymptotics of the function η(s, t). Under

our tubular neighborhood identification, the almost complex structure J on
ξ|γ defines a family of 2 × 2 matrices Jt with J2

t = −1 parametrized by
t ∈ R/Z. Also, the linearized Reeb flow along γ determines a connection
∇t = ∂t + St on ξ|γ , where JtSt is a symmetric matrix for each t ∈ R/Z.
If d is a positive integer, define the “asymptotic operator” Ld on functions
R/dZ→ C by

Ld = Jπ(t)(∂t + Sπ(t)).

Note that the operator Ld is formally self-adjoint, so its eigenvalues are real.

Lemma 5.2. [18] Given an end η of a holomorphic curve as above, there
exist c, κ > 0, and a nonzero eigenfunction ϕ of Ld with eigenvalue λ > 0,
such that ∣∣∣η(s, t)− e−λsϕ(t)

∣∣∣ < ce(−λ−κ)s

for all (s, t) ∈ [s0,∞)× (R/dZ).

To make use of this lemma, we need to know something about the eigen-
functions of Ld with positive eigenvalues.

Lemma 5.3. Let ϕ : R/dZ → C be a nonzero eigenfunction of Ld with
eigenvalue λ. Then:

(a) ϕ(t) 6= 0 for all t ∈ R/dZ, so ϕ has a well-defined winding number
around 0, which we denote by windτ (ϕ).

(b) If λ > 0 then windτ (ϕ) ≤
⌊
CZτ (γd)/2

⌋
.
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Proof. The eigenfunction ϕ satisfies the ordinary differential equation

∂tϕ = −
(
Sπ(t) + λJπ(t)

)
ϕ.

Assertion (a) then follows from the uniqueness of solutions to ODE’s. As-
sertion (b) is proved in [19, §3].

Example 5.4. Suppose γ is elliptic with monodromy angle θ with respect
to τ . We can then choose the trivialization τ so that

∇t = ∂t − 2πiθ.

Suppose J is chosen so that Jt is multiplication by i for each t. Then

Ld = i∂t + 2πθ.

Eigenfunctions of Ld are complex multiples of the functions

ϕn(t) = e2πint/d

for n ∈ Z, with eigenvalues

λn = −2πn/d+ 2πθ (5.1)

and winding number
windτ (ϕn) = n. (5.2)

It follows from (5.1) and (5.2) that λn > 0 if and only if windτ (ϕn) < dθ.
This is consistent with Lemma 5.3(b) since by (3.2) we have⌊

CZτ

(
γd
)
/2
⌋

= bdθc .

Now return to the slice ζ = C ∩ ({s} ×N) where s >> 0. The positive
ends of C at covers of γ determine loops ζ1, . . . , ζk in N transverse to the
fibers of N → γ. We conclude from Lemmas 5.2 and 5.3 that ζi has a well-
defined winding number around γ with respect to τ , which we denote by
windτ (ζi), and this satisfies

windτ (ζi) ≤ bCZτ (γai)/2c . (5.3)

To simplify notation, write ρi = bCZτ (γai)/2c.
In principle the loops ζi might intersect themselves or each other, but we

will see below that if s is sufficiently large then they do not, so that their
union is a braid ζ. Its writhe is then given by

wτ (ζ) =
k∑
i=1

wτ (ζi) +
∑
i 6=j

`τ (ζi, ζj). (5.4)

Here `τ (ζi, ζj) is the “linking number” of ζi and ζj ; this is defined like the
writhe, except now we count crossings of ζi with ζj and divide by 2. The
terms on the right hand side of (5.4) are bounded as follows:
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Lemma 5.5. If s >> 0, then:

(a) Each component ζi is embedded and has writhe bounded by

wτ (ζi) ≤ ρi(ai − 1). (5.5)

(b) If i 6= j, then ζi and ζj are disjoint, and

`τ (ζi, ζj) ≤ max(ρiaj , ρjai).

Proof. An analogous result was proved in [21, §6] in an analytically simpler
situation. In the present case, parts of the argument require a result of
Siefring [52] which generalizes Lemma 5.2 to give “higher order” asymptotics
of holomorphic curves. We now outline how this works.

(a) If the integers windτ (ζi) and ai are relatively prime, then an elemen-
tary argument in [21, Lem. 6.7] related to Lemma 5.3(a) shows that ζi is a
torus braid, so that

wτ (ζi) = windτ (ζi)(ai − 1). (5.6)

The inequality (5.5) now follows from this and the winding bound (5.3).
When windτ (ζi) and ai have a common factor, one can prove that ζi is
embedded and satisfies (5.6) using the analysis of Siefring.

(b) Let λi and λj denote the eigenvalues of the operators Lai and Laj
associated to the ends ζi and ζj via Lemma 5.2. If λi < λj , then it follows
from Lemma 5.2 that the braid ζj is “inside” the braid ζj (assuming as
always that we take s sufficiently large), from which it follows that ζi and ζj
do not intersect and

`τ (ζi, ζj) = windτ (ζi)aj ≤ ρiaj . (5.7)

The proof that ζi and ζj do not intersect and satisfy (5.7) when λi = λj is
more delicate and uses the analysis of Siefring.

Remark 5.6. When ρi and ai have a common factor one can strengthen
the inequality (5.5); optimal bounds are given in [53, §3.1]. We do not need
this strengthening when γ is elliptic, but it is needed for the proof of the
partition conditions when γ is hyperbolic, see [22, Lem. 4.16].

Proof of Lemma 5.1. We will restrict attention to the most interesting case
where γ is elliptic with monodromy angle θ. (See [22, §4] for the proof when
γ is hyperbolic.) By equation (3.2) we have ρi = baiθc. So by equation (5.4)
and Lemma 5.5, it is enough to show that

k∑
i=1

baiθc (ai−1)+
∑
i 6=j

max(baiθc aj , bajθc ai) ≤
m∑
i=1

(2 biθc+1)−
k∑
i=1

(2 baiθc+1),
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with equality only if (a1, . . . , ak) = p+
θ (m). We can write the above inequality

a bit more simply as
n∑

i,j=1

max(baiθc aj , bajθc ai) ≤ 2
m∑
i=1

biθc −
k∑
i=1

baiθc+m− k. (5.8)

To prove (5.8), following [22], order the numbers a1, . . . , ak so that

ba1θc
a1

≥ ba2θc
a2

≥ · · · ≥ bakθc
ak

.

Let Λ be the path in the plane starting at (0, 0) with edge vectors (a1, ba1θc), . . . , (ak, bakθc)
in that order. Let P denote the region bounded by the path Λ, the horizontal
line from (0, 0) to (m, 0), and the vertical line from (m, 0) to

(
m,
∑k

i=1 baiθc
)

.
Let L denote the number of lattice points contained in P (including the
boundary), let A denote the area of P , and let B denote the number of
lattice points on the boundary of P .

By dividing P into rectangles and triangles, we find that the left hand
side of (5.8) is twice the area of P , i.e.

2A =
n∑

i,j=1

max(baiθc aj , bajθc ai). (5.9)

Counting by vertical strips, we find that the number of lattice points enclosed
by P is bounded by

L ≤ m+ 1 +
m∑
i=1

biθc , (5.10)

with equality if and only if the image of the path Λ agrees with the image
of the path Λ+

θ (m) defined in §3.9. In addition, the number of boundary
lattice points satisfies

B ≥ m+ k +
k∑
i=1

baiθc , (5.11)

with equality if and only if none of the edge vectors of the path Λ is divisible
in Z2. Now Pick’s formula for the area of a lattice polygon asserts that

2A = 2L−B − 2. (5.12)

Combining (5.9), (5.10), (5.11), and (5.12), we conclude that the inequality
(5.8) holds, with equality if and only if Λ = Λ+

θ (m).

Remark 5.7. Counts of lattice points in polygons have now arisen in two,
seemingly independent, ways in our story: first in the above proof of the
writhe bound and the partition conditions, and second in the calculation of
the ECH of T 3 and the ECH capacities of toric domains in §4.2 and §4.3.
We do not know if there is a deep explanation for this.
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5.2 Topological complexity of holomorphic curves

The definitions of the ECH differential and the U map do not directly specify
the genus of the (nontrivial component of the) holomorphic currents to be
counted. However this is mostly determined indirectly in terms of the relative
homology classes of the holomorphic curves, as we now explain. This fact
is useful for understanding the holomorphic currents (see e.g. [32, §4.5] and
[38, Appendix] for applications), and also in the compactness argument in
§5.3 below.

Let α = {(αi,mi)} and β = {(βj , nj)} be orbit sets in the homology class
Γ, and let Z ∈ H2(Y, α, β). Define20

J0(α, β, Z) = −cτ (Z) +Qτ (Z) + CZJ0
τ (α, β), (5.13)

where

CZJ0
τ (α, β) =

∑
i

mi−1∑
k=1

CZτ (αki )−
∑
j

nj−1∑
k=1

CZτ (βkj ). (5.14)

The definition of J0 is very similar to the definition of the ECH index in (3.4)
and (3.5); however the sign of the relative first Chern class term is switched,
and the Conley-Zehnder term is slightly different. More importantly, while I
bounds the Fredholm index of holomorphic curves, J0 bounds the “topological
complexity” of holomorphic curves.

To give a precise statement in the case that we will need to consider, let
C ∈ M(α, β) be a holomorphic current. Suppose that C = C0 t C where
C0 is a union of trivial cylinders with multiplicities, and C is somewhere
injective. Let n+

i denote “the number of positive ends of C at covers of
α+
i ”, namely the number of positive ends of C at α+

i , plus 1 if C0 includes
the trivial cylinder R × α+

i with some multiplicity. Likewise, let n+
j denote

“the number of negative ends of C at covers of β−j ”, namely the number of
negative ends of C at β−j , plus 1 if C0 includes the trivial cylinder R × β−j
with some multiplicity. Write J0(C) = J0(α, β, [C]).

Proposition 5.8. Let α = {(αi,mi)} and β = {(βj , nj)} be generators of
the ECH chain complex, and let C = C0 t C ∈ M(α, β) be a holomorphic
current as above. Then

−χ(C) +
∑
i

(n+
i − 1) +

∑
j

(n+
j − 1) ≤ J0(C). (5.15)

If C is counted by the ECH differential or the U map, then equality holds in
(5.15).

20It is perhaps not optimal to denote this number by J0 since J usually denotes an
almost complex structure. However the idea is that J0 is similar to I and so should be
denoted by a nearby letter.
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For example, it follows from (5.15) that J0(C) ≥ −1, with equality only
if C is a plane with positive end at a cover of some Reeb orbit γ, and C0

does not contain any trivial cylinders over γ. Proposition 5.8 is proved in
[32, Lem. 3.5], using more general results from [22, §6].

Exercise 5.9. (See answer in §A.) Use the relative adjunction formula
(3.3) and the partition conditions in §3.9 to prove the following special case
of Proposition 5.8: If C ∈M(α, β) is an embedded holomorphic curve which
is counted by the ECH differential or the U map, then

−χ(C) +
∑
i

(n+
i − 1) +

∑
j

(n+
j − 1) = J0(C).

5.3 Proof that ∂ is well defined

Assume now that the almost complex structure J on R × Y is generic. To
complete the proof in §3.5 that the ECH differential ∂ is well-defined, we
need to prove the following:

Lemma 5.10. If α and β are orbit sets, then M1(α, β)/R is finite.

To prove this we want to assume that M1(α, β) is infinite and apply
a compactness argument to obtain a contradiction. A relevant version of
Gromov compactness was proved by Bourgeois-Eliashberg-Hofer-Wysocki-
Zehnder [3]. To describe this result, say that a holomorphic curve u is
“nontrivial” if it is not a union of trivial cylinders; branched covers of trivial
cylinders with a positive number of branched points are considered nontriv-
ial. If u+ and u− are nontrivial holomorphic curves, define “gluing data”
between u+ and u− to consist of the following:

• A bijection between the negative ends of u+ and the positive ends of u−

such that ends paired up under the bijection are at the same (possibly
multiply covered) Reeb orbit γ.

• When γ above is multiply covered with degree m, then the negative
end of u+ and the positive end of u− each determine a degree m cover
of the underlying embedded Reeb orbit, and the gluing data includes
an isomorphism of these covering spaces (there are m possible choices
for this).

Finally, define a broken holomorphic curve to be a finite sequence (u0, . . . , uk),
where each ui is a nontrivial holomorphic curve in R× Y modulo R transla-
tion, called a “level”, together with gluing data as above between ui−1 and
ui for each i = 1, . . . , k. It is shown in [3] that if {uν}ν≥0 is a sequence of
holomorphic curves with fixed genus between the same sets of Reeb orbits,
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then there is a subsequence which converges in an appropriate sense to a
broken holomorphic curve.

Unfortunately we cannot directly apply the above result to a sequence
of holomorphic currents in M1(α, β)/R, because we do not have an a pri-
ori bound on the genus of their nontrivial components. One can obtain a
bound on the genus of a holomorphic curve from Proposition 5.8, but this
bound depends on the relative homology class of the holomorphic curve.
To get control over the relative homology classes of holomorphic currents
in M1(α, β)/R, we will first use a second version of Gromov compactness
which we now state.

If α and β are orbit sets, define a broken holomorphic current from α to
β to be a finite sequence of nontrivial J-holomorphic currents (C0, . . . , Ck)
in R × Y , modulo R translation, for some k ≥ 0 such that there are orbit
sets α = γ0, γ1, . . . , γk+1 = β with Ci ∈M(γi, γi+1)/R for i = 0, . . . , k. Here
“nontrivial” means not a union of trivial cylinders with multiplicities. Let
M(α, β)/R denote the set of broken holomorphic currents from α to β.

We say that a sequence of holomorphic currrents {Cν}ν≥0 inM(α, β)/R
converges to the broken holomorphic current (C0, . . . , Ck) if for each i =
0, . . . , k there are representatives Ciν ∈ M(α, β) of the equivalence classes
Cν ∈M(α, β)/R such that the sequence {Ciν}ν≥0 converges as a current and
as a point set to Ci, see §2.4.

Lemma 5.11. (a) Any sequence {Cν}ν≥0 of holomorphic currents inM(α, β)/R
has a subsequence which converges to a broken holomorphic current
(C0, . . . , Ck) ∈M(α, β)/R.

(b) If the sequence {Cν}ν≥0 converges to (C0, . . . , Ck), then

k∑
i=0

[Ci] = [Cν ] ∈ H2(Y, α, β)

for all ν sufficiently large.

Proof. (a) The proof has three steps.
Step 1. For each ν, suppose that C∗ν ∈ M(α, β) is a representative of

the equivalence class Cν ∈ M(α, β)/R. We claim that {C∗ν}ν≥0 has a sub-
sequence which converges as a current and a point set on compact sets to
some holomorphic current Ĉ in R× Y .

To prove the claim, let a < b. We apply Gromov compactness via cur-
rents, see §2.4, to the sequence of intersections C∗ν ∩ ([a, b]× Y ). To see why
this is applicable, note that [a, b]× Y is equipped with the symplectic form
ω = d(esλ) where s denotes the R coordinate, and J is ω-compatible. As-
sume that C∗ν is transverse to {a} × Y and {b} × Y , which we can arrange
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by perturbing a and b. Then by Stokes’s theorem,∫
C∗ν∩((−∞,a]×Y )

eadλ+
∫
C∗ν∩([a,b]×Y )

ω+
∫
C∗ν∩([b,∞)×Y )

ebdλ = ebA(α)−eaA(β).

The conditions on J imply that dλ is everywhere nonnegative on C∗ν . Thus
we obtain the a priori bound∫

C∗ν∩([a,b]×Y )
ω ≤ ebA(α).

Gromov compactness via currents now implies that we can pass to a subse-
quence so that the sequence {C∗ν ∩ ([a, b]×Y )}ν≥0 converges as a current and
as a point set to some holomorphic current in [a, b] × Y . By diagonalizing,
we can pass to a subsequence so that the sequence {C∗ν}ν≥0 converges as a
current and as a point set on compact sets to some holomorphic current Ĉ
in R× Y .

Steps 2 and 3 are a fairly standard argument which we will just outline.
See e.g. [21, Lem. 9.8] for details in a similar situation.

Step 2. By applying Step 1 to translates of Ĉ, one shows that Ĉ ∈
M(γ+, γ−), where γ+ and γ− are orbit sets with A(α) ≥ A(γ+) > A(γ−) ≥
A(β).

Step 3. One can now choose representatives C∗ν ∈ M(α, β) of the equiv-
alence classes Cν so that the intersection of each C∗ν with {0} × Y contains
a point with distance at least ε from all Reeb orbits of action less than or
equal to A(α). One then applies Steps 1 and 2 to this sequence C∗ν . The
limiting current Ĉ must be nontrivial. If γ+ = α and γ− = β, then we are
done. Otherwise one applies the same argument to different chioices of C∗ν to
find the other holomorphic currents Ci in the limiting broken holomorphic
current.

(b) If this fails, then one uses arguments from the proof of part (a) to pass
to a further subsequence which converges to a broken holomorphic current
including C0, . . . , Ck together with at least one additional level. But this is
impossible by symplectic action considerations.

We can now complete the proof that the differential ∂ is well-defined.

Proof of Lemma 5.10. Suppose to get a contradiction that there is an infinite
sequence {Cν}ν≥0 of distinct elements of M1(α, β)/R.

For each ν, by Proposition 3.7 we can write Cν = Cν,0 t Cν,1, where
Cν,0 is a union of trivial cylinders with multiplicities, and Cν,1 is somewhere
injective with I(Cν,1) = ind(Cν,1) = 1. Since there are only finitely many
possibilities for the trival part Cν,0, we can pass to a subsequence so that
Cν,0 is the same for all ν. There are then orbit sets α′ and β′ which do not
depend on ν such that Cν,1 ∈M1(α′, β′) for each ν.
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By Lemma 5.11, we can pass to a further subsequence such that the
holomorphic curves Cν,1 all represent the same relative homology class Z ∈
H2(Y, α′, β′).

By Proposition 5.8, there is a ν-independent upper bound on the genus
of Cν,1 in terms of J0(α, β, Z). Thus we can pass to a further subsequence
so that the holomorphic curves Cν,1 all have the same genus.

Now we can apply the compactness result of [3] to pass to a further
subsequence so that the sequence of holomorphic curves {Cν,1}ν≥0 converges
in the sense of [3] to a broken holomorphic curve (u0, . . . , uk).

By the Additivity property of the ECH index, see §3.4, we have
∑k

i=0 I(ui) =
1. By Proposition 3.7, one of the curves ui has I = 1, and the rest of the
curves ui have I = 0 and are unions of branched covers of trivial cylinders.

We will now be a bit sketchy for the rest of the proof. By a similar
additivity property of the Fredholm index which follows from (3.1), we also
have

∑k
i=0 ind(ui) = 1. It then follows from Exercise 3.14 that in fact

there is no level ui with I(ui) = 0. Hence the limiting broken holomorphic
curve is a single holomorphic curve u0, which is somewhere injective and has
ind(u0) = 1. Since J is generic, u0 is an isolated point in the moduli space
of holomorphic curves modulo translation. But this contradicts the fact that
u0 is the limit of the sequence of distinct curves {Cν,1}ν≥0.

5.4 Proof that ∂2 = 0

The proof that ∂2 = 0 is much more subtle than the proof that ∂ is defined,
for reasons which we now explain.

Fix a generic J . Let α+ and α− be generators of the chain complex
ECC∗(Y, λ,Γ, J). We would like to show that the coefficient 〈∂2α+, α−〉 =
0. To do so, consider the moduli space of I = 2 holomorphic currents
M2(α+, α−)/R.

Lemma 5.12. Any sequence {Cν}ν≥0 of holomorphic currents inM2(α+, α−)/R
has a subsequence which converges either to an element ofM2(α+, α−)/R, or
to a broken holomorphic currrent (C+, C−) ∈ M2(α+, α−)/R with I(C+) =
I(C−) = 1.

Proof. By Lemma 5.11, there is a subsequence which converges to a broken
holomorphic current (C0, . . . , Ck), where by definition each Ci is nontrivial.
By the Additivity property of the ECH index,

∑k
i=0 I(Ci) = 2. By Proposi-

tion 3.7, I(Ci) ≥ 1 for each i. The lemma follows from these two facts.

The usual strategy now would be to add one point to each end ofM2(α+, α−)/R
to form a compact one-manifold with boundary, whose boundary points cor-
respond to ends converging to broken holomorphic currents as above. In
the present situation this is not quite correct; in fact we do not even know
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a priori that the moduli space M2(α+, α−)/R has only finitely many com-
ponents21. Instead, one can truncate the moduli space M2(α+, α−), i.e.
remove holomorphic currents which are “close to breaking” in an appropri-
ate sense, to obtain a compact one-manifold with boundaryM′2(α+, α−)/R.
The boundary is equipped with a natural map

∂

(
M′2(α+, α−)

R

)
−→

⊔
α0

M1(α+, α0)
R

× M1(α0, α−)
R

(5.16)

which sends a boundary point to the broken holomorphic current that it
is “close to breaking into”. The details of this truncation procedure are
explained in [30, §1.3].

To complete the proof that 〈∂2α+, α−〉 = 0, we want to show that
〈∂2α+, α−〉 counts boundary points of M′2(α+, α−)/R. For this purpose let
α0 be an orbit set and let (C+, C−) ∈ (M1(α+, α0)/R) × (M1(α0, α−)/R).
We then want to show the following:

(1) If α0 is a generator of the chain complex ECC∗(Y, λ,Γ, J), then (C+, C−)
has 1 (mod 2) inverse image under the map (5.16).

(2) If α0 is not a generator of the chain complex ECC∗(Y, λ,Γ, J), i.e. if
α0 includes a hyperbolic Reeb orbit with multiplicity greater than one,
then (C+, C−) has 0 (mod 2) inverse images under the map (5.16).

The standard picture from symplectic field theory is that if (u+, u−)
is a broken holomorphic curve such that u+ and u− are regular and have
ind(u+) = ind(u−) = 1, then for each choice of gluing data between u+ and
u−, see §5.3, one can “glue” u+ and u− to obtain a unique end of the moduli
space of index 2 holomorphic curves.

To prove (1) and (2) above, let us restrict attention to the case where
α0 consists of a single pair (γ,m) where γ is an embedded Reeb orbit and
m ≥ 1. Write C± = C±0 t C

±
1 where C±0 is a union of trivial cylinders with

multiplicities and C±1 is somewhere injective with ind(C±1 ) = I(C±1 ) = 1. To
further simplify the discussion, let us also assume that there are no trivial
cylinders involved, i.e. C±0 = ∅.

Gluing in the hyperbolic case. Suppose first that γ is positive hyper-
bolic. In this case, the partition conditions from §3.9 tell us that C+

1 has m
negative ends at γ, and C−1 has m positive ends at γ. It follows that there
are m! choices of gluing data between C+

1 and C−1 , see §5.3. Hence SFT glu-
ing implies that C+

1 and C−1 can be glued to obtain m! different ends of the

21The compactness result of [3] does not imply that M2(α+, α−)/R has only finitely
many components, because of the failure of transversality of branched covers of trivial
cylinders that can arise as levels in limits of sequences of ind = 2 holomorphic curves.
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moduli space of index 2 curves. The number of gluings m! is odd (namely 1)
when m = 1 and even when m > 1, which is exactly what we want in order
to prove (1) and (2) above.

Suppose next that γ is negative hyperbolic. Let k = bm/2c. Then by the
partition conditions in §3.9, the curve C+

1 (resp. C−1 ) has k negative (resp.
positive) ends at the double cover of γ, together with one negative (resp.
positive) end at γ when m is odd. It follows that there are 2kk! choices of
gluing data between C+

1 and C−1 . Again, this is odd (namely 1) when m = 1
and even when m > 1, as desired.

Although we are using Z/2 coefficients here, we remark that in the proof
that ∂2 = 0 with Z coefficients, work of Bourgeois-Mohnke [4] implies that
in the above cases when m > 1, half of the gluings have one sign and half
of the gluings have the other sign, so that the signed count of gluings is still
zero.

Gluing in the elliptic case. Suppose now that γ is elliptic. If m = 1
then there is one gluing as usual. But if m > 1, then it follows from Exer-
cise 3.13(c) that p+

γ (m) and p−γ (m) are disjoint, so the covering multiplicities
of the negative ends of C+

1 at covers of γ are disjoint from the covering mul-
tiplicities of the positive ends of C−1 at covers of γ. Hence, there does not
exist any gluing data between C+

1 and C−1 . So how can we glue them?
It helps to think backwards from the process of breaking. If a sequence of

holomorphic currents inM2(α+, α−)/R coverges to the broken holomorphic
current (C+

1 , C
−
1 ), then as in the proof of Lemma 5.10, we can pass to a sub-

sequence which converges in the sense of [3] to a broken holomorphic curve
(u0, . . . , uk), with

∑k
i=0 ind(ui) =

∑k
i=0 I(ui) = 2. Since

∑k
i=0 ind(ui) = 2,

Exercise 3.14 implies that u0 = C+
1 , uk = C−1 , and each ui with 0 < i < k is

a union of branched covers of trivial cylinders.
To reverse this process, let u+ and u− be any irreducible somewhere

injective holomorphic curves with ind = 1, but not necessarily with I = 1.
Suppose that u+ has negative ends at covers of the embedded elliptic orbit γ
of multiplicities a1, . . . , ak with

∑k
i=1 ai = m and no other negative ends, and

u− has positive ends at covers of γ of multiplicities b1, . . . , bl with
∑l

j=1 bj =
m and no other positive ends. We can try to glue u+ and u− to an ind = 2
curve as follows. First, try to find an ind = 0 branched cover u0 of R× γ of
degree m with positive ends at covers of γ with multiplicities a1, . . . , ak and
negative ends at covers of γ with multiplicities b1, . . . , bl; see Exercise 3.14
for a discussion of when such a branched cover exists. Second, try to glue u+,
u0, and u− to a holomorphic curve. There is an obstruction to gluing here
because u0 is not regular. However one can also vary u0. The obstructions
to gluing for various u0 comprise a section of an “obstruction bundle” over
the moduli space of all branched covers u0. The (signed) number of ways to
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glue is then the (signed) number of zeroes of this section of the obstruction
bundle. See [31, §1] for an introduction to this analysis.

This signed count of gluings is denoted by #G(u+, u−) and computed in
[30, Thm. 1.13]. The result is that #G(u+, u−) = ±cγ(a1, . . . , ak|b1, . . . , bl),
where cγ(a1, . . . , ak|b1, . . . , bl) is a nonnegative integer which depends only
on (the monodromy angle of) γ and the multiplicities ai and bj . It turns out
that cγ(a1, . . . , ak|b1, . . . , bl) = 1 if (and only if) (a1, . . . , ak) = p−γ (m) and
(b1, . . . , bl) = p+

γ (m), see [30, Ex. 1.29]. Thus, up to signs, the number of
gluings is 1 in the case needed to show that ∂2 = 0 (and in no other case).

5.5 Cobordism maps

We now discuss what is involved in the construction of cobordism maps on
ECH, as introduced in §1.4.

Holomorphic curves in exact symplectic cobordisms We begin with
the nicest kind of cobordism. Let (Y+, λ+) and (Y−, λ−) be nondegenerate
contact three-manifolds, and let (X,ω) be an exact symplectic cobordism
from (Y+, λ+) to (Y−, λ−). In this situation, one can define for each L ∈ R
a cobordism map

ΦL(X,ω) : ECHL(Y+, λ+) −→ ECHL(Y−, λ−) (5.17)

satisfying various axioms [33, Thm. 1.9]. Here

ECHL(Y, λ) =
⊕

Γ∈H1(Y )

ECHL(Y, λ,Γ).

The first step in the construction of the map (5.17) is to “complete” the
cobordism as follows. Let λ be a primitive of ω on X with λ|Y± = λ±.
If ε > 0 is sufficiently small, then there is a neighborhood N+ of Y+ in
X, identified with (−ε, 0] × Y+, such that λ = esλ+ where s denotes the
(−ε, 0] coordinate. The neighborhood identification is the one for which
∂/∂s corresponds to the unique vector field ρ on X with ıρω = λ. Likewise
there is a neighborhood N− of Y− in X, identified with [0, ε)×Y−, on which
λ = esλ−. We now define the “symplectization completion”

X = ((−∞, 0]× Y−) ∪Y− X ∪Y+ ([0,∞)× Y+),

glued using the above neighborhood identifications.
Call an almost complex structure J on X “cobordism-admissible” if it

agrees with a symplectization-admissible almost complex structure J+ for
λ+ on [0,∞) × Y+, if it agrees with a symplectization-admissible almost
complex structure J− for λ− on (−∞, 0] × Y−, and if it is ω-compatible on
X.
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Given a cobordism-admissible almost complex structure J , one can con-
sider J-holomorphic curves in X with positive ends at Reeb orbits in Y+ and
negative ends at Reeb orbits in Y−, by a straightforward modification of the
definition in the symplectization case in §3.2. If J is generic, and if C is a
somewhere injective holomorphic curve as above, then the moduli space of
holomorphic curves near C is a manifold of dimension ind(C), where ind(C)
is defined as in (3.1), except that in the relative first Chern class term, the
complex line bundle ξ is replaced by det(TX).

Likewise, if α± are orbit sets for λ±, then there is a corresponding moduli
spaceM(α+, α−) of J-holomorphic currents in X. One can define the ECH
index I of a holomorphic current in X as in (3.4), again replacing ξ by
det(TX) in the first Chern class term. The index inequality (3.8) then holds
for somewhere injective holomorphic curves C in X, by the same proof as
in the symplectization case, see [22, §4]. As in §3.5, let Mk(α+, α−) denote
the set of holomorphic currents C ∈ M(α+, α−) with ECH index I(C) = k.

We have the following important generalization of (1.15): If there exists
C ∈ M(α+, α−), then

A(α+) ≥ A(α−). (5.18)

The reason is that by Stokes’s theorem,

A(α+)−A(α−) =
∫
C∩([0,∞)×Y+)

dλ+ +
∫
C∩X

ω+
∫
C∩((−∞,0]×Y−)

dλ−, (5.19)

and the conditions on J imply that each integrand is pointwise nonnegative
on C.

The trouble with multiple covers. One would now like to define a chain
map

φ : ECC(Y+, λ+, J+) −→ ECC(Y−, λ−, J−)

by declaring that if α± are ECH generators for λ±, then 〈φα+, α−〉 is the
mod 2 count of I = 0 holomorphic currents in M0(α+, α−). The inequality
(5.18) implies that only finitely many α− could arise in φα+, and moreover
we would get a chain map

φL : ECCL(Y+, λ+, J+) −→ ECCL(Y−, λ−, J−)

for each L > 0.
Unfortunately this does not work. The problem is that M0(α+, α−)

need not be finite, even if J is generic. The compactness argument from
§5.3 does not carry over here, because the key Proposition 3.7 can fail in
cobordisms. In particular, multiply covered holomorphic currents may have
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negative ECH index. We do know from [22, Thm. 5.1] that the ECH index
of a d-fold cover of a somewhere injective holomorphic curve C satisfies

I(dC) ≥ dI(C) +
(
d2 − d

2

)
(2g(C)− 2 + ind(C) + h(C)) , (5.20)

where g(C) denotes the genus of C, and h(C) denotes the number of ends
of C at (positive or negative) hyperbolic orbits22. If J is generic then the
index inequality implies that I(C) ≥ 0; but I(dC) < 0 is still possible when
2g(C)− 2 + ind(C) + h(C) < 0.

To correctly define the coefficient 〈φα+, α−〉, one needs to take into ac-
count the entire “compactification” of M0(α+, α−), namely the set of all
broken holomorphic currents from α+ to α− with total ECH index 0. This
moduli space may have many components of various dimensions, and each
may make some contribution to the coefficient 〈φα+, α−〉. In fact, there is
a simple example in which the coefficient 〈φα+, α−〉 must be nonzero, but
there does not exist any I = 0 holomorphic current from α+ to α−; rather,
the contribution to 〈φα+, α−〉 comes from a broken holomorphic current with
two levels, one of which is an I = −1 double cover. The example is the cobor-
dism where X = [0, 1] × Y which one obtains in trying to prove that ECH
is unchanged under a period-doubling bifurcation. Even more interestingly,
the orbit set in between the two levels is not a generator of the ECH chain
complex, because it includes a doubly covered negative hyperbolic orbit.

Because of the above complications, it is a highly nontrivial, and cur-
rently unsolved problem, to define a chain map directly from the compacti-
fied moduli space of I = 0 holomorphic currents.

Seiberg-Witten theory to the rescue. The definition of the cobordism
map (5.17) in [33] instead counts solutions to the Seiberg-Witten equations,
perturbed as in the proof of the isomorphism (1.11). The cobordism maps
satisfy a “Holomorphic Curves axiom” which says among other things that
for any cobordism-admissible J , the cobordism map is induced by a (non-
canonical) chain map φ such that the coefficient 〈φα+, α−〉 6= 0 only if there
is a broken J-holomorphic current from α+ to α−. In particular, the coef-
ficient 〈φα+, α−〉 6= 0 only if (5.18) holds, which is why the cobordism map
preserves the symplectic action filtration.

The weakly exact case. If (X,ω) is only a weakly exact symplectic
cobordism from (Y+, λ+) to (Y−, λ−), see §1.4, then one still gets a cobordism
map

ΦL(X,ω) : ECHL(Y+, λ+, 0) −→ ECHL(Y−, λ−, 0)
22Note that the magic number 2g(C) − 2 + ind(C) + h(C) in (5.20) is similar to the

normal Chern number in (4.3).
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which satisfies the Holomorphic Curves axiom. The reason why this map
preserves the symplectic action filtrations is that a modification of the cal-
culation in (5.19) shows that in the weakly exact case, if there exists a
holomorphic current C ∈ M(α+, α−), and if moreover [α±] = 0 ∈ H1(Y±),
then the inequality (5.18) still holds, see [24, Thm. 2.3]. It is this inequal-
ity which ultimately leads to all of the symplectic embedding obstructions
coming from ECH capacities.

6 Comparison of ECH with SFT

To conclude, we now outline how ECH compares to the symplectic field
theory (SFT) of Eliashberg-Givental-Hofer [13]. Although both theories are
defined using the same ingredients, namely Reeb orbits and holomorphic
curves, their features are quite different.

Dimensions. ECH is only defined for three-dimensional contact mani-
folds (and in some cases stable Hamiltonian structures) and certain four-
dimensional symplectic cobordisms between them. SFT is defined in all
dimensions. It is an interesting question whether there exists an analogue of
ECH in higher dimensions, and what that would mean.

Multiply covered Reeb orbits. In an ECH generator, we only care
about the total multiplicity of each Reeb orbit. One can think of an ECH
generator as a “Reeb current”. In an SFT generator, one keeps track of indi-
vidual covering multiplicities of Reeb orbits. For example, if γ1 is an elliptic
Reeb orbit, and if γk denotes the k-fold multiple cover of γ1, then γ2

1 and γ2

are distinct SFT generators which correspond to the same ECH generator
{(γ1, 2)}. Likewise, the SFT generators γ3

1 , γ2γ1 and γ3 all correspond to
the ECH generator {(γ1, 3)}.

Holomorphic curves. The full version of SFT counts all Fredholm index
1 holomorphic curves (after suitable perturbation to make the moduli spaces
transverse). Other versions of SFT just count genus 0 Fredholm index 1
curves (rational SFT), or genus 0 Fredholm index 1 curves with one positive
end (the contact homology algebra).

ECH counts holomorphic currents with ECH index 1, without explicitly
specifying their genus (although the genus is more or less determined indi-
rectly by the theory as explained in §5.2). These also have Fredholm index
1, although the way we are selecting a subset of the Fredholm index 1 curves
to count (by setting the ECH index equal to 1) is very different from the
way this is done in SFT (by setting the genus to 0, etc.).
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Grading. SFT is relatively graded by the Fredholm index. ECH is rela-
tively graded by the ECH index, and has an absolute grading by homotopy
classes of oriented 2-plane fields.

Topological invariance. ECH depends only on the three-manifold, if one
uses the absolute grading, as explained in Remark 1.7. SFT depends heav-
ily on the contact structure; for example, the basic versions are trivial for
overtwisted contact structures. On the other hand, ECH does contain the
contact invariant (the homology class of the empty set of Reeb orbits) which
can distinguish some contact structures, as explained in §1.4. The ECH
contact invariant is analogous to the unit in the contact homology algebra.

Disallowed Reeb orbits. In ECH, hyperbolic orbits cannot have multi-
plicity greater than 1. In SFT, “bad” Reeb orbits are thrown out; in the
three-dimensional case, a bad Reeb orbit is an even cover of a negative hy-
perbolic orbit. The reasons for discarding bad orbits in SFT are similar to
the reasons for disallowing multiply covered hyperbolic orbits in ECH, see
§2.7 and §5.4.

Keeping track of topological complexity. In SFT, there is a formal
variable ~ which keeps track of the topological complexity of holomorphic
curves; whenever one counts a curve with genus g and p positive ends, one
multiplies by ~p+g−1. In ECH, topological complexity is measured by the
number J0 defined in §5.2. There is also a variant of J0, denoted by J+,
which is closer to the exponent of ~, see [22, §6] and [38, Appendix].

U maps. ECH has a U map counting holomorphic curves passing through
a base point, and also an action of H1 of the three-manifold, counting holo-
morphic curves intersecting a 1-cycle, see §3.8. There are analogous struc-
tures on SFT, which can be more interesting for higher dimensional contact
manifolds with lots of homology.

Algebra structure. SFT has some algebra structure (for example the
contact homology algebra is an algebra). ECH does not. There is a natural
way to “multiply” two ECH generators, by adding the multiplicities of all
Reeb orbits in the two generators, but the differential and grading are not
well behaved with respect to this “multiplication”.

Legendrian knots. SFT defines invariants of Legendrian knots by count-
ing holomorphic curves with boundary in R cross the Legendrian knot. No
analogous construction in ECH is known, although one can conjecturally
define invariants of Legendrian knots using sutured ECH, see [7, §7.3].
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Technical difficulties with multiply covered holomorphic curves.
Both SFT and ECH have serious technical difficulties arising from multiply
covered holomorphic curves of negative Fredholm index or ECH index. In
SFT, it is expected that the polyfold theory of Hofer-Wysocki-Zehnder [20]
will resolve these difficulties. In ECH, we could manage these difficulties to
prove that ∂2 = 0 using holomorphic curves as outlined in §5.4. Defining
cobordism maps on ECH is harder, and it is not clear whether polyfolds will
help, but fortunately one can define ECH cobordism maps using Seiberg-
Witten theory, as described in §5.5.

Field theory structure. SFT can recover Gromov-Witten invariants of
closed symplectic manifolds by cutting them into pieces along contact-type
hypersurfaces. ECH can similarly recover Taubes’s Gromov invariant of
closed symplectic four-manifolds [27].

Symplectic capacities. ECH can be used to define symplectic capacities.
Other kinds of contact homology or SFT can also be used to define symplectic
capacities, and this is an interesting topic for further research. For exam-
ple, one can define an analogue of ECH capacities using linearized contact
homology, and these turn out to agree with the Ekeland-Hofer capacities, at
least for four-dimensional ellipsoids and polydisks, see Remark 1.5.

A Answers and hints to selected exercises

1.4. We need to show that

lim
k→∞

N(a, b)2
k

k
= 2ab. (A.1)

Given nonnegative integers m and n, let T (m,n) denote the triangle in the plane
bounded by the x and y axes and the line L through (m,n) with slope −b/a. Then
N(a, b)k = am+bn where T (m,n) encloses k+1 lattice points (including the edges).
When k is large, the number of lattice points enclosed by T (m,n) is the area of
the triangle, plus an O(k1/2) error. The line L intersects the axes at the points
(a−1N(a, b)k, 0) and (0, b−1N(a, b)k), so its area is

area(T (m,n)) =
N(a, b)2

k

2ab
.

Thus

k =
N(a, b)2

k

2ab
+O(k1/2).

This implies (A.1).

79



1.15. It is enough to show that

2 vol(X,ω) = vol(Y+, λ+)− vol(Y−, λ−), (A.2)

where vol(Y, λ) =
∫
Y
λ ∧ dλ. To prove (A.2), let λ be a primitive of ω on X. Then

by Stokes’s theorem,

2 vol(X,ω) =
∫
Y+

λ ∧ dλ+ −
∫
Y−

λ ∧ dλ−.

Since dλ = dλ± on Y±, by Stokes’s theorem again we have∫
Y±

λ ∧ dλ± = vol(Y±, λ±).

2.9. We use an infinitesimal analogue of the proof of Lemma 2.6. Let ψ ∈
Ker(DC). Let ε > 0 be small and let C ′ be the image of the map C → S1 × Yφ
sending z 7→ expz(εψ(z)). Then∫

C′
ω = ε2

∫
C

ω(∂sψ,∇tψ)ds dt+O(ε3).

Since C ′ is homologous to C, we have
∫
C′
ω = 0, so∫

C

ω(∂sψ,∇tψ)ds dt = 0. (A.3)

On the other hand, since ψ ∈ Ker(DC), we have ∇tψ = J∂sψ, so the integrand
above is

ω(∂sψ,∇tψ) = ‖∂sψ‖2, (A.4)

where ‖ · ‖ denotes the metric on T vertY |γ determined by ω and J . It follows from
(A.3) and (A.4) that ∂sψ ≡ 0.

3.3. Given a Reeb orbit γ, the set of homotopy classes of trivializations of ξ|τ is
an affine space over Z. For an appropriate sign convention, shifting the trivalization
over γ±i by 1 shifts c1 by ∓1 and shifts CZτ (γ±i ) by 2.

3.3. For an appropriate sign convention, shifting the trivialization τ over αi by 1
shifts c1 by −mi, shifts Qτ by m2

i , and shifts wτ by −mi(mi − 1).

3.11. Let T be the triangle in the plane which is bounded by the coordinate axes
together with the line through (m1,m2) with slope −a/b, cf. the answer to Ex. 1.4.
Then 1

2I(α) can be interpreted as the number of lattice points in the triangle T
(including the boundary) minus 1.
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3.13. (a) Since the path Λ+
θ (m) starts at the origin and stays below the line

y = θx, the initial edge has slope less than θ. Since the path is the graph of a
concave function, every subsequent edge also has slope less than θ. Thus b ≤ baθc.
If b < baθc then there is a lattice point which is above the path Λ+

θ (m) but below
the line y = θx, contradicting the definition of Λ+

θ (m).
(b) Since the total vertical displacement of the path Λ+

θ (m) is bmθc, it follows
from part (a) that

k∑
i=1

bqiθc =

⌊
k∑
i=1

qiθ

⌋
.

Since bxc+ byc ≤ bx+ yc for any real numbers x, y, we have

∑
i∈I
bqiθc ≤

⌊∑
i∈I

qiθ

⌋
,

∑
i∈{1,...,k}\I

bqiθc ≤

 ∑
i∈{1,...,k}\I

qiθ

 .
Adding the above two inequalities and comparing with the previous equation, we
see that both inequalities must be equalities.

(c) Suppose that such proper subsets I, J exist. Let m1 =
∑
i∈I qi =

∑
j∈J rj

and let m2 = m − m1. By part (b) applied to the subsets I, {1, . . . , k} \ I, and
{1, . . . , k}, we have

bm1θc+ bm2θc = bmθc .

By the analogue of part (b) for p−θ (m), we have

dm1θe+ dm2θe = dmθe .

Subtracting the above two equations gives 2 = 1.

3.14. (a) Without loss of generality C is connected. Let a1, . . . , ak denote the
covering multiplicities of the positive ends of u, and let b1, . . . , bl denote the covering
multiplicities of the negative ends of u. Let g denote the genus of C. By the
Fredholm index formula (3.1) and the Conley-Zehnder index formula (3.2), we have

ind(u) = 2g − 2 + k + l +
k∑
i=1

(2 baiθc+ 1)−
l∑

j=1

(2 bbjθc+ 1)

= 2

g − 1 +
k∑
i=1

daiθe −
l∑

j=1

bbjθc


≥ 2 (g − 1 + dmθe − bmθc) .

Since dmθe − bmθc = 1, it follows that ind(u) ≥ 0.
(b) We need to check: (i) if p ≥ q and q ≥ r then p ≥ r, and (ii) if p ≥ q and

q ≥ p then p = q.

81



Suppose u1 is a branched cover with positive ends corresponding to p and neg-
ative ends corresponding to q, and u2 is a branched cover with positive ends cor-
responding to q and negative ends corresponding to r. Gluing these together gives
a branched cover u1#u2 (defined up to sliding the branched points around) with
positive ends corresponding to p and negative ends corresponding to r. It follows
immediately from the index formula (3.1) that ind(u1#u2) = ind(u1) + ind(u2).
So if ind(u1) = ind(u2) = 0, then ind(u1#u2) = 0 also, and this proves (i). Now
suppose further that p = r. Then q = r, because otherwise u1#u2 has at least two
branch points, so its domain has χ ≤ −2, so ind(u1#u2) ≥ 2, a contradiction. This
proves (ii).

(c) Let u be a connected genus 0 branched cover with positive ends corre-
sponding to p−θ (m) and negative ends corresponding to p+

θ (m). Write p−θ (m) =
(a1, . . . , ak) and p+

θ (m) = (b1, . . . , bl). By the calculation in part (a), we have

ind(u) = 2

 k∑
i=1

daiθe −
l∑

j=1

bbjθc − 1

 .

By Exercise 3.13(b) we have
∑k
i=1 daiθe = dmθe, and by symmetry

∑l
j=1 bbjθc =

bmθc. Hence ind(u) = 0.
(d) Suppose there exists a partition q with p+

θ (m) > q. Write p+
θ (m) =

(a1, . . . , ak) and q = (b1, . . . , bl). By Exercise 3.13(b) we have
∑k
i=1 baiθc = bmθc.

By the calculation in part (a) above we have
∑k
i=1 daiθe = dmθe. These two equa-

tions imply that k = 1. Thus the path Λ+
θ (m) is just the line segment from (0, 0)

to (m, bmθc).
Now the calculation in part (a) above also implies that

∑l
j=1 bbjθc = bmθc.

But this is impossible. To see why, order the numbers bj so that bbjθc /bj ≥
bbj+1θc /bj+1. Let Λ′ be the path in the plane that starts at (0, 0) and whose edge
vectors are the segments (bj , bbjθc) in order of increasing j. Since (b1, . . . , bl) 6= (m)
and since there are no lattice points above the path Λ+

θ (m) and below the line
y = θx, it follows that the path Λ′ is below the path Λ+

θ (m), with the two paths
intersecting only at (0, 0). Hence the right endpoint of Λ′ is below the right endpoint
of Λ+

θ (m), which means that
∑
j bbjθc < bmθc.

By symmetry, there also does not exist a partition q with q > p−θ (m).

4.3. By Exercise 3.10 we have cτ (C2) = 1. Since ind(C2) = 2, it follows from
(3.1) that

χ(C2) = CZ ind
τ (C2).

If ε is sufficiently small with respect to i, then CZτ (γi1) = 2i − 1 when i > 0, and
CZτ (γi−1

2 ) = 2i − 1 when i > 1. It follows that CZ ind
τ (C2) = 0 when i > 1, and

CZ ind
τ (C2) = 1 when i = 1.

4.4. Without loss of generality, C0 = ∅. We then compute that

CZ ind
τ (C2) =


i+ j − 1, i > 0, j > 1
i+ 1, i > 0, j = 1,
j, i = 0, j > 1,
2, i = 0, j = 1.
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On the other hand, letting g denote the genus of C2, we have

χ(C2) =


−2g − i− j − 1, i > 0, j > 1,
−2g − i− 1, i > 0, j = 1,
−2g − j, i = 0, j > 1,
−2g, i = 0, j = 1.

Since cτ (C2) = 0 (by Exercise 3.10) and ind(C2) = 2, it follows from (3.1) that

χ(C2) = CZ ind
τ (C2)− 2.

Combining the above three equations, we find that if i > 0 or j > 1 then g < 0,
which is a contradiction. Thus i = 0 and j = 1, and combining the above three
equations again we find that g = 0.

4.12. Otherwise g = 1. Then equation (4.9) (together with the fact that C1 has
at least one positive end) implies that C1 has exactly one positive end at some hy-
perbolic orbit ha,b, and all negative ends of C1 are elliptic. Let (a1, b1), . . . , (ak, bk)
denote the vectors corresponding to the negative ends. The action of ha,b is slightly
less than

√
a2 + b2, and the sum of the symplectic actions of the negative ends is

slightly greater
∑k
i=1

√
a2
i + b2i . Since the differential decreases symplectic action,

k∑
i=1

√
a2
i + b2i <

√
a2 + b2.

But this contradicts the triangle inequality, since
∑k
i=1(ai, bi) = (a, b), since ha,b is

homologous to
∑k
i=1 eai,bi

.

4.13. Let Λ be any polygonal path with edge vectors v1, . . . , vk. Then

`Ω(Λ) =
k∑
i=1

〈vi, wi〉

where wi ∈ ∂Ω′ is a point at which an outward normal vector to Ω′ is a positive
multiple of vi. (When wi is a corner of ∂Ω′, “an outward normal vector” means a
vector whose direction is between the directions of the limits of the normal vectors
on either side of wi.) If we replace Ω′ by its translate by some vector η, then the
above formula is replaced by

`Ω(Λ) =
k∑
i=1

〈vi, wi + η〉.

If Λ is a loop, then the two formulas for `Ω(Λ) agree since
∑
i vi = 0.

5.9. By the relative adjunction formula (3.3), and since equality holds in the
writhe bound (3.9), we have

−χ(C) = −cτ (C) +Qτ (C) + CZIτ (C)− CZ ind
τ (C).

83



So by the definition of J0 in (5.13) and (5.14), we need to show that∑
i

(n+
i − 1) +

∑
j

(n−j − 1) = CZJ0
τ (C)− CZIτ (C) + CZ ind

τ (C).

This equation can be proved one Reeb orbit at a time. Namely, it is enough to show
that for each i, if C has positive ends at covers of αi with multiplicities q1, . . . , qn+

i

where
∑n+

i

k=1 qk = mi, then

n+
i − 1 = −CZτ (αmi

i ) +
n+

i∑
k=1

CZτ (αqk), (A.5)

and an analogous equation for each Reeb orbit βj .
To prove (A.5), first note that if αi is hyperbolic, then n+

i = mi = 1 and the
equation is trivial. Suppose now that αi is elliptic with rotation angle θ with respect
to τ . Then (A.5) becomes

0 = −2 bmiθc+
n+

i∑
k=1

2 bqkθc .

This last equation holds by the partition conditions and Exercise 3.13(b).

References

[1] P. Biran, From symplectic packing to algebraic geometry and back , Euro-
pean Congress of Mathematicians, Vol. II 507–524, Progress in Math 202,
Birkhäuser.
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