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Abstract

In this article we compare the well-known Ramsey property with a dual form of
it, the so called dual-Ramsey property (which was suggested �rst by Carlson and
Simpson). Even if the two properties are di�erent, it can be shown that all classical
results known for the Ramsey property also hold for the dual-Ramsey property. We
will also show that the dual-Ramsey property is closed under a generalized Suslin
operation (the similar result for the Ramsey property was proved by Matet). Further
we compare two notions of forcing, the Mathias forcing and a dual form of it, and will
give some symmetries between them. Finally we give some relationships between the
dual-Mathias forcing and the dual-Ramsey property.

1 Notations and de�nitions

Most of our set-theoretic notations and notations of forcings are standard and can be
found in [Je 1] or [Ku]. An exception is that we will write AB for the set of all functions
from B to A, instead of BA because we never use ordinal arithmetic. A<! is the set of all
partial functions f from ! to A such that the cardinality of dom(f) is �nite.

First we will give the de�nitions of the sets we will consider as the real numbers.

Let [x]� := fy � x : jyj = �g and [x]<� := fy � x : jyj < �g, where jyj denotes the
cardinality of y. For x 2 [!]!, we will consider [x]<! as the set of strictly increasing,
�nite sequences in x and [x]! as the set of strictly increasing, in�nite sequences in x. For
x 2 [!]! and n 2 ! let x(n) be such that x(n) 2 x and jx(n) \ xj = n.

We can consider [!]! also as the set of in�nite 0-1-sequences (denoted by 2!) or as the set
of all in�nite sequences in ! (denoted by !!).

The Ellentuck topology

We de�ne a topology on [!]!. Let X 2 [!]! and s 2 [!]<! such that max(s) < min(X);
then [s;X]! := fY 2 [!]! : Y � (s[X) ^ s � Y g. Now let the basic open sets on [!]! be
the sets [s;X]!. These sets are called the Ellentuck neighborhoods. The topology induced
by the Ellentuck neighborhoods is called the Ellentuck topology .

Relations on the set of partitions

A partition X (of !) is a subset of P(!) such that the following holds:

i) if b 2 X then b 6= ;
ii) if b1; b2 2 X and b1 6= b2 then b1 \ b2 = ;
iii)
S
X = !.

1The author wishes to thank the Swiss National Science Foundation for supporting him.

1



A partition means always a partition of !. If X is a partition and b 2 X then we call b a
block of X. If a partition has in�nitely many blocks (or equivalently if X is in�nite) we
call X an in�nite partition. The set of all in�nite partitions is denoted by (!)!.

If X is a partition, b 2 X and n;m 2 ! both belong to b, then we write \X(n;m). On the
other hand with ffn;mg 2 [!]2 : \X(n;m)g we can reconstruct the partition X.

A partial partition X 0 is a subset of P(!) such that (i) and (ii) hold but instead of (iii)
we have

iii)0
S
X 0 =: dom(X 0) � !.

Note that a partition is always also a partial partition. If dom(X 0) 2 ! then X 0 is a
partition of some n 2 !. The set of all partial partitions X 0 where dom(X 0) 2 ! is
denoted by (IIN). For s 2 (IIN), s� denotes the partial partition s [ ffdom(s)gg.

Let X1; X2 be two partial partitions. We say that X1 is coarser thanX2, or that X2 is �ner
than X1, and write X1 v X2 if for all blocks b 2 X1 the set b \ dom(X2) is the union of
some sets bi\dom(X1), where each bi is a block of X2. Let X1uX2 denote the �nest partial
partition which is coarser than X1 and X2 such that dom(X1uX2) = dom(X1)[dom(X2).

If f 2 [!]<! is a �nite subset of !, then ffg is a partial partition with dom(ffg) = f . For
two partial partitions X1 and X2 we write X1 v

� X2 if there is a �nite set f � dom(X1)
such that X1 u ffg v X2 and say that X1 is coarser� than X2. If X1 v

� X2, X2 v
� X1

and dom(X1) = dom(X2), then we write X1
�
= X2.

Let X1;X2 be two partial partitions. If each block of X1 can be written as the intersection
of a block of X2 with dom(X1), then we write X1 � X2. Note that X1 � X2 implies
dom(X1) � dom(X2).

If X is a partial partition, then Min(X) denotes the set fn 2 ! : 9b 2 X(n = min(b))g,
where min(b) :=

T
b. If we order the blocks of X by their least element, then X(n)

denotes the nth block in this ordering and X(n)(k) denotes the kth element (in the natural
ordering) belonging to this block.

The dual Ellentuck topology

We de�ne a topology on the set of partitions as follows. Let X 2 (!)! and s 2 (IIN) such
that s v X. Then (s;X)! := fY 2 (!)! : s � Y ^ Y v Xg and (X)! := (;;X)!. Now
let the basic open sets on (!)! be the sets (s;X)! (where X and s as above). These sets
are called the dual Ellentuck neighborhoods. The topology induced by the dual Ellentuck
neighborhoods is called the dual Ellentuck topology (cf. [CS]).

Two notions of forcing

The Mathias forcing M is de�ned as follows:

hs; Si 2M, s 2 [!]<! ^ S 2 [!]! ^ max(s)<min(S);
hs; Si � ht; T i , t � s ^ S � T ^ 8n 2 (s n t)(n 2 T ):

If hs; Si is an M-condition, then we call s the stem of the condition. The Mathias forcing
M has a lot of combinatorial properties (which can be found in [Ma] and [JS] or in [HJ]).
Note that we can consider anM-condition hs; Si as an Ellentuck neighborhood [s; S]! and
hs; Si � ht; T i if and only if [s; S]! � [t; T ]!.
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The dual-Mathias forcing M is de�ned similarly to the Mathias forcingM, using the dual
Ellentuck topology instead of the Ellentuck topology. So,

hs;Xi 2M , (s;X)! is a dual Ellentuck neighborhood

and
hs;Xi � ht; Y i , (s;X)! � (t;Y )!:

If hs;Xi is an M-condition, then we call s again the stem of the condition. Because
the dual-Mathias forcing is very close to the usual Mathias forcing, it also has some nice
properties similar to those of M.

Two Ramsey properties

The classical Ramsey property is a property of sets of in�nite subsets of ! (of sets of
reals). A set A � [!]! has the Ramsey property (or is Ramsey) if 9X 2 [!]!([X]! �
A _ [X]! \A = ;): If there exists an X such that [X]! \ A = ; we call A a Ramsey null

set. A set A � [!]! is completely Ramsey if for every Ellentuck neighborhood [s; Y ]! there
is an X 2 [s; Y ]! such that [s;X]! � A or [s;X]! \ A = ;. If we are always in the latter
case, then we call A completely Ramsey null.

The dual-Ramsey property deals with sets of in�nite partitions of !. A set A � (!)! has
the dual-Ramsey property (or is dual-Ramsey) if 9X 2 (!)!((X)! � A _ (X)! \ A = ;):
If there exists an X such that (X)! \ A = ; we call A a dual-Ramsey null set. A set
A � (!)! is completely dual-Ramsey if for every dual Ellentuck neighborhood (s;Y )!

there is an X 2 (s;Y )! such that (s;X)! � A or (s;X)! \ A = ;. If we are always in the
latter case, then we call A completely dual-Ramsey null.

Now we can start to give some symmetries between the two Ramsey properties and between
the two Mathias forcings.

2 Basic facts

In this section we give the tools to consider sets of partitions as sets of reals and to
compare the two Ramsey properties. We will give also some basic facts and well-known
results concerning the dual-Ramsey property and dual-Mathias forcing. Further we give
some symmetries between Mathias forcing and the dual-Mathias forcing.
To compare the two Ramsey properties we �rst show that we can consider each A � [!]!

as a set of in�nite partitions of ! and vice versa. For this we de�ne some arithmetical
relations and functions.
Let n;m 2 ! then div(n;m) := max(fk 2 ! : k � m � ng. For fn;mg 2 [!]2 let
[fn;mg := 1

2(max(fn;mg)2 �max(fn;mg))+min(fn;mg). Consider [fn;mg as unde�ned
for n = m.
Let x 2 [!]!; then trans(x) � ! is such that n 62 trans(x) i� there is a �nite sequence s
of natural numbers of length l + 1 such that

n = [fs(0); s(l)g and 8k 2 f1; : : :; lg([fs(k � 1); s(k)g 62 x):

Note that trans(x) � x. If x 2 [!]!, then we can consider x as a partition with

\x(n;m) if and only if n =m or [fn;mg 62 trans(x):

The corresponding partition of a real x 2 [!]! is denoted by cp(x). Note that cp(x) 2 (!)!

i� 8k9n > k8m < n(:\x(n;m)) and further if y � x, then cp(y) v cp(x).
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A partition X of ! we encode by a real pc(X) (the partition code of X) as follows.

pc(X) := fk 2 ! : 9nm(k = [fn;mg ^ :\X(n;m)g:

Note that if X1 v X2 then pc(X1) � pc(X2). With these de�nitions we get the

FACT 2.1 The dual Ellentuck topology is �ner than the topology of the Baire space.

PROOF: Let s 2 !<! and Us = ff 2 !! : s � fg be a basic open set in the Baire space
!!. Because there is a bijection between !! and [!]!, we can write Us as a set Vs0 = fr 2
[!]! : s0 � r^min(rns) > max(s)g. Now cp[Vs0 ]\(!)

! (where cp[Vs0 ] := fcp(r) : r 2 Vs0g)
is open with respect to the dual Ellentuck topology. Therefore the dual Ellentuck topology
is �ner than the topology of the Baire space. a

REMARK: A similar result is true for the Ellentuck topology (cf. [El]).

FACT 2.2 A set C � (!)! is completely dual-Ramsey if and only if C has the Baire

property with respect to the dual Ellentuck topology and it is completely dual-Ramsey null
if and only if it is meager with respect to the dual Ellentuck topology.

PROOF: This is proved in [CS]. a

REMARK: The analogous result is known for the Ramsey property with respect to the
Ellentuck topology (cf. [El]).

Some symmetries between the two Mathias forcings

If g isM-generic over V and g0 2 (g)!, then also g0 isM-generic over V (cf. [CS] Theorem
5.5). From this it follows immediately that M is proper and therefore does not collapse
@1. (For the de�nition of properness consider e.g. [Go].)
Further, for anyM-condition hs;Xi and any sentence � of the forcing languageM there is
anM-condition hs; Y i � hs;Xi such that hs; Y i M� or hs; Y i M:� (cf. [CS] Theorem
5.2). This property is called pure decision.
REMARK: The similar results for Mathias forcingM can be found in [Ma] (or in [Je 2]).

We can write the dual-Mathias forcing as a two step iteration where the �rst is the forcing
notion U.
Let U be the partial order de�ned as follows:

p 2 U , p 2 (!)!;

p � q , p v� q:

We can also write the Mathias forcing as a two step iteration, where the �rst step is the
forcing notion U. Let J := [!]<! be the ideal of �nite sets and let h[!]!=J ;� i =: U be
the partial order de�ned as follows. p 2 U , p 2 [!]! and p � q , p n q 2 J (this is
p �� q).

FACT 2.3 The forcing notion U is @0-closed and if D is U-generic over V , then Min(D)
is a Ramsey ultra�lter in V [D].

PROOF: Let X1 � X2 � : : : be a decreasing sequence inU. Choose a sequence fi (i 2 !)
of �nite sets of natural numbers, such that Xi+1 u ffig v Xi. De�ne y0 := X0(0) and
yn := Xn(k) where k := 3 +

S
i<n(
S
fi). Now Y := fyi : i 2 !g [ (! n

S
i2! yi) is coarser

�

than each Xi (i 2 !) and therefore U is @0-closed.
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Now we claim that the set fMin(X) : X 2 Dg is a Ramsey ultra�lter in V [D]. Remember
that a forcing notion which is @0-closed adds no new reals to V (cf.[Je 1] Lemma 19.6).
Take a � 2 2[!]

2

and a Y 2 (!)!; then by the Ramsey Theorem (cf.[Je 1] Lemma 29.1) for
Min(Y ) 2 [!]! there exists an in�nite r � Min(Y ) such that � is constant on [r]2. Now
let X := fb : b 2 Y ^ b \ r 6= ;g [

S
fb : b 2 Y ^ b \ r = ;g; then X v Y and Min(X) = r.

Thus H� := fX 2 (!)! : �j[Min(X)]2 is constantg is dense in U and hence H� \D 6= ;. a

REMARK: It is easy to see that the forcing notion U is @0-closed. Further we have that
if D is U-generic over V , then D is a Ramsey ultra�lter in V [D].

The forcing notion U is stronger than the forcing notion U.

FACT 2.4 If D is U-generic, then the set fMin(X) : X 2 Dg is U-generic.

PROOF: Let A � [!]! be a maximal anti-chain in U, i.e., A is a maximal almost disjoint
family. Then the set DA := fX 2 U : 9a 2 A(Min(X) �� a)g is dense in U. a

We de�ne now the second step of the two step iteration.
Let F � (!)!. The partial order PF is de�ned as follows.

hs;Xi 2 PF , s 2 (IIN) ^ X 2 F ^ (s;X)! is a dual Ellentuck neighborhood;
hs;Xi � ht; Y i , (s;X)! � (t;Y )!.

REMARK: For F � [!]! we can de�ne the partial order PF similarly.

FACT 2.5 Let ~D be the canonical U-name for the U-generic object; then

U �P ~D �M :

PROOF:

U �P ~D = fhp; h~s; ~Xii : p 2 U ^ p Uh~s; ~Xi 2 P ~Dg

= fhp; h~s; ~Xii : p 2 (!)! ^ p U( ~X 2 ~D ^ ~s v ~X)g:

Now the embedding
h : M �! U �P ~D

hs;Xi 7�! hX; h�s; �Xii

is a dense embedding (see [Go] De�nition 0.8):

1. It is easy to see that h preserves the order relation �.

2. Let hp; h~s; ~Xii 2 U � P ~D. Because U is @0-closed, there is a condition q � p and

s 2 (IIN); X 2 (!)! such that q U�s = ~s ^ �X = ~X . Evidently, hq; h�s; �Xii 2 U �P ~D

is stronger than hp; h~s; ~Xii. Let Z := q u X and let Z 0 v� Z be such that s v Z 0.
Now we have h(hs; Z 0i) � hp; h~s; ~Xii. a

REMARK: Let ~D be the canonical U-name for the U-generic object, then U�P ~D �M :

The dual-Mathias forcing is stronger than the Mathias forcing.

FACT 2.6 The dual-Mathias forcing adds Mathias reals.
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PROOF: Let D be U-generic over V ; then by Fact 2.4, D := fMin(X) : X 2 Dg is
U-generic over V . Now we de�ne h : PD ! PD as follows.

h : PD �! PD

hs;Xi 7�! hMin(s);Min(X) nMin(s)i

For h the following is true.
(i) If q1; q2 2 PD, q1 � q2, then h(q1) � h(q2).
(ii) 8q 2 PD8p

0 � h(q)9q0 2 PD such that q and q0 are compatible and h(q0) � p0.
Therefore with [Je 2] Part I, Lemma 2.7 we �nally get VM � VM. a

3 On the dual-Ramsey property

In this section we will show that the dual-Ramsey property is closed under a generalized
Suslin operation. As a corollary we will get the already known result that analytic sets
are completely dual-Ramsey.
Let J � P((!)!) be the set of all completely dual-Ramsey null sets. Further let add(J)
be the smallest cardinal � such that there exists a family F = fJ� 2 J : � < �g
with

S
F 62 J and let cov(J) be the smallest cardinal � such that there exists a family

F = fJ� 2 J : � < �g with
S
F = (!)!. In [Ha] it is shown that cov(J) = add(J) = H,

where H is the dual-shattering cardinal. Further it is shown that H > !1 is relatively
consistent with ZFC.
Let Seq(�) := �<! and for f 2 �!, n 2 !, let �f(n) denote the �nite sequence hf(0); f(1); : : :;
f(n� 1)i. The generalized Suslin operation A� (for a cardinal �) is de�ned as follows:

A�fQs : s 2 Seq(�)g :=
[
f2�!

\
n2!

Q �f(n) :

In Theorem 3.5 below we will show that for each cardinal � < H, the completely dual-
Ramsey sets are closed under the operation A�. But �rst we give some other results.

A set R � (!)! is dual Ellentuck meager if R is meager with respect to the dual Ellentuck
topology. Remember that a set is dual Ellentuck meager if and only if it is completely
dual-Ramsey null and a set is completely dual-Ramsey if and only if it has the Baire
property with respect to the dual Ellentuck topology.
If (s;X)! is a dual Ellentuck neighborhood then we say that R is dual Ellentuck meager in
(s;X)! if R\ (s;X)! is dual Ellentuck meager. By [CS] Theorem 4.1, R is dual Ellentuck
meager in (s;X)! if for all (t;Y )! � (s;X)! there exists a partition Z 2 (t;Y )! such that
(t;Z)! \R = ;.

Let R � (!)! and M :=
S
f(s;X)! : R is dual Ellentuck meager in (s;X)!g. Further let

M(R) :=M \R. We �rst show that

LEMMA 3.1 If (s;X)! is a dual Ellentuck neighborhood such that (s;X)! �M , then R is

dual Ellentuck meager in (s;X)!.

PROOF: If (s;X)! �M , then (s;X)! =
S
f(t;Y )! � (s;X)! : R is dual Ellentuck meager

in (t;Y )!g. Let N :=
S
f(u;Z)! � (s;X)! : R \ (u;Z)! = ;g. Because N is an open set,

N is completely dual-Ramsey. Therefore, for any (t;Y )! � (s;X)! there exists a partition
Y 0 2 (t;Y )! such that (t;Y 0)! � N or (t;Y 0)! \ N = ;. If we are in the latter case, then
because (t;Y 0)! � (s;X)!, we �nd a (u;Y 00)! � (t;Y 0)! such that R is dual Ellentuck
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meager in (u;Y 00)!. Hence, there exists a (u;Z)! � (u;Y 00)! such that (u;Z)! \ R = ;,
which contradicts (t;Y 0)! \ N = ;. So we are always in the former case, which implies
that R is dual Ellentuck meager in (s;X)!. a

With this result, we can easily prove the following

LEMMA 3.2 The set M(R) is dual Ellentuck meager.

PROOF: Take a dual Ellentuck neighborhood (s;X)! and let S :=
S
f(t;Z)! � (s;X)! : R

is dual Ellentuck meager in (t;Z)!g. Then S as the union of open sets is open and a
subset of (s;X)!. Because (s;X)! is also closed (in the dual Ellentuck topology), the set
C := (s;X)! n S is closed. By [CS] Theorem 4.1 the sets C and S both are completely
dual-Ramsey. Therefore we �nd for every (s0;X 0)! � (s;X)! a partition Y 2 (s0;X 0)!

such that (s0;Y )! � S or (s0;Y )! � C. Now if (s0;Y )! � S, then by Lemma 3.1, R is
dual Ellentuck meager in (s0;Y )! and if (s0;Y )! � C, then (s0;Y )! \M(R) = ;. To see
this, assume there is an H 2 M(R) \ (s0;Y )!. Because H 2 M(R) there exists a dual
Ellentuck neighborhood (t;Z)! such that H 2 (t;Z)! and R is dual Ellentuck meager in
(t;Z)!. Because H 2 (t;Z)! and H 2 (s0;Y )! there is a dual Ellentuck neighborhood
(u;U)! � (t;Z)! \ (s0;Y )!. But with (u;U)! � (t;Z)! it follows that R is dual Ellentuck
meager in (u;U)! and therefore (u;U)! � S, a contradiction to (u;U)! � (s0;Y )! � C.
Therefore, in both casesM(R) is dual Ellentuck meager in (s0;Y )! � (s0;X 0)! and because
(s;X)! and (s0;X 0)! � (s;X)! were arbitrary, the set M(R) is dual Ellentuck meager in
each dual Ellentuck neighborhood. Hence, the set M(R) is dual Ellentuck meager. a

COROLLARY 3.3 The set R [ ((!)! nM) has the dual Ellentuck Baire property.

PROOF: Because M is open, (!)! nM is closed and R[ ((!)! nM) = (R\M)[ ((!)! n
M) =M(R)[ ((!)! nM) which is the union of a meager set and a closed set and therefore
has the dual Ellentuck Baire property. a

THEOREM 3.4 If R � (!)!, then we can construct a set A � R which has the dual

Ellentuck Baire property and whenever Z � A n R has the dual Ellentuck Baire property,

then Z is dual Ellentuck meager.

PROOF: Let A := R [ ((!)! nM) where M :=
S
f(s;X)! : R is dual Ellentuck meager

in (s;X)!g. By Lemma 3.2 and Corollary 3.3 we know that A has the dual Ellentuck
Baire property. Now let Z � A n R with the dual Ellentuck Baire property. If Z is not
dual Ellentuck meager, then there exists a dual Ellentuck neighborhood (u;U)!, such that
(u;U)! nZ and therefore (u;U)!\R are dual Ellentuck meager. Hence, R is dual Ellentuck
meager in (u;U)! and therefore (u;U)! �M . Since (u;U)! \Z 6= ; and Z \M = ;, there
is a Y 2 (u;U)! such that Y 62 M , a contradiction to R is dual Ellentuck meager in
(u;U)!. a

Now we can prove the following

THEOREM 3.5 Let � < H be a cardinal number and for each s 2 Seq(�) let Qs � (!)!.
If all the sets Qs are completely dual-Ramsey, then the set

A�fQs : s 2 Seq(�)g

is completely dual-Ramsey too.
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PROOF: Let fQs : s 2 Seq(�)g be a set of completely dual-Ramsey sets and let A :=
A�fQs : s 2 Seq(�)g. For two sequences s; f 2 ��! we write s � f if s is an initial
segment of f . If s 2 �<! is a �nite sequence, then jsj denotes the length of s. Without
loss of generality we may assume that Qs � Qt whenever s � t.
For s 2 Seq(�) let

As :=
[
f2�!

s�f

\
n2!
n�jsj

Q �f(n):

For s 2 Seq(�) we have As � Qs, As =
S
�<�As_� and A = A;. By Theorem 3.4, for each

s 2 Seq(�) we �nd a Bs � As which is completely dual-Ramsey and if Z � Bs n As has
the dual-Ramsey property, then Z is dual-Ramsey null. Because Qs � As is completely
dual-Ramsey, we may assume that Bs � Qs and therefore

A = A�fBs : s 2 Seq(�)g:

Let B := B;. Note that A =
S
�<�Ah�i �

S
�<�Bh�i and therefore B �

S
�<�Bh�i. Now

we show that

B n A �
[
�<�

Bh�i �
[
f2�!

\
n2!

B �f(n) �
[

s2Seq(�)

(Bs n
[
�<�

Bs_�) :

Assume x 62
S
s(Bs n

S
�<�Bs_�). If we have for all � < �, that x 62 Bh�i, then x 62 B.

And if there exists an �0 < � such that x 2 Bh�0i, because x 62
S
s(Bs n

S
�<�Bs_�) we

�nd an �1 such that x 2 Bh�0;�1i and �nally we �nd an f 2 �! such that for all n � !:
x 2 B �f(n). But this implies that x 2 A. Now because Bsn

S
�<�Bs_� � Bsn

S
�<�As_� =

Bs nAs and because
S
�<�Bs_� is the union of less than H completely dual-Ramsey sets,

Bs n
S
�<�Bs_� is completely dual-Ramsey and as a subset of Bs n As, it is completely

dual-Ramsey null. Therefore, B n A as a subset of the union of less than H completely
dual-Ramsey null sets is completely dual-Ramsey null and because B is completely dual-
Ramsey, A is completely dual-Ramsey too.

a

REMARK: A similar result holds also for the Ramsey property and is proved by Matet
in [Mt 2].

As a corollary we get a result which was �rst proved by Carlson and Simpson (cf. [CS]).

COROLLARY 3.6 Every analytic set is completely dual-Ramsey.

PROOF: This follows from Theorem 3.5 and because each analytic set A � [!]! can be
written as

A = AfQs : s 2 Seq(!)g

where each Qs � [!]! is a closed set in the Baire space. a

REMARK: For a similar result cf. [El] or [Si].

4 Game-families and the forcing notion PF

First we de�ne a game and game-families. Then we show that, for game-families F, the
forcing notion PF has pure decision and if X is PF-generic and Y 2 (X)! , then Y is
PF-generic too.
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We call a family F � (!)! non-principal, if for all X 2 F there is a Y 2 F such that

Y v X and :(Y
�
= X). A family F is closed under re�nement, if X v Y and X 2 F

implies that Y 2 F. Further it is closed under �nite changes if for all s 2 (IIN) and X 2 F,
X u s 2 F.
In the sequel F is always a non-principal family which is closed under re�nement and �nite
changes.
If s 2 (IIN) and s v X 2 F, then we call the dual Ellentuck neighborhood (s;X)! an F-dual
Ellentuck neighborhood and write (s;X)!F to emphasize that X 2 F. A set O � (!)! is
called F-open if O can be written as the union of F-dual Ellentuck neighborhoods. For
s 2 (IIN) remember that s� = s [ ffdom(s)gg.

Fix a family F � (!)! (which is non-principal and closed under re�nement and �nite
changes). Let X 2 F and s 2 (IIN) be such that s v X. We associate with (s;X)!F the
following game. (This type of game was suggested �rst by Kastanas in [Ka].)

I hX0i hX1i hX2i
: : :

II ht0; Y0i ht1; Y1i ht2; Y2i

All theXi of player I and the Yi of player II must be elements of the familyF. Player I plays
hX0i such that X0 2 (s;X)!

F
, then II plays ht0; Y0i such that Y0 2 (s;X0)

!
F
, s � t�0 � Y0 and

jt0j = jsj. For n � 1, the nth move of player I is hXni such thatXn 2 (t�n�1;Yn�1)
!
F and then

player II plays htn; Yni such that Yn 2 (t�n�1;Xn)
!
F, t

�
n�1 � t�n � Yn and jtnj = jtn�1j + 1.

Player I wins i� the only Y with tn � Y (for all n) is in F. We denote this game by G(F)
starting with hs;Xi.

A non-principal family F which is closed under re�nement and �nite changes is a game-

family if player II has no winning strategy in the game G(F).

A family F � (!)! is called a �lter if for any X;Y 2 F, also X u Y 2 F. A �lter which
is also a game-family is called a game-�lter. Note that (!)! is game-family but not a
game-�lter. (But it is consistent with ZFC that game-�lters exist, as Theorem 5.1 will
show).
Let O � (!)! be an F-open set. Call (s;X)!F good (with respect to O), if for some
Y 2 (s;X)!F \ F, (s;Y )

!
F � O; otherwise call it bad. Note that if (s;X)!F is bad and

Y 2 (s;X)!F \ F, then (s;Y )!F is bad, too. We call (s;X)!F ugly if (t�;X)!F is bad for all
s � t� v X with jtj = jsj. Note that if (s;X)!F is ugly, then (s;X)!F is bad, too.

To prove the following two lemmas, we will follow in fact the proof of Lemma 19.15 in
[Ke].

LEMMA 4.1 Let F be a game-family and O � (!)! an F-open set. If (s;X)!F is bad (with

respect to O), then there exists a Z 2 (s;X)!F such that (s;Z)!F is ugly.

PROOF: We begin by describing a strategy for player II in the game G(F) starting with
hs;Xi. Let hXni be the nth move of player I and tn be such that s � tn, jtnj = jsj + n
and t�n � Xn. Let ft

i
n : i � mg be an enumeration of all t such that s � t v tn, jtj = jsj

and dom(t) = dom(tn). Further let Y �1 := Xn. Now choose for each i � m a partition
Y i 2 F such that Y i v Y i�1, t�n � Y i and ((tin)

�;Y i)!F is bad or ((tin)
�;Y i)!F � O. Finally,

let Yn := Y m and let player II play htn; Yni.

Because player II has no winning strategy, player I can play so that the only Y with tn � Y
(for all n) belongs to F. Let SY := ft� v Y : s � t ^ jtj = jsjg; then (because of the
strategy of player II), for all t 2 SY we have either (t�;Y )!

F is bad or (t�;Y )!F � O. Now
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let C0 := ft 2 SY : (t;Y )!F is badg and C1 := ft 2 SY : (t�;Y )!F � Og = SY n C0. By a
result of [HM], there exists a partition Z 2 (s;Y )!

F
\F, such that SZ � C0 or SZ � C1. If

we are in the latter case, we have (s;Z)!F � O, which contradicts that (s;X)!F is bad. So
we must have SZ � C0, which implies that (s;Z)!

F
is ugly and completes the proof of the

Lemma. a

LEMMA 4.2 If F is a game-family and O � (!)! is an F-open set, then for every F-dual

Ellentuck neighborhood (s;X)!F there exists a Y 2 (s;X)!F \ F such that (s;Y )!F � O or

(s;Y )!
F
\ O \ F = ;.

PROOF: If (s;X)!F is good, then we are done. Otherwise we consider the game G(F)
starting with hs;Xi. Let hX0i be the �rst move of player I. Because (s;X0)

!
F
is bad, by

Lemma 4.1 we can choose Y 0 2 (s;X0)
!
F \F such that (s;Y 0)!F is ugly. Let t0 be such that

s � t�0 � Y 0 and jt0j = jsj. Now we choose Y0 2 (t�0;Y
0)!
F
\ F such that (t�0;Y0)

!
F
is ugly,

which is is possible because (t0;Y
0)!F is ugly and therefore (t�0;Y

0)!F is bad. Note that for
all t with s � t v t0 and dom(t) = dom(t0) we have (t

�;Y0)
!
F is ugly. Now player II plays

ht0; Y0i:
Let hXn+1i be the (n + 1)th move of player I. By the strategy of player II we have
(t�;Xn+1)

!
F is ugly for all t with s � t v tn and dom(t) = dom(tn). Let tn+1 be such that

jtn+1j = jtnj + 1 = jsj + n and t�n � t�n+1 � Xn+1. Let ft
i
n+1 : i � mg be an enumeration

of all t such that s � t v tn+1 and dom(t) = dom(tn+1). Further let Y �1 := Xn+1.
Now choose for each i � m a partition Y i 2 F such that Y i v Y i�1, t�n+1 � Y i and
((tin+1)

�;Y i)!F is ugly. (This is possible because we know that (t�;Xk)
!
F is ugly for all k � n

and t with s � t v tk and dom(t) = dom(tk), which implies that ((tin+1)
�;Xn+1)

!
F is bad.)

Finally, let Yn+1 := Y m and let player II play htn+1; Yn+1i.

Because player II has no winning strategy, player I can play so that the only Y with tn � Y
(for all n) belongs to F. We claim that (s;Y )!F \ O \ F = ;: Let Z 2 (s;Y )!F \ O \ F.
Because O is F-open we �nd a t � Z such that (t�;Z)!F � O. Because t� v Y we know
by the strategy of player II that (t�;Y )!

F
is bad. Hence, there is no Z 2 (t�;Y )!

F
such that

(t�;Z)!
F
� O. This completes the proof. a

Now we give two properties of the forcing notion PF, (where PF is de�ned as in section 2
and F is a game-family). Note that for F = (!)! (which is obviously a game-family) the
forcing notion PF is the same as dual-Mathias forcing. The �rst property of the forcing
notion PF we give is called pure decision.

THEOREM 4.3 Let F be a game-family and let � be a sentence of the forcing language

PF. For any PF-condition (s;X)!F there exists a PF-condition (s;Y )!F � (s;X)!F such that

(s;Y )!
F PF

� or (s;Y )!
F PF

:�.

PROOF: With respect to � we de�ne O1 := fY : (t;Y )!F PF
� for some t � Y 2 Fg and

O2 := fY : (t;Y )!F PF
:� for some t � Y 2 Fg. Clearly O1 and O2 are both F-open and

O1 [O2 is even dense (with respect to the partial order PF). Because F is a game-family,
by Lemma 4.2 we know that for any (s;X)!F 2 PD there exists Y 2 (s;X)!F \ F such that
either (s;Y )!F � O1 or (s;Y )!F \ O1 \ F = ;. In the former case we have (s;Y )!F PF

�
and we are done. In the latter case we �nd Y 0 2 (s;Y )!F \ F such that (s;Y 0)!F � O2.
(Otherwise we would have (s;Y 0)!F \ (O2 [O1)\F = ;, which is impossible by the density
of O1 [O2.) Hence, (s;Y 0)!F PF

:�. a

Let F be a game-family, G be PF-generic and de�ne XG :=
T
G. Now XG is an in�nite

partition and G = f(s;Z)!F : s � XG v Zg. Therefore we can consider the partition
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XG 2 (!)! as a PF-generic object. Further we have G � PF is PF-generic if and only if
XG 2

S
D for all D � PF which are dense in PF. Note that if D is dense in PF, thenS

D is F-open.

The next theorem shows in fact that if F is a game-family, then PF is proper.

THEOREM 4.4 Let F � (!)! be a game-family. If X0 2 (!)! is PF-generic over V and

Y0 2 (X0)
! \ V [X0], then Y0 is also PF-generic over V .

PROOF: Take an arbitrary dense set D � PF, i.e. for all (s;X)!F there exists a (t;Y )!F �
(s;X)!F such that (t;Y )!F 2 D. Let D0 be the set of all (s;Z)!F such that (t;Z)!F �

S
D for

all t v s with dom(t) = dom(s).

First we show that D0 is dense in PF. For this take an arbitrary (s;W )!F and let fti : 0 �
i � mg be an enumeration of all t 2 (IIN) such that t v s and dom(t) = dom(s). Because
D is dense in PF and

S
D is F-open, we �nd for every ti a W

0 2 F such that ti v W 0

and (ti;W
0)!F �

S
D. Moreover, if we de�ne W�1 := W , we can choose for every i � m a

partition Wi 2 F such that Wi v Wi�1, s � Wi and (ti;Wi)
!
F �

S
D. Now (s;Wm)

!
F 2 D

0

and because (s;Wm)
!
F � (s;W )!F, D

0 is dense in PF.

Since D0 is dense and X0 2 (!)! is PF-generic, there exists a (s;Z)!
F 2 D0 such that

s � X0 v Z. Because Y0 2 (X0)
! we have t � Y0 v Z for some t v s and because

(t;Z)!F �
S
D, we get Y0 2

S
D. Hence, Y0 2

S
D for every dense D � PF, which

completes the proof. a

REMARK: A similar result is proved in [Ma] and [Mt 3].

5 On the dual-Mathias forcing and game-�lters

Now we show that it is consistent with ZFC that game-�lters exist. (Remember that a
game-�lter F is a game-family which is also a �lter and a game-family is a non-principal
family which is closed under re�nement and �nite changes such that player II has no
winning strategy in the game G(F).) Further we show that the dual-Mathias forcing
M is exible and with this result we can prove that if V is �1

4-M-absolute, then !V1 is
inaccessible in L.
In the sequel let U be the forcing notion we de�ned in section 2.

THEOREM 5.1 If D is U-generic over V , then D is a game-�lter in V [D] with respect to

the game G(D).

PROOF: Because D is U-generic over V , we know that D � (!)! is a non-principal
family in V [D] which is closed under re�nement and �nite changes, and for X;Y 2 D we
also have X u Y 2 D. It remains to show that player II has no winning strategy in the
game G(D).

Let ~� be a U-name for a strategy for player II in the game G( ~D), where ~D is the canonical
U-name for the U-generic object. Let us assume that player II will follow this strategy.
We may assume that

1 U\~� is a strategy for II in the game G( ~D)":

If
Z U~�(h ~X0i; h~t0; ~Y0i; : : : ; h ~Xni) = h~tn; ~Yni;

11



then for n � 1 we get

Z U(j~tnj = j~tn�1j+ 1 ^ ~t�n�1 � ~t�n � ~Yn v ~Xn ^ ~Yn 2 ~D)

and for n = 0 we have

Z U(j~t0j = j~sj ^ ~s � ~t�0 � ~Y0 v ~X0 v ~X ^ ~Y0 2 ~D)

where h~s; ~Xi is the starting point of G( ~D).

Now let h~s; ~Xi (the starting point of the game G( ~D)) be such that (~s; ~X)! is a U-name
for a dual Ellentuck neighborhood and let Z0 2 (!)! \ V be a U-condition in V such
that Z0 U

~X 2 ~D. Therefore, Z0 U\(~s; ~X)! is a ~D-dual Ellentuck neighborhood". By
Fact 2.3 we know that the forcing notion U adds no new reals (and therefore no new
partitions) to V . So, we �nd a Z 0

0 v
� Z0 and a dual Ellentuck neighborhood (s;X)! in V

such that
Z 0
0 Uh~s; ~Xi = h�s; �Xi

where �s and �X are the canonical U-names for s and X. Because Z 0
0 U

�X 2 ~D, we must

have Z 0
0 � X, which is the same as Z 0

0 v
� X. Finally put X0 2 (!)! such that X0

�
= Z 0

0

and X0 2 (s;X)!. Player I plays now h �X0i. Since player II follows the strategy ~�, player
II plays now ~�(h �X0i) =: h~t0; ~Y0i. Again by Fact 2.3 there exists a Z1 v

� X0 and a dual
Ellentuck neighborhood (t0;Y0)

! in V such that

Z1 Uh~t0; ~Y0i = h�t0; �Y0i:

And again by Z1 U
�Y0 2 ~D we �nd X1

�
= Z1 such that t�0 � X1 v Y0. Player I plays now

h �X1i.

In general, if ~�(h ~X0i; h~t0; ~Y0i; : : : ; h ~Xni) = h~tn; ~Yni, then player I can play �Xn+1 such that
Xn Uh~tn; ~Yni = h�tn; �Yni and t

�
n � Xn+1 v Yn. For n � m we also have Xn v Xm. Let

Y 2 (!)! be the such that tn � Y (for all n), then

Y U\the only ~Y such that ~tn � ~Y (for all n) is in ~D":

Hence, the strategy ~� is not a winning strategy for player II and because ~� was an arbitrary
strategy, player II has no winning strategy at all. a

REMARK: A similar result is in fact proved in [Ma] (cf. also [Mt 2]).
As a corollary we get that the forcing notion PD (where D is U-generic over V ) has pure
decision in V [D].

COROLLARY 5.2 Let D be U-generic over V . Then the forcing notion PD has pure
decision in V [D].

PROOF: This follows from Theorem 4.3 and Theorem 5.1. a

Corollary 5.2 follows also from the facts that the dual-Mathias forcing has pure decision
(cf. [CS]) and that it can be written as a two step iteration as in section 2.

REMARK: If D is U-generic over V , then PD has pure decision in V [D] (cf. [Ma]).
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Some more properties of M

Let P be a notion of forcing in the model V . We say that V is �1
n-P-absolute if for every

�1
n-sentences � with parameters in V the following is true.

V j= � if and only if V [G] j= �;

where G is any P-generic object over V .
Now we will show that if V is �1

4-M-absolute, then !V1 is inaccessible in L. For this we
�rst will translate the dual-Mathias forcing in a tree forcing notion.
If s is a partial partition of some natural number n 2 !, then we can consider s as a subset
of P(n) or equivalently, as a �nite set of �nite sets of natural numbers. Let t be a �nite
set of natural numbers, then ]t is such that for all k 2 ! : div(]t; 2k) is odd , k 2 s.
(Remember that div(n;m) := max(fk 2 ! : k �m � ng.) Now ]s is such that for all k 2 ! :
div(]s; 2k) is odd , k = ]t for some t 2 s. (In fact ]s is de�ned for any �nite set of �nite
sets of natural numbers.) If s 2 (IIN), then jsj denotes the cardinality of s, which is the
number of blocks of s.

For s 2 (IIN) with jsj = k let �s be the �nite sequence hn1; : : : ; nki where ni := ]si and
si 2 (IIN) is such that jsij = i and s�i � s�.
Now let p = (s;X)! be anM-condition. Without loss of generality we may assume that
s� v X. The tree tp � !<! is de�ned as follows.

� 2 tp , 9t 2 (IIN)((t� � s� _ s � t) ^ t� v X ^ � = �t:

FACT 5.3 Let p; q be twoM-conditions. Then tp is a subtree of tq if and only if p � q. a

Finally let TM := ftp : p 2Mg; then TM is a set of trees. We stipulate that tp � tq if tp
is a subtree of tq. Then (by Fact 5.3) forcing with TM := hTM;�i is the same as forcing
withM.
Now we will give the de�nition of a exible forcing notion P. But �rst we have to give
some other de�nitions.
A set T � !<! is called a Laver-tree if

T is a tree and 9� 2 T8� 2 T (� � � _ (� � � ^ jfn : �_n 2 Tgj = !)):

(We call � the stem of T . For � 2 T we let succT (�) := fn : �_n 2 Tg, (the successors of
� in T ) and T� := f� 2 T : � � � ^ � � �g.)

For a Laver-tree T , we say A � T is a front if � 6= � in A implies � 6� � and for all f 2 [T ]
there is an n 2 ! such that f jn 2 A.

The meaning of p � [[�]] and p \ [[�]] are Up � [[�]] and Up \ [[�]], respectively.

1. We say a forcing notion P is Laver-like if there is a P-name ~r for a dominating real
such that
(i) the complete Boolean algebra generated by the family f[[~r(i) = n]] : i; n 2 !g
equals r.o. (P), and
(ii) for each condition p 2 P there exists a Laver-tree T � !<! so that

8� 2 T
�
p(T�) :=

Y
n2!

X
�2T�

fp \ [[~rjlg(�) = � ]] : lg(�) = ng 2 r.o. (P) n f0g
�
:

We express this by saying p(T ) 6= ; where p(T ) := p(Tstem(T )).
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2. If ~r is a P-name that witnesses that P is Laver-like, we say that P has strong fusion

if for countably many open dense sets Dn � P and for p 2 P, there is a Laver-tree
T such that p(T ) 6= ; and for each n:

f� 2 T : p(T ) \ [[~rjlg(�) = �]] 2 Dng

contains a front.

3. A Laver-like P is closed under �nite changes if given a p 2 P and Laver trees T and
T 0 so that for all � 2 T 0 : jsuccT (�) n succT 0(�)j < !, if p(T ) 6= ;, then p(T 0) 6= ;,
too.

Now we call P a exible forcing notion i� P is Laver-like, has strong fusion and is closed
under �nite changes.
With this de�nition we can show (as a further symmetry between the forcing notions M
andM), that the dual-Mathias forcingM is exible.

LEMMA 5.4 The dual-Mathias forcing M is exible.

PROOF: ByM � TM it is enough to prove that the forcing notion TM is exible. Let
~r be the canonical TM-name for the TM-generic object. By the de�nition of ] and the
construction of TM, ~r is a name for a dominating real. The rest of the proof is similar to
the proof that Mathias forcing is exible, which is given in [HJ]. a

If all �1
n-sets in V with parameters in V \W have the Ramsey property R or the dual-

Ramsey property R, we will write V j= �1
n(R)W or V j= �1

n(R)W , respectively. If V =W ,
then we omit the index W . The notations for �1

n-sets and �1
n-sets are similar. Further B

stands for the Baire property and L stands for Lebesgue measurable.
Now we can prove the following

THEOREM 5.5 If V is �1
4-M-absolute, then !V1 is inaccessible in L.

PROOF: To prove the corresponding result for Mathias forcing (cf. [HJ]) we used only
that M is exible and that, if V is �1

4-M-absolute, then V j= �1
2(R), which is the same

as �1
3-M-absoluteness (cf. [HJ]). Therefore it is enough to prove that �1

3-M-absoluteness
implies �1

3-M-absoluteness. It follows immediately from Fact 2.6 that V � VM � VM.
Now because �1

3-formulas are upwards absolute, this completes the proof. a

6 Iteration of dual-Mathias forcing

In this section we will build two models in which every �1
2-set is dual-Ramsey. In the �rst

model 2@0 = @1 and in the second model 2@0 = @2. With the result that dual-Mathias
forcing has the Laver property we can show that �1

2(R) implies neither �1
2(L) nor �

1
2(B).

In the sequel we will use the same notations as in section 5.
First we give a result similar to Theorem 1.15 of [JS].

LEMMA 6.1 Let D be U-generic over V . If m is PD-generic over V [D], then V [D][m] j=
�12(R)V.

PROOF: Let m be the canonical name for the PD-generic object m over V [D] and let
'(X) be a �1

2-formula with parameters in V . By Theorem 5.1 and Corollary 5.2, the forcing
notion PD has pure decision. So, there exists a PD-condition p 2 V [D] with empty stem
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(therefore p 2 D), such that V [D]j= \p PD
'(m)" or V [D]j= \p PD

:'(m)". Assume
the former case holds. Because m v� q for all q 2 D, there is an f 2 [!]<! such that
m u ffg v p. By Theorem 5.1 and Theorem 4.4 we know that if X is PD-generic over
V [D] and X 0 2 (X)! \ V [D][m], then X 0 is also PD-generic over V [D]. Hence every
m0 v m u ffg v p is PD-generic over V [D] and therefore V [D][m0] j= '(m0). Because �1

2-
formulas are absolute, we get V [D][m] j= '(m0). So, V [D][m] j= 9X8Y 2 (X)!'(Y ). The
case when V [D]j= \p PD

:'(m)" is similar. Hence, we �nally have V [D][m] j= �1
2(R)V .

a

REMARK: The proof of the analogous result can be found in [JS].

Because G�odel's constructible universe L has a �1
2-well-ordering of the reals, L is neither

a model for �1
2(R) nor a model for �1

2(R). But we can build a model in which 2@0 = @1
and all �1

2-sets are dual-Ramsey.

THEOREM 6.2 If we make an !1-iteration of dual-Mathias forcing with countable support

starting from L, we get a model in which every �1
2-set of reals is dual-Ramsey and 2@0 = @1.

PROOF: Follows immediately from the Fact 2.5, Lemma 6.1 and the fact that the dual-
Mathias forcing is proper.

a

REMARK: The proof of a similar result can be found in [Ju].

We can build also a model in which 2@0 = @2 and all �1
2-sets are dual-Ramsey.

THEOREM 6.3 If we make an !2-iteration of dual-Mathias forcing with countable support
starting from L, we get a model in which every �1

2-set of reals is dual-Ramsey and 2@0 = @2.

PROOF: In [Ha] it is shown that a !2-iteration of dual-Mathias forcing with countable
support starting from L yields a model in which 2@0 = @2 and the union of fewer than @2
completely dual-Ramsey sets is completely dual-Ramsey. Now because each �1

2-set can be
written as the union of @1 analytic sets (and analytic sets are completely dual-Ramsey)
all the �1

2-sets are dual-Ramsey. a

REMARK: A similar result is true because an !2-iteration of Mathias forcing with count-
able support starting from L yields a model in which h = @2 (cf. [SS]), and h can be
considered as the additivity of the ideal of completely Ramsey null sets (cf. [Pl]).

For the next result we have to give �rst the de�nition of the Laver property.

A cone �A is a sequence hAk : k 2 !i of �nite subsets of ! with jAkj < 2k. We say that
�A covers a function f 2 !! if for all k > 0: f(k) 2 Ak. For a function H 2 !!, we write
�H for the set ff 2 !! : 8k > 0(f(k) < H(k))g. Now a forcing notion P is said to have
the Laver property i� for every H 2 !! in V ,

1 P\8f 2 �H 9 �A 2 V ( �A is a cone covering f)":

Like Mathias forcing, the dual-Mathias forcing has the Laver property as well and therefore
adds no Cohen reals (cf. [Go] and [BJ]).

LEMMA 6.4 The forcing notion M has the Laver property.

PROOF: Given f;H 2 !! such that for all k > 0: f(k) < H(k), let hs;Xi be an M-
condition. BecauseM has pure decision and f(1) < H(1), we �nd a Y0 2 (s;X)! such that
hs; Y0i decides f(1). Set s0 := s. Suppose we have constructed sn 2 (IIN) and Yn 2 (!)!
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such that s � sn, jsnj = jsj + n and (sn;Yn)
! is a dual Ellentuck neighborhood. Choose

Yn+1 2 (sn;Yn)
! such that for all h 2 (IIN) with s � h v sn and dom(h) = dom(sn):

hh; Yn+1i decides f(k) for all k < 2n+1. Further let sn+1 2 (IIN) be such that sn � sn+1,
jsn+1j = jsnj+ 1 = jsj+ n+ 1 and sn+1 � Yn+1. Finally let Y be such that for all n 2 !:
sn � Y . Evidently, theM-condition hs; Y i is stronger than the givenM-condition hs;Xi
(or equal). Now if k; n 2 ! such that 2n � k < 2n+1, then let fhj : j � mg be an
enumeration of all s � h v sn with dom(h) = dom(sn). It is clear that m < 22

n

. Further
let Ak := fl 2 ! : 9j � m(hhj ; Y i Mf(k) = l)g; then jAkj � m < 22

n

and because
2n � k, we have jAkj < 2k. If we de�ne A0 := fl 2 ! : hs; Y i Mf(0) = lg then the
M-condition hs; Y i forces that �A := hAk : k 2 !i is a cone for f . a

Using these results we can prove the following

THEOREM 6.5 �1
2(R) implies neither �1

2(L) nor �
1
2(B).

PROOF: Because a forcing notion with the Laver property adds no Cohen reals and
because the Laver property is preserved under countable support iterations of proper
forcings (with the Laver property), in the model constructed in Theorem 6.2 no real is
Cohen over L. Therefore in this model �1

2(B) fails and because �1
2(L) implies �1

2(B) (by
[Ju]) also �1

2(L) has to be wrong in this model. a

REMARK: For the analogous result cf. [JS].

7 Appendix

Although the Ramsey property and the dual-Ramsey property are very similar, we can
show that the two Ramsey properties are di�erent.

THEOREM 7.1 With the axiom of choice we can construct a set which is Ramsey but not

dual-Ramsey.

PROOF: First we construct a set C � [!]! which is not dual-Ramsey. The relation

\
�
= " is an equivalence-relation on (!)!. (Remember that X

�
= Y if and only if there are

f; g 2 [!]<! such that X uffg v Y and Y ufgg v X.) Now choose from each equivalence
class X� an element AX and let hX := jf j+ jgj be of least cardinality, where f and g are
such that X u ffg v AX and AX u fgg v X. Further de�ne:

F (X) :=

�
1 if hX is odd,
0 otherwise.

Then the set fX 2 (!)! : F (X) = 1g is evidently not dual-Ramsey and therefore also the
set C := fx 2 [!]! : 9X 2 (!)!(F (X) = 1 ^ x = pc(X))g is not dual-Ramsey.

Now de�ne r := f[fk; k + 1g : k 2 !g, then cp(r) = f!g 62 (!)! and hence [r]! \ C = ;.
So, the set C is Ramsey. a

We can show that the dual-Ramsey property is stronger than the Ramsey property.

LEMMA 7.2 If V j= �1
n(R) then V j= �1

n(R).

PROOF: Given a �1
n-formula '(x) with parameters in V . Let  (y) be de�ned as follows.

 (y) i� 9x(x = Min(cp(y)) ^ '(x)):
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We see that  (y) is also a �1
n-formula (with the same parameters as '). Now if there

is an X 2 (!)! such that for all Y 2 (X)! ,  (pc(Y )) holds, then for all y 2 [x]! where
x = Min(X), '(y) holds. The case where for all Y 2 (X)! , : (pc(Y )) holds, is similar.

a

With these results and all the symmetries we found between the two Ramsey proper-
ties and between the Mathias forcing and the dual-Mathias forcing, it is natural to ask
whether there is a property which is equivalent to \every �1

2-set of reals has the dual-
Ramsey property". Another interesting open problem, which surely would give us a lot
of information about the relationship between the two Ramsey properties, would be the
following question:

Is �1
2(R) equivalent to �1

2(R)?
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