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Abstract

Using independent families from combinatorial set theory, it is shown that
for every infinite cardinal κ, `∞(κ)∗ contains a subspace which is isomorphic
to a Hilbert space of dimension 2κ. This provides a new proof for the first
step in the construction of complete minimal systems in Banach spaces of
bounded functions.

1. Introduction

Let X be a Banach space and let {xλ : λ ∈ Λ} ⊆ X be an arbitrary set of vectors
of X. Let [xλ : λ ∈ Λ] denote the closure of the linear span of {xλ : λ ∈ Λ}. A
set {xλ : λ ∈ Λ} ⊆ X is called a complete system if [xλ : λ ∈ Λ] = X, and it is
called a minimal system if for every λ′ ∈ Λ, xλ′ /∈

[
xλ : λ ∈ Λ \ {λ′}

]
. A complete

minimal system, abbreviated c.m.s., is a complete system which is also minimal.

Using functionals, we can characterize minimal systems (and consequently c.m.s.)
also in the following way: Let X be a Banach space. A pair of sequences {xλ : λ ∈
Λ} ⊆ X and {fλ : λ ∈ Λ} ⊆ X∗ is called a biorthogonal system if fλ′(xλ) = δλ

λ′ .
Now, a sequence {xλ : λ ∈ Λ} ⊆ X is minimal if and only if there is a sequence
{fλ : λ ∈ Λ} ⊆ X∗, such that the pair

(
{xλ : λ ∈ Λ}, {fλ : λ ∈ Λ}

)
is a biorthogonal
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system. A biorthogonal system which corresponds to a complete minimal system is
called complete biorthogonal system.

Even though not every Banach space has a c.m.s. (see e.g., [Pl80] or [GK80]), it is
known that `∞ has a c.m.s.. The first (not completely correct) proof for the existence
of a c.m.s. in `∞ was given by William Davis and William Johnson in [DJ73]. Later,
Borys Godun gave a correct (and slightly easier) proof in [Go83]. However, the
crucial point in both proofs is the following result due to Haskel Rosenthal (cf. [Ro69,
Proposition 3.4]):

Proposition 1. The space `∗∞ contains a subspace isomorphic to a Hilbert space of
dimension the continuum.

Let us briefly sketch why Proposition 1 implies the existence of a c.m.s. in `∞:
Let Y ⊆ `∞ be isomorphic to a Hilbert space of dimension the continuum. Since
Y is reflexive, Y is weakly∗ closed (cf. e.g., [Ro69, Proposition 1.2]), and therefore,
(⊥Y )⊥ = Y , where ⊥Y =

{
x ∈ `∞ : ∀y ∈ Y (y(x) = 0)

}
and (⊥Y )⊥ :=

{
x∗ ∈

`∗∞ : ∀x ∈ ⊥Y
(
x∗(x) = 0

)}
. Thus,

(
`∞/⊥Y

)∗
is isomorphic to the Hilbert space Y ,

which implies that also `∞/⊥Y is isomorphic to Y . Now, following [Go83], with the
orthonormal basis in Y we can easily construct a c.m.s. in `∞. At this point we like
to mention that starting with generalized version of Proposition 1 (cf. [Ro69, p. 203,
Remark 2]), a similar construction yields a c.m.s. in `∞(κ) for any infinite cardinal κ.

Rosenthal’s proof of Proposition 1 involves some deep results from functional anal-
ysis. On the other hand, from a set-theoretical point of view a c.m.s. in `∞ is just
a set of bounded real-valued sequences, and therefore, it was natural to seek a more
combinatorial or set-theoretical proof of Proposition 1 and the aim of this paper is to
provide such a proof.

Acknowledgement: I like to thank Anatolij Plichko and Stephanie Halbeisen for
pointing me out and explaining me the various steps in the construction of a c.m.s.
in `∞.

2. Some set theory

2.1. Set-theoretic terminology. Our set-theoretical axioms are the axioms of Zer-
melo and Fraenkel including the Axiom of Choice. All our set-theoretical notations
and definitions are standard and can be found in textbooks like [Ku83].

For a set x, the cardinality of x, denoted by |x|, is the least ordinal number α
for which there exists a bijection f : α → x; such an ordinal number α is called a
cardinal number (or just a cardinal). The least infinite ordinal number, which is
also a cardinal, is denoted by ω, thus, |ω| = ω. In particular, ω = {0, 1, 2, . . . } is
the set of natural numbers. A set x is called finite, if |x| ∈ ω, otherwise it is called
infinite. Further it is called countable, if |x| ≤ ω. For a set x, P(x) denotes the power
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set of x and [x]<ω denotes the set of all finite subsets of x. For a cardinal κ, |P(κ)| is
denoted by 2

κ. For example there exists a bijection between the reals R and P(ω),
hence |R| = |P(ω)| = 2

ω. For every infinite cardinal we have 2
κ > κ and

∣∣[κ]<ω
∣∣ = κ.

2.2. Independent families. Let κ be an infinite cardinal and let I ⊆ P(κ), then I
is called an independent family (on κ), if whenever m and n− 1 belong to ω, and
x0, . . . , xm, . . . , xm+n are distinct members of I, then∣∣∣ ⋂

0≤i≤m

xi \
⋃

1≤j≤n

xm+j

∣∣∣ = κ .

To make this paper self-contained, let us prove the following result due to Felix
Hausdorff (cf. [Ha36]):

Proposition 2. For any infinite cardinal κ, there is an independent family on κ of
cardinality 2

κ.

Proof. We just follow Exercise (A6) on p. 288 of [Ku83]. Let

J =
{
〈s, A〉 : s ⊆ κ and |s| < ω and A ⊆ P(s)

}
.

Notice that |J | = κ, so, it is enough to construct an independent family of cardinality
2

κ on J . For x′ ⊆ κ, let x :=
{
〈s, A〉 ∈ J : x′ ∩ s ∈ A

}
. Then I =

{
x : x′ ∈ P(κ)

}
is an independent family on J of cardinality 2

κ. Indeed, let x′0, . . . , x′m, . . . , x′m+n be
distinct members of P(κ) (for some m and n − 1 in ω). Then there is a finite set
s ⊆ κ such that for all i, j with 0 ≤ i < j ≤ m + n we have x′i ∩ s 6= x′j ∩ s. Let
A = {s ∩ x′i : 0 ≤ i ≤ m} ⊆ P(s), and for every α ∈ κ \ s, let sα = s ∪ {α} and
Aα = A ∪

{
t ∪ {α} : t ∈ A

}
. Then{

〈sα, Aα〉 : α ∈ κ \ s
}
⊆

⋂
0≤i≤m

xi \
⋃

1≤j≤n

xm+j ,

which implies that
∣∣∣ ⋂

i≤m xi \
⋃

m<j≤n xj

∣∣∣ = κ, and therefore, I is an independent

family on J of cardinality 2
κ. a

As an easy consequence we get the following

Fact. If I = {xα : α ∈ 2
κ} is an independent family on κ and α1, . . . , αn are finitely

many distinct elements of 2κ, then
∣∣⋂

1≤i≤n yαi

∣∣ = κ, where for every 1 ≤ i ≤ n, the
set yαi

is either equal to the set xαi
, or to its complement κ \ xαi

.

2.3. The Banach spaces `2(κ) and `∞(κ). Let κ be an infinite cardinal. The
Banach space `∞(κ) is the set of all bounded functions from κ to R, where for x ∈
`∞(κ), ‖x‖ = sup{x(α) : α ∈ κ}. The Banach space `2(κ) is the set of all functions
x from κ to R such that

∑
α∈κ x(α)2 =: ‖x‖2 < ∞. It is common to write `2 and

`∞ instead of `2(ω) and `∞(ω) respectively. Like for `2 and `∞, one can show that
`2(κ)∗ = `2(κ) and that `∞(κ)∗ is isometric to the space of all finitely additive signed
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measures µ of bounded variation on P(κ), supplied with the norm ‖µ‖ = |µ|(κ),
where |µ| is the total variation of µ.

For α, β ∈ κ, let

δβ
α =

{
1 if α = β,

0 otherwise,

and let eα : κ → {0, 1} be such that eα(β) = δβ
α. It is easy to see that the set of

vectors {eα : α ∈ κ} is a c.m.s. of `2(κ). On the other hand, the set {eα : α ∈ κ}
is much too small to be a c.m.s. of `∞(κ). In general, the cardinality of a complete
minimal system S of an infinite dimensional real Banach space X is always equal
to the density character of X. Indeed, on the one hand, the set of all finite linear
combinations of S with rational coefficients is dense in X, and on the other hand, S
is discrete in X. In particular, the density character of `∞(κ) is 2

κ, so, any c.m.s. of
`∞(κ) must have cardinality 2

κ.

3. `∞(κ)∗ contains an isomorphic copy of `2(2
κ)

Now we are ready to prove the main result.

Theorem. Let κ be an infinite cardinal. Then any independent family on κ of
cardinality 2

κ induces a subspace of `∞(κ)∗ which is isomorphic to the Hilbert space
`2(2

κ).

Proof. Let I = {xα : α ∈ 2
κ} be an independent family on κ of cardinality 2

κ (which
exists by Proposition 2). Define a measure µ̂ on the set B of all Boolean combinations
of elements of I by stipulating

• µ̂(xα) = µ̂(κ \ xα) = 1/2 (for all xα ∈ I),
• µ̂(xα ∩ xβ) = µ̂

(
xα ∩ (κ \ xβ)

)
= 1/4 (for all distinct xα, xβ ∈ I),

and in general, if α1, . . . , αn are finitely many distinct elements of 2κ and 0 ≤ j ≤ n,
then

µ̂
(⋂

1≤i≤j xαi
∩

⋂
j<i≤n(κ \ xαi

)
)

= 2−n .

The measure µ̂ induces a normalized linear functional ϕµ̂ on a subspace of `∞(κ).
Thus, by the normed space version of the Hahn-Banach Extension Theorem, there is a
normalized functional on all of `∞(κ) which extends the functional ϕµ̂. In particular,
there is a measure µ on P(κ) with ‖µ‖ = 1, such that µ|B ≡ µ̂. For every α ∈ 2

κ let
fα : κ → {1,−1} such that

fα(λ) =

{
1 if λ ∈ xα,

−1 otherwise.
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Now, for every α ∈ 2
κ, let the measure µα on P(κ) be defined by

µα(E) = µ(E ∩ xα)− µ
(
E ∩ (κ \ xα)

)
,

and let ϕα be the linear functional on `∞(κ) induced by the measure µα. It is not
hard to see that for all α, β ∈ 2

κ, ϕα(fβ) = δβ
α and that ‖ϕα‖`∞(κ)∗ = 1. Let

Y = [ϕα : α ∈ 2
κ] ⊆ `∞(κ)∗, and let

∑n
i=1 aiϕαi

∈ Y .

Claim. For each ε = (ε1, . . . , εn) ∈ {−1, 1}n we have∥∥∥ n∑
i=1

aiϕαi

∥∥∥
`∞(κ)∗

= 2−n
∑

ε∈{−1,1}n

∣∣∣ n∑
i=1

εiai

∣∣∣ .

Proof. For each ε = (ε1, . . . , εn) ∈ {−1, 1}n let Eε =
⋂

1≤i≤n yαi
, where

yαi
=

{
xαi

if εiai ≥ 0,
κ \ xαi

otherwise.

By the fact mentioned above, |Eε| = κ, and by the properties of the measure µ we get
µ(E) = 2−n. Notice that for any distinct ε and ε′ in {−1, 1}n we have Eε ∩ Eε′ = ∅
and that κ =

⋃
ε∈{−1,1}n Eε. Further, for every ε ∈ {−1, 1}n let fε : κ → {±1, 0} be

such that

fε(λ) =


1 if λ ∈ Eε and

∑n
i=1 εiai ≥ 0,

−1 if λ ∈ Eε and
∑n

i=1 εiai < 0,

0 otherwise,

and let f =
∑

ε∈{−1,1}n fε. It is not hard to verify that for each ε ∈ {−1, 1}n we have(
a1ϕα1 + . . . + anϕαn

)
(fε) = 2−n |ε1a1 + . . . + εnan| ,

and therefore, ( n∑
i=1

aiϕαi

)
(f) = 2−n

∑
ε∈{−1,1}n

∣∣∣ n∑
i=1

εiai

∣∣∣ .

Now, since the Eε’s are pairwise disjoint, ‖f‖`∞(κ) = 1, and by the construction of f
we finally get ∥∥∥ n∑

i=1

aiϕαi

∥∥∥
`∞(κ)∗

= 2−n
∑

ε∈{−1,1}n

∣∣∣ n∑
i=1

εiai

∣∣∣ .

aClaim

Hence, by Khintchine’s inequality, there is a constant c = 1/
√

2 such that

c ·

√√√√ n∑
i=1

a2
i ≤

∥∥∥ n∑
i=1

aiϕαi

∥∥∥
`∞(κ)∗

≤

√√√√ n∑
i=1

a2
i ,

which implies that the space Y ⊆ `∞(κ)∗ is isomorphic to the Hilbert space `2(2
κ)

and completes the proof. a
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Remark. For an infinite cardinal κ, the Banach space c0(κ) is the set of all functions
x from κ to R such that for every ε > 0, the set {α < κ : |x(α)| > ε} is finite. Now, the
Theorem admits the following generalization: Let κ be an infinite cardinal. Then the
space

(
`∞(κ)/c0(κ)

)∗
contains a subspace which is isomorphic to `2(2

κ). Consequently
we get: For every infinite cardinal κ, the space `∞(κ)/c0(κ) has a complete minimal
system.
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