A RESULT IN DUAL RAMSEY THEORY

Lorenz Halbeisen* and Pierre Matet

Abstract

We present a result which is obtained by combining a result of Carlson with the Finitary Dual Ramsey Theorem of Graham-Rothschild.

We start by introducing some notation.
We conform to the usual practice of identifying the least infinite ordinal ω with the set of non-negative integers.

Given $\alpha, \beta \leq \omega$, a partition of $\boldsymbol{\alpha}$ into $\boldsymbol{\beta}$ blocks is an onto function $X: \alpha \rightarrow \beta$ such that $\min \left(\bar{X}^{-1}(\{n\})\right)<\min \left(X^{-1}(\{m\})\right)$ whenever $n<m<\beta$. Thus, the blocks of X are ordered as their leaders (i.e., their least elements).

The leader function $\ell:(\alpha)^{\beta} \times \beta \rightarrow \alpha$ is defined by $\ell(X, m):=\min \left(X^{-1}(\{m\})\right)$. Hence, the function $m \mapsto \ell(X, m)$ enumerates the leaders of X in increasing order.

Given $X \in(\alpha)^{\beta}$ and $Y \in(\alpha)^{\gamma}$, where $\alpha, \beta, \gamma \leq \omega$, we let $Y \leqslant X$ if Y is coarser than X, i.e., each block of Y is a union of blocks of X.

Given $\alpha, \beta, \gamma \leq \omega$ and $X \in(\alpha)^{\beta},(X)^{\gamma}:=\left\{Y \in(\alpha)^{\gamma}: Y \leqslant X\right\}$.
Given $\alpha, \beta \leq \omega$ and $k<\omega,(\alpha)_{k}^{\beta}$ denotes the set of all $X \in(\alpha)^{\beta}$ such that
(a) $X^{-1}(\{n\})$ is finite if $k \leq n<\beta$, and
(b) $\max \left(X^{-1}(\{n\})\right)<\ell(X, n+1)$ if $k \leq n$ and $n+1<\beta$.

Given $\alpha, \beta, \gamma \leq \omega, X \in(\alpha)^{\beta}$ and $k, m<\omega$ such that $k \leq \gamma$ and $m \leq \beta,(k, m, X)^{\gamma}$ is the set of all $Y \in(X)^{\gamma}$ such that

$$
\{\ell(Y, i): i<k\} \subseteq\{\ell(X, j): j<m\} .
$$

Note that $(0, m, X)^{\gamma}=(1, m, X)^{\gamma}=(X)^{\gamma}$ for all $m \leq \beta$.

[^0]The amalgamation function \mathcal{A} is defined as follows: Given $X \in(\omega)^{\omega}$ and $t \in(p)^{m}$, where $0<m \leq p<\omega, \mathcal{A}(t, X)$ is the partition of ω whose blocks are

$$
\bigcup_{i \in t^{-1}(\{0\})} X^{-1}(\{i\}), \ldots \bigcup_{i \in t^{-1}(\{m-1\})} X^{-1}(\{i\}), X^{-1}(\{p\}), X^{-1}(\{p+1\}), \ldots
$$

For $t \in(p)^{m}$, where $m \leq p<\omega$, let $O_{t}:=\left\{X \in(\omega)^{\omega}: X \upharpoonright p=t\right\}$.
We topologize $(\omega)^{\omega}$ by taking as basic open sets \emptyset and O_{t} for $t \in \underset{m \leq p<\omega}{ }(p)^{m}$.
A function $F:(\omega)^{\omega} \rightarrow r$, where $1 \leq r<\omega$, is clopen if $F^{-1}(\{i\})$ is a clopen subset of $(\omega)^{\omega}$ for each $i<r$.

Our starting point is the following immediate consequence of the Dual Ellentuck Theorem (Theorem 4.1 in [1]) of Carlson-Simpson.

Proposition 1. Given $X \in(\omega)^{\omega}$ and a clopen $F:(\omega)^{\omega} \rightarrow r$, where $1 \leq r<\omega$, there is $Y \in(X)^{\omega}$ such that F is constant on $(Y)^{\omega}$.

Even if every block of X is finite, there may not be any homogeneous Y having infinitely many finite blocks.

Proposition 2. There is a clopen $F:(\omega)^{\omega} \rightarrow 2$ with the property that there is no $Y \in(\omega)^{\omega}$ such that F is constant on $(Y)^{\omega}$ and Y has infinitely many finite blocks.

Proof. Define $F:(\omega)^{\omega} \rightarrow 2$ by stipulating that $F(X)=0$ if and only if $X^{-1}(\{1\}) \cap$ $\ell(X, 3) \subseteq \ell(X, 2)$. Obviously, F is clopen. Now suppose that there is $Y \in(\omega)^{\omega}$ such that Y has infinitely many finite blocks and F is constant on $(Y)^{\omega}$. Pick $Z \in(\omega)_{1}^{\omega}$ with $Z \leqslant Y$. Then F is constant on $(Z)^{\omega}$, which is clearly impossible.

Carlson established a "specialized" version (Theorem 6.9 of [1], which follows from Theorem 2 of [2]) of the Dual Ellentuck Theorem that deals with partitions of ω having finitely many infinite blocks. Carlson's result immediately implies the following.
Proposition 3. Given $k<\omega, X \in(\omega)_{k}^{\omega}$ and a clopen $F:(\omega)^{\omega} \rightarrow r$, where $1 \leq r<$ ω, there is $Y \in(\omega)_{k}^{\omega} \cap(k, k, X)^{\omega}$ such that F is constant on $(k, k, Y)^{\omega}$.

The purpose of this paper is to present the combinatorial result which is obtained by combining Proposition 3 with the Finitary Dual Ramsey theorem of GrahamRothschild [3]. This last reads as follows.

Proposition 4. Suppose that $1 \leq k \leq m<\omega$ and $1 \leq r<\omega$. Then there is $p<\omega$ such that $p \geq m$ and the following holds: Given $f:(p)^{k} \rightarrow r$, there is $s \in(p)^{m}$ such that f is constant on $(s)^{k}$.

We now state our result.
Theorem. Given $1<k<m<\omega, X \in(\omega)_{k}^{\omega}$ and a clopen $F:(\omega)^{\omega} \rightarrow r$, where $1 \leq r<\omega$, there is $Y \in(\omega)_{m}^{\omega} \cap(X)^{\omega}$ such that F is constant on $(k, m, Y)^{\omega}$.

Proof. Using Proposition 4, select $p \geq m$ so that every $f:(p)^{k} \rightarrow r$ is constant on $(s)^{k}$ for some $s \in(p)^{m}$. First we define $g: \bigcup_{i \leq p-k}(k-1+i)^{k-1} \rightarrow r$ and $Y_{0}, Y_{1}, \ldots, Y_{p-k}$ so that
(0) $Y_{0} \in(\omega)_{k}^{\omega} \cap(k, k, X)^{\omega}$ and F takes the constant value $g(u)$ on $\left(k, k, \mathcal{A}\left(u, Y_{0}\right)\right)^{\omega}$, where u is the unique element of $(k-1)^{k-1}$ (hence, $\left.\mathcal{A}\left(u, Y_{0}\right)=Y_{0}\right)$.
(1) $Y_{1} \in(\omega)_{k+1}^{\omega} \cap\left(k+1, k+1, Y_{0}\right)^{\omega}$ and F takes the constant value $g(t)$ on $\left(k, k, \mathcal{A}\left(t, Y_{1}\right)\right)^{\omega}$ for every $t \in(k)^{k-1}$.
(2) $Y_{2} \in(\omega)_{k+2}^{\omega} \cap\left(k+2, k+2, Y_{1}\right)^{\omega}$ and F takes the constant value $g(t)$ on $\left(k, k, \mathcal{A}\left(t, Y_{2}\right)\right)^{\omega}$ for every $t \in(k+1)^{k-1}$.
$(p-k) Y_{p-k} \in(\omega)_{p}^{\omega} \cap\left(p, p, Y_{p-k-1}\right)^{\omega}$ and F takes the constant value $g(t)$ on $\left(k, k, \mathcal{A}\left(t, Y_{p-k}\right)\right)^{\omega}$ for every $t \in(p-1)^{k-1}$.

For example, to define Y_{3} and $g \upharpoonright(k+2)^{k-1}$, proceed as follows. Let $t_{0}, t_{1}, \ldots, t_{q}$ be an enumeration of the elements of $(k+2)^{k-1}$. Applying Proposition 3 repeatedly, define T_{j}, Z_{j} and c_{j} for $j \leq q$ so that
(i) $T_{j} \in(\omega)_{k}^{\omega}$.
(ii) If $j=0, T_{j} \in\left(k, k, \mathcal{A}\left(t_{j}, Y_{2}\right)\right)^{\omega}$ and $Z_{j} \in\left(k+3, k+3, Y_{2}\right)^{\omega}$.
(iii) If $j>0, T_{j} \in\left(k, k, \mathcal{A}\left(t_{j}, Z_{j-1}\right)\right)^{\omega}$ and $Z_{j} \in\left(k+3, k+3, Z_{j-1}\right)^{\omega}$.
(iv) F takes the constant value c_{j} on $\left(k, k, T_{j}\right)^{\omega}$.
(v) $\mathcal{A}\left(t_{j}, Z_{j}\right)=T_{j}$.

Then set $Y_{3}=Z_{q}$ and $g\left(t_{j}\right)=c_{j}$ for every $j \leq q$.
Define $f:(p)^{k} \rightarrow r$ by $f(w)=g(w \upharpoonright \ell(w, k-1))$. Set $W=Y_{p-k}$. Obviously, $W \in(\omega)_{p}^{\omega} \cap(X)^{\omega}$. Moreover, F takes the constant value $f(w)$ on $(k, k, \mathcal{A}(w \upharpoonright$ $\ell(w, k-1), W))^{\omega}$ for every $w \in(p)^{k}$. Let $s \in(p)^{m}$ be such that f is constant on $(s)^{k}$. Then $Y=\mathcal{A}(s, W)$ is as desired.

The referee pointed out that the theorem and similar results can be derived from Theorem 10 and Theorem 11 of [2].

The theorem is optimal in the following sense:

Proposition 5. Suppose that $1<k<m<\omega$. Then there is $F:(\omega)^{\omega} \rightarrow 2$ such that $F^{-1}(\{0\})$ is open and there is no $Y \in(\omega)_{m}^{\omega}$ with the property that F is constant on $(k, m, Y)^{\omega}$.

Proof. Let $F(Y)=0$ exactly when $Y(m) \nsubseteq \ell(Y, m+1)$.
The theorem has the following finitary version, which is proved by arguing as for 3.2 in [1].

Proposition 6. Suppose that $n \leq q \leq m<\omega, 1 \leq k \leq m, n \leq k$ and $1 \leq r<\omega$. Then there is $p<\omega$ such that $p \geq m$ and the following holds: Given $f:(p)^{k} \rightarrow r$, there is $s \in(p)_{q}^{m}$ such that f is constant on $(n, q, s)^{k}$.

Proof. Assume that for every $p \geq m$ there is $f_{p}:(p)^{k} \rightarrow r$ such that for every $s \in(p)_{q}^{m}, f_{p}$ is not constant on $(n, q, s)^{k}$. Define $F:(\omega)^{\omega} \rightarrow r$ by stipulating that $F(T)=f_{\ell(T, k)}(T \upharpoonright \ell(T, k))$. Using the theorem (for $1<n<q$) or Proposition 3 (otherwise), we find $Y \in(\omega)_{q}^{\omega}$ such that F is constant on $(n, q, Y)^{\omega}$. Set $p=\ell(Y, m)$ and $s=Y \upharpoonright m$. Then $p \geq m$ and $s \in(p)_{q}^{m}$. Moreover, f_{p} is constant on $(n, q, s)^{k}$. Contradiction!

When $n \in\{0,1\}$ and $q \in\{m-1, m\}$, Proposition 6 reduces to the Finitary Dual Ramsey Theorem. When $n=k$ and $q \in\{m-1, m\}$, it reduces to the n-parameter set theorem of Graham-Rothschild [3], which generalizes the Finitary Dual Ramsey Theorem.

References

[1] Timothy J. Carlson and Steve G. Simpson: A dual form of Ramsey's Theorem, Advances in Mathematics, vol. 53 (1984), 265-290.
[2] Timothy J. Carlson: Some unifying principles in Ramsey theory, Discrete Mathematics, vol. 68 (1988), 117-169.
[3] Ronald L. Graham and Bruce L. Rothschild: Ramsey's theorem for n-parameter sets, Transactions of the American Mathematical Society, vol. 159 (1971), 257-292.

Department of Pure Mathematics
David Bates Building
Queen's University Belfast
Belfast BT7 1NN
Northern Ireland
halbeis@qub.ac.uk

Université de Caen-CNRS
Mathématiques
BP 5186
14032 Caen Cedex
France
matet@math.unicaen.fr

[^0]: The authors thank the referee for helpful comments.
 *The author wishes to thank the Swiss National Science Foundation for supporting him.
 2000 Mathematics Subject Classification: 03E05 05D10
 Key-words and phrases: partition, Dual Ellentuck Theorem, Finitary Dual Ramsey Theorem

