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Abstract

We present a result which is obtained by combining a result of Carlson
with the Finitary Dual Ramsey Theorem of Graham-Rothschild.

We start by introducing some notation.

We conform to the usual practice of identifying the least infinite ordinal ω with the
set of non-negative integers.

Given α, β ≤ ω, a partition of α into β blocks is an onto function X : α → β such
that min

(
X−1({n})

)
< min

(
X−1({m})

)
whenever n < m < β. Thus, the blocks of

X are ordered as their leaders (i.e., their least elements).

The leader function ` : (α)β × β → α is defined by `(X, m) := min
(
X−1({m})

)
.

Hence, the function m 7→ `(X,m) enumerates the leaders of X in increasing order.

Given X ∈ (α)β and Y ∈ (α)γ, where α, β, γ ≤ ω, we let Y 6 X if Y is coarser than
X, i.e., each block of Y is a union of blocks of X.

Given α, β, γ ≤ ω and X ∈ (α)β, (X)γ := {Y ∈ (α)γ : Y 6 X}.

Given α, β ≤ ω and k < ω, (α)β
k denotes the set of all X ∈ (α)β such that

(a) X−1({n}) is finite if k ≤ n < β, and
(b) max

(
X−1({n})

)
< `(X,n + 1) if k ≤ n and n + 1 < β.

Given α, β, γ ≤ ω, X ∈ (α)β and k,m < ω such that k ≤ γ and m ≤ β, (k,m, X)γ is
the set of all Y ∈ (X)γ such that{

`(Y, i) : i < k
}
⊆

{
`(X, j) : j < m

}
.

Note that (0,m, X)γ = (1, m,X)γ = (X)γ for all m ≤ β.
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The amalgamation function A is defined as follows: Given X ∈ (ω)ω and t ∈ (p)m,
where 0 < m ≤ p < ω, A(t, X) is the partition of ω whose blocks are⋃

i∈t−1({0})

X−1({i}) , . . .
⋃

i∈t−1({m−1})

X−1({i}) , X−1({p}) , X−1({p + 1}) , . . .

For t ∈ (p)m, where m ≤ p < ω, let Ot := {X ∈ (ω)ω : X � p = t}.

We topologize (ω)ω by taking as basic open sets ∅ and Ot for t ∈
⋃

m≤p<ω

(p)m.

A function F : (ω)ω → r, where 1 ≤ r < ω, is clopen if F−1({i}) is a clopen subset
of (ω)ω for each i < r.

Our starting point is the following immediate consequence of the Dual Ellentuck
Theorem (Theorem 4.1 in [1]) of Carlson-Simpson.

Proposition 1. Given X ∈ (ω)ω and a clopen F : (ω)ω → r, where 1 ≤ r < ω, there
is Y ∈ (X)ω such that F is constant on (Y )ω.

Even if every block of X is finite, there may not be any homogeneous Y having
infinitely many finite blocks.

Proposition 2. There is a clopen F : (ω)ω → 2 with the property that there is no
Y ∈ (ω)ω such that F is constant on (Y )ω and Y has infinitely many finite blocks.

Proof. Define F : (ω)ω → 2 by stipulating that F (X) = 0 if and only if X−1({1}) ∩
`(X, 3) ⊆ `(X, 2). Obviously, F is clopen. Now suppose that there is Y ∈ (ω)ω such
that Y has infinitely many finite blocks and F is constant on (Y )ω. Pick Z ∈ (ω)ω

1

with Z 6 Y . Then F is constant on (Z)ω, which is clearly impossible. a

Carlson established a “specialized” version (Theorem 6.9 of [1], which follows from
Theorem 2 of [2]) of the Dual Ellentuck Theorem that deals with partitions of ω hav-
ing finitely many infinite blocks. Carlson’s result immediately implies the following.

Proposition 3. Given k < ω, X ∈ (ω)ω
k and a clopen F : (ω)ω → r, where 1 ≤ r <

ω, there is Y ∈ (ω)ω
k ∩ (k, k, X)ω such that F is constant on (k, k, Y )ω.

The purpose of this paper is to present the combinatorial result which is obtained
by combining Proposition 3 with the Finitary Dual Ramsey theorem of Graham-
Rothschild [3]. This last reads as follows.

Proposition 4. Suppose that 1 ≤ k ≤ m < ω and 1 ≤ r < ω. Then there is p < ω
such that p ≥ m and the following holds: Given f : (p)k → r, there is s ∈ (p)m such
that f is constant on (s)k.
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We now state our result.

Theorem. Given 1 < k < m < ω, X ∈ (ω)ω
k and a clopen F : (ω)ω → r, where

1 ≤ r < ω, there is Y ∈ (ω)ω
m ∩ (X)ω such that F is constant on (k,m, Y )ω.

Proof. Using Proposition 4, select p ≥ m so that every f : (p)k → r is constant on
(s)k for some s ∈ (p)m. First we define g :

⋃
i≤p−k

(k− 1 + i)k−1 → r and Y0, Y1, . . . , Yp−k

so that

(0) Y0 ∈ (ω)ω
k∩(k, k,X)ω and F takes the constant value g(u) on

(
k, k,A(u, Y0)

)ω
,

where u is the unique element of (k − 1)k−1 (hence, A(u, Y0) = Y0).
(1) Y1 ∈ (ω)ω

k+1 ∩ (k + 1, k + 1, Y0)
ω and F takes the constant value g(t) on(

k, k,A(t, Y1)
)ω

for every t ∈ (k)k−1.
(2) Y2 ∈ (ω)ω

k+2 ∩ (k + 2, k + 2, Y1)
ω and F takes the constant value g(t) on(

k, k,A(t, Y2)
)ω

for every t ∈ (k + 1)k−1.

...

(p− k) Yp−k ∈ (ω)ω
p∩(p, p, Yp−k−1)

ω and F takes the constant value g(t) on
(
k, k,A(t, Yp−k)

)ω

for every t ∈ (p− 1)k−1.

For example, to define Y3 and g � (k + 2)k−1, proceed as follows. Let t0, t1, . . . , tq
be an enumeration of the elements of (k + 2)k−1. Applying Proposition 3 repeatedly,
define Tj, Zj and cj for j ≤ q so that

(i) Tj ∈ (ω)ω
k .

(ii) If j = 0, Tj ∈
(
k, k,A(tj, Y2)

)ω
and Zj ∈ (k + 3, k + 3, Y2)

ω.

(iii) If j > 0, Tj ∈
(
k, k,A(tj, Zj−1)

)ω
and Zj ∈ (k + 3, k + 3, Zj−1)

ω.
(iv) F takes the constant value cj on (k, k, Tj)

ω.
(v) A(tj, Zj) = Tj.

Then set Y3 = Zq and g(tj) = cj for every j ≤ q.

Define f : (p)k → r by f(w) = g
(
w � `(w, k − 1)

)
. Set W = Yp−k. Obviously,

W ∈ (ω)ω
p ∩ (X)ω. Moreover, F takes the constant value f(w) on

(
k, k,A(w �

`(w, k−1), W )
)ω

for every w ∈ (p)k. Let s ∈ (p)m be such that f is constant on (s)k.
Then Y = A(s,W ) is as desired. a

The referee pointed out that the theorem and similar results can be derived from
Theorem 10 and Theorem 11 of [2].

The theorem is optimal in the following sense:
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Proposition 5. Suppose that 1 < k < m < ω. Then there is F : (ω)ω → 2 such
that F−1({0}) is open and there is no Y ∈ (ω)ω

m with the property that F is constant
on (k,m, Y )ω.

Proof. Let F (Y ) = 0 exactly when Y (m) * `(Y, m + 1). a

The theorem has the following finitary version, which is proved by arguing as for 3.2
in [1].

Proposition 6. Suppose that n ≤ q ≤ m < ω, 1 ≤ k ≤ m, n ≤ k and 1 ≤ r < ω.
Then there is p < ω such that p ≥ m and the following holds: Given f : (p)k → r,
there is s ∈ (p)m

q such that f is constant on (n, q, s)k.

Proof. Assume that for every p ≥ m there is fp : (p)k → r such that for every
s ∈ (p)m

q , fp is not constant on (n, q, s)k. Define F : (ω)ω → r by stipulating that

F (T ) = f`(T,k)

(
T � `(T, k)

)
. Using the theorem (for 1 < n < q) or Proposition 3

(otherwise), we find Y ∈ (ω)ω
q such that F is constant on (n, q, Y )ω. Set p = `(Y, m)

and s = Y � m. Then p ≥ m and s ∈ (p)m
q . Moreover, fp is constant on (n, q, s)k.

Contradiction! a

When n ∈ {0, 1} and q ∈ {m − 1,m}, Proposition 6 reduces to the Finitary Dual
Ramsey Theorem. When n = k and q ∈ {m − 1, m}, it reduces to the n-parameter
set theorem of Graham-Rothschild [3], which generalizes the Finitary Dual Ramsey
Theorem.
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